linux/arch/x86/kvm/vmx/vmx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * This module enables machines with Intel VT-x extensions to run virtual
   6 * machines without emulation or binary translation.
   7 *
   8 * Copyright (C) 2006 Qumranet, Inc.
   9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10 *
  11 * Authors:
  12 *   Avi Kivity   <avi@qumranet.com>
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 */
  15
  16#include <linux/frame.h>
  17#include <linux/highmem.h>
  18#include <linux/hrtimer.h>
  19#include <linux/kernel.h>
  20#include <linux/kvm_host.h>
  21#include <linux/module.h>
  22#include <linux/moduleparam.h>
  23#include <linux/mod_devicetable.h>
  24#include <linux/mm.h>
  25#include <linux/sched.h>
  26#include <linux/sched/smt.h>
  27#include <linux/slab.h>
  28#include <linux/tboot.h>
  29#include <linux/trace_events.h>
  30
  31#include <asm/apic.h>
  32#include <asm/asm.h>
  33#include <asm/cpu.h>
  34#include <asm/debugreg.h>
  35#include <asm/desc.h>
  36#include <asm/fpu/internal.h>
  37#include <asm/io.h>
  38#include <asm/irq_remapping.h>
  39#include <asm/kexec.h>
  40#include <asm/perf_event.h>
  41#include <asm/mce.h>
  42#include <asm/mmu_context.h>
  43#include <asm/mshyperv.h>
  44#include <asm/spec-ctrl.h>
  45#include <asm/virtext.h>
  46#include <asm/vmx.h>
  47
  48#include "capabilities.h"
  49#include "cpuid.h"
  50#include "evmcs.h"
  51#include "irq.h"
  52#include "kvm_cache_regs.h"
  53#include "lapic.h"
  54#include "mmu.h"
  55#include "nested.h"
  56#include "ops.h"
  57#include "pmu.h"
  58#include "trace.h"
  59#include "vmcs.h"
  60#include "vmcs12.h"
  61#include "vmx.h"
  62#include "x86.h"
  63
  64MODULE_AUTHOR("Qumranet");
  65MODULE_LICENSE("GPL");
  66
  67static const struct x86_cpu_id vmx_cpu_id[] = {
  68        X86_FEATURE_MATCH(X86_FEATURE_VMX),
  69        {}
  70};
  71MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  72
  73bool __read_mostly enable_vpid = 1;
  74module_param_named(vpid, enable_vpid, bool, 0444);
  75
  76static bool __read_mostly enable_vnmi = 1;
  77module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
  78
  79bool __read_mostly flexpriority_enabled = 1;
  80module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  81
  82bool __read_mostly enable_ept = 1;
  83module_param_named(ept, enable_ept, bool, S_IRUGO);
  84
  85bool __read_mostly enable_unrestricted_guest = 1;
  86module_param_named(unrestricted_guest,
  87                        enable_unrestricted_guest, bool, S_IRUGO);
  88
  89bool __read_mostly enable_ept_ad_bits = 1;
  90module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
  91
  92static bool __read_mostly emulate_invalid_guest_state = true;
  93module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  94
  95static bool __read_mostly fasteoi = 1;
  96module_param(fasteoi, bool, S_IRUGO);
  97
  98static bool __read_mostly enable_apicv = 1;
  99module_param(enable_apicv, bool, S_IRUGO);
 100
 101/*
 102 * If nested=1, nested virtualization is supported, i.e., guests may use
 103 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
 104 * use VMX instructions.
 105 */
 106static bool __read_mostly nested = 1;
 107module_param(nested, bool, S_IRUGO);
 108
 109static u64 __read_mostly host_xss;
 110
 111bool __read_mostly enable_pml = 1;
 112module_param_named(pml, enable_pml, bool, S_IRUGO);
 113
 114static bool __read_mostly dump_invalid_vmcs = 0;
 115module_param(dump_invalid_vmcs, bool, 0644);
 116
 117#define MSR_BITMAP_MODE_X2APIC          1
 118#define MSR_BITMAP_MODE_X2APIC_APICV    2
 119
 120#define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
 121
 122/* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
 123static int __read_mostly cpu_preemption_timer_multi;
 124static bool __read_mostly enable_preemption_timer = 1;
 125#ifdef CONFIG_X86_64
 126module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
 127#endif
 128
 129#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
 130#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
 131#define KVM_VM_CR0_ALWAYS_ON                            \
 132        (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
 133         X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
 134#define KVM_CR4_GUEST_OWNED_BITS                                      \
 135        (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
 136         | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
 137
 138#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
 139#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
 140#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
 141
 142#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
 143
 144#define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
 145        RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
 146        RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
 147        RTIT_STATUS_BYTECNT))
 148
 149#define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
 150        (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
 151
 152/*
 153 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 154 * ple_gap:    upper bound on the amount of time between two successive
 155 *             executions of PAUSE in a loop. Also indicate if ple enabled.
 156 *             According to test, this time is usually smaller than 128 cycles.
 157 * ple_window: upper bound on the amount of time a guest is allowed to execute
 158 *             in a PAUSE loop. Tests indicate that most spinlocks are held for
 159 *             less than 2^12 cycles
 160 * Time is measured based on a counter that runs at the same rate as the TSC,
 161 * refer SDM volume 3b section 21.6.13 & 22.1.3.
 162 */
 163static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
 164module_param(ple_gap, uint, 0444);
 165
 166static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
 167module_param(ple_window, uint, 0444);
 168
 169/* Default doubles per-vcpu window every exit. */
 170static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
 171module_param(ple_window_grow, uint, 0444);
 172
 173/* Default resets per-vcpu window every exit to ple_window. */
 174static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
 175module_param(ple_window_shrink, uint, 0444);
 176
 177/* Default is to compute the maximum so we can never overflow. */
 178static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
 179module_param(ple_window_max, uint, 0444);
 180
 181/* Default is SYSTEM mode, 1 for host-guest mode */
 182int __read_mostly pt_mode = PT_MODE_SYSTEM;
 183module_param(pt_mode, int, S_IRUGO);
 184
 185static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
 186static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
 187static DEFINE_MUTEX(vmx_l1d_flush_mutex);
 188
 189/* Storage for pre module init parameter parsing */
 190static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
 191
 192static const struct {
 193        const char *option;
 194        bool for_parse;
 195} vmentry_l1d_param[] = {
 196        [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
 197        [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
 198        [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
 199        [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
 200        [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
 201        [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
 202};
 203
 204#define L1D_CACHE_ORDER 4
 205static void *vmx_l1d_flush_pages;
 206
 207static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
 208{
 209        struct page *page;
 210        unsigned int i;
 211
 212        if (!enable_ept) {
 213                l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
 214                return 0;
 215        }
 216
 217        if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
 218                u64 msr;
 219
 220                rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
 221                if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
 222                        l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
 223                        return 0;
 224                }
 225        }
 226
 227        /* If set to auto use the default l1tf mitigation method */
 228        if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
 229                switch (l1tf_mitigation) {
 230                case L1TF_MITIGATION_OFF:
 231                        l1tf = VMENTER_L1D_FLUSH_NEVER;
 232                        break;
 233                case L1TF_MITIGATION_FLUSH_NOWARN:
 234                case L1TF_MITIGATION_FLUSH:
 235                case L1TF_MITIGATION_FLUSH_NOSMT:
 236                        l1tf = VMENTER_L1D_FLUSH_COND;
 237                        break;
 238                case L1TF_MITIGATION_FULL:
 239                case L1TF_MITIGATION_FULL_FORCE:
 240                        l1tf = VMENTER_L1D_FLUSH_ALWAYS;
 241                        break;
 242                }
 243        } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
 244                l1tf = VMENTER_L1D_FLUSH_ALWAYS;
 245        }
 246
 247        if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
 248            !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
 249                /*
 250                 * This allocation for vmx_l1d_flush_pages is not tied to a VM
 251                 * lifetime and so should not be charged to a memcg.
 252                 */
 253                page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
 254                if (!page)
 255                        return -ENOMEM;
 256                vmx_l1d_flush_pages = page_address(page);
 257
 258                /*
 259                 * Initialize each page with a different pattern in
 260                 * order to protect against KSM in the nested
 261                 * virtualization case.
 262                 */
 263                for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
 264                        memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
 265                               PAGE_SIZE);
 266                }
 267        }
 268
 269        l1tf_vmx_mitigation = l1tf;
 270
 271        if (l1tf != VMENTER_L1D_FLUSH_NEVER)
 272                static_branch_enable(&vmx_l1d_should_flush);
 273        else
 274                static_branch_disable(&vmx_l1d_should_flush);
 275
 276        if (l1tf == VMENTER_L1D_FLUSH_COND)
 277                static_branch_enable(&vmx_l1d_flush_cond);
 278        else
 279                static_branch_disable(&vmx_l1d_flush_cond);
 280        return 0;
 281}
 282
 283static int vmentry_l1d_flush_parse(const char *s)
 284{
 285        unsigned int i;
 286
 287        if (s) {
 288                for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
 289                        if (vmentry_l1d_param[i].for_parse &&
 290                            sysfs_streq(s, vmentry_l1d_param[i].option))
 291                                return i;
 292                }
 293        }
 294        return -EINVAL;
 295}
 296
 297static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
 298{
 299        int l1tf, ret;
 300
 301        l1tf = vmentry_l1d_flush_parse(s);
 302        if (l1tf < 0)
 303                return l1tf;
 304
 305        if (!boot_cpu_has(X86_BUG_L1TF))
 306                return 0;
 307
 308        /*
 309         * Has vmx_init() run already? If not then this is the pre init
 310         * parameter parsing. In that case just store the value and let
 311         * vmx_init() do the proper setup after enable_ept has been
 312         * established.
 313         */
 314        if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
 315                vmentry_l1d_flush_param = l1tf;
 316                return 0;
 317        }
 318
 319        mutex_lock(&vmx_l1d_flush_mutex);
 320        ret = vmx_setup_l1d_flush(l1tf);
 321        mutex_unlock(&vmx_l1d_flush_mutex);
 322        return ret;
 323}
 324
 325static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
 326{
 327        if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
 328                return sprintf(s, "???\n");
 329
 330        return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
 331}
 332
 333static const struct kernel_param_ops vmentry_l1d_flush_ops = {
 334        .set = vmentry_l1d_flush_set,
 335        .get = vmentry_l1d_flush_get,
 336};
 337module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
 338
 339static bool guest_state_valid(struct kvm_vcpu *vcpu);
 340static u32 vmx_segment_access_rights(struct kvm_segment *var);
 341static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
 342                                                          u32 msr, int type);
 343
 344void vmx_vmexit(void);
 345
 346static DEFINE_PER_CPU(struct vmcs *, vmxarea);
 347DEFINE_PER_CPU(struct vmcs *, current_vmcs);
 348/*
 349 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
 350 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
 351 */
 352static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
 353
 354/*
 355 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
 356 * can find which vCPU should be waken up.
 357 */
 358static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
 359static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
 360
 361static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
 362static DEFINE_SPINLOCK(vmx_vpid_lock);
 363
 364struct vmcs_config vmcs_config;
 365struct vmx_capability vmx_capability;
 366
 367#define VMX_SEGMENT_FIELD(seg)                                  \
 368        [VCPU_SREG_##seg] = {                                   \
 369                .selector = GUEST_##seg##_SELECTOR,             \
 370                .base = GUEST_##seg##_BASE,                     \
 371                .limit = GUEST_##seg##_LIMIT,                   \
 372                .ar_bytes = GUEST_##seg##_AR_BYTES,             \
 373        }
 374
 375static const struct kvm_vmx_segment_field {
 376        unsigned selector;
 377        unsigned base;
 378        unsigned limit;
 379        unsigned ar_bytes;
 380} kvm_vmx_segment_fields[] = {
 381        VMX_SEGMENT_FIELD(CS),
 382        VMX_SEGMENT_FIELD(DS),
 383        VMX_SEGMENT_FIELD(ES),
 384        VMX_SEGMENT_FIELD(FS),
 385        VMX_SEGMENT_FIELD(GS),
 386        VMX_SEGMENT_FIELD(SS),
 387        VMX_SEGMENT_FIELD(TR),
 388        VMX_SEGMENT_FIELD(LDTR),
 389};
 390
 391u64 host_efer;
 392static unsigned long host_idt_base;
 393
 394/*
 395 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
 396 * will emulate SYSCALL in legacy mode if the vendor string in guest
 397 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
 398 * support this emulation, IA32_STAR must always be included in
 399 * vmx_msr_index[], even in i386 builds.
 400 */
 401const u32 vmx_msr_index[] = {
 402#ifdef CONFIG_X86_64
 403        MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
 404#endif
 405        MSR_EFER, MSR_TSC_AUX, MSR_STAR,
 406};
 407
 408#if IS_ENABLED(CONFIG_HYPERV)
 409static bool __read_mostly enlightened_vmcs = true;
 410module_param(enlightened_vmcs, bool, 0444);
 411
 412/* check_ept_pointer() should be under protection of ept_pointer_lock. */
 413static void check_ept_pointer_match(struct kvm *kvm)
 414{
 415        struct kvm_vcpu *vcpu;
 416        u64 tmp_eptp = INVALID_PAGE;
 417        int i;
 418
 419        kvm_for_each_vcpu(i, vcpu, kvm) {
 420                if (!VALID_PAGE(tmp_eptp)) {
 421                        tmp_eptp = to_vmx(vcpu)->ept_pointer;
 422                } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
 423                        to_kvm_vmx(kvm)->ept_pointers_match
 424                                = EPT_POINTERS_MISMATCH;
 425                        return;
 426                }
 427        }
 428
 429        to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
 430}
 431
 432static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
 433                void *data)
 434{
 435        struct kvm_tlb_range *range = data;
 436
 437        return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
 438                        range->pages);
 439}
 440
 441static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
 442                struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
 443{
 444        u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
 445
 446        /*
 447         * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
 448         * of the base of EPT PML4 table, strip off EPT configuration
 449         * information.
 450         */
 451        if (range)
 452                return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
 453                                kvm_fill_hv_flush_list_func, (void *)range);
 454        else
 455                return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
 456}
 457
 458static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
 459                struct kvm_tlb_range *range)
 460{
 461        struct kvm_vcpu *vcpu;
 462        int ret = 0, i;
 463
 464        spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
 465
 466        if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
 467                check_ept_pointer_match(kvm);
 468
 469        if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
 470                kvm_for_each_vcpu(i, vcpu, kvm) {
 471                        /* If ept_pointer is invalid pointer, bypass flush request. */
 472                        if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
 473                                ret |= __hv_remote_flush_tlb_with_range(
 474                                        kvm, vcpu, range);
 475                }
 476        } else {
 477                ret = __hv_remote_flush_tlb_with_range(kvm,
 478                                kvm_get_vcpu(kvm, 0), range);
 479        }
 480
 481        spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
 482        return ret;
 483}
 484static int hv_remote_flush_tlb(struct kvm *kvm)
 485{
 486        return hv_remote_flush_tlb_with_range(kvm, NULL);
 487}
 488
 489#endif /* IS_ENABLED(CONFIG_HYPERV) */
 490
 491/*
 492 * Comment's format: document - errata name - stepping - processor name.
 493 * Refer from
 494 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
 495 */
 496static u32 vmx_preemption_cpu_tfms[] = {
 497/* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
 4980x000206E6,
 499/* 323056.pdf - AAX65  - C2 - Xeon L3406 */
 500/* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
 501/* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
 5020x00020652,
 503/* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
 5040x00020655,
 505/* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
 506/* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
 507/*
 508 * 320767.pdf - AAP86  - B1 -
 509 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
 510 */
 5110x000106E5,
 512/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
 5130x000106A0,
 514/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
 5150x000106A1,
 516/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
 5170x000106A4,
 518 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
 519 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
 520 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
 5210x000106A5,
 522 /* Xeon E3-1220 V2 */
 5230x000306A8,
 524};
 525
 526static inline bool cpu_has_broken_vmx_preemption_timer(void)
 527{
 528        u32 eax = cpuid_eax(0x00000001), i;
 529
 530        /* Clear the reserved bits */
 531        eax &= ~(0x3U << 14 | 0xfU << 28);
 532        for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
 533                if (eax == vmx_preemption_cpu_tfms[i])
 534                        return true;
 535
 536        return false;
 537}
 538
 539static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
 540{
 541        return flexpriority_enabled && lapic_in_kernel(vcpu);
 542}
 543
 544static inline bool report_flexpriority(void)
 545{
 546        return flexpriority_enabled;
 547}
 548
 549static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
 550{
 551        int i;
 552
 553        for (i = 0; i < vmx->nmsrs; ++i)
 554                if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
 555                        return i;
 556        return -1;
 557}
 558
 559struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
 560{
 561        int i;
 562
 563        i = __find_msr_index(vmx, msr);
 564        if (i >= 0)
 565                return &vmx->guest_msrs[i];
 566        return NULL;
 567}
 568
 569void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
 570{
 571        vmcs_clear(loaded_vmcs->vmcs);
 572        if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
 573                vmcs_clear(loaded_vmcs->shadow_vmcs);
 574        loaded_vmcs->cpu = -1;
 575        loaded_vmcs->launched = 0;
 576}
 577
 578#ifdef CONFIG_KEXEC_CORE
 579/*
 580 * This bitmap is used to indicate whether the vmclear
 581 * operation is enabled on all cpus. All disabled by
 582 * default.
 583 */
 584static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
 585
 586static inline void crash_enable_local_vmclear(int cpu)
 587{
 588        cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
 589}
 590
 591static inline void crash_disable_local_vmclear(int cpu)
 592{
 593        cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
 594}
 595
 596static inline int crash_local_vmclear_enabled(int cpu)
 597{
 598        return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
 599}
 600
 601static void crash_vmclear_local_loaded_vmcss(void)
 602{
 603        int cpu = raw_smp_processor_id();
 604        struct loaded_vmcs *v;
 605
 606        if (!crash_local_vmclear_enabled(cpu))
 607                return;
 608
 609        list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
 610                            loaded_vmcss_on_cpu_link)
 611                vmcs_clear(v->vmcs);
 612}
 613#else
 614static inline void crash_enable_local_vmclear(int cpu) { }
 615static inline void crash_disable_local_vmclear(int cpu) { }
 616#endif /* CONFIG_KEXEC_CORE */
 617
 618static void __loaded_vmcs_clear(void *arg)
 619{
 620        struct loaded_vmcs *loaded_vmcs = arg;
 621        int cpu = raw_smp_processor_id();
 622
 623        if (loaded_vmcs->cpu != cpu)
 624                return; /* vcpu migration can race with cpu offline */
 625        if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
 626                per_cpu(current_vmcs, cpu) = NULL;
 627        crash_disable_local_vmclear(cpu);
 628        list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
 629
 630        /*
 631         * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
 632         * is before setting loaded_vmcs->vcpu to -1 which is done in
 633         * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
 634         * then adds the vmcs into percpu list before it is deleted.
 635         */
 636        smp_wmb();
 637
 638        loaded_vmcs_init(loaded_vmcs);
 639        crash_enable_local_vmclear(cpu);
 640}
 641
 642void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
 643{
 644        int cpu = loaded_vmcs->cpu;
 645
 646        if (cpu != -1)
 647                smp_call_function_single(cpu,
 648                         __loaded_vmcs_clear, loaded_vmcs, 1);
 649}
 650
 651static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
 652                                       unsigned field)
 653{
 654        bool ret;
 655        u32 mask = 1 << (seg * SEG_FIELD_NR + field);
 656
 657        if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
 658                vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
 659                vmx->segment_cache.bitmask = 0;
 660        }
 661        ret = vmx->segment_cache.bitmask & mask;
 662        vmx->segment_cache.bitmask |= mask;
 663        return ret;
 664}
 665
 666static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
 667{
 668        u16 *p = &vmx->segment_cache.seg[seg].selector;
 669
 670        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
 671                *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
 672        return *p;
 673}
 674
 675static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
 676{
 677        ulong *p = &vmx->segment_cache.seg[seg].base;
 678
 679        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
 680                *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
 681        return *p;
 682}
 683
 684static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
 685{
 686        u32 *p = &vmx->segment_cache.seg[seg].limit;
 687
 688        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
 689                *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
 690        return *p;
 691}
 692
 693static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
 694{
 695        u32 *p = &vmx->segment_cache.seg[seg].ar;
 696
 697        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
 698                *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
 699        return *p;
 700}
 701
 702void update_exception_bitmap(struct kvm_vcpu *vcpu)
 703{
 704        u32 eb;
 705
 706        eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
 707             (1u << DB_VECTOR) | (1u << AC_VECTOR);
 708        /*
 709         * Guest access to VMware backdoor ports could legitimately
 710         * trigger #GP because of TSS I/O permission bitmap.
 711         * We intercept those #GP and allow access to them anyway
 712         * as VMware does.
 713         */
 714        if (enable_vmware_backdoor)
 715                eb |= (1u << GP_VECTOR);
 716        if ((vcpu->guest_debug &
 717             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
 718            (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
 719                eb |= 1u << BP_VECTOR;
 720        if (to_vmx(vcpu)->rmode.vm86_active)
 721                eb = ~0;
 722        if (enable_ept)
 723                eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
 724
 725        /* When we are running a nested L2 guest and L1 specified for it a
 726         * certain exception bitmap, we must trap the same exceptions and pass
 727         * them to L1. When running L2, we will only handle the exceptions
 728         * specified above if L1 did not want them.
 729         */
 730        if (is_guest_mode(vcpu))
 731                eb |= get_vmcs12(vcpu)->exception_bitmap;
 732
 733        vmcs_write32(EXCEPTION_BITMAP, eb);
 734}
 735
 736/*
 737 * Check if MSR is intercepted for currently loaded MSR bitmap.
 738 */
 739static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
 740{
 741        unsigned long *msr_bitmap;
 742        int f = sizeof(unsigned long);
 743
 744        if (!cpu_has_vmx_msr_bitmap())
 745                return true;
 746
 747        msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
 748
 749        if (msr <= 0x1fff) {
 750                return !!test_bit(msr, msr_bitmap + 0x800 / f);
 751        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
 752                msr &= 0x1fff;
 753                return !!test_bit(msr, msr_bitmap + 0xc00 / f);
 754        }
 755
 756        return true;
 757}
 758
 759static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
 760                unsigned long entry, unsigned long exit)
 761{
 762        vm_entry_controls_clearbit(vmx, entry);
 763        vm_exit_controls_clearbit(vmx, exit);
 764}
 765
 766static int find_msr(struct vmx_msrs *m, unsigned int msr)
 767{
 768        unsigned int i;
 769
 770        for (i = 0; i < m->nr; ++i) {
 771                if (m->val[i].index == msr)
 772                        return i;
 773        }
 774        return -ENOENT;
 775}
 776
 777static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
 778{
 779        int i;
 780        struct msr_autoload *m = &vmx->msr_autoload;
 781
 782        switch (msr) {
 783        case MSR_EFER:
 784                if (cpu_has_load_ia32_efer()) {
 785                        clear_atomic_switch_msr_special(vmx,
 786                                        VM_ENTRY_LOAD_IA32_EFER,
 787                                        VM_EXIT_LOAD_IA32_EFER);
 788                        return;
 789                }
 790                break;
 791        case MSR_CORE_PERF_GLOBAL_CTRL:
 792                if (cpu_has_load_perf_global_ctrl()) {
 793                        clear_atomic_switch_msr_special(vmx,
 794                                        VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
 795                                        VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
 796                        return;
 797                }
 798                break;
 799        }
 800        i = find_msr(&m->guest, msr);
 801        if (i < 0)
 802                goto skip_guest;
 803        --m->guest.nr;
 804        m->guest.val[i] = m->guest.val[m->guest.nr];
 805        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
 806
 807skip_guest:
 808        i = find_msr(&m->host, msr);
 809        if (i < 0)
 810                return;
 811
 812        --m->host.nr;
 813        m->host.val[i] = m->host.val[m->host.nr];
 814        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
 815}
 816
 817static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
 818                unsigned long entry, unsigned long exit,
 819                unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
 820                u64 guest_val, u64 host_val)
 821{
 822        vmcs_write64(guest_val_vmcs, guest_val);
 823        if (host_val_vmcs != HOST_IA32_EFER)
 824                vmcs_write64(host_val_vmcs, host_val);
 825        vm_entry_controls_setbit(vmx, entry);
 826        vm_exit_controls_setbit(vmx, exit);
 827}
 828
 829static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
 830                                  u64 guest_val, u64 host_val, bool entry_only)
 831{
 832        int i, j = 0;
 833        struct msr_autoload *m = &vmx->msr_autoload;
 834
 835        switch (msr) {
 836        case MSR_EFER:
 837                if (cpu_has_load_ia32_efer()) {
 838                        add_atomic_switch_msr_special(vmx,
 839                                        VM_ENTRY_LOAD_IA32_EFER,
 840                                        VM_EXIT_LOAD_IA32_EFER,
 841                                        GUEST_IA32_EFER,
 842                                        HOST_IA32_EFER,
 843                                        guest_val, host_val);
 844                        return;
 845                }
 846                break;
 847        case MSR_CORE_PERF_GLOBAL_CTRL:
 848                if (cpu_has_load_perf_global_ctrl()) {
 849                        add_atomic_switch_msr_special(vmx,
 850                                        VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
 851                                        VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
 852                                        GUEST_IA32_PERF_GLOBAL_CTRL,
 853                                        HOST_IA32_PERF_GLOBAL_CTRL,
 854                                        guest_val, host_val);
 855                        return;
 856                }
 857                break;
 858        case MSR_IA32_PEBS_ENABLE:
 859                /* PEBS needs a quiescent period after being disabled (to write
 860                 * a record).  Disabling PEBS through VMX MSR swapping doesn't
 861                 * provide that period, so a CPU could write host's record into
 862                 * guest's memory.
 863                 */
 864                wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
 865        }
 866
 867        i = find_msr(&m->guest, msr);
 868        if (!entry_only)
 869                j = find_msr(&m->host, msr);
 870
 871        if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
 872                (j < 0 &&  m->host.nr == NR_AUTOLOAD_MSRS)) {
 873                printk_once(KERN_WARNING "Not enough msr switch entries. "
 874                                "Can't add msr %x\n", msr);
 875                return;
 876        }
 877        if (i < 0) {
 878                i = m->guest.nr++;
 879                vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
 880        }
 881        m->guest.val[i].index = msr;
 882        m->guest.val[i].value = guest_val;
 883
 884        if (entry_only)
 885                return;
 886
 887        if (j < 0) {
 888                j = m->host.nr++;
 889                vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
 890        }
 891        m->host.val[j].index = msr;
 892        m->host.val[j].value = host_val;
 893}
 894
 895static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
 896{
 897        u64 guest_efer = vmx->vcpu.arch.efer;
 898        u64 ignore_bits = 0;
 899
 900        if (!enable_ept) {
 901                /*
 902                 * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
 903                 * host CPUID is more efficient than testing guest CPUID
 904                 * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
 905                 */
 906                if (boot_cpu_has(X86_FEATURE_SMEP))
 907                        guest_efer |= EFER_NX;
 908                else if (!(guest_efer & EFER_NX))
 909                        ignore_bits |= EFER_NX;
 910        }
 911
 912        /*
 913         * LMA and LME handled by hardware; SCE meaningless outside long mode.
 914         */
 915        ignore_bits |= EFER_SCE;
 916#ifdef CONFIG_X86_64
 917        ignore_bits |= EFER_LMA | EFER_LME;
 918        /* SCE is meaningful only in long mode on Intel */
 919        if (guest_efer & EFER_LMA)
 920                ignore_bits &= ~(u64)EFER_SCE;
 921#endif
 922
 923        /*
 924         * On EPT, we can't emulate NX, so we must switch EFER atomically.
 925         * On CPUs that support "load IA32_EFER", always switch EFER
 926         * atomically, since it's faster than switching it manually.
 927         */
 928        if (cpu_has_load_ia32_efer() ||
 929            (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
 930                if (!(guest_efer & EFER_LMA))
 931                        guest_efer &= ~EFER_LME;
 932                if (guest_efer != host_efer)
 933                        add_atomic_switch_msr(vmx, MSR_EFER,
 934                                              guest_efer, host_efer, false);
 935                else
 936                        clear_atomic_switch_msr(vmx, MSR_EFER);
 937                return false;
 938        } else {
 939                clear_atomic_switch_msr(vmx, MSR_EFER);
 940
 941                guest_efer &= ~ignore_bits;
 942                guest_efer |= host_efer & ignore_bits;
 943
 944                vmx->guest_msrs[efer_offset].data = guest_efer;
 945                vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
 946
 947                return true;
 948        }
 949}
 950
 951#ifdef CONFIG_X86_32
 952/*
 953 * On 32-bit kernels, VM exits still load the FS and GS bases from the
 954 * VMCS rather than the segment table.  KVM uses this helper to figure
 955 * out the current bases to poke them into the VMCS before entry.
 956 */
 957static unsigned long segment_base(u16 selector)
 958{
 959        struct desc_struct *table;
 960        unsigned long v;
 961
 962        if (!(selector & ~SEGMENT_RPL_MASK))
 963                return 0;
 964
 965        table = get_current_gdt_ro();
 966
 967        if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
 968                u16 ldt_selector = kvm_read_ldt();
 969
 970                if (!(ldt_selector & ~SEGMENT_RPL_MASK))
 971                        return 0;
 972
 973                table = (struct desc_struct *)segment_base(ldt_selector);
 974        }
 975        v = get_desc_base(&table[selector >> 3]);
 976        return v;
 977}
 978#endif
 979
 980static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
 981{
 982        u32 i;
 983
 984        wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
 985        wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
 986        wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
 987        wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
 988        for (i = 0; i < addr_range; i++) {
 989                wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
 990                wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
 991        }
 992}
 993
 994static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
 995{
 996        u32 i;
 997
 998        rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
 999        rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1000        rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1001        rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1002        for (i = 0; i < addr_range; i++) {
1003                rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1004                rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1005        }
1006}
1007
1008static void pt_guest_enter(struct vcpu_vmx *vmx)
1009{
1010        if (pt_mode == PT_MODE_SYSTEM)
1011                return;
1012
1013        /*
1014         * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1015         * Save host state before VM entry.
1016         */
1017        rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1018        if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1019                wrmsrl(MSR_IA32_RTIT_CTL, 0);
1020                pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1021                pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1022        }
1023}
1024
1025static void pt_guest_exit(struct vcpu_vmx *vmx)
1026{
1027        if (pt_mode == PT_MODE_SYSTEM)
1028                return;
1029
1030        if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1031                pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1032                pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1033        }
1034
1035        /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1036        wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1037}
1038
1039void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1040                        unsigned long fs_base, unsigned long gs_base)
1041{
1042        if (unlikely(fs_sel != host->fs_sel)) {
1043                if (!(fs_sel & 7))
1044                        vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1045                else
1046                        vmcs_write16(HOST_FS_SELECTOR, 0);
1047                host->fs_sel = fs_sel;
1048        }
1049        if (unlikely(gs_sel != host->gs_sel)) {
1050                if (!(gs_sel & 7))
1051                        vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1052                else
1053                        vmcs_write16(HOST_GS_SELECTOR, 0);
1054                host->gs_sel = gs_sel;
1055        }
1056        if (unlikely(fs_base != host->fs_base)) {
1057                vmcs_writel(HOST_FS_BASE, fs_base);
1058                host->fs_base = fs_base;
1059        }
1060        if (unlikely(gs_base != host->gs_base)) {
1061                vmcs_writel(HOST_GS_BASE, gs_base);
1062                host->gs_base = gs_base;
1063        }
1064}
1065
1066void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1067{
1068        struct vcpu_vmx *vmx = to_vmx(vcpu);
1069        struct vmcs_host_state *host_state;
1070#ifdef CONFIG_X86_64
1071        int cpu = raw_smp_processor_id();
1072#endif
1073        unsigned long fs_base, gs_base;
1074        u16 fs_sel, gs_sel;
1075        int i;
1076
1077        vmx->req_immediate_exit = false;
1078
1079        /*
1080         * Note that guest MSRs to be saved/restored can also be changed
1081         * when guest state is loaded. This happens when guest transitions
1082         * to/from long-mode by setting MSR_EFER.LMA.
1083         */
1084        if (!vmx->guest_msrs_ready) {
1085                vmx->guest_msrs_ready = true;
1086                for (i = 0; i < vmx->save_nmsrs; ++i)
1087                        kvm_set_shared_msr(vmx->guest_msrs[i].index,
1088                                           vmx->guest_msrs[i].data,
1089                                           vmx->guest_msrs[i].mask);
1090
1091        }
1092        if (vmx->guest_state_loaded)
1093                return;
1094
1095        host_state = &vmx->loaded_vmcs->host_state;
1096
1097        /*
1098         * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1099         * allow segment selectors with cpl > 0 or ti == 1.
1100         */
1101        host_state->ldt_sel = kvm_read_ldt();
1102
1103#ifdef CONFIG_X86_64
1104        savesegment(ds, host_state->ds_sel);
1105        savesegment(es, host_state->es_sel);
1106
1107        gs_base = cpu_kernelmode_gs_base(cpu);
1108        if (likely(is_64bit_mm(current->mm))) {
1109                save_fsgs_for_kvm();
1110                fs_sel = current->thread.fsindex;
1111                gs_sel = current->thread.gsindex;
1112                fs_base = current->thread.fsbase;
1113                vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1114        } else {
1115                savesegment(fs, fs_sel);
1116                savesegment(gs, gs_sel);
1117                fs_base = read_msr(MSR_FS_BASE);
1118                vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1119        }
1120
1121        wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1122#else
1123        savesegment(fs, fs_sel);
1124        savesegment(gs, gs_sel);
1125        fs_base = segment_base(fs_sel);
1126        gs_base = segment_base(gs_sel);
1127#endif
1128
1129        vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1130        vmx->guest_state_loaded = true;
1131}
1132
1133static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1134{
1135        struct vmcs_host_state *host_state;
1136
1137        if (!vmx->guest_state_loaded)
1138                return;
1139
1140        host_state = &vmx->loaded_vmcs->host_state;
1141
1142        ++vmx->vcpu.stat.host_state_reload;
1143
1144#ifdef CONFIG_X86_64
1145        rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1146#endif
1147        if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1148                kvm_load_ldt(host_state->ldt_sel);
1149#ifdef CONFIG_X86_64
1150                load_gs_index(host_state->gs_sel);
1151#else
1152                loadsegment(gs, host_state->gs_sel);
1153#endif
1154        }
1155        if (host_state->fs_sel & 7)
1156                loadsegment(fs, host_state->fs_sel);
1157#ifdef CONFIG_X86_64
1158        if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1159                loadsegment(ds, host_state->ds_sel);
1160                loadsegment(es, host_state->es_sel);
1161        }
1162#endif
1163        invalidate_tss_limit();
1164#ifdef CONFIG_X86_64
1165        wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1166#endif
1167        load_fixmap_gdt(raw_smp_processor_id());
1168        vmx->guest_state_loaded = false;
1169        vmx->guest_msrs_ready = false;
1170}
1171
1172#ifdef CONFIG_X86_64
1173static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1174{
1175        preempt_disable();
1176        if (vmx->guest_state_loaded)
1177                rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1178        preempt_enable();
1179        return vmx->msr_guest_kernel_gs_base;
1180}
1181
1182static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1183{
1184        preempt_disable();
1185        if (vmx->guest_state_loaded)
1186                wrmsrl(MSR_KERNEL_GS_BASE, data);
1187        preempt_enable();
1188        vmx->msr_guest_kernel_gs_base = data;
1189}
1190#endif
1191
1192static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1193{
1194        struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1195        struct pi_desc old, new;
1196        unsigned int dest;
1197
1198        /*
1199         * In case of hot-plug or hot-unplug, we may have to undo
1200         * vmx_vcpu_pi_put even if there is no assigned device.  And we
1201         * always keep PI.NDST up to date for simplicity: it makes the
1202         * code easier, and CPU migration is not a fast path.
1203         */
1204        if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1205                return;
1206
1207        /* The full case.  */
1208        do {
1209                old.control = new.control = pi_desc->control;
1210
1211                dest = cpu_physical_id(cpu);
1212
1213                if (x2apic_enabled())
1214                        new.ndst = dest;
1215                else
1216                        new.ndst = (dest << 8) & 0xFF00;
1217
1218                new.sn = 0;
1219        } while (cmpxchg64(&pi_desc->control, old.control,
1220                           new.control) != old.control);
1221
1222        /*
1223         * Clear SN before reading the bitmap.  The VT-d firmware
1224         * writes the bitmap and reads SN atomically (5.2.3 in the
1225         * spec), so it doesn't really have a memory barrier that
1226         * pairs with this, but we cannot do that and we need one.
1227         */
1228        smp_mb__after_atomic();
1229
1230        if (!bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS))
1231                pi_set_on(pi_desc);
1232}
1233
1234void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1235{
1236        struct vcpu_vmx *vmx = to_vmx(vcpu);
1237        bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1238
1239        if (!already_loaded) {
1240                loaded_vmcs_clear(vmx->loaded_vmcs);
1241                local_irq_disable();
1242                crash_disable_local_vmclear(cpu);
1243
1244                /*
1245                 * Read loaded_vmcs->cpu should be before fetching
1246                 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1247                 * See the comments in __loaded_vmcs_clear().
1248                 */
1249                smp_rmb();
1250
1251                list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1252                         &per_cpu(loaded_vmcss_on_cpu, cpu));
1253                crash_enable_local_vmclear(cpu);
1254                local_irq_enable();
1255        }
1256
1257        if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1258                per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1259                vmcs_load(vmx->loaded_vmcs->vmcs);
1260                indirect_branch_prediction_barrier();
1261        }
1262
1263        if (!already_loaded) {
1264                void *gdt = get_current_gdt_ro();
1265                unsigned long sysenter_esp;
1266
1267                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1268
1269                /*
1270                 * Linux uses per-cpu TSS and GDT, so set these when switching
1271                 * processors.  See 22.2.4.
1272                 */
1273                vmcs_writel(HOST_TR_BASE,
1274                            (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1275                vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1276
1277                /*
1278                 * VM exits change the host TR limit to 0x67 after a VM
1279                 * exit.  This is okay, since 0x67 covers everything except
1280                 * the IO bitmap and have have code to handle the IO bitmap
1281                 * being lost after a VM exit.
1282                 */
1283                BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
1284
1285                rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1286                vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1287
1288                vmx->loaded_vmcs->cpu = cpu;
1289        }
1290
1291        /* Setup TSC multiplier */
1292        if (kvm_has_tsc_control &&
1293            vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1294                decache_tsc_multiplier(vmx);
1295}
1296
1297/*
1298 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1299 * vcpu mutex is already taken.
1300 */
1301void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1302{
1303        struct vcpu_vmx *vmx = to_vmx(vcpu);
1304
1305        vmx_vcpu_load_vmcs(vcpu, cpu);
1306
1307        vmx_vcpu_pi_load(vcpu, cpu);
1308
1309        vmx->host_pkru = read_pkru();
1310        vmx->host_debugctlmsr = get_debugctlmsr();
1311}
1312
1313static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1314{
1315        struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1316
1317        if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1318                !irq_remapping_cap(IRQ_POSTING_CAP)  ||
1319                !kvm_vcpu_apicv_active(vcpu))
1320                return;
1321
1322        /* Set SN when the vCPU is preempted */
1323        if (vcpu->preempted)
1324                pi_set_sn(pi_desc);
1325}
1326
1327static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1328{
1329        vmx_vcpu_pi_put(vcpu);
1330
1331        vmx_prepare_switch_to_host(to_vmx(vcpu));
1332}
1333
1334static bool emulation_required(struct kvm_vcpu *vcpu)
1335{
1336        return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1337}
1338
1339static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1340
1341unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1342{
1343        unsigned long rflags, save_rflags;
1344
1345        if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1346                __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1347                rflags = vmcs_readl(GUEST_RFLAGS);
1348                if (to_vmx(vcpu)->rmode.vm86_active) {
1349                        rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1350                        save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1351                        rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1352                }
1353                to_vmx(vcpu)->rflags = rflags;
1354        }
1355        return to_vmx(vcpu)->rflags;
1356}
1357
1358void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1359{
1360        unsigned long old_rflags = vmx_get_rflags(vcpu);
1361
1362        __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1363        to_vmx(vcpu)->rflags = rflags;
1364        if (to_vmx(vcpu)->rmode.vm86_active) {
1365                to_vmx(vcpu)->rmode.save_rflags = rflags;
1366                rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1367        }
1368        vmcs_writel(GUEST_RFLAGS, rflags);
1369
1370        if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
1371                to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
1372}
1373
1374u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1375{
1376        u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1377        int ret = 0;
1378
1379        if (interruptibility & GUEST_INTR_STATE_STI)
1380                ret |= KVM_X86_SHADOW_INT_STI;
1381        if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1382                ret |= KVM_X86_SHADOW_INT_MOV_SS;
1383
1384        return ret;
1385}
1386
1387void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1388{
1389        u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1390        u32 interruptibility = interruptibility_old;
1391
1392        interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1393
1394        if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1395                interruptibility |= GUEST_INTR_STATE_MOV_SS;
1396        else if (mask & KVM_X86_SHADOW_INT_STI)
1397                interruptibility |= GUEST_INTR_STATE_STI;
1398
1399        if ((interruptibility != interruptibility_old))
1400                vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1401}
1402
1403static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1404{
1405        struct vcpu_vmx *vmx = to_vmx(vcpu);
1406        unsigned long value;
1407
1408        /*
1409         * Any MSR write that attempts to change bits marked reserved will
1410         * case a #GP fault.
1411         */
1412        if (data & vmx->pt_desc.ctl_bitmask)
1413                return 1;
1414
1415        /*
1416         * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1417         * result in a #GP unless the same write also clears TraceEn.
1418         */
1419        if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1420                ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1421                return 1;
1422
1423        /*
1424         * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1425         * and FabricEn would cause #GP, if
1426         * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1427         */
1428        if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1429                !(data & RTIT_CTL_FABRIC_EN) &&
1430                !intel_pt_validate_cap(vmx->pt_desc.caps,
1431                                        PT_CAP_single_range_output))
1432                return 1;
1433
1434        /*
1435         * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1436         * utilize encodings marked reserved will casue a #GP fault.
1437         */
1438        value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1439        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1440                        !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1441                        RTIT_CTL_MTC_RANGE_OFFSET, &value))
1442                return 1;
1443        value = intel_pt_validate_cap(vmx->pt_desc.caps,
1444                                                PT_CAP_cycle_thresholds);
1445        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1446                        !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1447                        RTIT_CTL_CYC_THRESH_OFFSET, &value))
1448                return 1;
1449        value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1450        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1451                        !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1452                        RTIT_CTL_PSB_FREQ_OFFSET, &value))
1453                return 1;
1454
1455        /*
1456         * If ADDRx_CFG is reserved or the encodings is >2 will
1457         * cause a #GP fault.
1458         */
1459        value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1460        if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1461                return 1;
1462        value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1463        if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1464                return 1;
1465        value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1466        if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1467                return 1;
1468        value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1469        if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1470                return 1;
1471
1472        return 0;
1473}
1474
1475
1476static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1477{
1478        unsigned long rip;
1479
1480        rip = kvm_rip_read(vcpu);
1481        rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1482        kvm_rip_write(vcpu, rip);
1483
1484        /* skipping an emulated instruction also counts */
1485        vmx_set_interrupt_shadow(vcpu, 0);
1486}
1487
1488static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1489{
1490        /*
1491         * Ensure that we clear the HLT state in the VMCS.  We don't need to
1492         * explicitly skip the instruction because if the HLT state is set,
1493         * then the instruction is already executing and RIP has already been
1494         * advanced.
1495         */
1496        if (kvm_hlt_in_guest(vcpu->kvm) &&
1497                        vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1498                vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1499}
1500
1501static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1502{
1503        struct vcpu_vmx *vmx = to_vmx(vcpu);
1504        unsigned nr = vcpu->arch.exception.nr;
1505        bool has_error_code = vcpu->arch.exception.has_error_code;
1506        u32 error_code = vcpu->arch.exception.error_code;
1507        u32 intr_info = nr | INTR_INFO_VALID_MASK;
1508
1509        kvm_deliver_exception_payload(vcpu);
1510
1511        if (has_error_code) {
1512                vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1513                intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1514        }
1515
1516        if (vmx->rmode.vm86_active) {
1517                int inc_eip = 0;
1518                if (kvm_exception_is_soft(nr))
1519                        inc_eip = vcpu->arch.event_exit_inst_len;
1520                if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1521                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1522                return;
1523        }
1524
1525        WARN_ON_ONCE(vmx->emulation_required);
1526
1527        if (kvm_exception_is_soft(nr)) {
1528                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1529                             vmx->vcpu.arch.event_exit_inst_len);
1530                intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1531        } else
1532                intr_info |= INTR_TYPE_HARD_EXCEPTION;
1533
1534        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1535
1536        vmx_clear_hlt(vcpu);
1537}
1538
1539static bool vmx_rdtscp_supported(void)
1540{
1541        return cpu_has_vmx_rdtscp();
1542}
1543
1544static bool vmx_invpcid_supported(void)
1545{
1546        return cpu_has_vmx_invpcid();
1547}
1548
1549/*
1550 * Swap MSR entry in host/guest MSR entry array.
1551 */
1552static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1553{
1554        struct shared_msr_entry tmp;
1555
1556        tmp = vmx->guest_msrs[to];
1557        vmx->guest_msrs[to] = vmx->guest_msrs[from];
1558        vmx->guest_msrs[from] = tmp;
1559}
1560
1561/*
1562 * Set up the vmcs to automatically save and restore system
1563 * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1564 * mode, as fiddling with msrs is very expensive.
1565 */
1566static void setup_msrs(struct vcpu_vmx *vmx)
1567{
1568        int save_nmsrs, index;
1569
1570        save_nmsrs = 0;
1571#ifdef CONFIG_X86_64
1572        /*
1573         * The SYSCALL MSRs are only needed on long mode guests, and only
1574         * when EFER.SCE is set.
1575         */
1576        if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1577                index = __find_msr_index(vmx, MSR_STAR);
1578                if (index >= 0)
1579                        move_msr_up(vmx, index, save_nmsrs++);
1580                index = __find_msr_index(vmx, MSR_LSTAR);
1581                if (index >= 0)
1582                        move_msr_up(vmx, index, save_nmsrs++);
1583                index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1584                if (index >= 0)
1585                        move_msr_up(vmx, index, save_nmsrs++);
1586        }
1587#endif
1588        index = __find_msr_index(vmx, MSR_EFER);
1589        if (index >= 0 && update_transition_efer(vmx, index))
1590                move_msr_up(vmx, index, save_nmsrs++);
1591        index = __find_msr_index(vmx, MSR_TSC_AUX);
1592        if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1593                move_msr_up(vmx, index, save_nmsrs++);
1594
1595        vmx->save_nmsrs = save_nmsrs;
1596        vmx->guest_msrs_ready = false;
1597
1598        if (cpu_has_vmx_msr_bitmap())
1599                vmx_update_msr_bitmap(&vmx->vcpu);
1600}
1601
1602static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1603{
1604        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1605
1606        if (is_guest_mode(vcpu) &&
1607            (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1608                return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1609
1610        return vcpu->arch.tsc_offset;
1611}
1612
1613static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1614{
1615        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1616        u64 g_tsc_offset = 0;
1617
1618        /*
1619         * We're here if L1 chose not to trap WRMSR to TSC. According
1620         * to the spec, this should set L1's TSC; The offset that L1
1621         * set for L2 remains unchanged, and still needs to be added
1622         * to the newly set TSC to get L2's TSC.
1623         */
1624        if (is_guest_mode(vcpu) &&
1625            (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1626                g_tsc_offset = vmcs12->tsc_offset;
1627
1628        trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1629                                   vcpu->arch.tsc_offset - g_tsc_offset,
1630                                   offset);
1631        vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1632        return offset + g_tsc_offset;
1633}
1634
1635/*
1636 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1637 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1638 * all guests if the "nested" module option is off, and can also be disabled
1639 * for a single guest by disabling its VMX cpuid bit.
1640 */
1641bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1642{
1643        return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1644}
1645
1646static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1647                                                 uint64_t val)
1648{
1649        uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1650
1651        return !(val & ~valid_bits);
1652}
1653
1654static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1655{
1656        switch (msr->index) {
1657        case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1658                if (!nested)
1659                        return 1;
1660                return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1661        default:
1662                return 1;
1663        }
1664
1665        return 0;
1666}
1667
1668/*
1669 * Reads an msr value (of 'msr_index') into 'pdata'.
1670 * Returns 0 on success, non-0 otherwise.
1671 * Assumes vcpu_load() was already called.
1672 */
1673static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1674{
1675        struct vcpu_vmx *vmx = to_vmx(vcpu);
1676        struct shared_msr_entry *msr;
1677        u32 index;
1678
1679        switch (msr_info->index) {
1680#ifdef CONFIG_X86_64
1681        case MSR_FS_BASE:
1682                msr_info->data = vmcs_readl(GUEST_FS_BASE);
1683                break;
1684        case MSR_GS_BASE:
1685                msr_info->data = vmcs_readl(GUEST_GS_BASE);
1686                break;
1687        case MSR_KERNEL_GS_BASE:
1688                msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1689                break;
1690#endif
1691        case MSR_EFER:
1692                return kvm_get_msr_common(vcpu, msr_info);
1693        case MSR_IA32_SPEC_CTRL:
1694                if (!msr_info->host_initiated &&
1695                    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1696                        return 1;
1697
1698                msr_info->data = to_vmx(vcpu)->spec_ctrl;
1699                break;
1700        case MSR_IA32_SYSENTER_CS:
1701                msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1702                break;
1703        case MSR_IA32_SYSENTER_EIP:
1704                msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1705                break;
1706        case MSR_IA32_SYSENTER_ESP:
1707                msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1708                break;
1709        case MSR_IA32_BNDCFGS:
1710                if (!kvm_mpx_supported() ||
1711                    (!msr_info->host_initiated &&
1712                     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1713                        return 1;
1714                msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1715                break;
1716        case MSR_IA32_MCG_EXT_CTL:
1717                if (!msr_info->host_initiated &&
1718                    !(vmx->msr_ia32_feature_control &
1719                      FEATURE_CONTROL_LMCE))
1720                        return 1;
1721                msr_info->data = vcpu->arch.mcg_ext_ctl;
1722                break;
1723        case MSR_IA32_FEATURE_CONTROL:
1724                msr_info->data = vmx->msr_ia32_feature_control;
1725                break;
1726        case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1727                if (!nested_vmx_allowed(vcpu))
1728                        return 1;
1729                return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1730                                       &msr_info->data);
1731        case MSR_IA32_XSS:
1732                if (!vmx_xsaves_supported() ||
1733                    (!msr_info->host_initiated &&
1734                     !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
1735                       guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
1736                        return 1;
1737                msr_info->data = vcpu->arch.ia32_xss;
1738                break;
1739        case MSR_IA32_RTIT_CTL:
1740                if (pt_mode != PT_MODE_HOST_GUEST)
1741                        return 1;
1742                msr_info->data = vmx->pt_desc.guest.ctl;
1743                break;
1744        case MSR_IA32_RTIT_STATUS:
1745                if (pt_mode != PT_MODE_HOST_GUEST)
1746                        return 1;
1747                msr_info->data = vmx->pt_desc.guest.status;
1748                break;
1749        case MSR_IA32_RTIT_CR3_MATCH:
1750                if ((pt_mode != PT_MODE_HOST_GUEST) ||
1751                        !intel_pt_validate_cap(vmx->pt_desc.caps,
1752                                                PT_CAP_cr3_filtering))
1753                        return 1;
1754                msr_info->data = vmx->pt_desc.guest.cr3_match;
1755                break;
1756        case MSR_IA32_RTIT_OUTPUT_BASE:
1757                if ((pt_mode != PT_MODE_HOST_GUEST) ||
1758                        (!intel_pt_validate_cap(vmx->pt_desc.caps,
1759                                        PT_CAP_topa_output) &&
1760                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1761                                        PT_CAP_single_range_output)))
1762                        return 1;
1763                msr_info->data = vmx->pt_desc.guest.output_base;
1764                break;
1765        case MSR_IA32_RTIT_OUTPUT_MASK:
1766                if ((pt_mode != PT_MODE_HOST_GUEST) ||
1767                        (!intel_pt_validate_cap(vmx->pt_desc.caps,
1768                                        PT_CAP_topa_output) &&
1769                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1770                                        PT_CAP_single_range_output)))
1771                        return 1;
1772                msr_info->data = vmx->pt_desc.guest.output_mask;
1773                break;
1774        case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1775                index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1776                if ((pt_mode != PT_MODE_HOST_GUEST) ||
1777                        (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1778                                        PT_CAP_num_address_ranges)))
1779                        return 1;
1780                if (index % 2)
1781                        msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1782                else
1783                        msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1784                break;
1785        case MSR_TSC_AUX:
1786                if (!msr_info->host_initiated &&
1787                    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1788                        return 1;
1789                /* Else, falls through */
1790        default:
1791                msr = find_msr_entry(vmx, msr_info->index);
1792                if (msr) {
1793                        msr_info->data = msr->data;
1794                        break;
1795                }
1796                return kvm_get_msr_common(vcpu, msr_info);
1797        }
1798
1799        return 0;
1800}
1801
1802/*
1803 * Writes msr value into into the appropriate "register".
1804 * Returns 0 on success, non-0 otherwise.
1805 * Assumes vcpu_load() was already called.
1806 */
1807static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1808{
1809        struct vcpu_vmx *vmx = to_vmx(vcpu);
1810        struct shared_msr_entry *msr;
1811        int ret = 0;
1812        u32 msr_index = msr_info->index;
1813        u64 data = msr_info->data;
1814        u32 index;
1815
1816        switch (msr_index) {
1817        case MSR_EFER:
1818                ret = kvm_set_msr_common(vcpu, msr_info);
1819                break;
1820#ifdef CONFIG_X86_64
1821        case MSR_FS_BASE:
1822                vmx_segment_cache_clear(vmx);
1823                vmcs_writel(GUEST_FS_BASE, data);
1824                break;
1825        case MSR_GS_BASE:
1826                vmx_segment_cache_clear(vmx);
1827                vmcs_writel(GUEST_GS_BASE, data);
1828                break;
1829        case MSR_KERNEL_GS_BASE:
1830                vmx_write_guest_kernel_gs_base(vmx, data);
1831                break;
1832#endif
1833        case MSR_IA32_SYSENTER_CS:
1834                if (is_guest_mode(vcpu))
1835                        get_vmcs12(vcpu)->guest_sysenter_cs = data;
1836                vmcs_write32(GUEST_SYSENTER_CS, data);
1837                break;
1838        case MSR_IA32_SYSENTER_EIP:
1839                if (is_guest_mode(vcpu))
1840                        get_vmcs12(vcpu)->guest_sysenter_eip = data;
1841                vmcs_writel(GUEST_SYSENTER_EIP, data);
1842                break;
1843        case MSR_IA32_SYSENTER_ESP:
1844                if (is_guest_mode(vcpu))
1845                        get_vmcs12(vcpu)->guest_sysenter_esp = data;
1846                vmcs_writel(GUEST_SYSENTER_ESP, data);
1847                break;
1848        case MSR_IA32_DEBUGCTLMSR:
1849                if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1850                                                VM_EXIT_SAVE_DEBUG_CONTROLS)
1851                        get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1852
1853                ret = kvm_set_msr_common(vcpu, msr_info);
1854                break;
1855
1856        case MSR_IA32_BNDCFGS:
1857                if (!kvm_mpx_supported() ||
1858                    (!msr_info->host_initiated &&
1859                     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1860                        return 1;
1861                if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1862                    (data & MSR_IA32_BNDCFGS_RSVD))
1863                        return 1;
1864                vmcs_write64(GUEST_BNDCFGS, data);
1865                break;
1866        case MSR_IA32_SPEC_CTRL:
1867                if (!msr_info->host_initiated &&
1868                    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1869                        return 1;
1870
1871                /* The STIBP bit doesn't fault even if it's not advertised */
1872                if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1873                        return 1;
1874
1875                vmx->spec_ctrl = data;
1876
1877                if (!data)
1878                        break;
1879
1880                /*
1881                 * For non-nested:
1882                 * When it's written (to non-zero) for the first time, pass
1883                 * it through.
1884                 *
1885                 * For nested:
1886                 * The handling of the MSR bitmap for L2 guests is done in
1887                 * nested_vmx_merge_msr_bitmap. We should not touch the
1888                 * vmcs02.msr_bitmap here since it gets completely overwritten
1889                 * in the merging. We update the vmcs01 here for L1 as well
1890                 * since it will end up touching the MSR anyway now.
1891                 */
1892                vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
1893                                              MSR_IA32_SPEC_CTRL,
1894                                              MSR_TYPE_RW);
1895                break;
1896        case MSR_IA32_PRED_CMD:
1897                if (!msr_info->host_initiated &&
1898                    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1899                        return 1;
1900
1901                if (data & ~PRED_CMD_IBPB)
1902                        return 1;
1903
1904                if (!data)
1905                        break;
1906
1907                wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
1908
1909                /*
1910                 * For non-nested:
1911                 * When it's written (to non-zero) for the first time, pass
1912                 * it through.
1913                 *
1914                 * For nested:
1915                 * The handling of the MSR bitmap for L2 guests is done in
1916                 * nested_vmx_merge_msr_bitmap. We should not touch the
1917                 * vmcs02.msr_bitmap here since it gets completely overwritten
1918                 * in the merging.
1919                 */
1920                vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
1921                                              MSR_TYPE_W);
1922                break;
1923        case MSR_IA32_CR_PAT:
1924                if (!kvm_pat_valid(data))
1925                        return 1;
1926
1927                if (is_guest_mode(vcpu) &&
1928                    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
1929                        get_vmcs12(vcpu)->guest_ia32_pat = data;
1930
1931                if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1932                        vmcs_write64(GUEST_IA32_PAT, data);
1933                        vcpu->arch.pat = data;
1934                        break;
1935                }
1936                ret = kvm_set_msr_common(vcpu, msr_info);
1937                break;
1938        case MSR_IA32_TSC_ADJUST:
1939                ret = kvm_set_msr_common(vcpu, msr_info);
1940                break;
1941        case MSR_IA32_MCG_EXT_CTL:
1942                if ((!msr_info->host_initiated &&
1943                     !(to_vmx(vcpu)->msr_ia32_feature_control &
1944                       FEATURE_CONTROL_LMCE)) ||
1945                    (data & ~MCG_EXT_CTL_LMCE_EN))
1946                        return 1;
1947                vcpu->arch.mcg_ext_ctl = data;
1948                break;
1949        case MSR_IA32_FEATURE_CONTROL:
1950                if (!vmx_feature_control_msr_valid(vcpu, data) ||
1951                    (to_vmx(vcpu)->msr_ia32_feature_control &
1952                     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
1953                        return 1;
1954                vmx->msr_ia32_feature_control = data;
1955                if (msr_info->host_initiated && data == 0)
1956                        vmx_leave_nested(vcpu);
1957                break;
1958        case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1959                if (!msr_info->host_initiated)
1960                        return 1; /* they are read-only */
1961                if (!nested_vmx_allowed(vcpu))
1962                        return 1;
1963                return vmx_set_vmx_msr(vcpu, msr_index, data);
1964        case MSR_IA32_XSS:
1965                if (!vmx_xsaves_supported() ||
1966                    (!msr_info->host_initiated &&
1967                     !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
1968                       guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
1969                        return 1;
1970                /*
1971                 * The only supported bit as of Skylake is bit 8, but
1972                 * it is not supported on KVM.
1973                 */
1974                if (data != 0)
1975                        return 1;
1976                vcpu->arch.ia32_xss = data;
1977                if (vcpu->arch.ia32_xss != host_xss)
1978                        add_atomic_switch_msr(vmx, MSR_IA32_XSS,
1979                                vcpu->arch.ia32_xss, host_xss, false);
1980                else
1981                        clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
1982                break;
1983        case MSR_IA32_RTIT_CTL:
1984                if ((pt_mode != PT_MODE_HOST_GUEST) ||
1985                        vmx_rtit_ctl_check(vcpu, data) ||
1986                        vmx->nested.vmxon)
1987                        return 1;
1988                vmcs_write64(GUEST_IA32_RTIT_CTL, data);
1989                vmx->pt_desc.guest.ctl = data;
1990                pt_update_intercept_for_msr(vmx);
1991                break;
1992        case MSR_IA32_RTIT_STATUS:
1993                if ((pt_mode != PT_MODE_HOST_GUEST) ||
1994                        (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1995                        (data & MSR_IA32_RTIT_STATUS_MASK))
1996                        return 1;
1997                vmx->pt_desc.guest.status = data;
1998                break;
1999        case MSR_IA32_RTIT_CR3_MATCH:
2000                if ((pt_mode != PT_MODE_HOST_GUEST) ||
2001                        (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2002                        !intel_pt_validate_cap(vmx->pt_desc.caps,
2003                                                PT_CAP_cr3_filtering))
2004                        return 1;
2005                vmx->pt_desc.guest.cr3_match = data;
2006                break;
2007        case MSR_IA32_RTIT_OUTPUT_BASE:
2008                if ((pt_mode != PT_MODE_HOST_GUEST) ||
2009                        (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2010                        (!intel_pt_validate_cap(vmx->pt_desc.caps,
2011                                        PT_CAP_topa_output) &&
2012                         !intel_pt_validate_cap(vmx->pt_desc.caps,
2013                                        PT_CAP_single_range_output)) ||
2014                        (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
2015                        return 1;
2016                vmx->pt_desc.guest.output_base = data;
2017                break;
2018        case MSR_IA32_RTIT_OUTPUT_MASK:
2019                if ((pt_mode != PT_MODE_HOST_GUEST) ||
2020                        (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2021                        (!intel_pt_validate_cap(vmx->pt_desc.caps,
2022                                        PT_CAP_topa_output) &&
2023                         !intel_pt_validate_cap(vmx->pt_desc.caps,
2024                                        PT_CAP_single_range_output)))
2025                        return 1;
2026                vmx->pt_desc.guest.output_mask = data;
2027                break;
2028        case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2029                index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2030                if ((pt_mode != PT_MODE_HOST_GUEST) ||
2031                        (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2032                        (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2033                                        PT_CAP_num_address_ranges)))
2034                        return 1;
2035                if (index % 2)
2036                        vmx->pt_desc.guest.addr_b[index / 2] = data;
2037                else
2038                        vmx->pt_desc.guest.addr_a[index / 2] = data;
2039                break;
2040        case MSR_TSC_AUX:
2041                if (!msr_info->host_initiated &&
2042                    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2043                        return 1;
2044                /* Check reserved bit, higher 32 bits should be zero */
2045                if ((data >> 32) != 0)
2046                        return 1;
2047                /* Else, falls through */
2048        default:
2049                msr = find_msr_entry(vmx, msr_index);
2050                if (msr) {
2051                        u64 old_msr_data = msr->data;
2052                        msr->data = data;
2053                        if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2054                                preempt_disable();
2055                                ret = kvm_set_shared_msr(msr->index, msr->data,
2056                                                         msr->mask);
2057                                preempt_enable();
2058                                if (ret)
2059                                        msr->data = old_msr_data;
2060                        }
2061                        break;
2062                }
2063                ret = kvm_set_msr_common(vcpu, msr_info);
2064        }
2065
2066        return ret;
2067}
2068
2069static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2070{
2071        __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2072        switch (reg) {
2073        case VCPU_REGS_RSP:
2074                vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2075                break;
2076        case VCPU_REGS_RIP:
2077                vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2078                break;
2079        case VCPU_EXREG_PDPTR:
2080                if (enable_ept)
2081                        ept_save_pdptrs(vcpu);
2082                break;
2083        default:
2084                break;
2085        }
2086}
2087
2088static __init int cpu_has_kvm_support(void)
2089{
2090        return cpu_has_vmx();
2091}
2092
2093static __init int vmx_disabled_by_bios(void)
2094{
2095        u64 msr;
2096
2097        rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2098        if (msr & FEATURE_CONTROL_LOCKED) {
2099                /* launched w/ TXT and VMX disabled */
2100                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2101                        && tboot_enabled())
2102                        return 1;
2103                /* launched w/o TXT and VMX only enabled w/ TXT */
2104                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2105                        && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2106                        && !tboot_enabled()) {
2107                        printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2108                                "activate TXT before enabling KVM\n");
2109                        return 1;
2110                }
2111                /* launched w/o TXT and VMX disabled */
2112                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2113                        && !tboot_enabled())
2114                        return 1;
2115        }
2116
2117        return 0;
2118}
2119
2120static void kvm_cpu_vmxon(u64 addr)
2121{
2122        cr4_set_bits(X86_CR4_VMXE);
2123        intel_pt_handle_vmx(1);
2124
2125        asm volatile ("vmxon %0" : : "m"(addr));
2126}
2127
2128static int hardware_enable(void)
2129{
2130        int cpu = raw_smp_processor_id();
2131        u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2132        u64 old, test_bits;
2133
2134        if (cr4_read_shadow() & X86_CR4_VMXE)
2135                return -EBUSY;
2136
2137        /*
2138         * This can happen if we hot-added a CPU but failed to allocate
2139         * VP assist page for it.
2140         */
2141        if (static_branch_unlikely(&enable_evmcs) &&
2142            !hv_get_vp_assist_page(cpu))
2143                return -EFAULT;
2144
2145        INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2146        INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2147        spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2148
2149        /*
2150         * Now we can enable the vmclear operation in kdump
2151         * since the loaded_vmcss_on_cpu list on this cpu
2152         * has been initialized.
2153         *
2154         * Though the cpu is not in VMX operation now, there
2155         * is no problem to enable the vmclear operation
2156         * for the loaded_vmcss_on_cpu list is empty!
2157         */
2158        crash_enable_local_vmclear(cpu);
2159
2160        rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2161
2162        test_bits = FEATURE_CONTROL_LOCKED;
2163        test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2164        if (tboot_enabled())
2165                test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2166
2167        if ((old & test_bits) != test_bits) {
2168                /* enable and lock */
2169                wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2170        }
2171        kvm_cpu_vmxon(phys_addr);
2172        if (enable_ept)
2173                ept_sync_global();
2174
2175        return 0;
2176}
2177
2178static void vmclear_local_loaded_vmcss(void)
2179{
2180        int cpu = raw_smp_processor_id();
2181        struct loaded_vmcs *v, *n;
2182
2183        list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2184                                 loaded_vmcss_on_cpu_link)
2185                __loaded_vmcs_clear(v);
2186}
2187
2188
2189/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2190 * tricks.
2191 */
2192static void kvm_cpu_vmxoff(void)
2193{
2194        asm volatile (__ex("vmxoff"));
2195
2196        intel_pt_handle_vmx(0);
2197        cr4_clear_bits(X86_CR4_VMXE);
2198}
2199
2200static void hardware_disable(void)
2201{
2202        vmclear_local_loaded_vmcss();
2203        kvm_cpu_vmxoff();
2204}
2205
2206static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2207                                      u32 msr, u32 *result)
2208{
2209        u32 vmx_msr_low, vmx_msr_high;
2210        u32 ctl = ctl_min | ctl_opt;
2211
2212        rdmsr(msr, vmx_msr_low, vmx_msr_high);
2213
2214        ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2215        ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2216
2217        /* Ensure minimum (required) set of control bits are supported. */
2218        if (ctl_min & ~ctl)
2219                return -EIO;
2220
2221        *result = ctl;
2222        return 0;
2223}
2224
2225static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2226                                    struct vmx_capability *vmx_cap)
2227{
2228        u32 vmx_msr_low, vmx_msr_high;
2229        u32 min, opt, min2, opt2;
2230        u32 _pin_based_exec_control = 0;
2231        u32 _cpu_based_exec_control = 0;
2232        u32 _cpu_based_2nd_exec_control = 0;
2233        u32 _vmexit_control = 0;
2234        u32 _vmentry_control = 0;
2235
2236        memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2237        min = CPU_BASED_HLT_EXITING |
2238#ifdef CONFIG_X86_64
2239              CPU_BASED_CR8_LOAD_EXITING |
2240              CPU_BASED_CR8_STORE_EXITING |
2241#endif
2242              CPU_BASED_CR3_LOAD_EXITING |
2243              CPU_BASED_CR3_STORE_EXITING |
2244              CPU_BASED_UNCOND_IO_EXITING |
2245              CPU_BASED_MOV_DR_EXITING |
2246              CPU_BASED_USE_TSC_OFFSETING |
2247              CPU_BASED_MWAIT_EXITING |
2248              CPU_BASED_MONITOR_EXITING |
2249              CPU_BASED_INVLPG_EXITING |
2250              CPU_BASED_RDPMC_EXITING;
2251
2252        opt = CPU_BASED_TPR_SHADOW |
2253              CPU_BASED_USE_MSR_BITMAPS |
2254              CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2255        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2256                                &_cpu_based_exec_control) < 0)
2257                return -EIO;
2258#ifdef CONFIG_X86_64
2259        if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2260                _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2261                                           ~CPU_BASED_CR8_STORE_EXITING;
2262#endif
2263        if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2264                min2 = 0;
2265                opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2266                        SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2267                        SECONDARY_EXEC_WBINVD_EXITING |
2268                        SECONDARY_EXEC_ENABLE_VPID |
2269                        SECONDARY_EXEC_ENABLE_EPT |
2270                        SECONDARY_EXEC_UNRESTRICTED_GUEST |
2271                        SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2272                        SECONDARY_EXEC_DESC |
2273                        SECONDARY_EXEC_RDTSCP |
2274                        SECONDARY_EXEC_ENABLE_INVPCID |
2275                        SECONDARY_EXEC_APIC_REGISTER_VIRT |
2276                        SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2277                        SECONDARY_EXEC_SHADOW_VMCS |
2278                        SECONDARY_EXEC_XSAVES |
2279                        SECONDARY_EXEC_RDSEED_EXITING |
2280                        SECONDARY_EXEC_RDRAND_EXITING |
2281                        SECONDARY_EXEC_ENABLE_PML |
2282                        SECONDARY_EXEC_TSC_SCALING |
2283                        SECONDARY_EXEC_PT_USE_GPA |
2284                        SECONDARY_EXEC_PT_CONCEAL_VMX |
2285                        SECONDARY_EXEC_ENABLE_VMFUNC |
2286                        SECONDARY_EXEC_ENCLS_EXITING;
2287                if (adjust_vmx_controls(min2, opt2,
2288                                        MSR_IA32_VMX_PROCBASED_CTLS2,
2289                                        &_cpu_based_2nd_exec_control) < 0)
2290                        return -EIO;
2291        }
2292#ifndef CONFIG_X86_64
2293        if (!(_cpu_based_2nd_exec_control &
2294                                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2295                _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2296#endif
2297
2298        if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2299                _cpu_based_2nd_exec_control &= ~(
2300                                SECONDARY_EXEC_APIC_REGISTER_VIRT |
2301                                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2302                                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2303
2304        rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2305                &vmx_cap->ept, &vmx_cap->vpid);
2306
2307        if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2308                /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2309                   enabled */
2310                _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2311                                             CPU_BASED_CR3_STORE_EXITING |
2312                                             CPU_BASED_INVLPG_EXITING);
2313        } else if (vmx_cap->ept) {
2314                vmx_cap->ept = 0;
2315                pr_warn_once("EPT CAP should not exist if not support "
2316                                "1-setting enable EPT VM-execution control\n");
2317        }
2318        if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2319                vmx_cap->vpid) {
2320                vmx_cap->vpid = 0;
2321                pr_warn_once("VPID CAP should not exist if not support "
2322                                "1-setting enable VPID VM-execution control\n");
2323        }
2324
2325        min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2326#ifdef CONFIG_X86_64
2327        min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2328#endif
2329        opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2330              VM_EXIT_LOAD_IA32_PAT |
2331              VM_EXIT_LOAD_IA32_EFER |
2332              VM_EXIT_CLEAR_BNDCFGS |
2333              VM_EXIT_PT_CONCEAL_PIP |
2334              VM_EXIT_CLEAR_IA32_RTIT_CTL;
2335        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2336                                &_vmexit_control) < 0)
2337                return -EIO;
2338
2339        min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2340        opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2341                 PIN_BASED_VMX_PREEMPTION_TIMER;
2342        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2343                                &_pin_based_exec_control) < 0)
2344                return -EIO;
2345
2346        if (cpu_has_broken_vmx_preemption_timer())
2347                _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2348        if (!(_cpu_based_2nd_exec_control &
2349                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2350                _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2351
2352        min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2353        opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2354              VM_ENTRY_LOAD_IA32_PAT |
2355              VM_ENTRY_LOAD_IA32_EFER |
2356              VM_ENTRY_LOAD_BNDCFGS |
2357              VM_ENTRY_PT_CONCEAL_PIP |
2358              VM_ENTRY_LOAD_IA32_RTIT_CTL;
2359        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2360                                &_vmentry_control) < 0)
2361                return -EIO;
2362
2363        /*
2364         * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2365         * can't be used due to an errata where VM Exit may incorrectly clear
2366         * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2367         * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2368         */
2369        if (boot_cpu_data.x86 == 0x6) {
2370                switch (boot_cpu_data.x86_model) {
2371                case 26: /* AAK155 */
2372                case 30: /* AAP115 */
2373                case 37: /* AAT100 */
2374                case 44: /* BC86,AAY89,BD102 */
2375                case 46: /* BA97 */
2376                        _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2377                        _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2378                        pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2379                                        "does not work properly. Using workaround\n");
2380                        break;
2381                default:
2382                        break;
2383                }
2384        }
2385
2386
2387        rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2388
2389        /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2390        if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2391                return -EIO;
2392
2393#ifdef CONFIG_X86_64
2394        /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2395        if (vmx_msr_high & (1u<<16))
2396                return -EIO;
2397#endif
2398
2399        /* Require Write-Back (WB) memory type for VMCS accesses. */
2400        if (((vmx_msr_high >> 18) & 15) != 6)
2401                return -EIO;
2402
2403        vmcs_conf->size = vmx_msr_high & 0x1fff;
2404        vmcs_conf->order = get_order(vmcs_conf->size);
2405        vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2406
2407        vmcs_conf->revision_id = vmx_msr_low;
2408
2409        vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2410        vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2411        vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2412        vmcs_conf->vmexit_ctrl         = _vmexit_control;
2413        vmcs_conf->vmentry_ctrl        = _vmentry_control;
2414
2415        if (static_branch_unlikely(&enable_evmcs))
2416                evmcs_sanitize_exec_ctrls(vmcs_conf);
2417
2418        return 0;
2419}
2420
2421struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2422{
2423        int node = cpu_to_node(cpu);
2424        struct page *pages;
2425        struct vmcs *vmcs;
2426
2427        pages = __alloc_pages_node(node, flags, vmcs_config.order);
2428        if (!pages)
2429                return NULL;
2430        vmcs = page_address(pages);
2431        memset(vmcs, 0, vmcs_config.size);
2432
2433        /* KVM supports Enlightened VMCS v1 only */
2434        if (static_branch_unlikely(&enable_evmcs))
2435                vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2436        else
2437                vmcs->hdr.revision_id = vmcs_config.revision_id;
2438
2439        if (shadow)
2440                vmcs->hdr.shadow_vmcs = 1;
2441        return vmcs;
2442}
2443
2444void free_vmcs(struct vmcs *vmcs)
2445{
2446        free_pages((unsigned long)vmcs, vmcs_config.order);
2447}
2448
2449/*
2450 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2451 */
2452void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2453{
2454        if (!loaded_vmcs->vmcs)
2455                return;
2456        loaded_vmcs_clear(loaded_vmcs);
2457        free_vmcs(loaded_vmcs->vmcs);
2458        loaded_vmcs->vmcs = NULL;
2459        if (loaded_vmcs->msr_bitmap)
2460                free_page((unsigned long)loaded_vmcs->msr_bitmap);
2461        WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2462}
2463
2464int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2465{
2466        loaded_vmcs->vmcs = alloc_vmcs(false);
2467        if (!loaded_vmcs->vmcs)
2468                return -ENOMEM;
2469
2470        loaded_vmcs->shadow_vmcs = NULL;
2471        loaded_vmcs->hv_timer_soft_disabled = false;
2472        loaded_vmcs_init(loaded_vmcs);
2473
2474        if (cpu_has_vmx_msr_bitmap()) {
2475                loaded_vmcs->msr_bitmap = (unsigned long *)
2476                                __get_free_page(GFP_KERNEL_ACCOUNT);
2477                if (!loaded_vmcs->msr_bitmap)
2478                        goto out_vmcs;
2479                memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2480
2481                if (IS_ENABLED(CONFIG_HYPERV) &&
2482                    static_branch_unlikely(&enable_evmcs) &&
2483                    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2484                        struct hv_enlightened_vmcs *evmcs =
2485                                (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2486
2487                        evmcs->hv_enlightenments_control.msr_bitmap = 1;
2488                }
2489        }
2490
2491        memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2492        memset(&loaded_vmcs->controls_shadow, 0,
2493                sizeof(struct vmcs_controls_shadow));
2494
2495        return 0;
2496
2497out_vmcs:
2498        free_loaded_vmcs(loaded_vmcs);
2499        return -ENOMEM;
2500}
2501
2502static void free_kvm_area(void)
2503{
2504        int cpu;
2505
2506        for_each_possible_cpu(cpu) {
2507                free_vmcs(per_cpu(vmxarea, cpu));
2508                per_cpu(vmxarea, cpu) = NULL;
2509        }
2510}
2511
2512static __init int alloc_kvm_area(void)
2513{
2514        int cpu;
2515
2516        for_each_possible_cpu(cpu) {
2517                struct vmcs *vmcs;
2518
2519                vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2520                if (!vmcs) {
2521                        free_kvm_area();
2522                        return -ENOMEM;
2523                }
2524
2525                /*
2526                 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2527                 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2528                 * revision_id reported by MSR_IA32_VMX_BASIC.
2529                 *
2530                 * However, even though not explicitly documented by
2531                 * TLFS, VMXArea passed as VMXON argument should
2532                 * still be marked with revision_id reported by
2533                 * physical CPU.
2534                 */
2535                if (static_branch_unlikely(&enable_evmcs))
2536                        vmcs->hdr.revision_id = vmcs_config.revision_id;
2537
2538                per_cpu(vmxarea, cpu) = vmcs;
2539        }
2540        return 0;
2541}
2542
2543static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2544                struct kvm_segment *save)
2545{
2546        if (!emulate_invalid_guest_state) {
2547                /*
2548                 * CS and SS RPL should be equal during guest entry according
2549                 * to VMX spec, but in reality it is not always so. Since vcpu
2550                 * is in the middle of the transition from real mode to
2551                 * protected mode it is safe to assume that RPL 0 is a good
2552                 * default value.
2553                 */
2554                if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2555                        save->selector &= ~SEGMENT_RPL_MASK;
2556                save->dpl = save->selector & SEGMENT_RPL_MASK;
2557                save->s = 1;
2558        }
2559        vmx_set_segment(vcpu, save, seg);
2560}
2561
2562static void enter_pmode(struct kvm_vcpu *vcpu)
2563{
2564        unsigned long flags;
2565        struct vcpu_vmx *vmx = to_vmx(vcpu);
2566
2567        /*
2568         * Update real mode segment cache. It may be not up-to-date if sement
2569         * register was written while vcpu was in a guest mode.
2570         */
2571        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2572        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2573        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2574        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2575        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2576        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2577
2578        vmx->rmode.vm86_active = 0;
2579
2580        vmx_segment_cache_clear(vmx);
2581
2582        vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2583
2584        flags = vmcs_readl(GUEST_RFLAGS);
2585        flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2586        flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2587        vmcs_writel(GUEST_RFLAGS, flags);
2588
2589        vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2590                        (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2591
2592        update_exception_bitmap(vcpu);
2593
2594        fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2595        fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2596        fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2597        fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2598        fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2599        fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2600}
2601
2602static void fix_rmode_seg(int seg, struct kvm_segment *save)
2603{
2604        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2605        struct kvm_segment var = *save;
2606
2607        var.dpl = 0x3;
2608        if (seg == VCPU_SREG_CS)
2609                var.type = 0x3;
2610
2611        if (!emulate_invalid_guest_state) {
2612                var.selector = var.base >> 4;
2613                var.base = var.base & 0xffff0;
2614                var.limit = 0xffff;
2615                var.g = 0;
2616                var.db = 0;
2617                var.present = 1;
2618                var.s = 1;
2619                var.l = 0;
2620                var.unusable = 0;
2621                var.type = 0x3;
2622                var.avl = 0;
2623                if (save->base & 0xf)
2624                        printk_once(KERN_WARNING "kvm: segment base is not "
2625                                        "paragraph aligned when entering "
2626                                        "protected mode (seg=%d)", seg);
2627        }
2628
2629        vmcs_write16(sf->selector, var.selector);
2630        vmcs_writel(sf->base, var.base);
2631        vmcs_write32(sf->limit, var.limit);
2632        vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2633}
2634
2635static void enter_rmode(struct kvm_vcpu *vcpu)
2636{
2637        unsigned long flags;
2638        struct vcpu_vmx *vmx = to_vmx(vcpu);
2639        struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2640
2641        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2642        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2643        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2644        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2645        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2646        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2647        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2648
2649        vmx->rmode.vm86_active = 1;
2650
2651        /*
2652         * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2653         * vcpu. Warn the user that an update is overdue.
2654         */
2655        if (!kvm_vmx->tss_addr)
2656                printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2657                             "called before entering vcpu\n");
2658
2659        vmx_segment_cache_clear(vmx);
2660
2661        vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2662        vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2663        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2664
2665        flags = vmcs_readl(GUEST_RFLAGS);
2666        vmx->rmode.save_rflags = flags;
2667
2668        flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2669
2670        vmcs_writel(GUEST_RFLAGS, flags);
2671        vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2672        update_exception_bitmap(vcpu);
2673
2674        fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2675        fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2676        fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2677        fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2678        fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2679        fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2680
2681        kvm_mmu_reset_context(vcpu);
2682}
2683
2684void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2685{
2686        struct vcpu_vmx *vmx = to_vmx(vcpu);
2687        struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2688
2689        if (!msr)
2690                return;
2691
2692        vcpu->arch.efer = efer;
2693        if (efer & EFER_LMA) {
2694                vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2695                msr->data = efer;
2696        } else {
2697                vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2698
2699                msr->data = efer & ~EFER_LME;
2700        }
2701        setup_msrs(vmx);
2702}
2703
2704#ifdef CONFIG_X86_64
2705
2706static void enter_lmode(struct kvm_vcpu *vcpu)
2707{
2708        u32 guest_tr_ar;
2709
2710        vmx_segment_cache_clear(to_vmx(vcpu));
2711
2712        guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2713        if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2714                pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2715                                     __func__);
2716                vmcs_write32(GUEST_TR_AR_BYTES,
2717                             (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2718                             | VMX_AR_TYPE_BUSY_64_TSS);
2719        }
2720        vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2721}
2722
2723static void exit_lmode(struct kvm_vcpu *vcpu)
2724{
2725        vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2726        vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2727}
2728
2729#endif
2730
2731static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2732{
2733        int vpid = to_vmx(vcpu)->vpid;
2734
2735        if (!vpid_sync_vcpu_addr(vpid, addr))
2736                vpid_sync_context(vpid);
2737
2738        /*
2739         * If VPIDs are not supported or enabled, then the above is a no-op.
2740         * But we don't really need a TLB flush in that case anyway, because
2741         * each VM entry/exit includes an implicit flush when VPID is 0.
2742         */
2743}
2744
2745static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2746{
2747        ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2748
2749        vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2750        vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2751}
2752
2753static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2754{
2755        if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2756                vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2757        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2758}
2759
2760static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2761{
2762        ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2763
2764        vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2765        vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2766}
2767
2768static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2769{
2770        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2771
2772        if (!test_bit(VCPU_EXREG_PDPTR,
2773                      (unsigned long *)&vcpu->arch.regs_dirty))
2774                return;
2775
2776        if (is_pae_paging(vcpu)) {
2777                vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2778                vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2779                vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2780                vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2781        }
2782}
2783
2784void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2785{
2786        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2787
2788        if (is_pae_paging(vcpu)) {
2789                mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2790                mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2791                mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2792                mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2793        }
2794
2795        __set_bit(VCPU_EXREG_PDPTR,
2796                  (unsigned long *)&vcpu->arch.regs_avail);
2797        __set_bit(VCPU_EXREG_PDPTR,
2798                  (unsigned long *)&vcpu->arch.regs_dirty);
2799}
2800
2801static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2802                                        unsigned long cr0,
2803                                        struct kvm_vcpu *vcpu)
2804{
2805        struct vcpu_vmx *vmx = to_vmx(vcpu);
2806
2807        if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2808                vmx_decache_cr3(vcpu);
2809        if (!(cr0 & X86_CR0_PG)) {
2810                /* From paging/starting to nonpaging */
2811                exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2812                                          CPU_BASED_CR3_STORE_EXITING);
2813                vcpu->arch.cr0 = cr0;
2814                vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2815        } else if (!is_paging(vcpu)) {
2816                /* From nonpaging to paging */
2817                exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2818                                            CPU_BASED_CR3_STORE_EXITING);
2819                vcpu->arch.cr0 = cr0;
2820                vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2821        }
2822
2823        if (!(cr0 & X86_CR0_WP))
2824                *hw_cr0 &= ~X86_CR0_WP;
2825}
2826
2827void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2828{
2829        struct vcpu_vmx *vmx = to_vmx(vcpu);
2830        unsigned long hw_cr0;
2831
2832        hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2833        if (enable_unrestricted_guest)
2834                hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2835        else {
2836                hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2837
2838                if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2839                        enter_pmode(vcpu);
2840
2841                if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2842                        enter_rmode(vcpu);
2843        }
2844
2845#ifdef CONFIG_X86_64
2846        if (vcpu->arch.efer & EFER_LME) {
2847                if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2848                        enter_lmode(vcpu);
2849                if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2850                        exit_lmode(vcpu);
2851        }
2852#endif
2853
2854        if (enable_ept && !enable_unrestricted_guest)
2855                ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2856
2857        vmcs_writel(CR0_READ_SHADOW, cr0);
2858        vmcs_writel(GUEST_CR0, hw_cr0);
2859        vcpu->arch.cr0 = cr0;
2860
2861        /* depends on vcpu->arch.cr0 to be set to a new value */
2862        vmx->emulation_required = emulation_required(vcpu);
2863}
2864
2865static int get_ept_level(struct kvm_vcpu *vcpu)
2866{
2867        if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2868                return 5;
2869        return 4;
2870}
2871
2872u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2873{
2874        u64 eptp = VMX_EPTP_MT_WB;
2875
2876        eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2877
2878        if (enable_ept_ad_bits &&
2879            (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2880                eptp |= VMX_EPTP_AD_ENABLE_BIT;
2881        eptp |= (root_hpa & PAGE_MASK);
2882
2883        return eptp;
2884}
2885
2886void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2887{
2888        struct kvm *kvm = vcpu->kvm;
2889        unsigned long guest_cr3;
2890        u64 eptp;
2891
2892        guest_cr3 = cr3;
2893        if (enable_ept) {
2894                eptp = construct_eptp(vcpu, cr3);
2895                vmcs_write64(EPT_POINTER, eptp);
2896
2897                if (kvm_x86_ops->tlb_remote_flush) {
2898                        spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2899                        to_vmx(vcpu)->ept_pointer = eptp;
2900                        to_kvm_vmx(kvm)->ept_pointers_match
2901                                = EPT_POINTERS_CHECK;
2902                        spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2903                }
2904
2905                if (enable_unrestricted_guest || is_paging(vcpu) ||
2906                    is_guest_mode(vcpu))
2907                        guest_cr3 = kvm_read_cr3(vcpu);
2908                else
2909                        guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
2910                ept_load_pdptrs(vcpu);
2911        }
2912
2913        vmcs_writel(GUEST_CR3, guest_cr3);
2914}
2915
2916int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2917{
2918        struct vcpu_vmx *vmx = to_vmx(vcpu);
2919        /*
2920         * Pass through host's Machine Check Enable value to hw_cr4, which
2921         * is in force while we are in guest mode.  Do not let guests control
2922         * this bit, even if host CR4.MCE == 0.
2923         */
2924        unsigned long hw_cr4;
2925
2926        hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
2927        if (enable_unrestricted_guest)
2928                hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
2929        else if (vmx->rmode.vm86_active)
2930                hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
2931        else
2932                hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
2933
2934        if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
2935                if (cr4 & X86_CR4_UMIP) {
2936                        secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
2937                        hw_cr4 &= ~X86_CR4_UMIP;
2938                } else if (!is_guest_mode(vcpu) ||
2939                        !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
2940                        secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
2941                }
2942        }
2943
2944        if (cr4 & X86_CR4_VMXE) {
2945                /*
2946                 * To use VMXON (and later other VMX instructions), a guest
2947                 * must first be able to turn on cr4.VMXE (see handle_vmon()).
2948                 * So basically the check on whether to allow nested VMX
2949                 * is here.  We operate under the default treatment of SMM,
2950                 * so VMX cannot be enabled under SMM.
2951                 */
2952                if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
2953                        return 1;
2954        }
2955
2956        if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
2957                return 1;
2958
2959        vcpu->arch.cr4 = cr4;
2960
2961        if (!enable_unrestricted_guest) {
2962                if (enable_ept) {
2963                        if (!is_paging(vcpu)) {
2964                                hw_cr4 &= ~X86_CR4_PAE;
2965                                hw_cr4 |= X86_CR4_PSE;
2966                        } else if (!(cr4 & X86_CR4_PAE)) {
2967                                hw_cr4 &= ~X86_CR4_PAE;
2968                        }
2969                }
2970
2971                /*
2972                 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
2973                 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
2974                 * to be manually disabled when guest switches to non-paging
2975                 * mode.
2976                 *
2977                 * If !enable_unrestricted_guest, the CPU is always running
2978                 * with CR0.PG=1 and CR4 needs to be modified.
2979                 * If enable_unrestricted_guest, the CPU automatically
2980                 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
2981                 */
2982                if (!is_paging(vcpu))
2983                        hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
2984        }
2985
2986        vmcs_writel(CR4_READ_SHADOW, cr4);
2987        vmcs_writel(GUEST_CR4, hw_cr4);
2988        return 0;
2989}
2990
2991void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
2992{
2993        struct vcpu_vmx *vmx = to_vmx(vcpu);
2994        u32 ar;
2995
2996        if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
2997                *var = vmx->rmode.segs[seg];
2998                if (seg == VCPU_SREG_TR
2999                    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3000                        return;
3001                var->base = vmx_read_guest_seg_base(vmx, seg);
3002                var->selector = vmx_read_guest_seg_selector(vmx, seg);
3003                return;
3004        }
3005        var->base = vmx_read_guest_seg_base(vmx, seg);
3006        var->limit = vmx_read_guest_seg_limit(vmx, seg);
3007        var->selector = vmx_read_guest_seg_selector(vmx, seg);
3008        ar = vmx_read_guest_seg_ar(vmx, seg);
3009        var->unusable = (ar >> 16) & 1;
3010        var->type = ar & 15;
3011        var->s = (ar >> 4) & 1;
3012        var->dpl = (ar >> 5) & 3;
3013        /*
3014         * Some userspaces do not preserve unusable property. Since usable
3015         * segment has to be present according to VMX spec we can use present
3016         * property to amend userspace bug by making unusable segment always
3017         * nonpresent. vmx_segment_access_rights() already marks nonpresent
3018         * segment as unusable.
3019         */
3020        var->present = !var->unusable;
3021        var->avl = (ar >> 12) & 1;
3022        var->l = (ar >> 13) & 1;
3023        var->db = (ar >> 14) & 1;
3024        var->g = (ar >> 15) & 1;
3025}
3026
3027static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3028{
3029        struct kvm_segment s;
3030
3031        if (to_vmx(vcpu)->rmode.vm86_active) {
3032                vmx_get_segment(vcpu, &s, seg);
3033                return s.base;
3034        }
3035        return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3036}
3037
3038int vmx_get_cpl(struct kvm_vcpu *vcpu)
3039{
3040        struct vcpu_vmx *vmx = to_vmx(vcpu);
3041
3042        if (unlikely(vmx->rmode.vm86_active))
3043                return 0;
3044        else {
3045                int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3046                return VMX_AR_DPL(ar);
3047        }
3048}
3049
3050static u32 vmx_segment_access_rights(struct kvm_segment *var)
3051{
3052        u32 ar;
3053
3054        if (var->unusable || !var->present)
3055                ar = 1 << 16;
3056        else {
3057                ar = var->type & 15;
3058                ar |= (var->s & 1) << 4;
3059                ar |= (var->dpl & 3) << 5;
3060                ar |= (var->present & 1) << 7;
3061                ar |= (var->avl & 1) << 12;
3062                ar |= (var->l & 1) << 13;
3063                ar |= (var->db & 1) << 14;
3064                ar |= (var->g & 1) << 15;
3065        }
3066
3067        return ar;
3068}
3069
3070void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3071{
3072        struct vcpu_vmx *vmx = to_vmx(vcpu);
3073        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3074
3075        vmx_segment_cache_clear(vmx);
3076
3077        if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3078                vmx->rmode.segs[seg] = *var;
3079                if (seg == VCPU_SREG_TR)
3080                        vmcs_write16(sf->selector, var->selector);
3081                else if (var->s)
3082                        fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3083                goto out;
3084        }
3085
3086        vmcs_writel(sf->base, var->base);
3087        vmcs_write32(sf->limit, var->limit);
3088        vmcs_write16(sf->selector, var->selector);
3089
3090        /*
3091         *   Fix the "Accessed" bit in AR field of segment registers for older
3092         * qemu binaries.
3093         *   IA32 arch specifies that at the time of processor reset the
3094         * "Accessed" bit in the AR field of segment registers is 1. And qemu
3095         * is setting it to 0 in the userland code. This causes invalid guest
3096         * state vmexit when "unrestricted guest" mode is turned on.
3097         *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3098         * tree. Newer qemu binaries with that qemu fix would not need this
3099         * kvm hack.
3100         */
3101        if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3102                var->type |= 0x1; /* Accessed */
3103
3104        vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3105
3106out:
3107        vmx->emulation_required = emulation_required(vcpu);
3108}
3109
3110static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3111{
3112        u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3113
3114        *db = (ar >> 14) & 1;
3115        *l = (ar >> 13) & 1;
3116}
3117
3118static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3119{
3120        dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3121        dt->address = vmcs_readl(GUEST_IDTR_BASE);
3122}
3123
3124static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3125{
3126        vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3127        vmcs_writel(GUEST_IDTR_BASE, dt->address);
3128}
3129
3130static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3131{
3132        dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3133        dt->address = vmcs_readl(GUEST_GDTR_BASE);
3134}
3135
3136static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3137{
3138        vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3139        vmcs_writel(GUEST_GDTR_BASE, dt->address);
3140}
3141
3142static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3143{
3144        struct kvm_segment var;
3145        u32 ar;
3146
3147        vmx_get_segment(vcpu, &var, seg);
3148        var.dpl = 0x3;
3149        if (seg == VCPU_SREG_CS)
3150                var.type = 0x3;
3151        ar = vmx_segment_access_rights(&var);
3152
3153        if (var.base != (var.selector << 4))
3154                return false;
3155        if (var.limit != 0xffff)
3156                return false;
3157        if (ar != 0xf3)
3158                return false;
3159
3160        return true;
3161}
3162
3163static bool code_segment_valid(struct kvm_vcpu *vcpu)
3164{
3165        struct kvm_segment cs;
3166        unsigned int cs_rpl;
3167
3168        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3169        cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3170
3171        if (cs.unusable)
3172                return false;
3173        if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3174                return false;
3175        if (!cs.s)
3176                return false;
3177        if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3178                if (cs.dpl > cs_rpl)
3179                        return false;
3180        } else {
3181                if (cs.dpl != cs_rpl)
3182                        return false;
3183        }
3184        if (!cs.present)
3185                return false;
3186
3187        /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3188        return true;
3189}
3190
3191static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3192{
3193        struct kvm_segment ss;
3194        unsigned int ss_rpl;
3195
3196        vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3197        ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3198
3199        if (ss.unusable)
3200                return true;
3201        if (ss.type != 3 && ss.type != 7)
3202                return false;
3203        if (!ss.s)
3204                return false;
3205        if (ss.dpl != ss_rpl) /* DPL != RPL */
3206                return false;
3207        if (!ss.present)
3208                return false;
3209
3210        return true;
3211}
3212
3213static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3214{
3215        struct kvm_segment var;
3216        unsigned int rpl;
3217
3218        vmx_get_segment(vcpu, &var, seg);
3219        rpl = var.selector & SEGMENT_RPL_MASK;
3220
3221        if (var.unusable)
3222                return true;
3223        if (!var.s)
3224                return false;
3225        if (!var.present)
3226                return false;
3227        if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3228                if (var.dpl < rpl) /* DPL < RPL */
3229                        return false;
3230        }
3231
3232        /* TODO: Add other members to kvm_segment_field to allow checking for other access
3233         * rights flags
3234         */
3235        return true;
3236}
3237
3238static bool tr_valid(struct kvm_vcpu *vcpu)
3239{
3240        struct kvm_segment tr;
3241
3242        vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3243
3244        if (tr.unusable)
3245                return false;
3246        if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3247                return false;
3248        if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3249                return false;
3250        if (!tr.present)
3251                return false;
3252
3253        return true;
3254}
3255
3256static bool ldtr_valid(struct kvm_vcpu *vcpu)
3257{
3258        struct kvm_segment ldtr;
3259
3260        vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3261
3262        if (ldtr.unusable)
3263                return true;
3264        if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3265                return false;
3266        if (ldtr.type != 2)
3267                return false;
3268        if (!ldtr.present)
3269                return false;
3270
3271        return true;
3272}
3273
3274static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3275{
3276        struct kvm_segment cs, ss;
3277
3278        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3279        vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3280
3281        return ((cs.selector & SEGMENT_RPL_MASK) ==
3282                 (ss.selector & SEGMENT_RPL_MASK));
3283}
3284
3285/*
3286 * Check if guest state is valid. Returns true if valid, false if
3287 * not.
3288 * We assume that registers are always usable
3289 */
3290static bool guest_state_valid(struct kvm_vcpu *vcpu)
3291{
3292        if (enable_unrestricted_guest)
3293                return true;
3294
3295        /* real mode guest state checks */
3296        if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3297                if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3298                        return false;
3299                if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3300                        return false;
3301                if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3302                        return false;
3303                if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3304                        return false;
3305                if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3306                        return false;
3307                if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3308                        return false;
3309        } else {
3310        /* protected mode guest state checks */
3311                if (!cs_ss_rpl_check(vcpu))
3312                        return false;
3313                if (!code_segment_valid(vcpu))
3314                        return false;
3315                if (!stack_segment_valid(vcpu))
3316                        return false;
3317                if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3318                        return false;
3319                if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3320                        return false;
3321                if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3322                        return false;
3323                if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3324                        return false;
3325                if (!tr_valid(vcpu))
3326                        return false;
3327                if (!ldtr_valid(vcpu))
3328                        return false;
3329        }
3330        /* TODO:
3331         * - Add checks on RIP
3332         * - Add checks on RFLAGS
3333         */
3334
3335        return true;
3336}
3337
3338static int init_rmode_tss(struct kvm *kvm)
3339{
3340        gfn_t fn;
3341        u16 data = 0;
3342        int idx, r;
3343
3344        idx = srcu_read_lock(&kvm->srcu);
3345        fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3346        r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3347        if (r < 0)
3348                goto out;
3349        data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3350        r = kvm_write_guest_page(kvm, fn++, &data,
3351                        TSS_IOPB_BASE_OFFSET, sizeof(u16));
3352        if (r < 0)
3353                goto out;
3354        r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3355        if (r < 0)
3356                goto out;
3357        r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3358        if (r < 0)
3359                goto out;
3360        data = ~0;
3361        r = kvm_write_guest_page(kvm, fn, &data,
3362                                 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3363                                 sizeof(u8));
3364out:
3365        srcu_read_unlock(&kvm->srcu, idx);
3366        return r;
3367}
3368
3369static int init_rmode_identity_map(struct kvm *kvm)
3370{
3371        struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3372        int i, idx, r = 0;
3373        kvm_pfn_t identity_map_pfn;
3374        u32 tmp;
3375
3376        /* Protect kvm_vmx->ept_identity_pagetable_done. */
3377        mutex_lock(&kvm->slots_lock);
3378
3379        if (likely(kvm_vmx->ept_identity_pagetable_done))
3380                goto out2;
3381
3382        if (!kvm_vmx->ept_identity_map_addr)
3383                kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3384        identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3385
3386        r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3387                                    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3388        if (r < 0)
3389                goto out2;
3390
3391        idx = srcu_read_lock(&kvm->srcu);
3392        r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3393        if (r < 0)
3394                goto out;
3395        /* Set up identity-mapping pagetable for EPT in real mode */
3396        for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3397                tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3398                        _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3399                r = kvm_write_guest_page(kvm, identity_map_pfn,
3400                                &tmp, i * sizeof(tmp), sizeof(tmp));
3401                if (r < 0)
3402                        goto out;
3403        }
3404        kvm_vmx->ept_identity_pagetable_done = true;
3405
3406out:
3407        srcu_read_unlock(&kvm->srcu, idx);
3408
3409out2:
3410        mutex_unlock(&kvm->slots_lock);
3411        return r;
3412}
3413
3414static void seg_setup(int seg)
3415{
3416        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3417        unsigned int ar;
3418
3419        vmcs_write16(sf->selector, 0);
3420        vmcs_writel(sf->base, 0);
3421        vmcs_write32(sf->limit, 0xffff);
3422        ar = 0x93;
3423        if (seg == VCPU_SREG_CS)
3424                ar |= 0x08; /* code segment */
3425
3426        vmcs_write32(sf->ar_bytes, ar);
3427}
3428
3429static int alloc_apic_access_page(struct kvm *kvm)
3430{
3431        struct page *page;
3432        int r = 0;
3433
3434        mutex_lock(&kvm->slots_lock);
3435        if (kvm->arch.apic_access_page_done)
3436                goto out;
3437        r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3438                                    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3439        if (r)
3440                goto out;
3441
3442        page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3443        if (is_error_page(page)) {
3444                r = -EFAULT;
3445                goto out;
3446        }
3447
3448        /*
3449         * Do not pin the page in memory, so that memory hot-unplug
3450         * is able to migrate it.
3451         */
3452        put_page(page);
3453        kvm->arch.apic_access_page_done = true;
3454out:
3455        mutex_unlock(&kvm->slots_lock);
3456        return r;
3457}
3458
3459int allocate_vpid(void)
3460{
3461        int vpid;
3462
3463        if (!enable_vpid)
3464                return 0;
3465        spin_lock(&vmx_vpid_lock);
3466        vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3467        if (vpid < VMX_NR_VPIDS)
3468                __set_bit(vpid, vmx_vpid_bitmap);
3469        else
3470                vpid = 0;
3471        spin_unlock(&vmx_vpid_lock);
3472        return vpid;
3473}
3474
3475void free_vpid(int vpid)
3476{
3477        if (!enable_vpid || vpid == 0)
3478                return;
3479        spin_lock(&vmx_vpid_lock);
3480        __clear_bit(vpid, vmx_vpid_bitmap);
3481        spin_unlock(&vmx_vpid_lock);
3482}
3483
3484static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3485                                                          u32 msr, int type)
3486{
3487        int f = sizeof(unsigned long);
3488
3489        if (!cpu_has_vmx_msr_bitmap())
3490                return;
3491
3492        if (static_branch_unlikely(&enable_evmcs))
3493                evmcs_touch_msr_bitmap();
3494
3495        /*
3496         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3497         * have the write-low and read-high bitmap offsets the wrong way round.
3498         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3499         */
3500        if (msr <= 0x1fff) {
3501                if (type & MSR_TYPE_R)
3502                        /* read-low */
3503                        __clear_bit(msr, msr_bitmap + 0x000 / f);
3504
3505                if (type & MSR_TYPE_W)
3506                        /* write-low */
3507                        __clear_bit(msr, msr_bitmap + 0x800 / f);
3508
3509        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3510                msr &= 0x1fff;
3511                if (type & MSR_TYPE_R)
3512                        /* read-high */
3513                        __clear_bit(msr, msr_bitmap + 0x400 / f);
3514
3515                if (type & MSR_TYPE_W)
3516                        /* write-high */
3517                        __clear_bit(msr, msr_bitmap + 0xc00 / f);
3518
3519        }
3520}
3521
3522static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3523                                                         u32 msr, int type)
3524{
3525        int f = sizeof(unsigned long);
3526
3527        if (!cpu_has_vmx_msr_bitmap())
3528                return;
3529
3530        if (static_branch_unlikely(&enable_evmcs))
3531                evmcs_touch_msr_bitmap();
3532
3533        /*
3534         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3535         * have the write-low and read-high bitmap offsets the wrong way round.
3536         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3537         */
3538        if (msr <= 0x1fff) {
3539                if (type & MSR_TYPE_R)
3540                        /* read-low */
3541                        __set_bit(msr, msr_bitmap + 0x000 / f);
3542
3543                if (type & MSR_TYPE_W)
3544                        /* write-low */
3545                        __set_bit(msr, msr_bitmap + 0x800 / f);
3546
3547        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3548                msr &= 0x1fff;
3549                if (type & MSR_TYPE_R)
3550                        /* read-high */
3551                        __set_bit(msr, msr_bitmap + 0x400 / f);
3552
3553                if (type & MSR_TYPE_W)
3554                        /* write-high */
3555                        __set_bit(msr, msr_bitmap + 0xc00 / f);
3556
3557        }
3558}
3559
3560static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3561                                                      u32 msr, int type, bool value)
3562{
3563        if (value)
3564                vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3565        else
3566                vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3567}
3568
3569static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3570{
3571        u8 mode = 0;
3572
3573        if (cpu_has_secondary_exec_ctrls() &&
3574            (secondary_exec_controls_get(to_vmx(vcpu)) &
3575             SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3576                mode |= MSR_BITMAP_MODE_X2APIC;
3577                if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3578                        mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3579        }
3580
3581        return mode;
3582}
3583
3584static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3585                                         u8 mode)
3586{
3587        int msr;
3588
3589        for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3590                unsigned word = msr / BITS_PER_LONG;
3591                msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3592                msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3593        }
3594
3595        if (mode & MSR_BITMAP_MODE_X2APIC) {
3596                /*
3597                 * TPR reads and writes can be virtualized even if virtual interrupt
3598                 * delivery is not in use.
3599                 */
3600                vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3601                if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3602                        vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3603                        vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3604                        vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3605                }
3606        }
3607}
3608
3609void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3610{
3611        struct vcpu_vmx *vmx = to_vmx(vcpu);
3612        unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3613        u8 mode = vmx_msr_bitmap_mode(vcpu);
3614        u8 changed = mode ^ vmx->msr_bitmap_mode;
3615
3616        if (!changed)
3617                return;
3618
3619        if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3620                vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3621
3622        vmx->msr_bitmap_mode = mode;
3623}
3624
3625void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3626{
3627        unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3628        bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3629        u32 i;
3630
3631        vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3632                                                        MSR_TYPE_RW, flag);
3633        vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3634                                                        MSR_TYPE_RW, flag);
3635        vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3636                                                        MSR_TYPE_RW, flag);
3637        vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3638                                                        MSR_TYPE_RW, flag);
3639        for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3640                vmx_set_intercept_for_msr(msr_bitmap,
3641                        MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3642                vmx_set_intercept_for_msr(msr_bitmap,
3643                        MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3644        }
3645}
3646
3647static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
3648{
3649        return enable_apicv;
3650}
3651
3652static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3653{
3654        struct vcpu_vmx *vmx = to_vmx(vcpu);
3655        void *vapic_page;
3656        u32 vppr;
3657        int rvi;
3658
3659        if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3660                !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3661                WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3662                return false;
3663
3664        rvi = vmx_get_rvi();
3665
3666        vapic_page = vmx->nested.virtual_apic_map.hva;
3667        vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3668
3669        return ((rvi & 0xf0) > (vppr & 0xf0));
3670}
3671
3672static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3673                                                     bool nested)
3674{
3675#ifdef CONFIG_SMP
3676        int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3677
3678        if (vcpu->mode == IN_GUEST_MODE) {
3679                /*
3680                 * The vector of interrupt to be delivered to vcpu had
3681                 * been set in PIR before this function.
3682                 *
3683                 * Following cases will be reached in this block, and
3684                 * we always send a notification event in all cases as
3685                 * explained below.
3686                 *
3687                 * Case 1: vcpu keeps in non-root mode. Sending a
3688                 * notification event posts the interrupt to vcpu.
3689                 *
3690                 * Case 2: vcpu exits to root mode and is still
3691                 * runnable. PIR will be synced to vIRR before the
3692                 * next vcpu entry. Sending a notification event in
3693                 * this case has no effect, as vcpu is not in root
3694                 * mode.
3695                 *
3696                 * Case 3: vcpu exits to root mode and is blocked.
3697                 * vcpu_block() has already synced PIR to vIRR and
3698                 * never blocks vcpu if vIRR is not cleared. Therefore,
3699                 * a blocked vcpu here does not wait for any requested
3700                 * interrupts in PIR, and sending a notification event
3701                 * which has no effect is safe here.
3702                 */
3703
3704                apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3705                return true;
3706        }
3707#endif
3708        return false;
3709}
3710
3711static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3712                                                int vector)
3713{
3714        struct vcpu_vmx *vmx = to_vmx(vcpu);
3715
3716        if (is_guest_mode(vcpu) &&
3717            vector == vmx->nested.posted_intr_nv) {
3718                /*
3719                 * If a posted intr is not recognized by hardware,
3720                 * we will accomplish it in the next vmentry.
3721                 */
3722                vmx->nested.pi_pending = true;
3723                kvm_make_request(KVM_REQ_EVENT, vcpu);
3724                /* the PIR and ON have been set by L1. */
3725                if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3726                        kvm_vcpu_kick(vcpu);
3727                return 0;
3728        }
3729        return -1;
3730}
3731/*
3732 * Send interrupt to vcpu via posted interrupt way.
3733 * 1. If target vcpu is running(non-root mode), send posted interrupt
3734 * notification to vcpu and hardware will sync PIR to vIRR atomically.
3735 * 2. If target vcpu isn't running(root mode), kick it to pick up the
3736 * interrupt from PIR in next vmentry.
3737 */
3738static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3739{
3740        struct vcpu_vmx *vmx = to_vmx(vcpu);
3741        int r;
3742
3743        r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3744        if (!r)
3745                return;
3746
3747        if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3748                return;
3749
3750        /* If a previous notification has sent the IPI, nothing to do.  */
3751        if (pi_test_and_set_on(&vmx->pi_desc))
3752                return;
3753
3754        if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3755                kvm_vcpu_kick(vcpu);
3756}
3757
3758/*
3759 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3760 * will not change in the lifetime of the guest.
3761 * Note that host-state that does change is set elsewhere. E.g., host-state
3762 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3763 */
3764void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3765{
3766        u32 low32, high32;
3767        unsigned long tmpl;
3768        unsigned long cr0, cr3, cr4;
3769
3770        cr0 = read_cr0();
3771        WARN_ON(cr0 & X86_CR0_TS);
3772        vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3773
3774        /*
3775         * Save the most likely value for this task's CR3 in the VMCS.
3776         * We can't use __get_current_cr3_fast() because we're not atomic.
3777         */
3778        cr3 = __read_cr3();
3779        vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
3780        vmx->loaded_vmcs->host_state.cr3 = cr3;
3781
3782        /* Save the most likely value for this task's CR4 in the VMCS. */
3783        cr4 = cr4_read_shadow();
3784        vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
3785        vmx->loaded_vmcs->host_state.cr4 = cr4;
3786
3787        vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3788#ifdef CONFIG_X86_64
3789        /*
3790         * Load null selectors, so we can avoid reloading them in
3791         * vmx_prepare_switch_to_host(), in case userspace uses
3792         * the null selectors too (the expected case).
3793         */
3794        vmcs_write16(HOST_DS_SELECTOR, 0);
3795        vmcs_write16(HOST_ES_SELECTOR, 0);
3796#else
3797        vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3798        vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3799#endif
3800        vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3801        vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3802
3803        vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
3804
3805        vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3806
3807        rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3808        vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3809        rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3810        vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3811
3812        if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3813                rdmsr(MSR_IA32_CR_PAT, low32, high32);
3814                vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3815        }
3816
3817        if (cpu_has_load_ia32_efer())
3818                vmcs_write64(HOST_IA32_EFER, host_efer);
3819}
3820
3821void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3822{
3823        vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3824        if (enable_ept)
3825                vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3826        if (is_guest_mode(&vmx->vcpu))
3827                vmx->vcpu.arch.cr4_guest_owned_bits &=
3828                        ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3829        vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3830}
3831
3832u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3833{
3834        u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3835
3836        if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3837                pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3838
3839        if (!enable_vnmi)
3840                pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3841
3842        if (!enable_preemption_timer)
3843                pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3844
3845        return pin_based_exec_ctrl;
3846}
3847
3848static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3849{
3850        struct vcpu_vmx *vmx = to_vmx(vcpu);
3851
3852        pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3853        if (cpu_has_secondary_exec_ctrls()) {
3854                if (kvm_vcpu_apicv_active(vcpu))
3855                        secondary_exec_controls_setbit(vmx,
3856                                      SECONDARY_EXEC_APIC_REGISTER_VIRT |
3857                                      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3858                else
3859                        secondary_exec_controls_clearbit(vmx,
3860                                        SECONDARY_EXEC_APIC_REGISTER_VIRT |
3861                                        SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3862        }
3863
3864        if (cpu_has_vmx_msr_bitmap())
3865                vmx_update_msr_bitmap(vcpu);
3866}
3867
3868u32 vmx_exec_control(struct vcpu_vmx *vmx)
3869{
3870        u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3871
3872        if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3873                exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3874
3875        if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3876                exec_control &= ~CPU_BASED_TPR_SHADOW;
3877#ifdef CONFIG_X86_64
3878                exec_control |= CPU_BASED_CR8_STORE_EXITING |
3879                                CPU_BASED_CR8_LOAD_EXITING;
3880#endif
3881        }
3882        if (!enable_ept)
3883                exec_control |= CPU_BASED_CR3_STORE_EXITING |
3884                                CPU_BASED_CR3_LOAD_EXITING  |
3885                                CPU_BASED_INVLPG_EXITING;
3886        if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3887                exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3888                                CPU_BASED_MONITOR_EXITING);
3889        if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3890                exec_control &= ~CPU_BASED_HLT_EXITING;
3891        return exec_control;
3892}
3893
3894
3895static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
3896{
3897        struct kvm_vcpu *vcpu = &vmx->vcpu;
3898
3899        u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3900
3901        if (pt_mode == PT_MODE_SYSTEM)
3902                exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
3903        if (!cpu_need_virtualize_apic_accesses(vcpu))
3904                exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3905        if (vmx->vpid == 0)
3906                exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3907        if (!enable_ept) {
3908                exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3909                enable_unrestricted_guest = 0;
3910        }
3911        if (!enable_unrestricted_guest)
3912                exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3913        if (kvm_pause_in_guest(vmx->vcpu.kvm))
3914                exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3915        if (!kvm_vcpu_apicv_active(vcpu))
3916                exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
3917                                  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3918        exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
3919
3920        /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
3921         * in vmx_set_cr4.  */
3922        exec_control &= ~SECONDARY_EXEC_DESC;
3923
3924        /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
3925           (handle_vmptrld).
3926           We can NOT enable shadow_vmcs here because we don't have yet
3927           a current VMCS12
3928        */
3929        exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
3930
3931        if (!enable_pml)
3932                exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
3933
3934        if (vmx_xsaves_supported()) {
3935                /* Exposing XSAVES only when XSAVE is exposed */
3936                bool xsaves_enabled =
3937                        guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3938                        guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
3939
3940                if (!xsaves_enabled)
3941                        exec_control &= ~SECONDARY_EXEC_XSAVES;
3942
3943                if (nested) {
3944                        if (xsaves_enabled)
3945                                vmx->nested.msrs.secondary_ctls_high |=
3946                                        SECONDARY_EXEC_XSAVES;
3947                        else
3948                                vmx->nested.msrs.secondary_ctls_high &=
3949                                        ~SECONDARY_EXEC_XSAVES;
3950                }
3951        }
3952
3953        if (vmx_rdtscp_supported()) {
3954                bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
3955                if (!rdtscp_enabled)
3956                        exec_control &= ~SECONDARY_EXEC_RDTSCP;
3957
3958                if (nested) {
3959                        if (rdtscp_enabled)
3960                                vmx->nested.msrs.secondary_ctls_high |=
3961                                        SECONDARY_EXEC_RDTSCP;
3962                        else
3963                                vmx->nested.msrs.secondary_ctls_high &=
3964                                        ~SECONDARY_EXEC_RDTSCP;
3965                }
3966        }
3967
3968        if (vmx_invpcid_supported()) {
3969                /* Exposing INVPCID only when PCID is exposed */
3970                bool invpcid_enabled =
3971                        guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
3972                        guest_cpuid_has(vcpu, X86_FEATURE_PCID);
3973
3974                if (!invpcid_enabled) {
3975                        exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
3976                        guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
3977                }
3978
3979                if (nested) {
3980                        if (invpcid_enabled)
3981                                vmx->nested.msrs.secondary_ctls_high |=
3982                                        SECONDARY_EXEC_ENABLE_INVPCID;
3983                        else
3984                                vmx->nested.msrs.secondary_ctls_high &=
3985                                        ~SECONDARY_EXEC_ENABLE_INVPCID;
3986                }
3987        }
3988
3989        if (vmx_rdrand_supported()) {
3990                bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
3991                if (rdrand_enabled)
3992                        exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
3993
3994                if (nested) {
3995                        if (rdrand_enabled)
3996                                vmx->nested.msrs.secondary_ctls_high |=
3997                                        SECONDARY_EXEC_RDRAND_EXITING;
3998                        else
3999                                vmx->nested.msrs.secondary_ctls_high &=
4000                                        ~SECONDARY_EXEC_RDRAND_EXITING;
4001                }
4002        }
4003
4004        if (vmx_rdseed_supported()) {
4005                bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4006                if (rdseed_enabled)
4007                        exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4008
4009                if (nested) {
4010                        if (rdseed_enabled)
4011                                vmx->nested.msrs.secondary_ctls_high |=
4012                                        SECONDARY_EXEC_RDSEED_EXITING;
4013                        else
4014                                vmx->nested.msrs.secondary_ctls_high &=
4015                                        ~SECONDARY_EXEC_RDSEED_EXITING;
4016                }
4017        }
4018
4019        vmx->secondary_exec_control = exec_control;
4020}
4021
4022static void ept_set_mmio_spte_mask(void)
4023{
4024        /*
4025         * EPT Misconfigurations can be generated if the value of bits 2:0
4026         * of an EPT paging-structure entry is 110b (write/execute).
4027         */
4028        kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4029                                   VMX_EPT_MISCONFIG_WX_VALUE);
4030}
4031
4032#define VMX_XSS_EXIT_BITMAP 0
4033
4034/*
4035 * Sets up the vmcs for emulated real mode.
4036 */
4037static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
4038{
4039        int i;
4040
4041        if (nested)
4042                nested_vmx_vcpu_setup();
4043
4044        if (cpu_has_vmx_msr_bitmap())
4045                vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4046
4047        vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4048
4049        /* Control */
4050        pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4051        vmx->hv_deadline_tsc = -1;
4052
4053        exec_controls_set(vmx, vmx_exec_control(vmx));
4054
4055        if (cpu_has_secondary_exec_ctrls()) {
4056                vmx_compute_secondary_exec_control(vmx);
4057                secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4058        }
4059
4060        if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4061                vmcs_write64(EOI_EXIT_BITMAP0, 0);
4062                vmcs_write64(EOI_EXIT_BITMAP1, 0);
4063                vmcs_write64(EOI_EXIT_BITMAP2, 0);
4064                vmcs_write64(EOI_EXIT_BITMAP3, 0);
4065
4066                vmcs_write16(GUEST_INTR_STATUS, 0);
4067
4068                vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4069                vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4070        }
4071
4072        if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4073                vmcs_write32(PLE_GAP, ple_gap);
4074                vmx->ple_window = ple_window;
4075                vmx->ple_window_dirty = true;
4076        }
4077
4078        vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4079        vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4080        vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4081
4082        vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4083        vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4084        vmx_set_constant_host_state(vmx);
4085        vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4086        vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4087
4088        if (cpu_has_vmx_vmfunc())
4089                vmcs_write64(VM_FUNCTION_CONTROL, 0);
4090
4091        vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4092        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4093        vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4094        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4095        vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4096
4097        if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4098                vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4099
4100        for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4101                u32 index = vmx_msr_index[i];
4102                u32 data_low, data_high;
4103                int j = vmx->nmsrs;
4104
4105                if (rdmsr_safe(index, &data_low, &data_high) < 0)
4106                        continue;
4107                if (wrmsr_safe(index, data_low, data_high) < 0)
4108                        continue;
4109                vmx->guest_msrs[j].index = i;
4110                vmx->guest_msrs[j].data = 0;
4111                vmx->guest_msrs[j].mask = -1ull;
4112                ++vmx->nmsrs;
4113        }
4114
4115        vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4116
4117        /* 22.2.1, 20.8.1 */
4118        vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4119
4120        vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4121        vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4122
4123        set_cr4_guest_host_mask(vmx);
4124
4125        if (vmx_xsaves_supported())
4126                vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4127
4128        if (enable_pml) {
4129                vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4130                vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4131        }
4132
4133        if (cpu_has_vmx_encls_vmexit())
4134                vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4135
4136        if (pt_mode == PT_MODE_HOST_GUEST) {
4137                memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4138                /* Bit[6~0] are forced to 1, writes are ignored. */
4139                vmx->pt_desc.guest.output_mask = 0x7F;
4140                vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4141        }
4142}
4143
4144static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4145{
4146        struct vcpu_vmx *vmx = to_vmx(vcpu);
4147        struct msr_data apic_base_msr;
4148        u64 cr0;
4149
4150        vmx->rmode.vm86_active = 0;
4151        vmx->spec_ctrl = 0;
4152
4153        vcpu->arch.microcode_version = 0x100000000ULL;
4154        vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4155        kvm_set_cr8(vcpu, 0);
4156
4157        if (!init_event) {
4158                apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4159                                     MSR_IA32_APICBASE_ENABLE;
4160                if (kvm_vcpu_is_reset_bsp(vcpu))
4161                        apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4162                apic_base_msr.host_initiated = true;
4163                kvm_set_apic_base(vcpu, &apic_base_msr);
4164        }
4165
4166        vmx_segment_cache_clear(vmx);
4167
4168        seg_setup(VCPU_SREG_CS);
4169        vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4170        vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4171
4172        seg_setup(VCPU_SREG_DS);
4173        seg_setup(VCPU_SREG_ES);
4174        seg_setup(VCPU_SREG_FS);
4175        seg_setup(VCPU_SREG_GS);
4176        seg_setup(VCPU_SREG_SS);
4177
4178        vmcs_write16(GUEST_TR_SELECTOR, 0);
4179        vmcs_writel(GUEST_TR_BASE, 0);
4180        vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4181        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4182
4183        vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4184        vmcs_writel(GUEST_LDTR_BASE, 0);
4185        vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4186        vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4187
4188        if (!init_event) {
4189                vmcs_write32(GUEST_SYSENTER_CS, 0);
4190                vmcs_writel(GUEST_SYSENTER_ESP, 0);
4191                vmcs_writel(GUEST_SYSENTER_EIP, 0);
4192                vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4193        }
4194
4195        kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4196        kvm_rip_write(vcpu, 0xfff0);
4197
4198        vmcs_writel(GUEST_GDTR_BASE, 0);
4199        vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4200
4201        vmcs_writel(GUEST_IDTR_BASE, 0);
4202        vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4203
4204        vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4205        vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4206        vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4207        if (kvm_mpx_supported())
4208                vmcs_write64(GUEST_BNDCFGS, 0);
4209
4210        setup_msrs(vmx);
4211
4212        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4213
4214        if (cpu_has_vmx_tpr_shadow() && !init_event) {
4215                vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4216                if (cpu_need_tpr_shadow(vcpu))
4217                        vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4218                                     __pa(vcpu->arch.apic->regs));
4219                vmcs_write32(TPR_THRESHOLD, 0);
4220        }
4221
4222        kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4223
4224        if (vmx->vpid != 0)
4225                vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4226
4227        cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4228        vmx->vcpu.arch.cr0 = cr0;
4229        vmx_set_cr0(vcpu, cr0); /* enter rmode */
4230        vmx_set_cr4(vcpu, 0);
4231        vmx_set_efer(vcpu, 0);
4232
4233        update_exception_bitmap(vcpu);
4234
4235        vpid_sync_context(vmx->vpid);
4236        if (init_event)
4237                vmx_clear_hlt(vcpu);
4238}
4239
4240static void enable_irq_window(struct kvm_vcpu *vcpu)
4241{
4242        exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4243}
4244
4245static void enable_nmi_window(struct kvm_vcpu *vcpu)
4246{
4247        if (!enable_vnmi ||
4248            vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4249                enable_irq_window(vcpu);
4250                return;
4251        }
4252
4253        exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
4254}
4255
4256static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4257{
4258        struct vcpu_vmx *vmx = to_vmx(vcpu);
4259        uint32_t intr;
4260        int irq = vcpu->arch.interrupt.nr;
4261
4262        trace_kvm_inj_virq(irq);
4263
4264        ++vcpu->stat.irq_injections;
4265        if (vmx->rmode.vm86_active) {
4266                int inc_eip = 0;
4267                if (vcpu->arch.interrupt.soft)
4268                        inc_eip = vcpu->arch.event_exit_inst_len;
4269                if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4270                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4271                return;
4272        }
4273        intr = irq | INTR_INFO_VALID_MASK;
4274        if (vcpu->arch.interrupt.soft) {
4275                intr |= INTR_TYPE_SOFT_INTR;
4276                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4277                             vmx->vcpu.arch.event_exit_inst_len);
4278        } else
4279                intr |= INTR_TYPE_EXT_INTR;
4280        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4281
4282        vmx_clear_hlt(vcpu);
4283}
4284
4285static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4286{
4287        struct vcpu_vmx *vmx = to_vmx(vcpu);
4288
4289        if (!enable_vnmi) {
4290                /*
4291                 * Tracking the NMI-blocked state in software is built upon
4292                 * finding the next open IRQ window. This, in turn, depends on
4293                 * well-behaving guests: They have to keep IRQs disabled at
4294                 * least as long as the NMI handler runs. Otherwise we may
4295                 * cause NMI nesting, maybe breaking the guest. But as this is
4296                 * highly unlikely, we can live with the residual risk.
4297                 */
4298                vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4299                vmx->loaded_vmcs->vnmi_blocked_time = 0;
4300        }
4301
4302        ++vcpu->stat.nmi_injections;
4303        vmx->loaded_vmcs->nmi_known_unmasked = false;
4304
4305        if (vmx->rmode.vm86_active) {
4306                if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4307                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4308                return;
4309        }
4310
4311        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4312                        INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4313
4314        vmx_clear_hlt(vcpu);
4315}
4316
4317bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4318{
4319        struct vcpu_vmx *vmx = to_vmx(vcpu);
4320        bool masked;
4321
4322        if (!enable_vnmi)
4323                return vmx->loaded_vmcs->soft_vnmi_blocked;
4324        if (vmx->loaded_vmcs->nmi_known_unmasked)
4325                return false;
4326        masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4327        vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4328        return masked;
4329}
4330
4331void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4332{
4333        struct vcpu_vmx *vmx = to_vmx(vcpu);
4334
4335        if (!enable_vnmi) {
4336                if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4337                        vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4338                        vmx->loaded_vmcs->vnmi_blocked_time = 0;
4339                }
4340        } else {
4341                vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4342                if (masked)
4343                        vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4344                                      GUEST_INTR_STATE_NMI);
4345                else
4346                        vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4347                                        GUEST_INTR_STATE_NMI);
4348        }
4349}
4350
4351static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4352{
4353        if (to_vmx(vcpu)->nested.nested_run_pending)
4354                return 0;
4355
4356        if (!enable_vnmi &&
4357            to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4358                return 0;
4359
4360        return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4361                  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4362                   | GUEST_INTR_STATE_NMI));
4363}
4364
4365static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4366{
4367        return (!to_vmx(vcpu)->nested.nested_run_pending &&
4368                vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4369                !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4370                        (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4371}
4372
4373static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4374{
4375        int ret;
4376
4377        if (enable_unrestricted_guest)
4378                return 0;
4379
4380        ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4381                                    PAGE_SIZE * 3);
4382        if (ret)
4383                return ret;
4384        to_kvm_vmx(kvm)->tss_addr = addr;
4385        return init_rmode_tss(kvm);
4386}
4387
4388static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4389{
4390        to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4391        return 0;
4392}
4393
4394static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4395{
4396        switch (vec) {
4397        case BP_VECTOR:
4398                /*
4399                 * Update instruction length as we may reinject the exception
4400                 * from user space while in guest debugging mode.
4401                 */
4402                to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4403                        vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4404                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4405                        return false;
4406                /* fall through */
4407        case DB_VECTOR:
4408                if (vcpu->guest_debug &
4409                        (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4410                        return false;
4411                /* fall through */
4412        case DE_VECTOR:
4413        case OF_VECTOR:
4414        case BR_VECTOR:
4415        case UD_VECTOR:
4416        case DF_VECTOR:
4417        case SS_VECTOR:
4418        case GP_VECTOR:
4419        case MF_VECTOR:
4420                return true;
4421        break;
4422        }
4423        return false;
4424}
4425
4426static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4427                                  int vec, u32 err_code)
4428{
4429        /*
4430         * Instruction with address size override prefix opcode 0x67
4431         * Cause the #SS fault with 0 error code in VM86 mode.
4432         */
4433        if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4434                if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4435                        if (vcpu->arch.halt_request) {
4436                                vcpu->arch.halt_request = 0;
4437                                return kvm_vcpu_halt(vcpu);
4438                        }
4439                        return 1;
4440                }
4441                return 0;
4442        }
4443
4444        /*
4445         * Forward all other exceptions that are valid in real mode.
4446         * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4447         *        the required debugging infrastructure rework.
4448         */
4449        kvm_queue_exception(vcpu, vec);
4450        return 1;
4451}
4452
4453/*
4454 * Trigger machine check on the host. We assume all the MSRs are already set up
4455 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4456 * We pass a fake environment to the machine check handler because we want
4457 * the guest to be always treated like user space, no matter what context
4458 * it used internally.
4459 */
4460static void kvm_machine_check(void)
4461{
4462#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4463        struct pt_regs regs = {
4464                .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4465                .flags = X86_EFLAGS_IF,
4466        };
4467
4468        do_machine_check(&regs, 0);
4469#endif
4470}
4471
4472static int handle_machine_check(struct kvm_vcpu *vcpu)
4473{
4474        /* handled by vmx_vcpu_run() */
4475        return 1;
4476}
4477
4478static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4479{
4480        struct vcpu_vmx *vmx = to_vmx(vcpu);
4481        struct kvm_run *kvm_run = vcpu->run;
4482        u32 intr_info, ex_no, error_code;
4483        unsigned long cr2, rip, dr6;
4484        u32 vect_info;
4485        enum emulation_result er;
4486
4487        vect_info = vmx->idt_vectoring_info;
4488        intr_info = vmx->exit_intr_info;
4489
4490        if (is_machine_check(intr_info) || is_nmi(intr_info))
4491                return 1; /* handled by handle_exception_nmi_irqoff() */
4492
4493        if (is_invalid_opcode(intr_info))
4494                return handle_ud(vcpu);
4495
4496        error_code = 0;
4497        if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4498                error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4499
4500        if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4501                WARN_ON_ONCE(!enable_vmware_backdoor);
4502                er = kvm_emulate_instruction(vcpu,
4503                        EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
4504                if (er == EMULATE_USER_EXIT)
4505                        return 0;
4506                else if (er != EMULATE_DONE)
4507                        kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4508                return 1;
4509        }
4510
4511        /*
4512         * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4513         * MMIO, it is better to report an internal error.
4514         * See the comments in vmx_handle_exit.
4515         */
4516        if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4517            !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4518                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4519                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4520                vcpu->run->internal.ndata = 3;
4521                vcpu->run->internal.data[0] = vect_info;
4522                vcpu->run->internal.data[1] = intr_info;
4523                vcpu->run->internal.data[2] = error_code;
4524                return 0;
4525        }
4526
4527        if (is_page_fault(intr_info)) {
4528                cr2 = vmcs_readl(EXIT_QUALIFICATION);
4529                /* EPT won't cause page fault directly */
4530                WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4531                return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4532        }
4533
4534        ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4535
4536        if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4537                return handle_rmode_exception(vcpu, ex_no, error_code);
4538
4539        switch (ex_no) {
4540        case AC_VECTOR:
4541                kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4542                return 1;
4543        case DB_VECTOR:
4544                dr6 = vmcs_readl(EXIT_QUALIFICATION);
4545                if (!(vcpu->guest_debug &
4546                      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4547                        vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4548                        vcpu->arch.dr6 |= dr6 | DR6_RTM;
4549                        if (is_icebp(intr_info))
4550                                skip_emulated_instruction(vcpu);
4551
4552                        kvm_queue_exception(vcpu, DB_VECTOR);
4553                        return 1;
4554                }
4555                kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4556                kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4557                /* fall through */
4558        case BP_VECTOR:
4559                /*
4560                 * Update instruction length as we may reinject #BP from
4561                 * user space while in guest debugging mode. Reading it for
4562                 * #DB as well causes no harm, it is not used in that case.
4563                 */
4564                vmx->vcpu.arch.event_exit_inst_len =
4565                        vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4566                kvm_run->exit_reason = KVM_EXIT_DEBUG;
4567                rip = kvm_rip_read(vcpu);
4568                kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4569                kvm_run->debug.arch.exception = ex_no;
4570                break;
4571        default:
4572                kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4573                kvm_run->ex.exception = ex_no;
4574                kvm_run->ex.error_code = error_code;
4575                break;
4576        }
4577        return 0;
4578}
4579
4580static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4581{
4582        ++vcpu->stat.irq_exits;
4583        return 1;
4584}
4585
4586static int handle_triple_fault(struct kvm_vcpu *vcpu)
4587{
4588        vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4589        vcpu->mmio_needed = 0;
4590        return 0;
4591}
4592
4593static int handle_io(struct kvm_vcpu *vcpu)
4594{
4595        unsigned long exit_qualification;
4596        int size, in, string;
4597        unsigned port;
4598
4599        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4600        string = (exit_qualification & 16) != 0;
4601
4602        ++vcpu->stat.io_exits;
4603
4604        if (string)
4605                return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4606
4607        port = exit_qualification >> 16;
4608        size = (exit_qualification & 7) + 1;
4609        in = (exit_qualification & 8) != 0;
4610
4611        return kvm_fast_pio(vcpu, size, port, in);
4612}
4613
4614static void
4615vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4616{
4617        /*
4618         * Patch in the VMCALL instruction:
4619         */
4620        hypercall[0] = 0x0f;
4621        hypercall[1] = 0x01;
4622        hypercall[2] = 0xc1;
4623}
4624
4625/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4626static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4627{
4628        if (is_guest_mode(vcpu)) {
4629                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4630                unsigned long orig_val = val;
4631
4632                /*
4633                 * We get here when L2 changed cr0 in a way that did not change
4634                 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4635                 * but did change L0 shadowed bits. So we first calculate the
4636                 * effective cr0 value that L1 would like to write into the
4637                 * hardware. It consists of the L2-owned bits from the new
4638                 * value combined with the L1-owned bits from L1's guest_cr0.
4639                 */
4640                val = (val & ~vmcs12->cr0_guest_host_mask) |
4641                        (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4642
4643                if (!nested_guest_cr0_valid(vcpu, val))
4644                        return 1;
4645
4646                if (kvm_set_cr0(vcpu, val))
4647                        return 1;
4648                vmcs_writel(CR0_READ_SHADOW, orig_val);
4649                return 0;
4650        } else {
4651                if (to_vmx(vcpu)->nested.vmxon &&
4652                    !nested_host_cr0_valid(vcpu, val))
4653                        return 1;
4654
4655                return kvm_set_cr0(vcpu, val);
4656        }
4657}
4658
4659static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4660{
4661        if (is_guest_mode(vcpu)) {
4662                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4663                unsigned long orig_val = val;
4664
4665                /* analogously to handle_set_cr0 */
4666                val = (val & ~vmcs12->cr4_guest_host_mask) |
4667                        (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4668                if (kvm_set_cr4(vcpu, val))
4669                        return 1;
4670                vmcs_writel(CR4_READ_SHADOW, orig_val);
4671                return 0;
4672        } else
4673                return kvm_set_cr4(vcpu, val);
4674}
4675
4676static int handle_desc(struct kvm_vcpu *vcpu)
4677{
4678        WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4679        return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4680}
4681
4682static int handle_cr(struct kvm_vcpu *vcpu)
4683{
4684        unsigned long exit_qualification, val;
4685        int cr;
4686        int reg;
4687        int err;
4688        int ret;
4689
4690        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4691        cr = exit_qualification & 15;
4692        reg = (exit_qualification >> 8) & 15;
4693        switch ((exit_qualification >> 4) & 3) {
4694        case 0: /* mov to cr */
4695                val = kvm_register_readl(vcpu, reg);
4696                trace_kvm_cr_write(cr, val);
4697                switch (cr) {
4698                case 0:
4699                        err = handle_set_cr0(vcpu, val);
4700                        return kvm_complete_insn_gp(vcpu, err);
4701                case 3:
4702                        WARN_ON_ONCE(enable_unrestricted_guest);
4703                        err = kvm_set_cr3(vcpu, val);
4704                        return kvm_complete_insn_gp(vcpu, err);
4705                case 4:
4706                        err = handle_set_cr4(vcpu, val);
4707                        return kvm_complete_insn_gp(vcpu, err);
4708                case 8: {
4709                                u8 cr8_prev = kvm_get_cr8(vcpu);
4710                                u8 cr8 = (u8)val;
4711                                err = kvm_set_cr8(vcpu, cr8);
4712                                ret = kvm_complete_insn_gp(vcpu, err);
4713                                if (lapic_in_kernel(vcpu))
4714                                        return ret;
4715                                if (cr8_prev <= cr8)
4716                                        return ret;
4717                                /*
4718                                 * TODO: we might be squashing a
4719                                 * KVM_GUESTDBG_SINGLESTEP-triggered
4720                                 * KVM_EXIT_DEBUG here.
4721                                 */
4722                                vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4723                                return 0;
4724                        }
4725                }
4726                break;
4727        case 2: /* clts */
4728                WARN_ONCE(1, "Guest should always own CR0.TS");
4729                vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4730                trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4731                return kvm_skip_emulated_instruction(vcpu);
4732        case 1: /*mov from cr*/
4733                switch (cr) {
4734                case 3:
4735                        WARN_ON_ONCE(enable_unrestricted_guest);
4736                        val = kvm_read_cr3(vcpu);
4737                        kvm_register_write(vcpu, reg, val);
4738                        trace_kvm_cr_read(cr, val);
4739                        return kvm_skip_emulated_instruction(vcpu);
4740                case 8:
4741                        val = kvm_get_cr8(vcpu);
4742                        kvm_register_write(vcpu, reg, val);
4743                        trace_kvm_cr_read(cr, val);
4744                        return kvm_skip_emulated_instruction(vcpu);
4745                }
4746                break;
4747        case 3: /* lmsw */
4748                val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4749                trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4750                kvm_lmsw(vcpu, val);
4751
4752                return kvm_skip_emulated_instruction(vcpu);
4753        default:
4754                break;
4755        }
4756        vcpu->run->exit_reason = 0;
4757        vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4758               (int)(exit_qualification >> 4) & 3, cr);
4759        return 0;
4760}
4761
4762static int handle_dr(struct kvm_vcpu *vcpu)
4763{
4764        unsigned long exit_qualification;
4765        int dr, dr7, reg;
4766
4767        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4768        dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4769
4770        /* First, if DR does not exist, trigger UD */
4771        if (!kvm_require_dr(vcpu, dr))
4772                return 1;
4773
4774        /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4775        if (!kvm_require_cpl(vcpu, 0))
4776                return 1;
4777        dr7 = vmcs_readl(GUEST_DR7);
4778        if (dr7 & DR7_GD) {
4779                /*
4780                 * As the vm-exit takes precedence over the debug trap, we
4781                 * need to emulate the latter, either for the host or the
4782                 * guest debugging itself.
4783                 */
4784                if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4785                        vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4786                        vcpu->run->debug.arch.dr7 = dr7;
4787                        vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4788                        vcpu->run->debug.arch.exception = DB_VECTOR;
4789                        vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4790                        return 0;
4791                } else {
4792                        vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4793                        vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4794                        kvm_queue_exception(vcpu, DB_VECTOR);
4795                        return 1;
4796                }
4797        }
4798
4799        if (vcpu->guest_debug == 0) {
4800                exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4801
4802                /*
4803                 * No more DR vmexits; force a reload of the debug registers
4804                 * and reenter on this instruction.  The next vmexit will
4805                 * retrieve the full state of the debug registers.
4806                 */
4807                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4808                return 1;
4809        }
4810
4811        reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4812        if (exit_qualification & TYPE_MOV_FROM_DR) {
4813                unsigned long val;
4814
4815                if (kvm_get_dr(vcpu, dr, &val))
4816                        return 1;
4817                kvm_register_write(vcpu, reg, val);
4818        } else
4819                if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4820                        return 1;
4821
4822        return kvm_skip_emulated_instruction(vcpu);
4823}
4824
4825static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4826{
4827        return vcpu->arch.dr6;
4828}
4829
4830static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4831{
4832}
4833
4834static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4835{
4836        get_debugreg(vcpu->arch.db[0], 0);
4837        get_debugreg(vcpu->arch.db[1], 1);
4838        get_debugreg(vcpu->arch.db[2], 2);
4839        get_debugreg(vcpu->arch.db[3], 3);
4840        get_debugreg(vcpu->arch.dr6, 6);
4841        vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4842
4843        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4844        exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4845}
4846
4847static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4848{
4849        vmcs_writel(GUEST_DR7, val);
4850}
4851
4852static int handle_cpuid(struct kvm_vcpu *vcpu)
4853{
4854        return kvm_emulate_cpuid(vcpu);
4855}
4856
4857static int handle_rdmsr(struct kvm_vcpu *vcpu)
4858{
4859        u32 ecx = kvm_rcx_read(vcpu);
4860        struct msr_data msr_info;
4861
4862        msr_info.index = ecx;
4863        msr_info.host_initiated = false;
4864        if (vmx_get_msr(vcpu, &msr_info)) {
4865                trace_kvm_msr_read_ex(ecx);
4866                kvm_inject_gp(vcpu, 0);
4867                return 1;
4868        }
4869
4870        trace_kvm_msr_read(ecx, msr_info.data);
4871
4872        kvm_rax_write(vcpu, msr_info.data & -1u);
4873        kvm_rdx_write(vcpu, (msr_info.data >> 32) & -1u);
4874        return kvm_skip_emulated_instruction(vcpu);
4875}
4876
4877static int handle_wrmsr(struct kvm_vcpu *vcpu)
4878{
4879        struct msr_data msr;
4880        u32 ecx = kvm_rcx_read(vcpu);
4881        u64 data = kvm_read_edx_eax(vcpu);
4882
4883        msr.data = data;
4884        msr.index = ecx;
4885        msr.host_initiated = false;
4886        if (kvm_set_msr(vcpu, &msr) != 0) {
4887                trace_kvm_msr_write_ex(ecx, data);
4888                kvm_inject_gp(vcpu, 0);
4889                return 1;
4890        }
4891
4892        trace_kvm_msr_write(ecx, data);
4893        return kvm_skip_emulated_instruction(vcpu);
4894}
4895
4896static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4897{
4898        kvm_apic_update_ppr(vcpu);
4899        return 1;
4900}
4901
4902static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4903{
4904        exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4905
4906        kvm_make_request(KVM_REQ_EVENT, vcpu);
4907
4908        ++vcpu->stat.irq_window_exits;
4909        return 1;
4910}
4911
4912static int handle_halt(struct kvm_vcpu *vcpu)
4913{
4914        return kvm_emulate_halt(vcpu);
4915}
4916
4917static int handle_vmcall(struct kvm_vcpu *vcpu)
4918{
4919        return kvm_emulate_hypercall(vcpu);
4920}
4921
4922static int handle_invd(struct kvm_vcpu *vcpu)
4923{
4924        return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4925}
4926
4927static int handle_invlpg(struct kvm_vcpu *vcpu)
4928{
4929        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4930
4931        kvm_mmu_invlpg(vcpu, exit_qualification);
4932        return kvm_skip_emulated_instruction(vcpu);
4933}
4934
4935static int handle_rdpmc(struct kvm_vcpu *vcpu)
4936{
4937        int err;
4938
4939        err = kvm_rdpmc(vcpu);
4940        return kvm_complete_insn_gp(vcpu, err);
4941}
4942
4943static int handle_wbinvd(struct kvm_vcpu *vcpu)
4944{
4945        return kvm_emulate_wbinvd(vcpu);
4946}
4947
4948static int handle_xsetbv(struct kvm_vcpu *vcpu)
4949{
4950        u64 new_bv = kvm_read_edx_eax(vcpu);
4951        u32 index = kvm_rcx_read(vcpu);
4952
4953        if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4954                return kvm_skip_emulated_instruction(vcpu);
4955        return 1;
4956}
4957
4958static int handle_xsaves(struct kvm_vcpu *vcpu)
4959{
4960        kvm_skip_emulated_instruction(vcpu);
4961        WARN(1, "this should never happen\n");
4962        return 1;
4963}
4964
4965static int handle_xrstors(struct kvm_vcpu *vcpu)
4966{
4967        kvm_skip_emulated_instruction(vcpu);
4968        WARN(1, "this should never happen\n");
4969        return 1;
4970}
4971
4972static int handle_apic_access(struct kvm_vcpu *vcpu)
4973{
4974        if (likely(fasteoi)) {
4975                unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4976                int access_type, offset;
4977
4978                access_type = exit_qualification & APIC_ACCESS_TYPE;
4979                offset = exit_qualification & APIC_ACCESS_OFFSET;
4980                /*
4981                 * Sane guest uses MOV to write EOI, with written value
4982                 * not cared. So make a short-circuit here by avoiding
4983                 * heavy instruction emulation.
4984                 */
4985                if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4986                    (offset == APIC_EOI)) {
4987                        kvm_lapic_set_eoi(vcpu);
4988                        return kvm_skip_emulated_instruction(vcpu);
4989                }
4990        }
4991        return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4992}
4993
4994static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
4995{
4996        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4997        int vector = exit_qualification & 0xff;
4998
4999        /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5000        kvm_apic_set_eoi_accelerated(vcpu, vector);
5001        return 1;
5002}
5003
5004static int handle_apic_write(struct kvm_vcpu *vcpu)
5005{
5006        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5007        u32 offset = exit_qualification & 0xfff;
5008
5009        /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5010        kvm_apic_write_nodecode(vcpu, offset);
5011        return 1;
5012}
5013
5014static int handle_task_switch(struct kvm_vcpu *vcpu)
5015{
5016        struct vcpu_vmx *vmx = to_vmx(vcpu);
5017        unsigned long exit_qualification;
5018        bool has_error_code = false;
5019        u32 error_code = 0;
5020        u16 tss_selector;
5021        int reason, type, idt_v, idt_index;
5022
5023        idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5024        idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5025        type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5026
5027        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5028
5029        reason = (u32)exit_qualification >> 30;
5030        if (reason == TASK_SWITCH_GATE && idt_v) {
5031                switch (type) {
5032                case INTR_TYPE_NMI_INTR:
5033                        vcpu->arch.nmi_injected = false;
5034                        vmx_set_nmi_mask(vcpu, true);
5035                        break;
5036                case INTR_TYPE_EXT_INTR:
5037                case INTR_TYPE_SOFT_INTR:
5038                        kvm_clear_interrupt_queue(vcpu);
5039                        break;
5040                case INTR_TYPE_HARD_EXCEPTION:
5041                        if (vmx->idt_vectoring_info &
5042                            VECTORING_INFO_DELIVER_CODE_MASK) {
5043                                has_error_code = true;
5044                                error_code =
5045                                        vmcs_read32(IDT_VECTORING_ERROR_CODE);
5046                        }
5047                        /* fall through */
5048                case INTR_TYPE_SOFT_EXCEPTION:
5049                        kvm_clear_exception_queue(vcpu);
5050                        break;
5051                default:
5052                        break;
5053                }
5054        }
5055        tss_selector = exit_qualification;
5056
5057        if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5058                       type != INTR_TYPE_EXT_INTR &&
5059                       type != INTR_TYPE_NMI_INTR))
5060                skip_emulated_instruction(vcpu);
5061
5062        if (kvm_task_switch(vcpu, tss_selector,
5063                            type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5064                            has_error_code, error_code) == EMULATE_FAIL) {
5065                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5066                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5067                vcpu->run->internal.ndata = 0;
5068                return 0;
5069        }
5070
5071        /*
5072         * TODO: What about debug traps on tss switch?
5073         *       Are we supposed to inject them and update dr6?
5074         */
5075
5076        return 1;
5077}
5078
5079static int handle_ept_violation(struct kvm_vcpu *vcpu)
5080{
5081        unsigned long exit_qualification;
5082        gpa_t gpa;
5083        u64 error_code;
5084
5085        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5086
5087        /*
5088         * EPT violation happened while executing iret from NMI,
5089         * "blocked by NMI" bit has to be set before next VM entry.
5090         * There are errata that may cause this bit to not be set:
5091         * AAK134, BY25.
5092         */
5093        if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5094                        enable_vnmi &&
5095                        (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5096                vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5097
5098        gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5099        trace_kvm_page_fault(gpa, exit_qualification);
5100
5101        /* Is it a read fault? */
5102        error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5103                     ? PFERR_USER_MASK : 0;
5104        /* Is it a write fault? */
5105        error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5106                      ? PFERR_WRITE_MASK : 0;
5107        /* Is it a fetch fault? */
5108        error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5109                      ? PFERR_FETCH_MASK : 0;
5110        /* ept page table entry is present? */
5111        error_code |= (exit_qualification &
5112                       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5113                        EPT_VIOLATION_EXECUTABLE))
5114                      ? PFERR_PRESENT_MASK : 0;
5115
5116        error_code |= (exit_qualification & 0x100) != 0 ?
5117               PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5118
5119        vcpu->arch.exit_qualification = exit_qualification;
5120        return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5121}
5122
5123static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5124{
5125        gpa_t gpa;
5126
5127        /*
5128         * A nested guest cannot optimize MMIO vmexits, because we have an
5129         * nGPA here instead of the required GPA.
5130         */
5131        gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5132        if (!is_guest_mode(vcpu) &&
5133            !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5134                trace_kvm_fast_mmio(gpa);
5135                /*
5136                 * Doing kvm_skip_emulated_instruction() depends on undefined
5137                 * behavior: Intel's manual doesn't mandate
5138                 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
5139                 * occurs and while on real hardware it was observed to be set,
5140                 * other hypervisors (namely Hyper-V) don't set it, we end up
5141                 * advancing IP with some random value. Disable fast mmio when
5142                 * running nested and keep it for real hardware in hope that
5143                 * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
5144                 */
5145                if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
5146                        return kvm_skip_emulated_instruction(vcpu);
5147                else
5148                        return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
5149                                                                EMULATE_DONE;
5150        }
5151
5152        return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5153}
5154
5155static int handle_nmi_window(struct kvm_vcpu *vcpu)
5156{
5157        WARN_ON_ONCE(!enable_vnmi);
5158        exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
5159        ++vcpu->stat.nmi_window_exits;
5160        kvm_make_request(KVM_REQ_EVENT, vcpu);
5161
5162        return 1;
5163}
5164
5165static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5166{
5167        struct vcpu_vmx *vmx = to_vmx(vcpu);
5168        enum emulation_result err = EMULATE_DONE;
5169        int ret = 1;
5170        bool intr_window_requested;
5171        unsigned count = 130;
5172
5173        /*
5174         * We should never reach the point where we are emulating L2
5175         * due to invalid guest state as that means we incorrectly
5176         * allowed a nested VMEntry with an invalid vmcs12.
5177         */
5178        WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5179
5180        intr_window_requested = exec_controls_get(vmx) &
5181                                CPU_BASED_VIRTUAL_INTR_PENDING;
5182
5183        while (vmx->emulation_required && count-- != 0) {
5184                if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5185                        return handle_interrupt_window(&vmx->vcpu);
5186
5187                if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5188                        return 1;
5189
5190                err = kvm_emulate_instruction(vcpu, 0);
5191
5192                if (err == EMULATE_USER_EXIT) {
5193                        ++vcpu->stat.mmio_exits;
5194                        ret = 0;
5195                        goto out;
5196                }
5197
5198                if (err != EMULATE_DONE)
5199                        goto emulation_error;
5200
5201                if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5202                    vcpu->arch.exception.pending)
5203                        goto emulation_error;
5204
5205                if (vcpu->arch.halt_request) {
5206                        vcpu->arch.halt_request = 0;
5207                        ret = kvm_vcpu_halt(vcpu);
5208                        goto out;
5209                }
5210
5211                if (signal_pending(current))
5212                        goto out;
5213                if (need_resched())
5214                        schedule();
5215        }
5216
5217out:
5218        return ret;
5219
5220emulation_error:
5221        vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5222        vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5223        vcpu->run->internal.ndata = 0;
5224        return 0;
5225}
5226
5227static void grow_ple_window(struct kvm_vcpu *vcpu)
5228{
5229        struct vcpu_vmx *vmx = to_vmx(vcpu);
5230        int old = vmx->ple_window;
5231
5232        vmx->ple_window = __grow_ple_window(old, ple_window,
5233                                            ple_window_grow,
5234                                            ple_window_max);
5235
5236        if (vmx->ple_window != old)
5237                vmx->ple_window_dirty = true;
5238
5239        trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5240}
5241
5242static void shrink_ple_window(struct kvm_vcpu *vcpu)
5243{
5244        struct vcpu_vmx *vmx = to_vmx(vcpu);
5245        int old = vmx->ple_window;
5246
5247        vmx->ple_window = __shrink_ple_window(old, ple_window,
5248                                              ple_window_shrink,
5249                                              ple_window);
5250
5251        if (vmx->ple_window != old)
5252                vmx->ple_window_dirty = true;
5253
5254        trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5255}
5256
5257/*
5258 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5259 */
5260static void wakeup_handler(void)
5261{
5262        struct kvm_vcpu *vcpu;
5263        int cpu = smp_processor_id();
5264
5265        spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5266        list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5267                        blocked_vcpu_list) {
5268                struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5269
5270                if (pi_test_on(pi_desc) == 1)
5271                        kvm_vcpu_kick(vcpu);
5272        }
5273        spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5274}
5275
5276static void vmx_enable_tdp(void)
5277{
5278        kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5279                enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5280                enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5281                0ull, VMX_EPT_EXECUTABLE_MASK,
5282                cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5283                VMX_EPT_RWX_MASK, 0ull);
5284
5285        ept_set_mmio_spte_mask();
5286        kvm_enable_tdp();
5287}
5288
5289/*
5290 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5291 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5292 */
5293static int handle_pause(struct kvm_vcpu *vcpu)
5294{
5295        if (!kvm_pause_in_guest(vcpu->kvm))
5296                grow_ple_window(vcpu);
5297
5298        /*
5299         * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5300         * VM-execution control is ignored if CPL > 0. OTOH, KVM
5301         * never set PAUSE_EXITING and just set PLE if supported,
5302         * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5303         */
5304        kvm_vcpu_on_spin(vcpu, true);
5305        return kvm_skip_emulated_instruction(vcpu);
5306}
5307
5308static int handle_nop(struct kvm_vcpu *vcpu)
5309{
5310        return kvm_skip_emulated_instruction(vcpu);
5311}
5312
5313static int handle_mwait(struct kvm_vcpu *vcpu)
5314{
5315        printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5316        return handle_nop(vcpu);
5317}
5318
5319static int handle_invalid_op(struct kvm_vcpu *vcpu)
5320{
5321        kvm_queue_exception(vcpu, UD_VECTOR);
5322        return 1;
5323}
5324
5325static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5326{
5327        return 1;
5328}
5329
5330static int handle_monitor(struct kvm_vcpu *vcpu)
5331{
5332        printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5333        return handle_nop(vcpu);
5334}
5335
5336static int handle_invpcid(struct kvm_vcpu *vcpu)
5337{
5338        u32 vmx_instruction_info;
5339        unsigned long type;
5340        bool pcid_enabled;
5341        gva_t gva;
5342        struct x86_exception e;
5343        unsigned i;
5344        unsigned long roots_to_free = 0;
5345        struct {
5346                u64 pcid;
5347                u64 gla;
5348        } operand;
5349
5350        if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5351                kvm_queue_exception(vcpu, UD_VECTOR);
5352                return 1;
5353        }
5354
5355        vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5356        type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5357
5358        if (type > 3) {
5359                kvm_inject_gp(vcpu, 0);
5360                return 1;
5361        }
5362
5363        /* According to the Intel instruction reference, the memory operand
5364         * is read even if it isn't needed (e.g., for type==all)
5365         */
5366        if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5367                                vmx_instruction_info, false,
5368                                sizeof(operand), &gva))
5369                return 1;
5370
5371        if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5372                kvm_inject_page_fault(vcpu, &e);
5373                return 1;
5374        }
5375
5376        if (operand.pcid >> 12 != 0) {
5377                kvm_inject_gp(vcpu, 0);
5378                return 1;
5379        }
5380
5381        pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5382
5383        switch (type) {
5384        case INVPCID_TYPE_INDIV_ADDR:
5385                if ((!pcid_enabled && (operand.pcid != 0)) ||
5386                    is_noncanonical_address(operand.gla, vcpu)) {
5387                        kvm_inject_gp(vcpu, 0);
5388                        return 1;
5389                }
5390                kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5391                return kvm_skip_emulated_instruction(vcpu);
5392
5393        case INVPCID_TYPE_SINGLE_CTXT:
5394                if (!pcid_enabled && (operand.pcid != 0)) {
5395                        kvm_inject_gp(vcpu, 0);
5396                        return 1;
5397                }
5398
5399                if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5400                        kvm_mmu_sync_roots(vcpu);
5401                        kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5402                }
5403
5404                for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5405                        if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5406                            == operand.pcid)
5407                                roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5408
5409                kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5410                /*
5411                 * If neither the current cr3 nor any of the prev_roots use the
5412                 * given PCID, then nothing needs to be done here because a
5413                 * resync will happen anyway before switching to any other CR3.
5414                 */
5415
5416                return kvm_skip_emulated_instruction(vcpu);
5417
5418        case INVPCID_TYPE_ALL_NON_GLOBAL:
5419                /*
5420                 * Currently, KVM doesn't mark global entries in the shadow
5421                 * page tables, so a non-global flush just degenerates to a
5422                 * global flush. If needed, we could optimize this later by
5423                 * keeping track of global entries in shadow page tables.
5424                 */
5425
5426                /* fall-through */
5427        case INVPCID_TYPE_ALL_INCL_GLOBAL:
5428                kvm_mmu_unload(vcpu);
5429                return kvm_skip_emulated_instruction(vcpu);
5430
5431        default:
5432                BUG(); /* We have already checked above that type <= 3 */
5433        }
5434}
5435
5436static int handle_pml_full(struct kvm_vcpu *vcpu)
5437{
5438        unsigned long exit_qualification;
5439
5440        trace_kvm_pml_full(vcpu->vcpu_id);
5441
5442        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5443
5444        /*
5445         * PML buffer FULL happened while executing iret from NMI,
5446         * "blocked by NMI" bit has to be set before next VM entry.
5447         */
5448        if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5449                        enable_vnmi &&
5450                        (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5451                vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5452                                GUEST_INTR_STATE_NMI);
5453
5454        /*
5455         * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5456         * here.., and there's no userspace involvement needed for PML.
5457         */
5458        return 1;
5459}
5460
5461static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5462{
5463        struct vcpu_vmx *vmx = to_vmx(vcpu);
5464
5465        if (!vmx->req_immediate_exit &&
5466            !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5467                kvm_lapic_expired_hv_timer(vcpu);
5468
5469        return 1;
5470}
5471
5472/*
5473 * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5474 * are overwritten by nested_vmx_setup() when nested=1.
5475 */
5476static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5477{
5478        kvm_queue_exception(vcpu, UD_VECTOR);
5479        return 1;
5480}
5481
5482static int handle_encls(struct kvm_vcpu *vcpu)
5483{
5484        /*
5485         * SGX virtualization is not yet supported.  There is no software
5486         * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5487         * to prevent the guest from executing ENCLS.
5488         */
5489        kvm_queue_exception(vcpu, UD_VECTOR);
5490        return 1;
5491}
5492
5493/*
5494 * The exit handlers return 1 if the exit was handled fully and guest execution
5495 * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5496 * to be done to userspace and return 0.
5497 */
5498static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5499        [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5500        [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5501        [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5502        [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5503        [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5504        [EXIT_REASON_CR_ACCESS]               = handle_cr,
5505        [EXIT_REASON_DR_ACCESS]               = handle_dr,
5506        [EXIT_REASON_CPUID]                   = handle_cpuid,
5507        [EXIT_REASON_MSR_READ]                = handle_rdmsr,
5508        [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
5509        [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5510        [EXIT_REASON_HLT]                     = handle_halt,
5511        [EXIT_REASON_INVD]                    = handle_invd,
5512        [EXIT_REASON_INVLPG]                  = handle_invlpg,
5513        [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5514        [EXIT_REASON_VMCALL]                  = handle_vmcall,
5515        [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5516        [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5517        [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5518        [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5519        [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5520        [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5521        [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5522        [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5523        [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5524        [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5525        [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5526        [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5527        [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5528        [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5529        [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5530        [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5531        [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5532        [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5533        [EXIT_REASON_LDTR_TR]                 = handle_desc,
5534        [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5535        [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5536        [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5537        [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
5538        [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5539        [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5540        [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5541        [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5542        [EXIT_REASON_RDRAND]                  = handle_invalid_op,
5543        [EXIT_REASON_RDSEED]                  = handle_invalid_op,
5544        [EXIT_REASON_XSAVES]                  = handle_xsaves,
5545        [EXIT_REASON_XRSTORS]                 = handle_xrstors,
5546        [EXIT_REASON_PML_FULL]                = handle_pml_full,
5547        [EXIT_REASON_INVPCID]                 = handle_invpcid,
5548        [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5549        [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5550        [EXIT_REASON_ENCLS]                   = handle_encls,
5551};
5552
5553static const int kvm_vmx_max_exit_handlers =
5554        ARRAY_SIZE(kvm_vmx_exit_handlers);
5555
5556static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5557{
5558        *info1 = vmcs_readl(EXIT_QUALIFICATION);
5559        *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5560}
5561
5562static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5563{
5564        if (vmx->pml_pg) {
5565                __free_page(vmx->pml_pg);
5566                vmx->pml_pg = NULL;
5567        }
5568}
5569
5570static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5571{
5572        struct vcpu_vmx *vmx = to_vmx(vcpu);
5573        u64 *pml_buf;
5574        u16 pml_idx;
5575
5576        pml_idx = vmcs_read16(GUEST_PML_INDEX);
5577
5578        /* Do nothing if PML buffer is empty */
5579        if (pml_idx == (PML_ENTITY_NUM - 1))
5580                return;
5581
5582        /* PML index always points to next available PML buffer entity */
5583        if (pml_idx >= PML_ENTITY_NUM)
5584                pml_idx = 0;
5585        else
5586                pml_idx++;
5587
5588        pml_buf = page_address(vmx->pml_pg);
5589        for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5590                u64 gpa;
5591
5592                gpa = pml_buf[pml_idx];
5593                WARN_ON(gpa & (PAGE_SIZE - 1));
5594                kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5595        }
5596
5597        /* reset PML index */
5598        vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5599}
5600
5601/*
5602 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5603 * Called before reporting dirty_bitmap to userspace.
5604 */
5605static void kvm_flush_pml_buffers(struct kvm *kvm)
5606{
5607        int i;
5608        struct kvm_vcpu *vcpu;
5609        /*
5610         * We only need to kick vcpu out of guest mode here, as PML buffer
5611         * is flushed at beginning of all VMEXITs, and it's obvious that only
5612         * vcpus running in guest are possible to have unflushed GPAs in PML
5613         * buffer.
5614         */
5615        kvm_for_each_vcpu(i, vcpu, kvm)
5616                kvm_vcpu_kick(vcpu);
5617}
5618
5619static void vmx_dump_sel(char *name, uint32_t sel)
5620{
5621        pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5622               name, vmcs_read16(sel),
5623               vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5624               vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5625               vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5626}
5627
5628static void vmx_dump_dtsel(char *name, uint32_t limit)
5629{
5630        pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5631               name, vmcs_read32(limit),
5632               vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5633}
5634
5635void dump_vmcs(void)
5636{
5637        u32 vmentry_ctl, vmexit_ctl;
5638        u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5639        unsigned long cr4;
5640        u64 efer;
5641        int i, n;
5642
5643        if (!dump_invalid_vmcs) {
5644                pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5645                return;
5646        }
5647
5648        vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5649        vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5650        cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5651        pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5652        cr4 = vmcs_readl(GUEST_CR4);
5653        efer = vmcs_read64(GUEST_IA32_EFER);
5654        secondary_exec_control = 0;
5655        if (cpu_has_secondary_exec_ctrls())
5656                secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5657
5658        pr_err("*** Guest State ***\n");
5659        pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5660               vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5661               vmcs_readl(CR0_GUEST_HOST_MASK));
5662        pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5663               cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5664        pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5665        if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5666            (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5667        {
5668                pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5669                       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5670                pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5671                       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5672        }
5673        pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5674               vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5675        pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5676               vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5677        pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5678               vmcs_readl(GUEST_SYSENTER_ESP),
5679               vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5680        vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5681        vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5682        vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5683        vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5684        vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5685        vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5686        vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5687        vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5688        vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5689        vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5690        if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5691            (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5692                pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5693                       efer, vmcs_read64(GUEST_IA32_PAT));
5694        pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5695               vmcs_read64(GUEST_IA32_DEBUGCTL),
5696               vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5697        if (cpu_has_load_perf_global_ctrl() &&
5698            vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5699                pr_err("PerfGlobCtl = 0x%016llx\n",
5700                       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5701        if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5702                pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5703        pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5704               vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5705               vmcs_read32(GUEST_ACTIVITY_STATE));
5706        if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5707                pr_err("InterruptStatus = %04x\n",
5708                       vmcs_read16(GUEST_INTR_STATUS));
5709
5710        pr_err("*** Host State ***\n");
5711        pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5712               vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5713        pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5714               vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5715               vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5716               vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5717               vmcs_read16(HOST_TR_SELECTOR));
5718        pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5719               vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5720               vmcs_readl(HOST_TR_BASE));
5721        pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5722               vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5723        pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5724               vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5725               vmcs_readl(HOST_CR4));
5726        pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5727               vmcs_readl(HOST_IA32_SYSENTER_ESP),
5728               vmcs_read32(HOST_IA32_SYSENTER_CS),
5729               vmcs_readl(HOST_IA32_SYSENTER_EIP));
5730        if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5731                pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5732                       vmcs_read64(HOST_IA32_EFER),
5733                       vmcs_read64(HOST_IA32_PAT));
5734        if (cpu_has_load_perf_global_ctrl() &&
5735            vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5736                pr_err("PerfGlobCtl = 0x%016llx\n",
5737                       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5738
5739        pr_err("*** Control State ***\n");
5740        pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5741               pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5742        pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5743        pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5744               vmcs_read32(EXCEPTION_BITMAP),
5745               vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5746               vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5747        pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5748               vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5749               vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5750               vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5751        pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5752               vmcs_read32(VM_EXIT_INTR_INFO),
5753               vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5754               vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5755        pr_err("        reason=%08x qualification=%016lx\n",
5756               vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5757        pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5758               vmcs_read32(IDT_VECTORING_INFO_FIELD),
5759               vmcs_read32(IDT_VECTORING_ERROR_CODE));
5760        pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5761        if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5762                pr_err("TSC Multiplier = 0x%016llx\n",
5763                       vmcs_read64(TSC_MULTIPLIER));
5764        if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5765                if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5766                        u16 status = vmcs_read16(GUEST_INTR_STATUS);
5767                        pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5768                }
5769                pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5770                if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5771                        pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5772                pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5773        }
5774        if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5775                pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5776        if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5777                pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5778        n = vmcs_read32(CR3_TARGET_COUNT);
5779        for (i = 0; i + 1 < n; i += 4)
5780                pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5781                       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5782                       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5783        if (i < n)
5784                pr_err("CR3 target%u=%016lx\n",
5785                       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5786        if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5787                pr_err("PLE Gap=%08x Window=%08x\n",
5788                       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5789        if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5790                pr_err("Virtual processor ID = 0x%04x\n",
5791                       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5792}
5793
5794/*
5795 * The guest has exited.  See if we can fix it or if we need userspace
5796 * assistance.
5797 */
5798static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5799{
5800        struct vcpu_vmx *vmx = to_vmx(vcpu);
5801        u32 exit_reason = vmx->exit_reason;
5802        u32 vectoring_info = vmx->idt_vectoring_info;
5803
5804        trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5805
5806        /*
5807         * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5808         * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5809         * querying dirty_bitmap, we only need to kick all vcpus out of guest
5810         * mode as if vcpus is in root mode, the PML buffer must has been
5811         * flushed already.
5812         */
5813        if (enable_pml)
5814                vmx_flush_pml_buffer(vcpu);
5815
5816        /* If guest state is invalid, start emulating */
5817        if (vmx->emulation_required)
5818                return handle_invalid_guest_state(vcpu);
5819
5820        if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5821                return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5822
5823        if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5824                dump_vmcs();
5825                vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5826                vcpu->run->fail_entry.hardware_entry_failure_reason
5827                        = exit_reason;
5828                return 0;
5829        }
5830
5831        if (unlikely(vmx->fail)) {
5832                dump_vmcs();
5833                vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5834                vcpu->run->fail_entry.hardware_entry_failure_reason
5835                        = vmcs_read32(VM_INSTRUCTION_ERROR);
5836                return 0;
5837        }
5838
5839        /*
5840         * Note:
5841         * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5842         * delivery event since it indicates guest is accessing MMIO.
5843         * The vm-exit can be triggered again after return to guest that
5844         * will cause infinite loop.
5845         */
5846        if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5847                        (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5848                        exit_reason != EXIT_REASON_EPT_VIOLATION &&
5849                        exit_reason != EXIT_REASON_PML_FULL &&
5850                        exit_reason != EXIT_REASON_TASK_SWITCH)) {
5851                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5852                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5853                vcpu->run->internal.ndata = 3;
5854                vcpu->run->internal.data[0] = vectoring_info;
5855                vcpu->run->internal.data[1] = exit_reason;
5856                vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5857                if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5858                        vcpu->run->internal.ndata++;
5859                        vcpu->run->internal.data[3] =
5860                                vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5861                }
5862                return 0;
5863        }
5864
5865        if (unlikely(!enable_vnmi &&
5866                     vmx->loaded_vmcs->soft_vnmi_blocked)) {
5867                if (vmx_interrupt_allowed(vcpu)) {
5868                        vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5869                } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5870                           vcpu->arch.nmi_pending) {
5871                        /*
5872                         * This CPU don't support us in finding the end of an
5873                         * NMI-blocked window if the guest runs with IRQs
5874                         * disabled. So we pull the trigger after 1 s of
5875                         * futile waiting, but inform the user about this.
5876                         */
5877                        printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5878                               "state on VCPU %d after 1 s timeout\n",
5879                               __func__, vcpu->vcpu_id);
5880                        vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5881                }
5882        }
5883
5884        if (exit_reason < kvm_vmx_max_exit_handlers
5885            && kvm_vmx_exit_handlers[exit_reason])
5886                return kvm_vmx_exit_handlers[exit_reason](vcpu);
5887        else {
5888                vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5889                                exit_reason);
5890                kvm_queue_exception(vcpu, UD_VECTOR);
5891                return 1;
5892        }
5893}
5894
5895/*
5896 * Software based L1D cache flush which is used when microcode providing
5897 * the cache control MSR is not loaded.
5898 *
5899 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5900 * flush it is required to read in 64 KiB because the replacement algorithm
5901 * is not exactly LRU. This could be sized at runtime via topology
5902 * information but as all relevant affected CPUs have 32KiB L1D cache size
5903 * there is no point in doing so.
5904 */
5905static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5906{
5907        int size = PAGE_SIZE << L1D_CACHE_ORDER;
5908
5909        /*
5910         * This code is only executed when the the flush mode is 'cond' or
5911         * 'always'
5912         */
5913        if (static_branch_likely(&vmx_l1d_flush_cond)) {
5914                bool flush_l1d;
5915
5916                /*
5917                 * Clear the per-vcpu flush bit, it gets set again
5918                 * either from vcpu_run() or from one of the unsafe
5919                 * VMEXIT handlers.
5920                 */
5921                flush_l1d = vcpu->arch.l1tf_flush_l1d;
5922                vcpu->arch.l1tf_flush_l1d = false;
5923
5924                /*
5925                 * Clear the per-cpu flush bit, it gets set again from
5926                 * the interrupt handlers.
5927                 */
5928                flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5929                kvm_clear_cpu_l1tf_flush_l1d();
5930
5931                if (!flush_l1d)
5932                        return;
5933        }
5934
5935        vcpu->stat.l1d_flush++;
5936
5937        if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
5938                wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
5939                return;
5940        }
5941
5942        asm volatile(
5943                /* First ensure the pages are in the TLB */
5944                "xorl   %%eax, %%eax\n"
5945                ".Lpopulate_tlb:\n\t"
5946                "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5947                "addl   $4096, %%eax\n\t"
5948                "cmpl   %%eax, %[size]\n\t"
5949                "jne    .Lpopulate_tlb\n\t"
5950                "xorl   %%eax, %%eax\n\t"
5951                "cpuid\n\t"
5952                /* Now fill the cache */
5953                "xorl   %%eax, %%eax\n"
5954                ".Lfill_cache:\n"
5955                "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5956                "addl   $64, %%eax\n\t"
5957                "cmpl   %%eax, %[size]\n\t"
5958                "jne    .Lfill_cache\n\t"
5959                "lfence\n"
5960                :: [flush_pages] "r" (vmx_l1d_flush_pages),
5961                    [size] "r" (size)
5962                : "eax", "ebx", "ecx", "edx");
5963}
5964
5965static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5966{
5967        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5968
5969        if (is_guest_mode(vcpu) &&
5970                nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
5971                return;
5972
5973        if (irr == -1 || tpr < irr) {
5974                vmcs_write32(TPR_THRESHOLD, 0);
5975                return;
5976        }
5977
5978        vmcs_write32(TPR_THRESHOLD, irr);
5979}
5980
5981void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5982{
5983        struct vcpu_vmx *vmx = to_vmx(vcpu);
5984        u32 sec_exec_control;
5985
5986        if (!lapic_in_kernel(vcpu))
5987                return;
5988
5989        if (!flexpriority_enabled &&
5990            !cpu_has_vmx_virtualize_x2apic_mode())
5991                return;
5992
5993        /* Postpone execution until vmcs01 is the current VMCS. */
5994        if (is_guest_mode(vcpu)) {
5995                vmx->nested.change_vmcs01_virtual_apic_mode = true;
5996                return;
5997        }
5998
5999        sec_exec_control = secondary_exec_controls_get(vmx);
6000        sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6001                              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6002
6003        switch (kvm_get_apic_mode(vcpu)) {
6004        case LAPIC_MODE_INVALID:
6005                WARN_ONCE(true, "Invalid local APIC state");
6006        case LAPIC_MODE_DISABLED:
6007                break;
6008        case LAPIC_MODE_XAPIC:
6009                if (flexpriority_enabled) {
6010                        sec_exec_control |=
6011                                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6012                        vmx_flush_tlb(vcpu, true);
6013                }
6014                break;
6015        case LAPIC_MODE_X2APIC:
6016                if (cpu_has_vmx_virtualize_x2apic_mode())
6017                        sec_exec_control |=
6018                                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6019                break;
6020        }
6021        secondary_exec_controls_set(vmx, sec_exec_control);
6022
6023        vmx_update_msr_bitmap(vcpu);
6024}
6025
6026static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6027{
6028        if (!is_guest_mode(vcpu)) {
6029                vmcs_write64(APIC_ACCESS_ADDR, hpa);
6030                vmx_flush_tlb(vcpu, true);
6031        }
6032}
6033
6034static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6035{
6036        u16 status;
6037        u8 old;
6038
6039        if (max_isr == -1)
6040                max_isr = 0;
6041
6042        status = vmcs_read16(GUEST_INTR_STATUS);
6043        old = status >> 8;
6044        if (max_isr != old) {
6045                status &= 0xff;
6046                status |= max_isr << 8;
6047                vmcs_write16(GUEST_INTR_STATUS, status);
6048        }
6049}
6050
6051static void vmx_set_rvi(int vector)
6052{
6053        u16 status;
6054        u8 old;
6055
6056        if (vector == -1)
6057                vector = 0;
6058
6059        status = vmcs_read16(GUEST_INTR_STATUS);
6060        old = (u8)status & 0xff;
6061        if ((u8)vector != old) {
6062                status &= ~0xff;
6063                status |= (u8)vector;
6064                vmcs_write16(GUEST_INTR_STATUS, status);
6065        }
6066}
6067
6068static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6069{
6070        /*
6071         * When running L2, updating RVI is only relevant when
6072         * vmcs12 virtual-interrupt-delivery enabled.
6073         * However, it can be enabled only when L1 also
6074         * intercepts external-interrupts and in that case
6075         * we should not update vmcs02 RVI but instead intercept
6076         * interrupt. Therefore, do nothing when running L2.
6077         */
6078        if (!is_guest_mode(vcpu))
6079                vmx_set_rvi(max_irr);
6080}
6081
6082static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6083{
6084        struct vcpu_vmx *vmx = to_vmx(vcpu);
6085        int max_irr;
6086        bool max_irr_updated;
6087
6088        WARN_ON(!vcpu->arch.apicv_active);
6089        if (pi_test_on(&vmx->pi_desc)) {
6090                pi_clear_on(&vmx->pi_desc);
6091                /*
6092                 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
6093                 * But on x86 this is just a compiler barrier anyway.
6094                 */
6095                smp_mb__after_atomic();
6096                max_irr_updated =
6097                        kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6098
6099                /*
6100                 * If we are running L2 and L1 has a new pending interrupt
6101                 * which can be injected, we should re-evaluate
6102                 * what should be done with this new L1 interrupt.
6103                 * If L1 intercepts external-interrupts, we should
6104                 * exit from L2 to L1. Otherwise, interrupt should be
6105                 * delivered directly to L2.
6106                 */
6107                if (is_guest_mode(vcpu) && max_irr_updated) {
6108                        if (nested_exit_on_intr(vcpu))
6109                                kvm_vcpu_exiting_guest_mode(vcpu);
6110                        else
6111                                kvm_make_request(KVM_REQ_EVENT, vcpu);
6112                }
6113        } else {
6114                max_irr = kvm_lapic_find_highest_irr(vcpu);
6115        }
6116        vmx_hwapic_irr_update(vcpu, max_irr);
6117        return max_irr;
6118}
6119
6120static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6121{
6122        return pi_test_on(vcpu_to_pi_desc(vcpu));
6123}
6124
6125static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6126{
6127        if (!kvm_vcpu_apicv_active(vcpu))
6128                return;
6129
6130        vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6131        vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6132        vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6133        vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6134}
6135
6136static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6137{
6138        struct vcpu_vmx *vmx = to_vmx(vcpu);
6139
6140        pi_clear_on(&vmx->pi_desc);
6141        memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6142}
6143
6144static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6145{
6146        vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6147
6148        /* if exit due to PF check for async PF */
6149        if (is_page_fault(vmx->exit_intr_info))
6150                vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6151
6152        /* Handle machine checks before interrupts are enabled */
6153        if (is_machine_check(vmx->exit_intr_info))
6154                kvm_machine_check();
6155
6156        /* We need to handle NMIs before interrupts are enabled */
6157        if (is_nmi(vmx->exit_intr_info)) {
6158                kvm_before_interrupt(&vmx->vcpu);
6159                asm("int $2");
6160                kvm_after_interrupt(&vmx->vcpu);
6161        }
6162}
6163
6164static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6165{
6166        unsigned int vector;
6167        unsigned long entry;
6168#ifdef CONFIG_X86_64
6169        unsigned long tmp;
6170#endif
6171        gate_desc *desc;
6172        u32 intr_info;
6173
6174        intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6175        if (WARN_ONCE(!is_external_intr(intr_info),
6176            "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6177                return;
6178
6179        vector = intr_info & INTR_INFO_VECTOR_MASK;
6180        desc = (gate_desc *)host_idt_base + vector;
6181        entry = gate_offset(desc);
6182
6183        kvm_before_interrupt(vcpu);
6184
6185        asm volatile(
6186#ifdef CONFIG_X86_64
6187                "mov %%" _ASM_SP ", %[sp]\n\t"
6188                "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6189                "push $%c[ss]\n\t"
6190                "push %[sp]\n\t"
6191#endif
6192                "pushf\n\t"
6193                __ASM_SIZE(push) " $%c[cs]\n\t"
6194                CALL_NOSPEC
6195                :
6196#ifdef CONFIG_X86_64
6197                [sp]"=&r"(tmp),
6198#endif
6199                ASM_CALL_CONSTRAINT
6200                :
6201                THUNK_TARGET(entry),
6202                [ss]"i"(__KERNEL_DS),
6203                [cs]"i"(__KERNEL_CS)
6204        );
6205
6206        kvm_after_interrupt(vcpu);
6207}
6208STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6209
6210static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6211{
6212        struct vcpu_vmx *vmx = to_vmx(vcpu);
6213
6214        if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6215                handle_external_interrupt_irqoff(vcpu);
6216        else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6217                handle_exception_nmi_irqoff(vmx);
6218}
6219
6220static bool vmx_has_emulated_msr(int index)
6221{
6222        switch (index) {
6223        case MSR_IA32_SMBASE:
6224                /*
6225                 * We cannot do SMM unless we can run the guest in big
6226                 * real mode.
6227                 */
6228                return enable_unrestricted_guest || emulate_invalid_guest_state;
6229        case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6230                return nested;
6231        case MSR_AMD64_VIRT_SPEC_CTRL:
6232                /* This is AMD only.  */
6233                return false;
6234        default:
6235                return true;
6236        }
6237}
6238
6239static bool vmx_pt_supported(void)
6240{
6241        return pt_mode == PT_MODE_HOST_GUEST;
6242}
6243
6244static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6245{
6246        u32 exit_intr_info;
6247        bool unblock_nmi;
6248        u8 vector;
6249        bool idtv_info_valid;
6250
6251        idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6252
6253        if (enable_vnmi) {
6254                if (vmx->loaded_vmcs->nmi_known_unmasked)
6255                        return;
6256                /*
6257                 * Can't use vmx->exit_intr_info since we're not sure what
6258                 * the exit reason is.
6259                 */
6260                exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6261                unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6262                vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6263                /*
6264                 * SDM 3: 27.7.1.2 (September 2008)
6265                 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6266                 * a guest IRET fault.
6267                 * SDM 3: 23.2.2 (September 2008)
6268                 * Bit 12 is undefined in any of the following cases:
6269                 *  If the VM exit sets the valid bit in the IDT-vectoring
6270                 *   information field.
6271                 *  If the VM exit is due to a double fault.
6272                 */
6273                if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6274                    vector != DF_VECTOR && !idtv_info_valid)
6275                        vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6276                                      GUEST_INTR_STATE_NMI);
6277                else
6278                        vmx->loaded_vmcs->nmi_known_unmasked =
6279                                !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6280                                  & GUEST_INTR_STATE_NMI);
6281        } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6282                vmx->loaded_vmcs->vnmi_blocked_time +=
6283                        ktime_to_ns(ktime_sub(ktime_get(),
6284                                              vmx->loaded_vmcs->entry_time));
6285}
6286
6287static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6288                                      u32 idt_vectoring_info,
6289                                      int instr_len_field,
6290                                      int error_code_field)
6291{
6292        u8 vector;
6293        int type;
6294        bool idtv_info_valid;
6295
6296        idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6297
6298        vcpu->arch.nmi_injected = false;
6299        kvm_clear_exception_queue(vcpu);
6300        kvm_clear_interrupt_queue(vcpu);
6301
6302        if (!idtv_info_valid)
6303                return;
6304
6305        kvm_make_request(KVM_REQ_EVENT, vcpu);
6306
6307        vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6308        type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6309
6310        switch (type) {
6311        case INTR_TYPE_NMI_INTR:
6312                vcpu->arch.nmi_injected = true;
6313                /*
6314                 * SDM 3: 27.7.1.2 (September 2008)
6315                 * Clear bit "block by NMI" before VM entry if a NMI
6316                 * delivery faulted.
6317                 */
6318                vmx_set_nmi_mask(vcpu, false);
6319                break;
6320        case INTR_TYPE_SOFT_EXCEPTION:
6321                vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6322                /* fall through */
6323        case INTR_TYPE_HARD_EXCEPTION:
6324                if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6325                        u32 err = vmcs_read32(error_code_field);
6326                        kvm_requeue_exception_e(vcpu, vector, err);
6327                } else
6328                        kvm_requeue_exception(vcpu, vector);
6329                break;
6330        case INTR_TYPE_SOFT_INTR:
6331                vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6332                /* fall through */
6333        case INTR_TYPE_EXT_INTR:
6334                kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6335                break;
6336        default:
6337                break;
6338        }
6339}
6340
6341static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6342{
6343        __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6344                                  VM_EXIT_INSTRUCTION_LEN,
6345                                  IDT_VECTORING_ERROR_CODE);
6346}
6347
6348static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6349{
6350        __vmx_complete_interrupts(vcpu,
6351                                  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6352                                  VM_ENTRY_INSTRUCTION_LEN,
6353                                  VM_ENTRY_EXCEPTION_ERROR_CODE);
6354
6355        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6356}
6357
6358static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6359{
6360        int i, nr_msrs;
6361        struct perf_guest_switch_msr *msrs;
6362
6363        msrs = perf_guest_get_msrs(&nr_msrs);
6364
6365        if (!msrs)
6366                return;
6367
6368        for (i = 0; i < nr_msrs; i++)
6369                if (msrs[i].host == msrs[i].guest)
6370                        clear_atomic_switch_msr(vmx, msrs[i].msr);
6371                else
6372                        add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6373                                        msrs[i].host, false);
6374}
6375
6376static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6377{
6378        struct vcpu_vmx *vmx = to_vmx(vcpu);
6379        u64 tscl;
6380        u32 delta_tsc;
6381
6382        if (vmx->req_immediate_exit) {
6383                vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6384                vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6385        } else if (vmx->hv_deadline_tsc != -1) {
6386                tscl = rdtsc();
6387                if (vmx->hv_deadline_tsc > tscl)
6388                        /* set_hv_timer ensures the delta fits in 32-bits */
6389                        delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6390                                cpu_preemption_timer_multi);
6391                else
6392                        delta_tsc = 0;
6393
6394                vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6395                vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6396        } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6397                vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6398                vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6399        }
6400}
6401
6402void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6403{
6404        if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6405                vmx->loaded_vmcs->host_state.rsp = host_rsp;
6406                vmcs_writel(HOST_RSP, host_rsp);
6407        }
6408}
6409
6410bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6411
6412static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6413{
6414        struct vcpu_vmx *vmx = to_vmx(vcpu);
6415        unsigned long cr3, cr4;
6416
6417        /* Record the guest's net vcpu time for enforced NMI injections. */
6418        if (unlikely(!enable_vnmi &&
6419                     vmx->loaded_vmcs->soft_vnmi_blocked))
6420                vmx->loaded_vmcs->entry_time = ktime_get();
6421
6422        /* Don't enter VMX if guest state is invalid, let the exit handler
6423           start emulation until we arrive back to a valid state */
6424        if (vmx->emulation_required)
6425                return;
6426
6427        if (vmx->ple_window_dirty) {
6428                vmx->ple_window_dirty = false;
6429                vmcs_write32(PLE_WINDOW, vmx->ple_window);
6430        }
6431
6432        if (vmx->nested.need_vmcs12_to_shadow_sync)
6433                nested_sync_vmcs12_to_shadow(vcpu);
6434
6435        if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6436                vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6437        if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6438                vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6439
6440        cr3 = __get_current_cr3_fast();
6441        if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6442                vmcs_writel(HOST_CR3, cr3);
6443                vmx->loaded_vmcs->host_state.cr3 = cr3;
6444        }
6445
6446        cr4 = cr4_read_shadow();
6447        if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6448                vmcs_writel(HOST_CR4, cr4);
6449                vmx->loaded_vmcs->host_state.cr4 = cr4;
6450        }
6451
6452        /* When single-stepping over STI and MOV SS, we must clear the
6453         * corresponding interruptibility bits in the guest state. Otherwise
6454         * vmentry fails as it then expects bit 14 (BS) in pending debug
6455         * exceptions being set, but that's not correct for the guest debugging
6456         * case. */
6457        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6458                vmx_set_interrupt_shadow(vcpu, 0);
6459
6460        kvm_load_guest_xcr0(vcpu);
6461
6462        if (static_cpu_has(X86_FEATURE_PKU) &&
6463            kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6464            vcpu->arch.pkru != vmx->host_pkru)
6465                __write_pkru(vcpu->arch.pkru);
6466
6467        pt_guest_enter(vmx);
6468
6469        atomic_switch_perf_msrs(vmx);
6470
6471        if (enable_preemption_timer)
6472                vmx_update_hv_timer(vcpu);
6473
6474        if (lapic_in_kernel(vcpu) &&
6475                vcpu->arch.apic->lapic_timer.timer_advance_ns)
6476                kvm_wait_lapic_expire(vcpu);
6477
6478        /*
6479         * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6480         * it's non-zero. Since vmentry is serialising on affected CPUs, there
6481         * is no need to worry about the conditional branch over the wrmsr
6482         * being speculatively taken.
6483         */
6484        x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6485
6486        /* L1D Flush includes CPU buffer clear to mitigate MDS */
6487        if (static_branch_unlikely(&vmx_l1d_should_flush))
6488                vmx_l1d_flush(vcpu);
6489        else if (static_branch_unlikely(&mds_user_clear))
6490                mds_clear_cpu_buffers();
6491
6492        if (vcpu->arch.cr2 != read_cr2())
6493                write_cr2(vcpu->arch.cr2);
6494
6495        vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6496                                   vmx->loaded_vmcs->launched);
6497
6498        vcpu->arch.cr2 = read_cr2();
6499
6500        /*
6501         * We do not use IBRS in the kernel. If this vCPU has used the
6502         * SPEC_CTRL MSR it may have left it on; save the value and
6503         * turn it off. This is much more efficient than blindly adding
6504         * it to the atomic save/restore list. Especially as the former
6505         * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6506         *
6507         * For non-nested case:
6508         * If the L01 MSR bitmap does not intercept the MSR, then we need to
6509         * save it.
6510         *
6511         * For nested case:
6512         * If the L02 MSR bitmap does not intercept the MSR, then we need to
6513         * save it.
6514         */
6515        if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6516                vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6517
6518        x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6519
6520        /* All fields are clean at this point */
6521        if (static_branch_unlikely(&enable_evmcs))
6522                current_evmcs->hv_clean_fields |=
6523                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6524
6525        /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6526        if (vmx->host_debugctlmsr)
6527                update_debugctlmsr(vmx->host_debugctlmsr);
6528
6529#ifndef CONFIG_X86_64
6530        /*
6531         * The sysexit path does not restore ds/es, so we must set them to
6532         * a reasonable value ourselves.
6533         *
6534         * We can't defer this to vmx_prepare_switch_to_host() since that
6535         * function may be executed in interrupt context, which saves and
6536         * restore segments around it, nullifying its effect.
6537         */
6538        loadsegment(ds, __USER_DS);
6539        loadsegment(es, __USER_DS);
6540#endif
6541
6542        vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6543                                  | (1 << VCPU_EXREG_RFLAGS)
6544                                  | (1 << VCPU_EXREG_PDPTR)
6545                                  | (1 << VCPU_EXREG_SEGMENTS)
6546                                  | (1 << VCPU_EXREG_CR3));
6547        vcpu->arch.regs_dirty = 0;
6548
6549        pt_guest_exit(vmx);
6550
6551        /*
6552         * eager fpu is enabled if PKEY is supported and CR4 is switched
6553         * back on host, so it is safe to read guest PKRU from current
6554         * XSAVE.
6555         */
6556        if (static_cpu_has(X86_FEATURE_PKU) &&
6557            kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6558                vcpu->arch.pkru = rdpkru();
6559                if (vcpu->arch.pkru != vmx->host_pkru)
6560                        __write_pkru(vmx->host_pkru);
6561        }
6562
6563        kvm_put_guest_xcr0(vcpu);
6564
6565        vmx->nested.nested_run_pending = 0;
6566        vmx->idt_vectoring_info = 0;
6567
6568        vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6569        if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
6570                kvm_machine_check();
6571
6572        if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6573                return;
6574
6575        vmx->loaded_vmcs->launched = 1;
6576        vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6577
6578        vmx_recover_nmi_blocking(vmx);
6579        vmx_complete_interrupts(vmx);
6580}
6581
6582static struct kvm *vmx_vm_alloc(void)
6583{
6584        struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6585                                            GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6586                                            PAGE_KERNEL);
6587        return &kvm_vmx->kvm;
6588}
6589
6590static void vmx_vm_free(struct kvm *kvm)
6591{
6592        vfree(to_kvm_vmx(kvm));
6593}
6594
6595static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6596{
6597        struct vcpu_vmx *vmx = to_vmx(vcpu);
6598
6599        if (enable_pml)
6600                vmx_destroy_pml_buffer(vmx);
6601        free_vpid(vmx->vpid);
6602        nested_vmx_free_vcpu(vcpu);
6603        free_loaded_vmcs(vmx->loaded_vmcs);
6604        kfree(vmx->guest_msrs);
6605        kvm_vcpu_uninit(vcpu);
6606        kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6607        kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6608        kmem_cache_free(kvm_vcpu_cache, vmx);
6609}
6610
6611static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6612{
6613        int err;
6614        struct vcpu_vmx *vmx;
6615        unsigned long *msr_bitmap;
6616        int cpu;
6617
6618        vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
6619        if (!vmx)
6620                return ERR_PTR(-ENOMEM);
6621
6622        vmx->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
6623                        GFP_KERNEL_ACCOUNT);
6624        if (!vmx->vcpu.arch.user_fpu) {
6625                printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
6626                err = -ENOMEM;
6627                goto free_partial_vcpu;
6628        }
6629
6630        vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
6631                        GFP_KERNEL_ACCOUNT);
6632        if (!vmx->vcpu.arch.guest_fpu) {
6633                printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6634                err = -ENOMEM;
6635                goto free_user_fpu;
6636        }
6637
6638        vmx->vpid = allocate_vpid();
6639
6640        err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6641        if (err)
6642                goto free_vcpu;
6643
6644        err = -ENOMEM;
6645
6646        /*
6647         * If PML is turned on, failure on enabling PML just results in failure
6648         * of creating the vcpu, therefore we can simplify PML logic (by
6649         * avoiding dealing with cases, such as enabling PML partially on vcpus
6650         * for the guest, etc.
6651         */
6652        if (enable_pml) {
6653                vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6654                if (!vmx->pml_pg)
6655                        goto uninit_vcpu;
6656        }
6657
6658        vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
6659        BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6660                     > PAGE_SIZE);
6661
6662        if (!vmx->guest_msrs)
6663                goto free_pml;
6664
6665        err = alloc_loaded_vmcs(&vmx->vmcs01);
6666        if (err < 0)
6667                goto free_msrs;
6668
6669        msr_bitmap = vmx->vmcs01.msr_bitmap;
6670        vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6671        vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6672        vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6673        vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6674        vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6675        vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6676        vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6677        if (kvm_cstate_in_guest(kvm)) {
6678                vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6679                vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6680                vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6681                vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6682        }
6683        vmx->msr_bitmap_mode = 0;
6684
6685        vmx->loaded_vmcs = &vmx->vmcs01;
6686        cpu = get_cpu();
6687        vmx_vcpu_load(&vmx->vcpu, cpu);
6688        vmx->vcpu.cpu = cpu;
6689        vmx_vcpu_setup(vmx);
6690        vmx_vcpu_put(&vmx->vcpu);
6691        put_cpu();
6692        if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6693                err = alloc_apic_access_page(kvm);
6694                if (err)
6695                        goto free_vmcs;
6696        }
6697
6698        if (enable_ept && !enable_unrestricted_guest) {
6699                err = init_rmode_identity_map(kvm);
6700                if (err)
6701                        goto free_vmcs;
6702        }
6703
6704        if (nested)
6705                nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6706                                           vmx_capability.ept,
6707                                           kvm_vcpu_apicv_active(&vmx->vcpu));
6708        else
6709                memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6710
6711        vmx->nested.posted_intr_nv = -1;
6712        vmx->nested.current_vmptr = -1ull;
6713
6714        vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6715
6716        /*
6717         * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6718         * or POSTED_INTR_WAKEUP_VECTOR.
6719         */
6720        vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6721        vmx->pi_desc.sn = 1;
6722
6723        vmx->ept_pointer = INVALID_PAGE;
6724
6725        return &vmx->vcpu;
6726
6727free_vmcs:
6728        free_loaded_vmcs(vmx->loaded_vmcs);
6729free_msrs:
6730        kfree(vmx->guest_msrs);
6731free_pml:
6732        vmx_destroy_pml_buffer(vmx);
6733uninit_vcpu:
6734        kvm_vcpu_uninit(&vmx->vcpu);
6735free_vcpu:
6736        free_vpid(vmx->vpid);
6737        kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6738free_user_fpu:
6739        kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6740free_partial_vcpu:
6741        kmem_cache_free(kvm_vcpu_cache, vmx);
6742        return ERR_PTR(err);
6743}
6744
6745#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6746#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6747
6748static int vmx_vm_init(struct kvm *kvm)
6749{
6750        spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6751
6752        if (!ple_gap)
6753                kvm->arch.pause_in_guest = true;
6754
6755        if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6756                switch (l1tf_mitigation) {
6757                case L1TF_MITIGATION_OFF:
6758                case L1TF_MITIGATION_FLUSH_NOWARN:
6759                        /* 'I explicitly don't care' is set */
6760                        break;
6761                case L1TF_MITIGATION_FLUSH:
6762                case L1TF_MITIGATION_FLUSH_NOSMT:
6763                case L1TF_MITIGATION_FULL:
6764                        /*
6765                         * Warn upon starting the first VM in a potentially
6766                         * insecure environment.
6767                         */
6768                        if (sched_smt_active())
6769                                pr_warn_once(L1TF_MSG_SMT);
6770                        if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6771                                pr_warn_once(L1TF_MSG_L1D);
6772                        break;
6773                case L1TF_MITIGATION_FULL_FORCE:
6774                        /* Flush is enforced */
6775                        break;
6776                }
6777        }
6778        return 0;
6779}
6780
6781static int __init vmx_check_processor_compat(void)
6782{
6783        struct vmcs_config vmcs_conf;
6784        struct vmx_capability vmx_cap;
6785
6786        if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6787                return -EIO;
6788        if (nested)
6789                nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6790                                           enable_apicv);
6791        if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6792                printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6793                                smp_processor_id());
6794                return -EIO;
6795        }
6796        return 0;
6797}
6798
6799static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6800{
6801        u8 cache;
6802        u64 ipat = 0;
6803
6804        /* For VT-d and EPT combination
6805         * 1. MMIO: always map as UC
6806         * 2. EPT with VT-d:
6807         *   a. VT-d without snooping control feature: can't guarantee the
6808         *      result, try to trust guest.
6809         *   b. VT-d with snooping control feature: snooping control feature of
6810         *      VT-d engine can guarantee the cache correctness. Just set it
6811         *      to WB to keep consistent with host. So the same as item 3.
6812         * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6813         *    consistent with host MTRR
6814         */
6815        if (is_mmio) {
6816                cache = MTRR_TYPE_UNCACHABLE;
6817                goto exit;
6818        }
6819
6820        if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6821                ipat = VMX_EPT_IPAT_BIT;
6822                cache = MTRR_TYPE_WRBACK;
6823                goto exit;
6824        }
6825
6826        if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6827                ipat = VMX_EPT_IPAT_BIT;
6828                if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6829                        cache = MTRR_TYPE_WRBACK;
6830                else
6831                        cache = MTRR_TYPE_UNCACHABLE;
6832                goto exit;
6833        }
6834
6835        cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6836
6837exit:
6838        return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6839}
6840
6841static int vmx_get_lpage_level(void)
6842{
6843        if (enable_ept && !cpu_has_vmx_ept_1g_page())
6844                return PT_DIRECTORY_LEVEL;
6845        else
6846                /* For shadow and EPT supported 1GB page */
6847                return PT_PDPE_LEVEL;
6848}
6849
6850static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6851{
6852        /*
6853         * These bits in the secondary execution controls field
6854         * are dynamic, the others are mostly based on the hypervisor
6855         * architecture and the guest's CPUID.  Do not touch the
6856         * dynamic bits.
6857         */
6858        u32 mask =
6859                SECONDARY_EXEC_SHADOW_VMCS |
6860                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6861                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6862                SECONDARY_EXEC_DESC;
6863
6864        u32 new_ctl = vmx->secondary_exec_control;
6865        u32 cur_ctl = secondary_exec_controls_get(vmx);
6866
6867        secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6868}
6869
6870/*
6871 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6872 * (indicating "allowed-1") if they are supported in the guest's CPUID.
6873 */
6874static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6875{
6876        struct vcpu_vmx *vmx = to_vmx(vcpu);
6877        struct kvm_cpuid_entry2 *entry;
6878
6879        vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6880        vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6881
6882#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
6883        if (entry && (entry->_reg & (_cpuid_mask)))                     \
6884                vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
6885} while (0)
6886
6887        entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6888        cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
6889        cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
6890        cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
6891        cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
6892        cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
6893        cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
6894        cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
6895        cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
6896        cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
6897        cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6898        cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
6899        cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
6900        cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
6901        cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
6902
6903        entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6904        cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
6905        cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
6906        cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
6907        cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
6908        cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
6909
6910#undef cr4_fixed1_update
6911}
6912
6913static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
6914{
6915        struct vcpu_vmx *vmx = to_vmx(vcpu);
6916
6917        if (kvm_mpx_supported()) {
6918                bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
6919
6920                if (mpx_enabled) {
6921                        vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
6922                        vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
6923                } else {
6924                        vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
6925                        vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
6926                }
6927        }
6928}
6929
6930static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
6931{
6932        struct vcpu_vmx *vmx = to_vmx(vcpu);
6933        struct kvm_cpuid_entry2 *best = NULL;
6934        int i;
6935
6936        for (i = 0; i < PT_CPUID_LEAVES; i++) {
6937                best = kvm_find_cpuid_entry(vcpu, 0x14, i);
6938                if (!best)
6939                        return;
6940                vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
6941                vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
6942                vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
6943                vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
6944        }
6945
6946        /* Get the number of configurable Address Ranges for filtering */
6947        vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
6948                                                PT_CAP_num_address_ranges);
6949
6950        /* Initialize and clear the no dependency bits */
6951        vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
6952                        RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
6953
6954        /*
6955         * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
6956         * will inject an #GP
6957         */
6958        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
6959                vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
6960
6961        /*
6962         * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
6963         * PSBFreq can be set
6964         */
6965        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
6966                vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
6967                                RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
6968
6969        /*
6970         * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
6971         * MTCFreq can be set
6972         */
6973        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
6974                vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
6975                                RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
6976
6977        /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
6978        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
6979                vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
6980                                                        RTIT_CTL_PTW_EN);
6981
6982        /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
6983        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
6984                vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
6985
6986        /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
6987        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
6988                vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
6989
6990        /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
6991        if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
6992                vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
6993
6994        /* unmask address range configure area */
6995        for (i = 0; i < vmx->pt_desc.addr_range; i++)
6996                vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
6997}
6998
6999static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7000{
7001        struct vcpu_vmx *vmx = to_vmx(vcpu);
7002
7003        if (cpu_has_secondary_exec_ctrls()) {
7004                vmx_compute_secondary_exec_control(vmx);
7005                vmcs_set_secondary_exec_control(vmx);
7006        }
7007
7008        if (nested_vmx_allowed(vcpu))
7009                to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7010                        FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7011        else
7012                to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7013                        ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7014
7015        if (nested_vmx_allowed(vcpu)) {
7016                nested_vmx_cr_fixed1_bits_update(vcpu);
7017                nested_vmx_entry_exit_ctls_update(vcpu);
7018        }
7019
7020        if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7021                        guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7022                update_intel_pt_cfg(vcpu);
7023}
7024
7025static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7026{
7027        if (func == 1 && nested)
7028                entry->ecx |= bit(X86_FEATURE_VMX);
7029}
7030
7031static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7032{
7033        to_vmx(vcpu)->req_immediate_exit = true;
7034}
7035
7036static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7037                               struct x86_instruction_info *info,
7038                               enum x86_intercept_stage stage)
7039{
7040        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7041        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7042
7043        /*
7044         * RDPID causes #UD if disabled through secondary execution controls.
7045         * Because it is marked as EmulateOnUD, we need to intercept it here.
7046         */
7047        if (info->intercept == x86_intercept_rdtscp &&
7048            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7049                ctxt->exception.vector = UD_VECTOR;
7050                ctxt->exception.error_code_valid = false;
7051                return X86EMUL_PROPAGATE_FAULT;
7052        }
7053
7054        /* TODO: check more intercepts... */
7055        return X86EMUL_CONTINUE;
7056}
7057
7058#ifdef CONFIG_X86_64
7059/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7060static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7061                                  u64 divisor, u64 *result)
7062{
7063        u64 low = a << shift, high = a >> (64 - shift);
7064
7065        /* To avoid the overflow on divq */
7066        if (high >= divisor)
7067                return 1;
7068
7069        /* Low hold the result, high hold rem which is discarded */
7070        asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7071            "rm" (divisor), "0" (low), "1" (high));
7072        *result = low;
7073
7074        return 0;
7075}
7076
7077static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7078                            bool *expired)
7079{
7080        struct vcpu_vmx *vmx;
7081        u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7082        struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7083
7084        if (kvm_mwait_in_guest(vcpu->kvm) ||
7085                kvm_can_post_timer_interrupt(vcpu))
7086                return -EOPNOTSUPP;
7087
7088        vmx = to_vmx(vcpu);
7089        tscl = rdtsc();
7090        guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7091        delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7092        lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7093                                                    ktimer->timer_advance_ns);
7094
7095        if (delta_tsc > lapic_timer_advance_cycles)
7096                delta_tsc -= lapic_timer_advance_cycles;
7097        else
7098                delta_tsc = 0;
7099
7100        /* Convert to host delta tsc if tsc scaling is enabled */
7101        if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7102            delta_tsc && u64_shl_div_u64(delta_tsc,
7103                                kvm_tsc_scaling_ratio_frac_bits,
7104                                vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7105                return -ERANGE;
7106
7107        /*
7108         * If the delta tsc can't fit in the 32 bit after the multi shift,
7109         * we can't use the preemption timer.
7110         * It's possible that it fits on later vmentries, but checking
7111         * on every vmentry is costly so we just use an hrtimer.
7112         */
7113        if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7114                return -ERANGE;
7115
7116        vmx->hv_deadline_tsc = tscl + delta_tsc;
7117        *expired = !delta_tsc;
7118        return 0;
7119}
7120
7121static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7122{
7123        to_vmx(vcpu)->hv_deadline_tsc = -1;
7124}
7125#endif
7126
7127static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7128{
7129        if (!kvm_pause_in_guest(vcpu->kvm))
7130                shrink_ple_window(vcpu);
7131}
7132
7133static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7134                                     struct kvm_memory_slot *slot)
7135{
7136        kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7137        kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7138}
7139
7140static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7141                                       struct kvm_memory_slot *slot)
7142{
7143        kvm_mmu_slot_set_dirty(kvm, slot);
7144}
7145
7146static void vmx_flush_log_dirty(struct kvm *kvm)
7147{
7148        kvm_flush_pml_buffers(kvm);
7149}
7150
7151static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7152{
7153        struct vmcs12 *vmcs12;
7154        struct vcpu_vmx *vmx = to_vmx(vcpu);
7155        gpa_t gpa, dst;
7156
7157        if (is_guest_mode(vcpu)) {
7158                WARN_ON_ONCE(vmx->nested.pml_full);
7159
7160                /*
7161                 * Check if PML is enabled for the nested guest.
7162                 * Whether eptp bit 6 is set is already checked
7163                 * as part of A/D emulation.
7164                 */
7165                vmcs12 = get_vmcs12(vcpu);
7166                if (!nested_cpu_has_pml(vmcs12))
7167                        return 0;
7168
7169                if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7170                        vmx->nested.pml_full = true;
7171                        return 1;
7172                }
7173
7174                gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7175                dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7176
7177                if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7178                                         offset_in_page(dst), sizeof(gpa)))
7179                        return 0;
7180
7181                vmcs12->guest_pml_index--;
7182        }
7183
7184        return 0;
7185}
7186
7187static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7188                                           struct kvm_memory_slot *memslot,
7189                                           gfn_t offset, unsigned long mask)
7190{
7191        kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7192}
7193
7194static void __pi_post_block(struct kvm_vcpu *vcpu)
7195{
7196        struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7197        struct pi_desc old, new;
7198        unsigned int dest;
7199
7200        do {
7201                old.control = new.control = pi_desc->control;
7202                WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7203                     "Wakeup handler not enabled while the VCPU is blocked\n");
7204
7205                dest = cpu_physical_id(vcpu->cpu);
7206
7207                if (x2apic_enabled())
7208                        new.ndst = dest;
7209                else
7210                        new.ndst = (dest << 8) & 0xFF00;
7211
7212                /* set 'NV' to 'notification vector' */
7213                new.nv = POSTED_INTR_VECTOR;
7214        } while (cmpxchg64(&pi_desc->control, old.control,
7215                           new.control) != old.control);
7216
7217        if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7218                spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7219                list_del(&vcpu->blocked_vcpu_list);
7220                spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7221                vcpu->pre_pcpu = -1;
7222        }
7223}
7224
7225/*
7226 * This routine does the following things for vCPU which is going
7227 * to be blocked if VT-d PI is enabled.
7228 * - Store the vCPU to the wakeup list, so when interrupts happen
7229 *   we can find the right vCPU to wake up.
7230 * - Change the Posted-interrupt descriptor as below:
7231 *      'NDST' <-- vcpu->pre_pcpu
7232 *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7233 * - If 'ON' is set during this process, which means at least one
7234 *   interrupt is posted for this vCPU, we cannot block it, in
7235 *   this case, return 1, otherwise, return 0.
7236 *
7237 */
7238static int pi_pre_block(struct kvm_vcpu *vcpu)
7239{
7240        unsigned int dest;
7241        struct pi_desc old, new;
7242        struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7243
7244        if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7245                !irq_remapping_cap(IRQ_POSTING_CAP)  ||
7246                !kvm_vcpu_apicv_active(vcpu))
7247                return 0;
7248
7249        WARN_ON(irqs_disabled());
7250        local_irq_disable();
7251        if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7252                vcpu->pre_pcpu = vcpu->cpu;
7253                spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7254                list_add_tail(&vcpu->blocked_vcpu_list,
7255                              &per_cpu(blocked_vcpu_on_cpu,
7256                                       vcpu->pre_pcpu));
7257                spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7258        }
7259
7260        do {
7261                old.control = new.control = pi_desc->control;
7262
7263                WARN((pi_desc->sn == 1),
7264                     "Warning: SN field of posted-interrupts "
7265                     "is set before blocking\n");
7266
7267                /*
7268                 * Since vCPU can be preempted during this process,
7269                 * vcpu->cpu could be different with pre_pcpu, we
7270                 * need to set pre_pcpu as the destination of wakeup
7271                 * notification event, then we can find the right vCPU
7272                 * to wakeup in wakeup handler if interrupts happen
7273                 * when the vCPU is in blocked state.
7274                 */
7275                dest = cpu_physical_id(vcpu->pre_pcpu);
7276
7277                if (x2apic_enabled())
7278                        new.ndst = dest;
7279                else
7280                        new.ndst = (dest << 8) & 0xFF00;
7281
7282                /* set 'NV' to 'wakeup vector' */
7283                new.nv = POSTED_INTR_WAKEUP_VECTOR;
7284        } while (cmpxchg64(&pi_desc->control, old.control,
7285                           new.control) != old.control);
7286
7287        /* We should not block the vCPU if an interrupt is posted for it.  */
7288        if (pi_test_on(pi_desc) == 1)
7289                __pi_post_block(vcpu);
7290
7291        local_irq_enable();
7292        return (vcpu->pre_pcpu == -1);
7293}
7294
7295static int vmx_pre_block(struct kvm_vcpu *vcpu)
7296{
7297        if (pi_pre_block(vcpu))
7298                return 1;
7299
7300        if (kvm_lapic_hv_timer_in_use(vcpu))
7301                kvm_lapic_switch_to_sw_timer(vcpu);
7302
7303        return 0;
7304}
7305
7306static void pi_post_block(struct kvm_vcpu *vcpu)
7307{
7308        if (vcpu->pre_pcpu == -1)
7309                return;
7310
7311        WARN_ON(irqs_disabled());
7312        local_irq_disable();
7313        __pi_post_block(vcpu);
7314        local_irq_enable();
7315}
7316
7317static void vmx_post_block(struct kvm_vcpu *vcpu)
7318{
7319        if (kvm_x86_ops->set_hv_timer)
7320                kvm_lapic_switch_to_hv_timer(vcpu);
7321
7322        pi_post_block(vcpu);
7323}
7324
7325/*
7326 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7327 *
7328 * @kvm: kvm
7329 * @host_irq: host irq of the interrupt
7330 * @guest_irq: gsi of the interrupt
7331 * @set: set or unset PI
7332 * returns 0 on success, < 0 on failure
7333 */
7334static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7335                              uint32_t guest_irq, bool set)
7336{
7337        struct kvm_kernel_irq_routing_entry *e;
7338        struct kvm_irq_routing_table *irq_rt;
7339        struct kvm_lapic_irq irq;
7340        struct kvm_vcpu *vcpu;
7341        struct vcpu_data vcpu_info;
7342        int idx, ret = 0;
7343
7344        if (!kvm_arch_has_assigned_device(kvm) ||
7345                !irq_remapping_cap(IRQ_POSTING_CAP) ||
7346                !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7347                return 0;
7348
7349        idx = srcu_read_lock(&kvm->irq_srcu);
7350        irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7351        if (guest_irq >= irq_rt->nr_rt_entries ||
7352            hlist_empty(&irq_rt->map[guest_irq])) {
7353                pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7354                             guest_irq, irq_rt->nr_rt_entries);
7355                goto out;
7356        }
7357
7358        hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7359                if (e->type != KVM_IRQ_ROUTING_MSI)
7360                        continue;
7361                /*
7362                 * VT-d PI cannot support posting multicast/broadcast
7363                 * interrupts to a vCPU, we still use interrupt remapping
7364                 * for these kind of interrupts.
7365                 *
7366                 * For lowest-priority interrupts, we only support
7367                 * those with single CPU as the destination, e.g. user
7368                 * configures the interrupts via /proc/irq or uses
7369                 * irqbalance to make the interrupts single-CPU.
7370                 *
7371                 * We will support full lowest-priority interrupt later.
7372                 */
7373
7374                kvm_set_msi_irq(kvm, e, &irq);
7375                if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
7376                        /*
7377                         * Make sure the IRTE is in remapped mode if
7378                         * we don't handle it in posted mode.
7379                         */
7380                        ret = irq_set_vcpu_affinity(host_irq, NULL);
7381                        if (ret < 0) {
7382                                printk(KERN_INFO
7383                                   "failed to back to remapped mode, irq: %u\n",
7384                                   host_irq);
7385                                goto out;
7386                        }
7387
7388                        continue;
7389                }
7390
7391                vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7392                vcpu_info.vector = irq.vector;
7393
7394                trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7395                                vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7396
7397                if (set)
7398                        ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7399                else
7400                        ret = irq_set_vcpu_affinity(host_irq, NULL);
7401
7402                if (ret < 0) {
7403                        printk(KERN_INFO "%s: failed to update PI IRTE\n",
7404                                        __func__);
7405                        goto out;
7406                }
7407        }
7408
7409        ret = 0;
7410out:
7411        srcu_read_unlock(&kvm->irq_srcu, idx);
7412        return ret;
7413}
7414
7415static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7416{
7417        if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7418                to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7419                        FEATURE_CONTROL_LMCE;
7420        else
7421                to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7422                        ~FEATURE_CONTROL_LMCE;
7423}
7424
7425static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7426{
7427        /* we need a nested vmexit to enter SMM, postpone if run is pending */
7428        if (to_vmx(vcpu)->nested.nested_run_pending)
7429                return 0;
7430        return 1;
7431}
7432
7433static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7434{
7435        struct vcpu_vmx *vmx = to_vmx(vcpu);
7436
7437        vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7438        if (vmx->nested.smm.guest_mode)
7439                nested_vmx_vmexit(vcpu, -1, 0, 0);
7440
7441        vmx->nested.smm.vmxon = vmx->nested.vmxon;
7442        vmx->nested.vmxon = false;
7443        vmx_clear_hlt(vcpu);
7444        return 0;
7445}
7446
7447static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7448{
7449        struct vcpu_vmx *vmx = to_vmx(vcpu);
7450        int ret;
7451
7452        if (vmx->nested.smm.vmxon) {
7453                vmx->nested.vmxon = true;
7454                vmx->nested.smm.vmxon = false;
7455        }
7456
7457        if (vmx->nested.smm.guest_mode) {
7458                ret = nested_vmx_enter_non_root_mode(vcpu, false);
7459                if (ret)
7460                        return ret;
7461
7462                vmx->nested.smm.guest_mode = false;
7463        }
7464        return 0;
7465}
7466
7467static int enable_smi_window(struct kvm_vcpu *vcpu)
7468{
7469        return 0;
7470}
7471
7472static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7473{
7474        return false;
7475}
7476
7477static __init int hardware_setup(void)
7478{
7479        unsigned long host_bndcfgs;
7480        struct desc_ptr dt;
7481        int r, i;
7482
7483        rdmsrl_safe(MSR_EFER, &host_efer);
7484
7485        store_idt(&dt);
7486        host_idt_base = dt.address;
7487
7488        for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7489                kvm_define_shared_msr(i, vmx_msr_index[i]);
7490
7491        if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7492                return -EIO;
7493
7494        if (boot_cpu_has(X86_FEATURE_NX))
7495                kvm_enable_efer_bits(EFER_NX);
7496
7497        if (boot_cpu_has(X86_FEATURE_MPX)) {
7498                rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7499                WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7500        }
7501
7502        if (boot_cpu_has(X86_FEATURE_XSAVES))
7503                rdmsrl(MSR_IA32_XSS, host_xss);
7504
7505        if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7506            !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7507                enable_vpid = 0;
7508
7509        if (!cpu_has_vmx_ept() ||
7510            !cpu_has_vmx_ept_4levels() ||
7511            !cpu_has_vmx_ept_mt_wb() ||
7512            !cpu_has_vmx_invept_global())
7513                enable_ept = 0;
7514
7515        if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7516                enable_ept_ad_bits = 0;
7517
7518        if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7519                enable_unrestricted_guest = 0;
7520
7521        if (!cpu_has_vmx_flexpriority())
7522                flexpriority_enabled = 0;
7523
7524        if (!cpu_has_virtual_nmis())
7525                enable_vnmi = 0;
7526
7527        /*
7528         * set_apic_access_page_addr() is used to reload apic access
7529         * page upon invalidation.  No need to do anything if not
7530         * using the APIC_ACCESS_ADDR VMCS field.
7531         */
7532        if (!flexpriority_enabled)
7533                kvm_x86_ops->set_apic_access_page_addr = NULL;
7534
7535        if (!cpu_has_vmx_tpr_shadow())
7536                kvm_x86_ops->update_cr8_intercept = NULL;
7537
7538        if (enable_ept && !cpu_has_vmx_ept_2m_page())
7539                kvm_disable_largepages();
7540
7541#if IS_ENABLED(CONFIG_HYPERV)
7542        if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7543            && enable_ept) {
7544                kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7545                kvm_x86_ops->tlb_remote_flush_with_range =
7546                                hv_remote_flush_tlb_with_range;
7547        }
7548#endif
7549
7550        if (!cpu_has_vmx_ple()) {
7551                ple_gap = 0;
7552                ple_window = 0;
7553                ple_window_grow = 0;
7554                ple_window_max = 0;
7555                ple_window_shrink = 0;
7556        }
7557
7558        if (!cpu_has_vmx_apicv()) {
7559                enable_apicv = 0;
7560                kvm_x86_ops->sync_pir_to_irr = NULL;
7561        }
7562
7563        if (cpu_has_vmx_tsc_scaling()) {
7564                kvm_has_tsc_control = true;
7565                kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7566                kvm_tsc_scaling_ratio_frac_bits = 48;
7567        }
7568
7569        set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7570
7571        if (enable_ept)
7572                vmx_enable_tdp();
7573        else
7574                kvm_disable_tdp();
7575
7576        /*
7577         * Only enable PML when hardware supports PML feature, and both EPT
7578         * and EPT A/D bit features are enabled -- PML depends on them to work.
7579         */
7580        if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7581                enable_pml = 0;
7582
7583        if (!enable_pml) {
7584                kvm_x86_ops->slot_enable_log_dirty = NULL;
7585                kvm_x86_ops->slot_disable_log_dirty = NULL;
7586                kvm_x86_ops->flush_log_dirty = NULL;
7587                kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7588        }
7589
7590        if (!cpu_has_vmx_preemption_timer())
7591                enable_preemption_timer = false;
7592
7593        if (enable_preemption_timer) {
7594                u64 use_timer_freq = 5000ULL * 1000 * 1000;
7595                u64 vmx_msr;
7596
7597                rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7598                cpu_preemption_timer_multi =
7599                        vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7600
7601                if (tsc_khz)
7602                        use_timer_freq = (u64)tsc_khz * 1000;
7603                use_timer_freq >>= cpu_preemption_timer_multi;
7604
7605                /*
7606                 * KVM "disables" the preemption timer by setting it to its max
7607                 * value.  Don't use the timer if it might cause spurious exits
7608                 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7609                 */
7610                if (use_timer_freq > 0xffffffffu / 10)
7611                        enable_preemption_timer = false;
7612        }
7613
7614        if (!enable_preemption_timer) {
7615                kvm_x86_ops->set_hv_timer = NULL;
7616                kvm_x86_ops->cancel_hv_timer = NULL;
7617                kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7618        }
7619
7620        kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7621
7622        kvm_mce_cap_supported |= MCG_LMCE_P;
7623
7624        if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7625                return -EINVAL;
7626        if (!enable_ept || !cpu_has_vmx_intel_pt())
7627                pt_mode = PT_MODE_SYSTEM;
7628
7629        if (nested) {
7630                nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7631                                           vmx_capability.ept, enable_apicv);
7632
7633                r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7634                if (r)
7635                        return r;
7636        }
7637
7638        r = alloc_kvm_area();
7639        if (r)
7640                nested_vmx_hardware_unsetup();
7641        return r;
7642}
7643
7644static __exit void hardware_unsetup(void)
7645{
7646        if (nested)
7647                nested_vmx_hardware_unsetup();
7648
7649        free_kvm_area();
7650}
7651
7652static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7653        .cpu_has_kvm_support = cpu_has_kvm_support,
7654        .disabled_by_bios = vmx_disabled_by_bios,
7655        .hardware_setup = hardware_setup,
7656        .hardware_unsetup = hardware_unsetup,
7657        .check_processor_compatibility = vmx_check_processor_compat,
7658        .hardware_enable = hardware_enable,
7659        .hardware_disable = hardware_disable,
7660        .cpu_has_accelerated_tpr = report_flexpriority,
7661        .has_emulated_msr = vmx_has_emulated_msr,
7662
7663        .vm_init = vmx_vm_init,
7664        .vm_alloc = vmx_vm_alloc,
7665        .vm_free = vmx_vm_free,
7666
7667        .vcpu_create = vmx_create_vcpu,
7668        .vcpu_free = vmx_free_vcpu,
7669        .vcpu_reset = vmx_vcpu_reset,
7670
7671        .prepare_guest_switch = vmx_prepare_switch_to_guest,
7672        .vcpu_load = vmx_vcpu_load,
7673        .vcpu_put = vmx_vcpu_put,
7674
7675        .update_bp_intercept = update_exception_bitmap,
7676        .get_msr_feature = vmx_get_msr_feature,
7677        .get_msr = vmx_get_msr,
7678        .set_msr = vmx_set_msr,
7679        .get_segment_base = vmx_get_segment_base,
7680        .get_segment = vmx_get_segment,
7681        .set_segment = vmx_set_segment,
7682        .get_cpl = vmx_get_cpl,
7683        .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7684        .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7685        .decache_cr3 = vmx_decache_cr3,
7686        .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7687        .set_cr0 = vmx_set_cr0,
7688        .set_cr3 = vmx_set_cr3,
7689        .set_cr4 = vmx_set_cr4,
7690        .set_efer = vmx_set_efer,
7691        .get_idt = vmx_get_idt,
7692        .set_idt = vmx_set_idt,
7693        .get_gdt = vmx_get_gdt,
7694        .set_gdt = vmx_set_gdt,
7695        .get_dr6 = vmx_get_dr6,
7696        .set_dr6 = vmx_set_dr6,
7697        .set_dr7 = vmx_set_dr7,
7698        .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7699        .cache_reg = vmx_cache_reg,
7700        .get_rflags = vmx_get_rflags,
7701        .set_rflags = vmx_set_rflags,
7702
7703        .tlb_flush = vmx_flush_tlb,
7704        .tlb_flush_gva = vmx_flush_tlb_gva,
7705
7706        .run = vmx_vcpu_run,
7707        .handle_exit = vmx_handle_exit,
7708        .skip_emulated_instruction = skip_emulated_instruction,
7709        .set_interrupt_shadow = vmx_set_interrupt_shadow,
7710        .get_interrupt_shadow = vmx_get_interrupt_shadow,
7711        .patch_hypercall = vmx_patch_hypercall,
7712        .set_irq = vmx_inject_irq,
7713        .set_nmi = vmx_inject_nmi,
7714        .queue_exception = vmx_queue_exception,
7715        .cancel_injection = vmx_cancel_injection,
7716        .interrupt_allowed = vmx_interrupt_allowed,
7717        .nmi_allowed = vmx_nmi_allowed,
7718        .get_nmi_mask = vmx_get_nmi_mask,
7719        .set_nmi_mask = vmx_set_nmi_mask,
7720        .enable_nmi_window = enable_nmi_window,
7721        .enable_irq_window = enable_irq_window,
7722        .update_cr8_intercept = update_cr8_intercept,
7723        .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7724        .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7725        .get_enable_apicv = vmx_get_enable_apicv,
7726        .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7727        .load_eoi_exitmap = vmx_load_eoi_exitmap,
7728        .apicv_post_state_restore = vmx_apicv_post_state_restore,
7729        .hwapic_irr_update = vmx_hwapic_irr_update,
7730        .hwapic_isr_update = vmx_hwapic_isr_update,
7731        .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7732        .sync_pir_to_irr = vmx_sync_pir_to_irr,
7733        .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7734        .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7735
7736        .set_tss_addr = vmx_set_tss_addr,
7737        .set_identity_map_addr = vmx_set_identity_map_addr,
7738        .get_tdp_level = get_ept_level,
7739        .get_mt_mask = vmx_get_mt_mask,
7740
7741        .get_exit_info = vmx_get_exit_info,
7742
7743        .get_lpage_level = vmx_get_lpage_level,
7744
7745        .cpuid_update = vmx_cpuid_update,
7746
7747        .rdtscp_supported = vmx_rdtscp_supported,
7748        .invpcid_supported = vmx_invpcid_supported,
7749
7750        .set_supported_cpuid = vmx_set_supported_cpuid,
7751
7752        .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7753
7754        .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7755        .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7756
7757        .set_tdp_cr3 = vmx_set_cr3,
7758
7759        .check_intercept = vmx_check_intercept,
7760        .handle_exit_irqoff = vmx_handle_exit_irqoff,
7761        .mpx_supported = vmx_mpx_supported,
7762        .xsaves_supported = vmx_xsaves_supported,
7763        .umip_emulated = vmx_umip_emulated,
7764        .pt_supported = vmx_pt_supported,
7765
7766        .request_immediate_exit = vmx_request_immediate_exit,
7767
7768        .sched_in = vmx_sched_in,
7769
7770        .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7771        .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7772        .flush_log_dirty = vmx_flush_log_dirty,
7773        .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7774        .write_log_dirty = vmx_write_pml_buffer,
7775
7776        .pre_block = vmx_pre_block,
7777        .post_block = vmx_post_block,
7778
7779        .pmu_ops = &intel_pmu_ops,
7780
7781        .update_pi_irte = vmx_update_pi_irte,
7782
7783#ifdef CONFIG_X86_64
7784        .set_hv_timer = vmx_set_hv_timer,
7785        .cancel_hv_timer = vmx_cancel_hv_timer,
7786#endif
7787
7788        .setup_mce = vmx_setup_mce,
7789
7790        .smi_allowed = vmx_smi_allowed,
7791        .pre_enter_smm = vmx_pre_enter_smm,
7792        .pre_leave_smm = vmx_pre_leave_smm,
7793        .enable_smi_window = enable_smi_window,
7794
7795        .check_nested_events = NULL,
7796        .get_nested_state = NULL,
7797        .set_nested_state = NULL,
7798        .get_vmcs12_pages = NULL,
7799        .nested_enable_evmcs = NULL,
7800        .nested_get_evmcs_version = NULL,
7801        .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7802};
7803
7804static void vmx_cleanup_l1d_flush(void)
7805{
7806        if (vmx_l1d_flush_pages) {
7807                free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7808                vmx_l1d_flush_pages = NULL;
7809        }
7810        /* Restore state so sysfs ignores VMX */
7811        l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7812}
7813
7814static void vmx_exit(void)
7815{
7816#ifdef CONFIG_KEXEC_CORE
7817        RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7818        synchronize_rcu();
7819#endif
7820
7821        kvm_exit();
7822
7823#if IS_ENABLED(CONFIG_HYPERV)
7824        if (static_branch_unlikely(&enable_evmcs)) {
7825                int cpu;
7826                struct hv_vp_assist_page *vp_ap;
7827                /*
7828                 * Reset everything to support using non-enlightened VMCS
7829                 * access later (e.g. when we reload the module with
7830                 * enlightened_vmcs=0)
7831                 */
7832                for_each_online_cpu(cpu) {
7833                        vp_ap = hv_get_vp_assist_page(cpu);
7834
7835                        if (!vp_ap)
7836                                continue;
7837
7838                        vp_ap->current_nested_vmcs = 0;
7839                        vp_ap->enlighten_vmentry = 0;
7840                }
7841
7842                static_branch_disable(&enable_evmcs);
7843        }
7844#endif
7845        vmx_cleanup_l1d_flush();
7846}
7847module_exit(vmx_exit);
7848
7849static int __init vmx_init(void)
7850{
7851        int r;
7852
7853#if IS_ENABLED(CONFIG_HYPERV)
7854        /*
7855         * Enlightened VMCS usage should be recommended and the host needs
7856         * to support eVMCS v1 or above. We can also disable eVMCS support
7857         * with module parameter.
7858         */
7859        if (enlightened_vmcs &&
7860            ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7861            (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7862            KVM_EVMCS_VERSION) {
7863                int cpu;
7864
7865                /* Check that we have assist pages on all online CPUs */
7866                for_each_online_cpu(cpu) {
7867                        if (!hv_get_vp_assist_page(cpu)) {
7868                                enlightened_vmcs = false;
7869                                break;
7870                        }
7871                }
7872
7873                if (enlightened_vmcs) {
7874                        pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7875                        static_branch_enable(&enable_evmcs);
7876                }
7877        } else {
7878                enlightened_vmcs = false;
7879        }
7880#endif
7881
7882        r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7883                     __alignof__(struct vcpu_vmx), THIS_MODULE);
7884        if (r)
7885                return r;
7886
7887        /*
7888         * Must be called after kvm_init() so enable_ept is properly set
7889         * up. Hand the parameter mitigation value in which was stored in
7890         * the pre module init parser. If no parameter was given, it will
7891         * contain 'auto' which will be turned into the default 'cond'
7892         * mitigation mode.
7893         */
7894        if (boot_cpu_has(X86_BUG_L1TF)) {
7895                r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7896                if (r) {
7897                        vmx_exit();
7898                        return r;
7899                }
7900        }
7901
7902#ifdef CONFIG_KEXEC_CORE
7903        rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7904                           crash_vmclear_local_loaded_vmcss);
7905#endif
7906        vmx_check_vmcs12_offsets();
7907
7908        return 0;
7909}
7910module_init(vmx_init);
7911