linux/arch/x86/kernel/tsc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/kernel.h>
   5#include <linux/sched.h>
   6#include <linux/sched/clock.h>
   7#include <linux/init.h>
   8#include <linux/export.h>
   9#include <linux/timer.h>
  10#include <linux/acpi_pmtmr.h>
  11#include <linux/cpufreq.h>
  12#include <linux/delay.h>
  13#include <linux/clocksource.h>
  14#include <linux/percpu.h>
  15#include <linux/timex.h>
  16#include <linux/static_key.h>
  17
  18#include <asm/hpet.h>
  19#include <asm/timer.h>
  20#include <asm/vgtod.h>
  21#include <asm/time.h>
  22#include <asm/delay.h>
  23#include <asm/hypervisor.h>
  24#include <asm/nmi.h>
  25#include <asm/x86_init.h>
  26#include <asm/geode.h>
  27#include <asm/apic.h>
  28#include <asm/intel-family.h>
  29#include <asm/i8259.h>
  30#include <asm/uv/uv.h>
  31
  32unsigned int __read_mostly cpu_khz;     /* TSC clocks / usec, not used here */
  33EXPORT_SYMBOL(cpu_khz);
  34
  35unsigned int __read_mostly tsc_khz;
  36EXPORT_SYMBOL(tsc_khz);
  37
  38#define KHZ     1000
  39
  40/*
  41 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  42 */
  43static int __read_mostly tsc_unstable;
  44
  45static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  46
  47int tsc_clocksource_reliable;
  48
  49static u32 art_to_tsc_numerator;
  50static u32 art_to_tsc_denominator;
  51static u64 art_to_tsc_offset;
  52struct clocksource *art_related_clocksource;
  53
  54struct cyc2ns {
  55        struct cyc2ns_data data[2];     /*  0 + 2*16 = 32 */
  56        seqcount_t         seq;         /* 32 + 4    = 36 */
  57
  58}; /* fits one cacheline */
  59
  60static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  61
  62__always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
  63{
  64        int seq, idx;
  65
  66        preempt_disable_notrace();
  67
  68        do {
  69                seq = this_cpu_read(cyc2ns.seq.sequence);
  70                idx = seq & 1;
  71
  72                data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
  73                data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
  74                data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
  75
  76        } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
  77}
  78
  79__always_inline void cyc2ns_read_end(void)
  80{
  81        preempt_enable_notrace();
  82}
  83
  84/*
  85 * Accelerators for sched_clock()
  86 * convert from cycles(64bits) => nanoseconds (64bits)
  87 *  basic equation:
  88 *              ns = cycles / (freq / ns_per_sec)
  89 *              ns = cycles * (ns_per_sec / freq)
  90 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
  91 *              ns = cycles * (10^6 / cpu_khz)
  92 *
  93 *      Then we use scaling math (suggested by george@mvista.com) to get:
  94 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
  95 *              ns = cycles * cyc2ns_scale / SC
  96 *
  97 *      And since SC is a constant power of two, we can convert the div
  98 *  into a shift. The larger SC is, the more accurate the conversion, but
  99 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 100 *  (64-bit result) can be used.
 101 *
 102 *  We can use khz divisor instead of mhz to keep a better precision.
 103 *  (mathieu.desnoyers@polymtl.ca)
 104 *
 105 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 106 */
 107
 108static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
 109{
 110        struct cyc2ns_data data;
 111        unsigned long long ns;
 112
 113        cyc2ns_read_begin(&data);
 114
 115        ns = data.cyc2ns_offset;
 116        ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
 117
 118        cyc2ns_read_end();
 119
 120        return ns;
 121}
 122
 123static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
 124{
 125        unsigned long long ns_now;
 126        struct cyc2ns_data data;
 127        struct cyc2ns *c2n;
 128
 129        ns_now = cycles_2_ns(tsc_now);
 130
 131        /*
 132         * Compute a new multiplier as per the above comment and ensure our
 133         * time function is continuous; see the comment near struct
 134         * cyc2ns_data.
 135         */
 136        clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
 137                               NSEC_PER_MSEC, 0);
 138
 139        /*
 140         * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
 141         * not expected to be greater than 31 due to the original published
 142         * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
 143         * value) - refer perf_event_mmap_page documentation in perf_event.h.
 144         */
 145        if (data.cyc2ns_shift == 32) {
 146                data.cyc2ns_shift = 31;
 147                data.cyc2ns_mul >>= 1;
 148        }
 149
 150        data.cyc2ns_offset = ns_now -
 151                mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
 152
 153        c2n = per_cpu_ptr(&cyc2ns, cpu);
 154
 155        raw_write_seqcount_latch(&c2n->seq);
 156        c2n->data[0] = data;
 157        raw_write_seqcount_latch(&c2n->seq);
 158        c2n->data[1] = data;
 159}
 160
 161static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
 162{
 163        unsigned long flags;
 164
 165        local_irq_save(flags);
 166        sched_clock_idle_sleep_event();
 167
 168        if (khz)
 169                __set_cyc2ns_scale(khz, cpu, tsc_now);
 170
 171        sched_clock_idle_wakeup_event();
 172        local_irq_restore(flags);
 173}
 174
 175/*
 176 * Initialize cyc2ns for boot cpu
 177 */
 178static void __init cyc2ns_init_boot_cpu(void)
 179{
 180        struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
 181
 182        seqcount_init(&c2n->seq);
 183        __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
 184}
 185
 186/*
 187 * Secondary CPUs do not run through tsc_init(), so set up
 188 * all the scale factors for all CPUs, assuming the same
 189 * speed as the bootup CPU.
 190 */
 191static void __init cyc2ns_init_secondary_cpus(void)
 192{
 193        unsigned int cpu, this_cpu = smp_processor_id();
 194        struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
 195        struct cyc2ns_data *data = c2n->data;
 196
 197        for_each_possible_cpu(cpu) {
 198                if (cpu != this_cpu) {
 199                        seqcount_init(&c2n->seq);
 200                        c2n = per_cpu_ptr(&cyc2ns, cpu);
 201                        c2n->data[0] = data[0];
 202                        c2n->data[1] = data[1];
 203                }
 204        }
 205}
 206
 207/*
 208 * Scheduler clock - returns current time in nanosec units.
 209 */
 210u64 native_sched_clock(void)
 211{
 212        if (static_branch_likely(&__use_tsc)) {
 213                u64 tsc_now = rdtsc();
 214
 215                /* return the value in ns */
 216                return cycles_2_ns(tsc_now);
 217        }
 218
 219        /*
 220         * Fall back to jiffies if there's no TSC available:
 221         * ( But note that we still use it if the TSC is marked
 222         *   unstable. We do this because unlike Time Of Day,
 223         *   the scheduler clock tolerates small errors and it's
 224         *   very important for it to be as fast as the platform
 225         *   can achieve it. )
 226         */
 227
 228        /* No locking but a rare wrong value is not a big deal: */
 229        return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
 230}
 231
 232/*
 233 * Generate a sched_clock if you already have a TSC value.
 234 */
 235u64 native_sched_clock_from_tsc(u64 tsc)
 236{
 237        return cycles_2_ns(tsc);
 238}
 239
 240/* We need to define a real function for sched_clock, to override the
 241   weak default version */
 242#ifdef CONFIG_PARAVIRT
 243unsigned long long sched_clock(void)
 244{
 245        return paravirt_sched_clock();
 246}
 247
 248bool using_native_sched_clock(void)
 249{
 250        return pv_ops.time.sched_clock == native_sched_clock;
 251}
 252#else
 253unsigned long long
 254sched_clock(void) __attribute__((alias("native_sched_clock")));
 255
 256bool using_native_sched_clock(void) { return true; }
 257#endif
 258
 259int check_tsc_unstable(void)
 260{
 261        return tsc_unstable;
 262}
 263EXPORT_SYMBOL_GPL(check_tsc_unstable);
 264
 265#ifdef CONFIG_X86_TSC
 266int __init notsc_setup(char *str)
 267{
 268        mark_tsc_unstable("boot parameter notsc");
 269        return 1;
 270}
 271#else
 272/*
 273 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 274 * in cpu/common.c
 275 */
 276int __init notsc_setup(char *str)
 277{
 278        setup_clear_cpu_cap(X86_FEATURE_TSC);
 279        return 1;
 280}
 281#endif
 282
 283__setup("notsc", notsc_setup);
 284
 285static int no_sched_irq_time;
 286static int no_tsc_watchdog;
 287
 288static int __init tsc_setup(char *str)
 289{
 290        if (!strcmp(str, "reliable"))
 291                tsc_clocksource_reliable = 1;
 292        if (!strncmp(str, "noirqtime", 9))
 293                no_sched_irq_time = 1;
 294        if (!strcmp(str, "unstable"))
 295                mark_tsc_unstable("boot parameter");
 296        if (!strcmp(str, "nowatchdog"))
 297                no_tsc_watchdog = 1;
 298        return 1;
 299}
 300
 301__setup("tsc=", tsc_setup);
 302
 303#define MAX_RETRIES             5
 304#define TSC_DEFAULT_THRESHOLD   0x20000
 305
 306/*
 307 * Read TSC and the reference counters. Take care of any disturbances
 308 */
 309static u64 tsc_read_refs(u64 *p, int hpet)
 310{
 311        u64 t1, t2;
 312        u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
 313        int i;
 314
 315        for (i = 0; i < MAX_RETRIES; i++) {
 316                t1 = get_cycles();
 317                if (hpet)
 318                        *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 319                else
 320                        *p = acpi_pm_read_early();
 321                t2 = get_cycles();
 322                if ((t2 - t1) < thresh)
 323                        return t2;
 324        }
 325        return ULLONG_MAX;
 326}
 327
 328/*
 329 * Calculate the TSC frequency from HPET reference
 330 */
 331static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 332{
 333        u64 tmp;
 334
 335        if (hpet2 < hpet1)
 336                hpet2 += 0x100000000ULL;
 337        hpet2 -= hpet1;
 338        tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 339        do_div(tmp, 1000000);
 340        deltatsc = div64_u64(deltatsc, tmp);
 341
 342        return (unsigned long) deltatsc;
 343}
 344
 345/*
 346 * Calculate the TSC frequency from PMTimer reference
 347 */
 348static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 349{
 350        u64 tmp;
 351
 352        if (!pm1 && !pm2)
 353                return ULONG_MAX;
 354
 355        if (pm2 < pm1)
 356                pm2 += (u64)ACPI_PM_OVRRUN;
 357        pm2 -= pm1;
 358        tmp = pm2 * 1000000000LL;
 359        do_div(tmp, PMTMR_TICKS_PER_SEC);
 360        do_div(deltatsc, tmp);
 361
 362        return (unsigned long) deltatsc;
 363}
 364
 365#define CAL_MS          10
 366#define CAL_LATCH       (PIT_TICK_RATE / (1000 / CAL_MS))
 367#define CAL_PIT_LOOPS   1000
 368
 369#define CAL2_MS         50
 370#define CAL2_LATCH      (PIT_TICK_RATE / (1000 / CAL2_MS))
 371#define CAL2_PIT_LOOPS  5000
 372
 373
 374/*
 375 * Try to calibrate the TSC against the Programmable
 376 * Interrupt Timer and return the frequency of the TSC
 377 * in kHz.
 378 *
 379 * Return ULONG_MAX on failure to calibrate.
 380 */
 381static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 382{
 383        u64 tsc, t1, t2, delta;
 384        unsigned long tscmin, tscmax;
 385        int pitcnt;
 386
 387        if (!has_legacy_pic()) {
 388                /*
 389                 * Relies on tsc_early_delay_calibrate() to have given us semi
 390                 * usable udelay(), wait for the same 50ms we would have with
 391                 * the PIT loop below.
 392                 */
 393                udelay(10 * USEC_PER_MSEC);
 394                udelay(10 * USEC_PER_MSEC);
 395                udelay(10 * USEC_PER_MSEC);
 396                udelay(10 * USEC_PER_MSEC);
 397                udelay(10 * USEC_PER_MSEC);
 398                return ULONG_MAX;
 399        }
 400
 401        /* Set the Gate high, disable speaker */
 402        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 403
 404        /*
 405         * Setup CTC channel 2* for mode 0, (interrupt on terminal
 406         * count mode), binary count. Set the latch register to 50ms
 407         * (LSB then MSB) to begin countdown.
 408         */
 409        outb(0xb0, 0x43);
 410        outb(latch & 0xff, 0x42);
 411        outb(latch >> 8, 0x42);
 412
 413        tsc = t1 = t2 = get_cycles();
 414
 415        pitcnt = 0;
 416        tscmax = 0;
 417        tscmin = ULONG_MAX;
 418        while ((inb(0x61) & 0x20) == 0) {
 419                t2 = get_cycles();
 420                delta = t2 - tsc;
 421                tsc = t2;
 422                if ((unsigned long) delta < tscmin)
 423                        tscmin = (unsigned int) delta;
 424                if ((unsigned long) delta > tscmax)
 425                        tscmax = (unsigned int) delta;
 426                pitcnt++;
 427        }
 428
 429        /*
 430         * Sanity checks:
 431         *
 432         * If we were not able to read the PIT more than loopmin
 433         * times, then we have been hit by a massive SMI
 434         *
 435         * If the maximum is 10 times larger than the minimum,
 436         * then we got hit by an SMI as well.
 437         */
 438        if (pitcnt < loopmin || tscmax > 10 * tscmin)
 439                return ULONG_MAX;
 440
 441        /* Calculate the PIT value */
 442        delta = t2 - t1;
 443        do_div(delta, ms);
 444        return delta;
 445}
 446
 447/*
 448 * This reads the current MSB of the PIT counter, and
 449 * checks if we are running on sufficiently fast and
 450 * non-virtualized hardware.
 451 *
 452 * Our expectations are:
 453 *
 454 *  - the PIT is running at roughly 1.19MHz
 455 *
 456 *  - each IO is going to take about 1us on real hardware,
 457 *    but we allow it to be much faster (by a factor of 10) or
 458 *    _slightly_ slower (ie we allow up to a 2us read+counter
 459 *    update - anything else implies a unacceptably slow CPU
 460 *    or PIT for the fast calibration to work.
 461 *
 462 *  - with 256 PIT ticks to read the value, we have 214us to
 463 *    see the same MSB (and overhead like doing a single TSC
 464 *    read per MSB value etc).
 465 *
 466 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 467 *    them each to take about a microsecond on real hardware.
 468 *    So we expect a count value of around 100. But we'll be
 469 *    generous, and accept anything over 50.
 470 *
 471 *  - if the PIT is stuck, and we see *many* more reads, we
 472 *    return early (and the next caller of pit_expect_msb()
 473 *    then consider it a failure when they don't see the
 474 *    next expected value).
 475 *
 476 * These expectations mean that we know that we have seen the
 477 * transition from one expected value to another with a fairly
 478 * high accuracy, and we didn't miss any events. We can thus
 479 * use the TSC value at the transitions to calculate a pretty
 480 * good value for the TSC frequencty.
 481 */
 482static inline int pit_verify_msb(unsigned char val)
 483{
 484        /* Ignore LSB */
 485        inb(0x42);
 486        return inb(0x42) == val;
 487}
 488
 489static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 490{
 491        int count;
 492        u64 tsc = 0, prev_tsc = 0;
 493
 494        for (count = 0; count < 50000; count++) {
 495                if (!pit_verify_msb(val))
 496                        break;
 497                prev_tsc = tsc;
 498                tsc = get_cycles();
 499        }
 500        *deltap = get_cycles() - prev_tsc;
 501        *tscp = tsc;
 502
 503        /*
 504         * We require _some_ success, but the quality control
 505         * will be based on the error terms on the TSC values.
 506         */
 507        return count > 5;
 508}
 509
 510/*
 511 * How many MSB values do we want to see? We aim for
 512 * a maximum error rate of 500ppm (in practice the
 513 * real error is much smaller), but refuse to spend
 514 * more than 50ms on it.
 515 */
 516#define MAX_QUICK_PIT_MS 50
 517#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 518
 519static unsigned long quick_pit_calibrate(void)
 520{
 521        int i;
 522        u64 tsc, delta;
 523        unsigned long d1, d2;
 524
 525        if (!has_legacy_pic())
 526                return 0;
 527
 528        /* Set the Gate high, disable speaker */
 529        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 530
 531        /*
 532         * Counter 2, mode 0 (one-shot), binary count
 533         *
 534         * NOTE! Mode 2 decrements by two (and then the
 535         * output is flipped each time, giving the same
 536         * final output frequency as a decrement-by-one),
 537         * so mode 0 is much better when looking at the
 538         * individual counts.
 539         */
 540        outb(0xb0, 0x43);
 541
 542        /* Start at 0xffff */
 543        outb(0xff, 0x42);
 544        outb(0xff, 0x42);
 545
 546        /*
 547         * The PIT starts counting at the next edge, so we
 548         * need to delay for a microsecond. The easiest way
 549         * to do that is to just read back the 16-bit counter
 550         * once from the PIT.
 551         */
 552        pit_verify_msb(0);
 553
 554        if (pit_expect_msb(0xff, &tsc, &d1)) {
 555                for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 556                        if (!pit_expect_msb(0xff-i, &delta, &d2))
 557                                break;
 558
 559                        delta -= tsc;
 560
 561                        /*
 562                         * Extrapolate the error and fail fast if the error will
 563                         * never be below 500 ppm.
 564                         */
 565                        if (i == 1 &&
 566                            d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
 567                                return 0;
 568
 569                        /*
 570                         * Iterate until the error is less than 500 ppm
 571                         */
 572                        if (d1+d2 >= delta >> 11)
 573                                continue;
 574
 575                        /*
 576                         * Check the PIT one more time to verify that
 577                         * all TSC reads were stable wrt the PIT.
 578                         *
 579                         * This also guarantees serialization of the
 580                         * last cycle read ('d2') in pit_expect_msb.
 581                         */
 582                        if (!pit_verify_msb(0xfe - i))
 583                                break;
 584                        goto success;
 585                }
 586        }
 587        pr_info("Fast TSC calibration failed\n");
 588        return 0;
 589
 590success:
 591        /*
 592         * Ok, if we get here, then we've seen the
 593         * MSB of the PIT decrement 'i' times, and the
 594         * error has shrunk to less than 500 ppm.
 595         *
 596         * As a result, we can depend on there not being
 597         * any odd delays anywhere, and the TSC reads are
 598         * reliable (within the error).
 599         *
 600         * kHz = ticks / time-in-seconds / 1000;
 601         * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 602         * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 603         */
 604        delta *= PIT_TICK_RATE;
 605        do_div(delta, i*256*1000);
 606        pr_info("Fast TSC calibration using PIT\n");
 607        return delta;
 608}
 609
 610/**
 611 * native_calibrate_tsc
 612 * Determine TSC frequency via CPUID, else return 0.
 613 */
 614unsigned long native_calibrate_tsc(void)
 615{
 616        unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
 617        unsigned int crystal_khz;
 618
 619        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 620                return 0;
 621
 622        if (boot_cpu_data.cpuid_level < 0x15)
 623                return 0;
 624
 625        eax_denominator = ebx_numerator = ecx_hz = edx = 0;
 626
 627        /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
 628        cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
 629
 630        if (ebx_numerator == 0 || eax_denominator == 0)
 631                return 0;
 632
 633        crystal_khz = ecx_hz / 1000;
 634
 635        /*
 636         * Denverton SoCs don't report crystal clock, and also don't support
 637         * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
 638         * clock.
 639         */
 640        if (crystal_khz == 0 &&
 641                        boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_X)
 642                crystal_khz = 25000;
 643
 644        /*
 645         * TSC frequency reported directly by CPUID is a "hardware reported"
 646         * frequency and is the most accurate one so far we have. This
 647         * is considered a known frequency.
 648         */
 649        if (crystal_khz != 0)
 650                setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 651
 652        /*
 653         * Some Intel SoCs like Skylake and Kabylake don't report the crystal
 654         * clock, but we can easily calculate it to a high degree of accuracy
 655         * by considering the crystal ratio and the CPU speed.
 656         */
 657        if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
 658                unsigned int eax_base_mhz, ebx, ecx, edx;
 659
 660                cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
 661                crystal_khz = eax_base_mhz * 1000 *
 662                        eax_denominator / ebx_numerator;
 663        }
 664
 665        if (crystal_khz == 0)
 666                return 0;
 667
 668        /*
 669         * For Atom SoCs TSC is the only reliable clocksource.
 670         * Mark TSC reliable so no watchdog on it.
 671         */
 672        if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
 673                setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
 674
 675#ifdef CONFIG_X86_LOCAL_APIC
 676        /*
 677         * The local APIC appears to be fed by the core crystal clock
 678         * (which sounds entirely sensible). We can set the global
 679         * lapic_timer_period here to avoid having to calibrate the APIC
 680         * timer later.
 681         */
 682        lapic_timer_period = crystal_khz * 1000 / HZ;
 683#endif
 684
 685        return crystal_khz * ebx_numerator / eax_denominator;
 686}
 687
 688static unsigned long cpu_khz_from_cpuid(void)
 689{
 690        unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
 691
 692        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 693                return 0;
 694
 695        if (boot_cpu_data.cpuid_level < 0x16)
 696                return 0;
 697
 698        eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
 699
 700        cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
 701
 702        return eax_base_mhz * 1000;
 703}
 704
 705/*
 706 * calibrate cpu using pit, hpet, and ptimer methods. They are available
 707 * later in boot after acpi is initialized.
 708 */
 709static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
 710{
 711        u64 tsc1, tsc2, delta, ref1, ref2;
 712        unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 713        unsigned long flags, latch, ms;
 714        int hpet = is_hpet_enabled(), i, loopmin;
 715
 716        /*
 717         * Run 5 calibration loops to get the lowest frequency value
 718         * (the best estimate). We use two different calibration modes
 719         * here:
 720         *
 721         * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 722         * load a timeout of 50ms. We read the time right after we
 723         * started the timer and wait until the PIT count down reaches
 724         * zero. In each wait loop iteration we read the TSC and check
 725         * the delta to the previous read. We keep track of the min
 726         * and max values of that delta. The delta is mostly defined
 727         * by the IO time of the PIT access, so we can detect when
 728         * any disturbance happened between the two reads. If the
 729         * maximum time is significantly larger than the minimum time,
 730         * then we discard the result and have another try.
 731         *
 732         * 2) Reference counter. If available we use the HPET or the
 733         * PMTIMER as a reference to check the sanity of that value.
 734         * We use separate TSC readouts and check inside of the
 735         * reference read for any possible disturbance. We dicard
 736         * disturbed values here as well. We do that around the PIT
 737         * calibration delay loop as we have to wait for a certain
 738         * amount of time anyway.
 739         */
 740
 741        /* Preset PIT loop values */
 742        latch = CAL_LATCH;
 743        ms = CAL_MS;
 744        loopmin = CAL_PIT_LOOPS;
 745
 746        for (i = 0; i < 3; i++) {
 747                unsigned long tsc_pit_khz;
 748
 749                /*
 750                 * Read the start value and the reference count of
 751                 * hpet/pmtimer when available. Then do the PIT
 752                 * calibration, which will take at least 50ms, and
 753                 * read the end value.
 754                 */
 755                local_irq_save(flags);
 756                tsc1 = tsc_read_refs(&ref1, hpet);
 757                tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 758                tsc2 = tsc_read_refs(&ref2, hpet);
 759                local_irq_restore(flags);
 760
 761                /* Pick the lowest PIT TSC calibration so far */
 762                tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 763
 764                /* hpet or pmtimer available ? */
 765                if (ref1 == ref2)
 766                        continue;
 767
 768                /* Check, whether the sampling was disturbed */
 769                if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 770                        continue;
 771
 772                tsc2 = (tsc2 - tsc1) * 1000000LL;
 773                if (hpet)
 774                        tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 775                else
 776                        tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 777
 778                tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 779
 780                /* Check the reference deviation */
 781                delta = ((u64) tsc_pit_min) * 100;
 782                do_div(delta, tsc_ref_min);
 783
 784                /*
 785                 * If both calibration results are inside a 10% window
 786                 * then we can be sure, that the calibration
 787                 * succeeded. We break out of the loop right away. We
 788                 * use the reference value, as it is more precise.
 789                 */
 790                if (delta >= 90 && delta <= 110) {
 791                        pr_info("PIT calibration matches %s. %d loops\n",
 792                                hpet ? "HPET" : "PMTIMER", i + 1);
 793                        return tsc_ref_min;
 794                }
 795
 796                /*
 797                 * Check whether PIT failed more than once. This
 798                 * happens in virtualized environments. We need to
 799                 * give the virtual PC a slightly longer timeframe for
 800                 * the HPET/PMTIMER to make the result precise.
 801                 */
 802                if (i == 1 && tsc_pit_min == ULONG_MAX) {
 803                        latch = CAL2_LATCH;
 804                        ms = CAL2_MS;
 805                        loopmin = CAL2_PIT_LOOPS;
 806                }
 807        }
 808
 809        /*
 810         * Now check the results.
 811         */
 812        if (tsc_pit_min == ULONG_MAX) {
 813                /* PIT gave no useful value */
 814                pr_warn("Unable to calibrate against PIT\n");
 815
 816                /* We don't have an alternative source, disable TSC */
 817                if (!hpet && !ref1 && !ref2) {
 818                        pr_notice("No reference (HPET/PMTIMER) available\n");
 819                        return 0;
 820                }
 821
 822                /* The alternative source failed as well, disable TSC */
 823                if (tsc_ref_min == ULONG_MAX) {
 824                        pr_warn("HPET/PMTIMER calibration failed\n");
 825                        return 0;
 826                }
 827
 828                /* Use the alternative source */
 829                pr_info("using %s reference calibration\n",
 830                        hpet ? "HPET" : "PMTIMER");
 831
 832                return tsc_ref_min;
 833        }
 834
 835        /* We don't have an alternative source, use the PIT calibration value */
 836        if (!hpet && !ref1 && !ref2) {
 837                pr_info("Using PIT calibration value\n");
 838                return tsc_pit_min;
 839        }
 840
 841        /* The alternative source failed, use the PIT calibration value */
 842        if (tsc_ref_min == ULONG_MAX) {
 843                pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 844                return tsc_pit_min;
 845        }
 846
 847        /*
 848         * The calibration values differ too much. In doubt, we use
 849         * the PIT value as we know that there are PMTIMERs around
 850         * running at double speed. At least we let the user know:
 851         */
 852        pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 853                hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 854        pr_info("Using PIT calibration value\n");
 855        return tsc_pit_min;
 856}
 857
 858/**
 859 * native_calibrate_cpu_early - can calibrate the cpu early in boot
 860 */
 861unsigned long native_calibrate_cpu_early(void)
 862{
 863        unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
 864
 865        if (!fast_calibrate)
 866                fast_calibrate = cpu_khz_from_msr();
 867        if (!fast_calibrate) {
 868                local_irq_save(flags);
 869                fast_calibrate = quick_pit_calibrate();
 870                local_irq_restore(flags);
 871        }
 872        return fast_calibrate;
 873}
 874
 875
 876/**
 877 * native_calibrate_cpu - calibrate the cpu
 878 */
 879static unsigned long native_calibrate_cpu(void)
 880{
 881        unsigned long tsc_freq = native_calibrate_cpu_early();
 882
 883        if (!tsc_freq)
 884                tsc_freq = pit_hpet_ptimer_calibrate_cpu();
 885
 886        return tsc_freq;
 887}
 888
 889void recalibrate_cpu_khz(void)
 890{
 891#ifndef CONFIG_SMP
 892        unsigned long cpu_khz_old = cpu_khz;
 893
 894        if (!boot_cpu_has(X86_FEATURE_TSC))
 895                return;
 896
 897        cpu_khz = x86_platform.calibrate_cpu();
 898        tsc_khz = x86_platform.calibrate_tsc();
 899        if (tsc_khz == 0)
 900                tsc_khz = cpu_khz;
 901        else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
 902                cpu_khz = tsc_khz;
 903        cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
 904                                                    cpu_khz_old, cpu_khz);
 905#endif
 906}
 907
 908EXPORT_SYMBOL(recalibrate_cpu_khz);
 909
 910
 911static unsigned long long cyc2ns_suspend;
 912
 913void tsc_save_sched_clock_state(void)
 914{
 915        if (!sched_clock_stable())
 916                return;
 917
 918        cyc2ns_suspend = sched_clock();
 919}
 920
 921/*
 922 * Even on processors with invariant TSC, TSC gets reset in some the
 923 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 924 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 925 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 926 * that sched_clock() continues from the point where it was left off during
 927 * suspend.
 928 */
 929void tsc_restore_sched_clock_state(void)
 930{
 931        unsigned long long offset;
 932        unsigned long flags;
 933        int cpu;
 934
 935        if (!sched_clock_stable())
 936                return;
 937
 938        local_irq_save(flags);
 939
 940        /*
 941         * We're coming out of suspend, there's no concurrency yet; don't
 942         * bother being nice about the RCU stuff, just write to both
 943         * data fields.
 944         */
 945
 946        this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
 947        this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
 948
 949        offset = cyc2ns_suspend - sched_clock();
 950
 951        for_each_possible_cpu(cpu) {
 952                per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
 953                per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
 954        }
 955
 956        local_irq_restore(flags);
 957}
 958
 959#ifdef CONFIG_CPU_FREQ
 960/*
 961 * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
 962 * changes.
 963 *
 964 * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
 965 * as unstable and give up in those cases.
 966 *
 967 * Should fix up last_tsc too. Currently gettimeofday in the
 968 * first tick after the change will be slightly wrong.
 969 */
 970
 971static unsigned int  ref_freq;
 972static unsigned long loops_per_jiffy_ref;
 973static unsigned long tsc_khz_ref;
 974
 975static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 976                                void *data)
 977{
 978        struct cpufreq_freqs *freq = data;
 979
 980        if (num_online_cpus() > 1) {
 981                mark_tsc_unstable("cpufreq changes on SMP");
 982                return 0;
 983        }
 984
 985        if (!ref_freq) {
 986                ref_freq = freq->old;
 987                loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
 988                tsc_khz_ref = tsc_khz;
 989        }
 990
 991        if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 992            (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
 993                boot_cpu_data.loops_per_jiffy =
 994                        cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
 995
 996                tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
 997                if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 998                        mark_tsc_unstable("cpufreq changes");
 999
1000                set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1001        }
1002
1003        return 0;
1004}
1005
1006static struct notifier_block time_cpufreq_notifier_block = {
1007        .notifier_call  = time_cpufreq_notifier
1008};
1009
1010static int __init cpufreq_register_tsc_scaling(void)
1011{
1012        if (!boot_cpu_has(X86_FEATURE_TSC))
1013                return 0;
1014        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1015                return 0;
1016        cpufreq_register_notifier(&time_cpufreq_notifier_block,
1017                                CPUFREQ_TRANSITION_NOTIFIER);
1018        return 0;
1019}
1020
1021core_initcall(cpufreq_register_tsc_scaling);
1022
1023#endif /* CONFIG_CPU_FREQ */
1024
1025#define ART_CPUID_LEAF (0x15)
1026#define ART_MIN_DENOMINATOR (1)
1027
1028
1029/*
1030 * If ART is present detect the numerator:denominator to convert to TSC
1031 */
1032static void __init detect_art(void)
1033{
1034        unsigned int unused[2];
1035
1036        if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1037                return;
1038
1039        /*
1040         * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1041         * and the TSC counter resets must not occur asynchronously.
1042         */
1043        if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1044            !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1045            !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1046            tsc_async_resets)
1047                return;
1048
1049        cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1050              &art_to_tsc_numerator, unused, unused+1);
1051
1052        if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1053                return;
1054
1055        rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1056
1057        /* Make this sticky over multiple CPU init calls */
1058        setup_force_cpu_cap(X86_FEATURE_ART);
1059}
1060
1061
1062/* clocksource code */
1063
1064static void tsc_resume(struct clocksource *cs)
1065{
1066        tsc_verify_tsc_adjust(true);
1067}
1068
1069/*
1070 * We used to compare the TSC to the cycle_last value in the clocksource
1071 * structure to avoid a nasty time-warp. This can be observed in a
1072 * very small window right after one CPU updated cycle_last under
1073 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1074 * is smaller than the cycle_last reference value due to a TSC which
1075 * is slighty behind. This delta is nowhere else observable, but in
1076 * that case it results in a forward time jump in the range of hours
1077 * due to the unsigned delta calculation of the time keeping core
1078 * code, which is necessary to support wrapping clocksources like pm
1079 * timer.
1080 *
1081 * This sanity check is now done in the core timekeeping code.
1082 * checking the result of read_tsc() - cycle_last for being negative.
1083 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1084 */
1085static u64 read_tsc(struct clocksource *cs)
1086{
1087        return (u64)rdtsc_ordered();
1088}
1089
1090static void tsc_cs_mark_unstable(struct clocksource *cs)
1091{
1092        if (tsc_unstable)
1093                return;
1094
1095        tsc_unstable = 1;
1096        if (using_native_sched_clock())
1097                clear_sched_clock_stable();
1098        disable_sched_clock_irqtime();
1099        pr_info("Marking TSC unstable due to clocksource watchdog\n");
1100}
1101
1102static void tsc_cs_tick_stable(struct clocksource *cs)
1103{
1104        if (tsc_unstable)
1105                return;
1106
1107        if (using_native_sched_clock())
1108                sched_clock_tick_stable();
1109}
1110
1111/*
1112 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1113 */
1114static struct clocksource clocksource_tsc_early = {
1115        .name                   = "tsc-early",
1116        .rating                 = 299,
1117        .read                   = read_tsc,
1118        .mask                   = CLOCKSOURCE_MASK(64),
1119        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1120                                  CLOCK_SOURCE_MUST_VERIFY,
1121        .archdata               = { .vclock_mode = VCLOCK_TSC },
1122        .resume                 = tsc_resume,
1123        .mark_unstable          = tsc_cs_mark_unstable,
1124        .tick_stable            = tsc_cs_tick_stable,
1125        .list                   = LIST_HEAD_INIT(clocksource_tsc_early.list),
1126};
1127
1128/*
1129 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1130 * this one will immediately take over. We will only register if TSC has
1131 * been found good.
1132 */
1133static struct clocksource clocksource_tsc = {
1134        .name                   = "tsc",
1135        .rating                 = 300,
1136        .read                   = read_tsc,
1137        .mask                   = CLOCKSOURCE_MASK(64),
1138        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1139                                  CLOCK_SOURCE_VALID_FOR_HRES |
1140                                  CLOCK_SOURCE_MUST_VERIFY,
1141        .archdata               = { .vclock_mode = VCLOCK_TSC },
1142        .resume                 = tsc_resume,
1143        .mark_unstable          = tsc_cs_mark_unstable,
1144        .tick_stable            = tsc_cs_tick_stable,
1145        .list                   = LIST_HEAD_INIT(clocksource_tsc.list),
1146};
1147
1148void mark_tsc_unstable(char *reason)
1149{
1150        if (tsc_unstable)
1151                return;
1152
1153        tsc_unstable = 1;
1154        if (using_native_sched_clock())
1155                clear_sched_clock_stable();
1156        disable_sched_clock_irqtime();
1157        pr_info("Marking TSC unstable due to %s\n", reason);
1158
1159        clocksource_mark_unstable(&clocksource_tsc_early);
1160        clocksource_mark_unstable(&clocksource_tsc);
1161}
1162
1163EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1164
1165static void __init check_system_tsc_reliable(void)
1166{
1167#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1168        if (is_geode_lx()) {
1169                /* RTSC counts during suspend */
1170#define RTSC_SUSP 0x100
1171                unsigned long res_low, res_high;
1172
1173                rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1174                /* Geode_LX - the OLPC CPU has a very reliable TSC */
1175                if (res_low & RTSC_SUSP)
1176                        tsc_clocksource_reliable = 1;
1177        }
1178#endif
1179        if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1180                tsc_clocksource_reliable = 1;
1181}
1182
1183/*
1184 * Make an educated guess if the TSC is trustworthy and synchronized
1185 * over all CPUs.
1186 */
1187int unsynchronized_tsc(void)
1188{
1189        if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1190                return 1;
1191
1192#ifdef CONFIG_SMP
1193        if (apic_is_clustered_box())
1194                return 1;
1195#endif
1196
1197        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1198                return 0;
1199
1200        if (tsc_clocksource_reliable)
1201                return 0;
1202        /*
1203         * Intel systems are normally all synchronized.
1204         * Exceptions must mark TSC as unstable:
1205         */
1206        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1207                /* assume multi socket systems are not synchronized: */
1208                if (num_possible_cpus() > 1)
1209                        return 1;
1210        }
1211
1212        return 0;
1213}
1214
1215/*
1216 * Convert ART to TSC given numerator/denominator found in detect_art()
1217 */
1218struct system_counterval_t convert_art_to_tsc(u64 art)
1219{
1220        u64 tmp, res, rem;
1221
1222        rem = do_div(art, art_to_tsc_denominator);
1223
1224        res = art * art_to_tsc_numerator;
1225        tmp = rem * art_to_tsc_numerator;
1226
1227        do_div(tmp, art_to_tsc_denominator);
1228        res += tmp + art_to_tsc_offset;
1229
1230        return (struct system_counterval_t) {.cs = art_related_clocksource,
1231                        .cycles = res};
1232}
1233EXPORT_SYMBOL(convert_art_to_tsc);
1234
1235/**
1236 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1237 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1238 *
1239 * PTM requires all timestamps to be in units of nanoseconds. When user
1240 * software requests a cross-timestamp, this function converts system timestamp
1241 * to TSC.
1242 *
1243 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1244 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1245 * that this flag is set before conversion to TSC is attempted.
1246 *
1247 * Return:
1248 * struct system_counterval_t - system counter value with the pointer to the
1249 *      corresponding clocksource
1250 *      @cycles:        System counter value
1251 *      @cs:            Clocksource corresponding to system counter value. Used
1252 *                      by timekeeping code to verify comparibility of two cycle
1253 *                      values.
1254 */
1255
1256struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1257{
1258        u64 tmp, res, rem;
1259
1260        rem = do_div(art_ns, USEC_PER_SEC);
1261
1262        res = art_ns * tsc_khz;
1263        tmp = rem * tsc_khz;
1264
1265        do_div(tmp, USEC_PER_SEC);
1266        res += tmp;
1267
1268        return (struct system_counterval_t) { .cs = art_related_clocksource,
1269                                              .cycles = res};
1270}
1271EXPORT_SYMBOL(convert_art_ns_to_tsc);
1272
1273
1274static void tsc_refine_calibration_work(struct work_struct *work);
1275static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1276/**
1277 * tsc_refine_calibration_work - Further refine tsc freq calibration
1278 * @work - ignored.
1279 *
1280 * This functions uses delayed work over a period of a
1281 * second to further refine the TSC freq value. Since this is
1282 * timer based, instead of loop based, we don't block the boot
1283 * process while this longer calibration is done.
1284 *
1285 * If there are any calibration anomalies (too many SMIs, etc),
1286 * or the refined calibration is off by 1% of the fast early
1287 * calibration, we throw out the new calibration and use the
1288 * early calibration.
1289 */
1290static void tsc_refine_calibration_work(struct work_struct *work)
1291{
1292        static u64 tsc_start = ULLONG_MAX, ref_start;
1293        static int hpet;
1294        u64 tsc_stop, ref_stop, delta;
1295        unsigned long freq;
1296        int cpu;
1297
1298        /* Don't bother refining TSC on unstable systems */
1299        if (tsc_unstable)
1300                goto unreg;
1301
1302        /*
1303         * Since the work is started early in boot, we may be
1304         * delayed the first time we expire. So set the workqueue
1305         * again once we know timers are working.
1306         */
1307        if (tsc_start == ULLONG_MAX) {
1308restart:
1309                /*
1310                 * Only set hpet once, to avoid mixing hardware
1311                 * if the hpet becomes enabled later.
1312                 */
1313                hpet = is_hpet_enabled();
1314                tsc_start = tsc_read_refs(&ref_start, hpet);
1315                schedule_delayed_work(&tsc_irqwork, HZ);
1316                return;
1317        }
1318
1319        tsc_stop = tsc_read_refs(&ref_stop, hpet);
1320
1321        /* hpet or pmtimer available ? */
1322        if (ref_start == ref_stop)
1323                goto out;
1324
1325        /* Check, whether the sampling was disturbed */
1326        if (tsc_stop == ULLONG_MAX)
1327                goto restart;
1328
1329        delta = tsc_stop - tsc_start;
1330        delta *= 1000000LL;
1331        if (hpet)
1332                freq = calc_hpet_ref(delta, ref_start, ref_stop);
1333        else
1334                freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1335
1336        /* Make sure we're within 1% */
1337        if (abs(tsc_khz - freq) > tsc_khz/100)
1338                goto out;
1339
1340        tsc_khz = freq;
1341        pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1342                (unsigned long)tsc_khz / 1000,
1343                (unsigned long)tsc_khz % 1000);
1344
1345        /* Inform the TSC deadline clockevent devices about the recalibration */
1346        lapic_update_tsc_freq();
1347
1348        /* Update the sched_clock() rate to match the clocksource one */
1349        for_each_possible_cpu(cpu)
1350                set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1351
1352out:
1353        if (tsc_unstable)
1354                goto unreg;
1355
1356        if (boot_cpu_has(X86_FEATURE_ART))
1357                art_related_clocksource = &clocksource_tsc;
1358        clocksource_register_khz(&clocksource_tsc, tsc_khz);
1359unreg:
1360        clocksource_unregister(&clocksource_tsc_early);
1361}
1362
1363
1364static int __init init_tsc_clocksource(void)
1365{
1366        if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1367                return 0;
1368
1369        if (tsc_unstable)
1370                goto unreg;
1371
1372        if (tsc_clocksource_reliable || no_tsc_watchdog)
1373                clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1374
1375        if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1376                clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1377
1378        /*
1379         * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1380         * the refined calibration and directly register it as a clocksource.
1381         */
1382        if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1383                if (boot_cpu_has(X86_FEATURE_ART))
1384                        art_related_clocksource = &clocksource_tsc;
1385                clocksource_register_khz(&clocksource_tsc, tsc_khz);
1386unreg:
1387                clocksource_unregister(&clocksource_tsc_early);
1388                return 0;
1389        }
1390
1391        schedule_delayed_work(&tsc_irqwork, 0);
1392        return 0;
1393}
1394/*
1395 * We use device_initcall here, to ensure we run after the hpet
1396 * is fully initialized, which may occur at fs_initcall time.
1397 */
1398device_initcall(init_tsc_clocksource);
1399
1400static bool __init determine_cpu_tsc_frequencies(bool early)
1401{
1402        /* Make sure that cpu and tsc are not already calibrated */
1403        WARN_ON(cpu_khz || tsc_khz);
1404
1405        if (early) {
1406                cpu_khz = x86_platform.calibrate_cpu();
1407                tsc_khz = x86_platform.calibrate_tsc();
1408        } else {
1409                /* We should not be here with non-native cpu calibration */
1410                WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1411                cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1412        }
1413
1414        /*
1415         * Trust non-zero tsc_khz as authoritative,
1416         * and use it to sanity check cpu_khz,
1417         * which will be off if system timer is off.
1418         */
1419        if (tsc_khz == 0)
1420                tsc_khz = cpu_khz;
1421        else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1422                cpu_khz = tsc_khz;
1423
1424        if (tsc_khz == 0)
1425                return false;
1426
1427        pr_info("Detected %lu.%03lu MHz processor\n",
1428                (unsigned long)cpu_khz / KHZ,
1429                (unsigned long)cpu_khz % KHZ);
1430
1431        if (cpu_khz != tsc_khz) {
1432                pr_info("Detected %lu.%03lu MHz TSC",
1433                        (unsigned long)tsc_khz / KHZ,
1434                        (unsigned long)tsc_khz % KHZ);
1435        }
1436        return true;
1437}
1438
1439static unsigned long __init get_loops_per_jiffy(void)
1440{
1441        u64 lpj = (u64)tsc_khz * KHZ;
1442
1443        do_div(lpj, HZ);
1444        return lpj;
1445}
1446
1447static void __init tsc_enable_sched_clock(void)
1448{
1449        /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1450        tsc_store_and_check_tsc_adjust(true);
1451        cyc2ns_init_boot_cpu();
1452        static_branch_enable(&__use_tsc);
1453}
1454
1455void __init tsc_early_init(void)
1456{
1457        if (!boot_cpu_has(X86_FEATURE_TSC))
1458                return;
1459        /* Don't change UV TSC multi-chassis synchronization */
1460        if (is_early_uv_system())
1461                return;
1462        if (!determine_cpu_tsc_frequencies(true))
1463                return;
1464        loops_per_jiffy = get_loops_per_jiffy();
1465
1466        tsc_enable_sched_clock();
1467}
1468
1469void __init tsc_init(void)
1470{
1471        /*
1472         * native_calibrate_cpu_early can only calibrate using methods that are
1473         * available early in boot.
1474         */
1475        if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1476                x86_platform.calibrate_cpu = native_calibrate_cpu;
1477
1478        if (!boot_cpu_has(X86_FEATURE_TSC)) {
1479                setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1480                return;
1481        }
1482
1483        if (!tsc_khz) {
1484                /* We failed to determine frequencies earlier, try again */
1485                if (!determine_cpu_tsc_frequencies(false)) {
1486                        mark_tsc_unstable("could not calculate TSC khz");
1487                        setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1488                        return;
1489                }
1490                tsc_enable_sched_clock();
1491        }
1492
1493        cyc2ns_init_secondary_cpus();
1494
1495        if (!no_sched_irq_time)
1496                enable_sched_clock_irqtime();
1497
1498        lpj_fine = get_loops_per_jiffy();
1499        use_tsc_delay();
1500
1501        check_system_tsc_reliable();
1502
1503        if (unsynchronized_tsc()) {
1504                mark_tsc_unstable("TSCs unsynchronized");
1505                return;
1506        }
1507
1508        clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1509        detect_art();
1510}
1511
1512#ifdef CONFIG_SMP
1513/*
1514 * If we have a constant TSC and are using the TSC for the delay loop,
1515 * we can skip clock calibration if another cpu in the same socket has already
1516 * been calibrated. This assumes that CONSTANT_TSC applies to all
1517 * cpus in the socket - this should be a safe assumption.
1518 */
1519unsigned long calibrate_delay_is_known(void)
1520{
1521        int sibling, cpu = smp_processor_id();
1522        int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1523        const struct cpumask *mask = topology_core_cpumask(cpu);
1524
1525        if (!constant_tsc || !mask)
1526                return 0;
1527
1528        sibling = cpumask_any_but(mask, cpu);
1529        if (sibling < nr_cpu_ids)
1530                return cpu_data(sibling).loops_per_jiffy;
1531        return 0;
1532}
1533#endif
1534