linux/arch/x86/lib/insn-eval.c
<<
>>
Prefs
   1/*
   2 * Utility functions for x86 operand and address decoding
   3 *
   4 * Copyright (C) Intel Corporation 2017
   5 */
   6#include <linux/kernel.h>
   7#include <linux/string.h>
   8#include <linux/ratelimit.h>
   9#include <linux/mmu_context.h>
  10#include <asm/desc_defs.h>
  11#include <asm/desc.h>
  12#include <asm/inat.h>
  13#include <asm/insn.h>
  14#include <asm/insn-eval.h>
  15#include <asm/ldt.h>
  16#include <asm/vm86.h>
  17
  18#undef pr_fmt
  19#define pr_fmt(fmt) "insn: " fmt
  20
  21enum reg_type {
  22        REG_TYPE_RM = 0,
  23        REG_TYPE_INDEX,
  24        REG_TYPE_BASE,
  25};
  26
  27/**
  28 * is_string_insn() - Determine if instruction is a string instruction
  29 * @insn:       Instruction containing the opcode to inspect
  30 *
  31 * Returns:
  32 *
  33 * true if the instruction, determined by the opcode, is any of the
  34 * string instructions as defined in the Intel Software Development manual.
  35 * False otherwise.
  36 */
  37static bool is_string_insn(struct insn *insn)
  38{
  39        insn_get_opcode(insn);
  40
  41        /* All string instructions have a 1-byte opcode. */
  42        if (insn->opcode.nbytes != 1)
  43                return false;
  44
  45        switch (insn->opcode.bytes[0]) {
  46        case 0x6c ... 0x6f:     /* INS, OUTS */
  47        case 0xa4 ... 0xa7:     /* MOVS, CMPS */
  48        case 0xaa ... 0xaf:     /* STOS, LODS, SCAS */
  49                return true;
  50        default:
  51                return false;
  52        }
  53}
  54
  55/**
  56 * get_seg_reg_override_idx() - obtain segment register override index
  57 * @insn:       Valid instruction with segment override prefixes
  58 *
  59 * Inspect the instruction prefixes in @insn and find segment overrides, if any.
  60 *
  61 * Returns:
  62 *
  63 * A constant identifying the segment register to use, among CS, SS, DS,
  64 * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
  65 * prefixes were found.
  66 *
  67 * -EINVAL in case of error.
  68 */
  69static int get_seg_reg_override_idx(struct insn *insn)
  70{
  71        int idx = INAT_SEG_REG_DEFAULT;
  72        int num_overrides = 0, i;
  73
  74        insn_get_prefixes(insn);
  75
  76        /* Look for any segment override prefixes. */
  77        for (i = 0; i < insn->prefixes.nbytes; i++) {
  78                insn_attr_t attr;
  79
  80                attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
  81                switch (attr) {
  82                case INAT_MAKE_PREFIX(INAT_PFX_CS):
  83                        idx = INAT_SEG_REG_CS;
  84                        num_overrides++;
  85                        break;
  86                case INAT_MAKE_PREFIX(INAT_PFX_SS):
  87                        idx = INAT_SEG_REG_SS;
  88                        num_overrides++;
  89                        break;
  90                case INAT_MAKE_PREFIX(INAT_PFX_DS):
  91                        idx = INAT_SEG_REG_DS;
  92                        num_overrides++;
  93                        break;
  94                case INAT_MAKE_PREFIX(INAT_PFX_ES):
  95                        idx = INAT_SEG_REG_ES;
  96                        num_overrides++;
  97                        break;
  98                case INAT_MAKE_PREFIX(INAT_PFX_FS):
  99                        idx = INAT_SEG_REG_FS;
 100                        num_overrides++;
 101                        break;
 102                case INAT_MAKE_PREFIX(INAT_PFX_GS):
 103                        idx = INAT_SEG_REG_GS;
 104                        num_overrides++;
 105                        break;
 106                /* No default action needed. */
 107                }
 108        }
 109
 110        /* More than one segment override prefix leads to undefined behavior. */
 111        if (num_overrides > 1)
 112                return -EINVAL;
 113
 114        return idx;
 115}
 116
 117/**
 118 * check_seg_overrides() - check if segment override prefixes are allowed
 119 * @insn:       Valid instruction with segment override prefixes
 120 * @regoff:     Operand offset, in pt_regs, for which the check is performed
 121 *
 122 * For a particular register used in register-indirect addressing, determine if
 123 * segment override prefixes can be used. Specifically, no overrides are allowed
 124 * for rDI if used with a string instruction.
 125 *
 126 * Returns:
 127 *
 128 * True if segment override prefixes can be used with the register indicated
 129 * in @regoff. False if otherwise.
 130 */
 131static bool check_seg_overrides(struct insn *insn, int regoff)
 132{
 133        if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
 134                return false;
 135
 136        return true;
 137}
 138
 139/**
 140 * resolve_default_seg() - resolve default segment register index for an operand
 141 * @insn:       Instruction with opcode and address size. Must be valid.
 142 * @regs:       Register values as seen when entering kernel mode
 143 * @off:        Operand offset, in pt_regs, for which resolution is needed
 144 *
 145 * Resolve the default segment register index associated with the instruction
 146 * operand register indicated by @off. Such index is resolved based on defaults
 147 * described in the Intel Software Development Manual.
 148 *
 149 * Returns:
 150 *
 151 * If in protected mode, a constant identifying the segment register to use,
 152 * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
 153 *
 154 * -EINVAL in case of error.
 155 */
 156static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
 157{
 158        if (user_64bit_mode(regs))
 159                return INAT_SEG_REG_IGNORE;
 160        /*
 161         * Resolve the default segment register as described in Section 3.7.4
 162         * of the Intel Software Development Manual Vol. 1:
 163         *
 164         *  + DS for all references involving r[ABCD]X, and rSI.
 165         *  + If used in a string instruction, ES for rDI. Otherwise, DS.
 166         *  + AX, CX and DX are not valid register operands in 16-bit address
 167         *    encodings but are valid for 32-bit and 64-bit encodings.
 168         *  + -EDOM is reserved to identify for cases in which no register
 169         *    is used (i.e., displacement-only addressing). Use DS.
 170         *  + SS for rSP or rBP.
 171         *  + CS for rIP.
 172         */
 173
 174        switch (off) {
 175        case offsetof(struct pt_regs, ax):
 176        case offsetof(struct pt_regs, cx):
 177        case offsetof(struct pt_regs, dx):
 178                /* Need insn to verify address size. */
 179                if (insn->addr_bytes == 2)
 180                        return -EINVAL;
 181
 182                /* fall through */
 183
 184        case -EDOM:
 185        case offsetof(struct pt_regs, bx):
 186        case offsetof(struct pt_regs, si):
 187                return INAT_SEG_REG_DS;
 188
 189        case offsetof(struct pt_regs, di):
 190                if (is_string_insn(insn))
 191                        return INAT_SEG_REG_ES;
 192                return INAT_SEG_REG_DS;
 193
 194        case offsetof(struct pt_regs, bp):
 195        case offsetof(struct pt_regs, sp):
 196                return INAT_SEG_REG_SS;
 197
 198        case offsetof(struct pt_regs, ip):
 199                return INAT_SEG_REG_CS;
 200
 201        default:
 202                return -EINVAL;
 203        }
 204}
 205
 206/**
 207 * resolve_seg_reg() - obtain segment register index
 208 * @insn:       Instruction with operands
 209 * @regs:       Register values as seen when entering kernel mode
 210 * @regoff:     Operand offset, in pt_regs, used to deterimine segment register
 211 *
 212 * Determine the segment register associated with the operands and, if
 213 * applicable, prefixes and the instruction pointed by @insn.
 214 *
 215 * The segment register associated to an operand used in register-indirect
 216 * addressing depends on:
 217 *
 218 * a) Whether running in long mode (in such a case segments are ignored, except
 219 * if FS or GS are used).
 220 *
 221 * b) Whether segment override prefixes can be used. Certain instructions and
 222 *    registers do not allow override prefixes.
 223 *
 224 * c) Whether segment overrides prefixes are found in the instruction prefixes.
 225 *
 226 * d) If there are not segment override prefixes or they cannot be used, the
 227 *    default segment register associated with the operand register is used.
 228 *
 229 * The function checks first if segment override prefixes can be used with the
 230 * operand indicated by @regoff. If allowed, obtain such overridden segment
 231 * register index. Lastly, if not prefixes were found or cannot be used, resolve
 232 * the segment register index to use based on the defaults described in the
 233 * Intel documentation. In long mode, all segment register indexes will be
 234 * ignored, except if overrides were found for FS or GS. All these operations
 235 * are done using helper functions.
 236 *
 237 * The operand register, @regoff, is represented as the offset from the base of
 238 * pt_regs.
 239 *
 240 * As stated, the main use of this function is to determine the segment register
 241 * index based on the instruction, its operands and prefixes. Hence, @insn
 242 * must be valid. However, if @regoff indicates rIP, we don't need to inspect
 243 * @insn at all as in this case CS is used in all cases. This case is checked
 244 * before proceeding further.
 245 *
 246 * Please note that this function does not return the value in the segment
 247 * register (i.e., the segment selector) but our defined index. The segment
 248 * selector needs to be obtained using get_segment_selector() and passing the
 249 * segment register index resolved by this function.
 250 *
 251 * Returns:
 252 *
 253 * An index identifying the segment register to use, among CS, SS, DS,
 254 * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
 255 *
 256 * -EINVAL in case of error.
 257 */
 258static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
 259{
 260        int idx;
 261
 262        /*
 263         * In the unlikely event of having to resolve the segment register
 264         * index for rIP, do it first. Segment override prefixes should not
 265         * be used. Hence, it is not necessary to inspect the instruction,
 266         * which may be invalid at this point.
 267         */
 268        if (regoff == offsetof(struct pt_regs, ip)) {
 269                if (user_64bit_mode(regs))
 270                        return INAT_SEG_REG_IGNORE;
 271                else
 272                        return INAT_SEG_REG_CS;
 273        }
 274
 275        if (!insn)
 276                return -EINVAL;
 277
 278        if (!check_seg_overrides(insn, regoff))
 279                return resolve_default_seg(insn, regs, regoff);
 280
 281        idx = get_seg_reg_override_idx(insn);
 282        if (idx < 0)
 283                return idx;
 284
 285        if (idx == INAT_SEG_REG_DEFAULT)
 286                return resolve_default_seg(insn, regs, regoff);
 287
 288        /*
 289         * In long mode, segment override prefixes are ignored, except for
 290         * overrides for FS and GS.
 291         */
 292        if (user_64bit_mode(regs)) {
 293                if (idx != INAT_SEG_REG_FS &&
 294                    idx != INAT_SEG_REG_GS)
 295                        idx = INAT_SEG_REG_IGNORE;
 296        }
 297
 298        return idx;
 299}
 300
 301/**
 302 * get_segment_selector() - obtain segment selector
 303 * @regs:               Register values as seen when entering kernel mode
 304 * @seg_reg_idx:        Segment register index to use
 305 *
 306 * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
 307 * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
 308 * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
 309 * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
 310 * registers. This done for only for completeness as in CONFIG_X86_64 segment
 311 * registers are ignored.
 312 *
 313 * Returns:
 314 *
 315 * Value of the segment selector, including null when running in
 316 * long mode.
 317 *
 318 * -EINVAL on error.
 319 */
 320static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
 321{
 322#ifdef CONFIG_X86_64
 323        unsigned short sel;
 324
 325        switch (seg_reg_idx) {
 326        case INAT_SEG_REG_IGNORE:
 327                return 0;
 328        case INAT_SEG_REG_CS:
 329                return (unsigned short)(regs->cs & 0xffff);
 330        case INAT_SEG_REG_SS:
 331                return (unsigned short)(regs->ss & 0xffff);
 332        case INAT_SEG_REG_DS:
 333                savesegment(ds, sel);
 334                return sel;
 335        case INAT_SEG_REG_ES:
 336                savesegment(es, sel);
 337                return sel;
 338        case INAT_SEG_REG_FS:
 339                savesegment(fs, sel);
 340                return sel;
 341        case INAT_SEG_REG_GS:
 342                savesegment(gs, sel);
 343                return sel;
 344        default:
 345                return -EINVAL;
 346        }
 347#else /* CONFIG_X86_32 */
 348        struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
 349
 350        if (v8086_mode(regs)) {
 351                switch (seg_reg_idx) {
 352                case INAT_SEG_REG_CS:
 353                        return (unsigned short)(regs->cs & 0xffff);
 354                case INAT_SEG_REG_SS:
 355                        return (unsigned short)(regs->ss & 0xffff);
 356                case INAT_SEG_REG_DS:
 357                        return vm86regs->ds;
 358                case INAT_SEG_REG_ES:
 359                        return vm86regs->es;
 360                case INAT_SEG_REG_FS:
 361                        return vm86regs->fs;
 362                case INAT_SEG_REG_GS:
 363                        return vm86regs->gs;
 364                case INAT_SEG_REG_IGNORE:
 365                        /* fall through */
 366                default:
 367                        return -EINVAL;
 368                }
 369        }
 370
 371        switch (seg_reg_idx) {
 372        case INAT_SEG_REG_CS:
 373                return (unsigned short)(regs->cs & 0xffff);
 374        case INAT_SEG_REG_SS:
 375                return (unsigned short)(regs->ss & 0xffff);
 376        case INAT_SEG_REG_DS:
 377                return (unsigned short)(regs->ds & 0xffff);
 378        case INAT_SEG_REG_ES:
 379                return (unsigned short)(regs->es & 0xffff);
 380        case INAT_SEG_REG_FS:
 381                return (unsigned short)(regs->fs & 0xffff);
 382        case INAT_SEG_REG_GS:
 383                /*
 384                 * GS may or may not be in regs as per CONFIG_X86_32_LAZY_GS.
 385                 * The macro below takes care of both cases.
 386                 */
 387                return get_user_gs(regs);
 388        case INAT_SEG_REG_IGNORE:
 389                /* fall through */
 390        default:
 391                return -EINVAL;
 392        }
 393#endif /* CONFIG_X86_64 */
 394}
 395
 396static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
 397                          enum reg_type type)
 398{
 399        int regno = 0;
 400
 401        static const int regoff[] = {
 402                offsetof(struct pt_regs, ax),
 403                offsetof(struct pt_regs, cx),
 404                offsetof(struct pt_regs, dx),
 405                offsetof(struct pt_regs, bx),
 406                offsetof(struct pt_regs, sp),
 407                offsetof(struct pt_regs, bp),
 408                offsetof(struct pt_regs, si),
 409                offsetof(struct pt_regs, di),
 410#ifdef CONFIG_X86_64
 411                offsetof(struct pt_regs, r8),
 412                offsetof(struct pt_regs, r9),
 413                offsetof(struct pt_regs, r10),
 414                offsetof(struct pt_regs, r11),
 415                offsetof(struct pt_regs, r12),
 416                offsetof(struct pt_regs, r13),
 417                offsetof(struct pt_regs, r14),
 418                offsetof(struct pt_regs, r15),
 419#endif
 420        };
 421        int nr_registers = ARRAY_SIZE(regoff);
 422        /*
 423         * Don't possibly decode a 32-bit instructions as
 424         * reading a 64-bit-only register.
 425         */
 426        if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
 427                nr_registers -= 8;
 428
 429        switch (type) {
 430        case REG_TYPE_RM:
 431                regno = X86_MODRM_RM(insn->modrm.value);
 432
 433                /*
 434                 * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
 435                 * follows the ModRM byte.
 436                 */
 437                if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
 438                        return -EDOM;
 439
 440                if (X86_REX_B(insn->rex_prefix.value))
 441                        regno += 8;
 442                break;
 443
 444        case REG_TYPE_INDEX:
 445                regno = X86_SIB_INDEX(insn->sib.value);
 446                if (X86_REX_X(insn->rex_prefix.value))
 447                        regno += 8;
 448
 449                /*
 450                 * If ModRM.mod != 3 and SIB.index = 4 the scale*index
 451                 * portion of the address computation is null. This is
 452                 * true only if REX.X is 0. In such a case, the SIB index
 453                 * is used in the address computation.
 454                 */
 455                if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
 456                        return -EDOM;
 457                break;
 458
 459        case REG_TYPE_BASE:
 460                regno = X86_SIB_BASE(insn->sib.value);
 461                /*
 462                 * If ModRM.mod is 0 and SIB.base == 5, the base of the
 463                 * register-indirect addressing is 0. In this case, a
 464                 * 32-bit displacement follows the SIB byte.
 465                 */
 466                if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
 467                        return -EDOM;
 468
 469                if (X86_REX_B(insn->rex_prefix.value))
 470                        regno += 8;
 471                break;
 472
 473        default:
 474                pr_err_ratelimited("invalid register type: %d\n", type);
 475                return -EINVAL;
 476        }
 477
 478        if (regno >= nr_registers) {
 479                WARN_ONCE(1, "decoded an instruction with an invalid register");
 480                return -EINVAL;
 481        }
 482        return regoff[regno];
 483}
 484
 485/**
 486 * get_reg_offset_16() - Obtain offset of register indicated by instruction
 487 * @insn:       Instruction containing ModRM byte
 488 * @regs:       Register values as seen when entering kernel mode
 489 * @offs1:      Offset of the first operand register
 490 * @offs2:      Offset of the second opeand register, if applicable
 491 *
 492 * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
 493 * in @insn. This function is to be used with 16-bit address encodings. The
 494 * @offs1 and @offs2 will be written with the offset of the two registers
 495 * indicated by the instruction. In cases where any of the registers is not
 496 * referenced by the instruction, the value will be set to -EDOM.
 497 *
 498 * Returns:
 499 *
 500 * 0 on success, -EINVAL on error.
 501 */
 502static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
 503                             int *offs1, int *offs2)
 504{
 505        /*
 506         * 16-bit addressing can use one or two registers. Specifics of
 507         * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
 508         * ModR/M Byte" of the Intel Software Development Manual.
 509         */
 510        static const int regoff1[] = {
 511                offsetof(struct pt_regs, bx),
 512                offsetof(struct pt_regs, bx),
 513                offsetof(struct pt_regs, bp),
 514                offsetof(struct pt_regs, bp),
 515                offsetof(struct pt_regs, si),
 516                offsetof(struct pt_regs, di),
 517                offsetof(struct pt_regs, bp),
 518                offsetof(struct pt_regs, bx),
 519        };
 520
 521        static const int regoff2[] = {
 522                offsetof(struct pt_regs, si),
 523                offsetof(struct pt_regs, di),
 524                offsetof(struct pt_regs, si),
 525                offsetof(struct pt_regs, di),
 526                -EDOM,
 527                -EDOM,
 528                -EDOM,
 529                -EDOM,
 530        };
 531
 532        if (!offs1 || !offs2)
 533                return -EINVAL;
 534
 535        /* Operand is a register, use the generic function. */
 536        if (X86_MODRM_MOD(insn->modrm.value) == 3) {
 537                *offs1 = insn_get_modrm_rm_off(insn, regs);
 538                *offs2 = -EDOM;
 539                return 0;
 540        }
 541
 542        *offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
 543        *offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
 544
 545        /*
 546         * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
 547         * only addressing. This means that no registers are involved in
 548         * computing the effective address. Thus, ensure that the first
 549         * register offset is invalild. The second register offset is already
 550         * invalid under the aforementioned conditions.
 551         */
 552        if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
 553            (X86_MODRM_RM(insn->modrm.value) == 6))
 554                *offs1 = -EDOM;
 555
 556        return 0;
 557}
 558
 559/**
 560 * get_desc() - Obtain contents of a segment descriptor
 561 * @out:        Segment descriptor contents on success
 562 * @sel:        Segment selector
 563 *
 564 * Given a segment selector, obtain a pointer to the segment descriptor.
 565 * Both global and local descriptor tables are supported.
 566 *
 567 * Returns:
 568 *
 569 * True on success, false on failure.
 570 *
 571 * NULL on error.
 572 */
 573static bool get_desc(struct desc_struct *out, unsigned short sel)
 574{
 575        struct desc_ptr gdt_desc = {0, 0};
 576        unsigned long desc_base;
 577
 578#ifdef CONFIG_MODIFY_LDT_SYSCALL
 579        if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
 580                bool success = false;
 581                struct ldt_struct *ldt;
 582
 583                /* Bits [15:3] contain the index of the desired entry. */
 584                sel >>= 3;
 585
 586                mutex_lock(&current->active_mm->context.lock);
 587                ldt = current->active_mm->context.ldt;
 588                if (ldt && sel < ldt->nr_entries) {
 589                        *out = ldt->entries[sel];
 590                        success = true;
 591                }
 592
 593                mutex_unlock(&current->active_mm->context.lock);
 594
 595                return success;
 596        }
 597#endif
 598        native_store_gdt(&gdt_desc);
 599
 600        /*
 601         * Segment descriptors have a size of 8 bytes. Thus, the index is
 602         * multiplied by 8 to obtain the memory offset of the desired descriptor
 603         * from the base of the GDT. As bits [15:3] of the segment selector
 604         * contain the index, it can be regarded as multiplied by 8 already.
 605         * All that remains is to clear bits [2:0].
 606         */
 607        desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
 608
 609        if (desc_base > gdt_desc.size)
 610                return false;
 611
 612        *out = *(struct desc_struct *)(gdt_desc.address + desc_base);
 613        return true;
 614}
 615
 616/**
 617 * insn_get_seg_base() - Obtain base address of segment descriptor.
 618 * @regs:               Register values as seen when entering kernel mode
 619 * @seg_reg_idx:        Index of the segment register pointing to seg descriptor
 620 *
 621 * Obtain the base address of the segment as indicated by the segment descriptor
 622 * pointed by the segment selector. The segment selector is obtained from the
 623 * input segment register index @seg_reg_idx.
 624 *
 625 * Returns:
 626 *
 627 * In protected mode, base address of the segment. Zero in long mode,
 628 * except when FS or GS are used. In virtual-8086 mode, the segment
 629 * selector shifted 4 bits to the right.
 630 *
 631 * -1L in case of error.
 632 */
 633unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
 634{
 635        struct desc_struct desc;
 636        short sel;
 637
 638        sel = get_segment_selector(regs, seg_reg_idx);
 639        if (sel < 0)
 640                return -1L;
 641
 642        if (v8086_mode(regs))
 643                /*
 644                 * Base is simply the segment selector shifted 4
 645                 * bits to the right.
 646                 */
 647                return (unsigned long)(sel << 4);
 648
 649        if (user_64bit_mode(regs)) {
 650                /*
 651                 * Only FS or GS will have a base address, the rest of
 652                 * the segments' bases are forced to 0.
 653                 */
 654                unsigned long base;
 655
 656                if (seg_reg_idx == INAT_SEG_REG_FS)
 657                        rdmsrl(MSR_FS_BASE, base);
 658                else if (seg_reg_idx == INAT_SEG_REG_GS)
 659                        /*
 660                         * swapgs was called at the kernel entry point. Thus,
 661                         * MSR_KERNEL_GS_BASE will have the user-space GS base.
 662                         */
 663                        rdmsrl(MSR_KERNEL_GS_BASE, base);
 664                else
 665                        base = 0;
 666                return base;
 667        }
 668
 669        /* In protected mode the segment selector cannot be null. */
 670        if (!sel)
 671                return -1L;
 672
 673        if (!get_desc(&desc, sel))
 674                return -1L;
 675
 676        return get_desc_base(&desc);
 677}
 678
 679/**
 680 * get_seg_limit() - Obtain the limit of a segment descriptor
 681 * @regs:               Register values as seen when entering kernel mode
 682 * @seg_reg_idx:        Index of the segment register pointing to seg descriptor
 683 *
 684 * Obtain the limit of the segment as indicated by the segment descriptor
 685 * pointed by the segment selector. The segment selector is obtained from the
 686 * input segment register index @seg_reg_idx.
 687 *
 688 * Returns:
 689 *
 690 * In protected mode, the limit of the segment descriptor in bytes.
 691 * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
 692 * limit is returned as -1L to imply a limit-less segment.
 693 *
 694 * Zero is returned on error.
 695 */
 696static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
 697{
 698        struct desc_struct desc;
 699        unsigned long limit;
 700        short sel;
 701
 702        sel = get_segment_selector(regs, seg_reg_idx);
 703        if (sel < 0)
 704                return 0;
 705
 706        if (user_64bit_mode(regs) || v8086_mode(regs))
 707                return -1L;
 708
 709        if (!sel)
 710                return 0;
 711
 712        if (!get_desc(&desc, sel))
 713                return 0;
 714
 715        /*
 716         * If the granularity bit is set, the limit is given in multiples
 717         * of 4096. This also means that the 12 least significant bits are
 718         * not tested when checking the segment limits. In practice,
 719         * this means that the segment ends in (limit << 12) + 0xfff.
 720         */
 721        limit = get_desc_limit(&desc);
 722        if (desc.g)
 723                limit = (limit << 12) + 0xfff;
 724
 725        return limit;
 726}
 727
 728/**
 729 * insn_get_code_seg_params() - Obtain code segment parameters
 730 * @regs:       Structure with register values as seen when entering kernel mode
 731 *
 732 * Obtain address and operand sizes of the code segment. It is obtained from the
 733 * selector contained in the CS register in regs. In protected mode, the default
 734 * address is determined by inspecting the L and D bits of the segment
 735 * descriptor. In virtual-8086 mode, the default is always two bytes for both
 736 * address and operand sizes.
 737 *
 738 * Returns:
 739 *
 740 * An int containing ORed-in default parameters on success.
 741 *
 742 * -EINVAL on error.
 743 */
 744int insn_get_code_seg_params(struct pt_regs *regs)
 745{
 746        struct desc_struct desc;
 747        short sel;
 748
 749        if (v8086_mode(regs))
 750                /* Address and operand size are both 16-bit. */
 751                return INSN_CODE_SEG_PARAMS(2, 2);
 752
 753        sel = get_segment_selector(regs, INAT_SEG_REG_CS);
 754        if (sel < 0)
 755                return sel;
 756
 757        if (!get_desc(&desc, sel))
 758                return -EINVAL;
 759
 760        /*
 761         * The most significant byte of the Type field of the segment descriptor
 762         * determines whether a segment contains data or code. If this is a data
 763         * segment, return error.
 764         */
 765        if (!(desc.type & BIT(3)))
 766                return -EINVAL;
 767
 768        switch ((desc.l << 1) | desc.d) {
 769        case 0: /*
 770                 * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
 771                 * both 16-bit.
 772                 */
 773                return INSN_CODE_SEG_PARAMS(2, 2);
 774        case 1: /*
 775                 * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
 776                 * both 32-bit.
 777                 */
 778                return INSN_CODE_SEG_PARAMS(4, 4);
 779        case 2: /*
 780                 * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
 781                 * operand size is 32-bit.
 782                 */
 783                return INSN_CODE_SEG_PARAMS(4, 8);
 784        case 3: /* Invalid setting. CS.L=1, CS.D=1 */
 785                /* fall through */
 786        default:
 787                return -EINVAL;
 788        }
 789}
 790
 791/**
 792 * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
 793 * @insn:       Instruction containing the ModRM byte
 794 * @regs:       Register values as seen when entering kernel mode
 795 *
 796 * Returns:
 797 *
 798 * The register indicated by the r/m part of the ModRM byte. The
 799 * register is obtained as an offset from the base of pt_regs. In specific
 800 * cases, the returned value can be -EDOM to indicate that the particular value
 801 * of ModRM does not refer to a register and shall be ignored.
 802 */
 803int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
 804{
 805        return get_reg_offset(insn, regs, REG_TYPE_RM);
 806}
 807
 808/**
 809 * get_seg_base_limit() - obtain base address and limit of a segment
 810 * @insn:       Instruction. Must be valid.
 811 * @regs:       Register values as seen when entering kernel mode
 812 * @regoff:     Operand offset, in pt_regs, used to resolve segment descriptor
 813 * @base:       Obtained segment base
 814 * @limit:      Obtained segment limit
 815 *
 816 * Obtain the base address and limit of the segment associated with the operand
 817 * @regoff and, if any or allowed, override prefixes in @insn. This function is
 818 * different from insn_get_seg_base() as the latter does not resolve the segment
 819 * associated with the instruction operand. If a limit is not needed (e.g.,
 820 * when running in long mode), @limit can be NULL.
 821 *
 822 * Returns:
 823 *
 824 * 0 on success. @base and @limit will contain the base address and of the
 825 * resolved segment, respectively.
 826 *
 827 * -EINVAL on error.
 828 */
 829static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs,
 830                              int regoff, unsigned long *base,
 831                              unsigned long *limit)
 832{
 833        int seg_reg_idx;
 834
 835        if (!base)
 836                return -EINVAL;
 837
 838        seg_reg_idx = resolve_seg_reg(insn, regs, regoff);
 839        if (seg_reg_idx < 0)
 840                return seg_reg_idx;
 841
 842        *base = insn_get_seg_base(regs, seg_reg_idx);
 843        if (*base == -1L)
 844                return -EINVAL;
 845
 846        if (!limit)
 847                return 0;
 848
 849        *limit = get_seg_limit(regs, seg_reg_idx);
 850        if (!(*limit))
 851                return -EINVAL;
 852
 853        return 0;
 854}
 855
 856/**
 857 * get_eff_addr_reg() - Obtain effective address from register operand
 858 * @insn:       Instruction. Must be valid.
 859 * @regs:       Register values as seen when entering kernel mode
 860 * @regoff:     Obtained operand offset, in pt_regs, with the effective address
 861 * @eff_addr:   Obtained effective address
 862 *
 863 * Obtain the effective address stored in the register operand as indicated by
 864 * the ModRM byte. This function is to be used only with register addressing
 865 * (i.e.,  ModRM.mod is 3). The effective address is saved in @eff_addr. The
 866 * register operand, as an offset from the base of pt_regs, is saved in @regoff;
 867 * such offset can then be used to resolve the segment associated with the
 868 * operand. This function can be used with any of the supported address sizes
 869 * in x86.
 870 *
 871 * Returns:
 872 *
 873 * 0 on success. @eff_addr will have the effective address stored in the
 874 * operand indicated by ModRM. @regoff will have such operand as an offset from
 875 * the base of pt_regs.
 876 *
 877 * -EINVAL on error.
 878 */
 879static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
 880                            int *regoff, long *eff_addr)
 881{
 882        insn_get_modrm(insn);
 883
 884        if (!insn->modrm.nbytes)
 885                return -EINVAL;
 886
 887        if (X86_MODRM_MOD(insn->modrm.value) != 3)
 888                return -EINVAL;
 889
 890        *regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
 891        if (*regoff < 0)
 892                return -EINVAL;
 893
 894        /* Ignore bytes that are outside the address size. */
 895        if (insn->addr_bytes == 2)
 896                *eff_addr = regs_get_register(regs, *regoff) & 0xffff;
 897        else if (insn->addr_bytes == 4)
 898                *eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
 899        else /* 64-bit address */
 900                *eff_addr = regs_get_register(regs, *regoff);
 901
 902        return 0;
 903}
 904
 905/**
 906 * get_eff_addr_modrm() - Obtain referenced effective address via ModRM
 907 * @insn:       Instruction. Must be valid.
 908 * @regs:       Register values as seen when entering kernel mode
 909 * @regoff:     Obtained operand offset, in pt_regs, associated with segment
 910 * @eff_addr:   Obtained effective address
 911 *
 912 * Obtain the effective address referenced by the ModRM byte of @insn. After
 913 * identifying the registers involved in the register-indirect memory reference,
 914 * its value is obtained from the operands in @regs. The computed address is
 915 * stored @eff_addr. Also, the register operand that indicates the associated
 916 * segment is stored in @regoff, this parameter can later be used to determine
 917 * such segment.
 918 *
 919 * Returns:
 920 *
 921 * 0 on success. @eff_addr will have the referenced effective address. @regoff
 922 * will have a register, as an offset from the base of pt_regs, that can be used
 923 * to resolve the associated segment.
 924 *
 925 * -EINVAL on error.
 926 */
 927static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
 928                              int *regoff, long *eff_addr)
 929{
 930        long tmp;
 931
 932        if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
 933                return -EINVAL;
 934
 935        insn_get_modrm(insn);
 936
 937        if (!insn->modrm.nbytes)
 938                return -EINVAL;
 939
 940        if (X86_MODRM_MOD(insn->modrm.value) > 2)
 941                return -EINVAL;
 942
 943        *regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
 944
 945        /*
 946         * -EDOM means that we must ignore the address_offset. In such a case,
 947         * in 64-bit mode the effective address relative to the rIP of the
 948         * following instruction.
 949         */
 950        if (*regoff == -EDOM) {
 951                if (user_64bit_mode(regs))
 952                        tmp = regs->ip + insn->length;
 953                else
 954                        tmp = 0;
 955        } else if (*regoff < 0) {
 956                return -EINVAL;
 957        } else {
 958                tmp = regs_get_register(regs, *regoff);
 959        }
 960
 961        if (insn->addr_bytes == 4) {
 962                int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value;
 963
 964                *eff_addr = addr32 & 0xffffffff;
 965        } else {
 966                *eff_addr = tmp + insn->displacement.value;
 967        }
 968
 969        return 0;
 970}
 971
 972/**
 973 * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
 974 * @insn:       Instruction. Must be valid.
 975 * @regs:       Register values as seen when entering kernel mode
 976 * @regoff:     Obtained operand offset, in pt_regs, associated with segment
 977 * @eff_addr:   Obtained effective address
 978 *
 979 * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
 980 * After identifying the registers involved in the register-indirect memory
 981 * reference, its value is obtained from the operands in @regs. The computed
 982 * address is stored @eff_addr. Also, the register operand that indicates
 983 * the associated segment is stored in @regoff, this parameter can later be used
 984 * to determine such segment.
 985 *
 986 * Returns:
 987 *
 988 * 0 on success. @eff_addr will have the referenced effective address. @regoff
 989 * will have a register, as an offset from the base of pt_regs, that can be used
 990 * to resolve the associated segment.
 991 *
 992 * -EINVAL on error.
 993 */
 994static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
 995                                 int *regoff, short *eff_addr)
 996{
 997        int addr_offset1, addr_offset2, ret;
 998        short addr1 = 0, addr2 = 0, displacement;
 999
1000        if (insn->addr_bytes != 2)
1001                return -EINVAL;
1002
1003        insn_get_modrm(insn);
1004
1005        if (!insn->modrm.nbytes)
1006                return -EINVAL;
1007
1008        if (X86_MODRM_MOD(insn->modrm.value) > 2)
1009                return -EINVAL;
1010
1011        ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
1012        if (ret < 0)
1013                return -EINVAL;
1014
1015        /*
1016         * Don't fail on invalid offset values. They might be invalid because
1017         * they cannot be used for this particular value of ModRM. Instead, use
1018         * them in the computation only if they contain a valid value.
1019         */
1020        if (addr_offset1 != -EDOM)
1021                addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
1022
1023        if (addr_offset2 != -EDOM)
1024                addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
1025
1026        displacement = insn->displacement.value & 0xffff;
1027        *eff_addr = addr1 + addr2 + displacement;
1028
1029        /*
1030         * The first operand register could indicate to use of either SS or DS
1031         * registers to obtain the segment selector.  The second operand
1032         * register can only indicate the use of DS. Thus, the first operand
1033         * will be used to obtain the segment selector.
1034         */
1035        *regoff = addr_offset1;
1036
1037        return 0;
1038}
1039
1040/**
1041 * get_eff_addr_sib() - Obtain referenced effective address via SIB
1042 * @insn:       Instruction. Must be valid.
1043 * @regs:       Register values as seen when entering kernel mode
1044 * @regoff:     Obtained operand offset, in pt_regs, associated with segment
1045 * @eff_addr:   Obtained effective address
1046 *
1047 * Obtain the effective address referenced by the SIB byte of @insn. After
1048 * identifying the registers involved in the indexed, register-indirect memory
1049 * reference, its value is obtained from the operands in @regs. The computed
1050 * address is stored @eff_addr. Also, the register operand that indicates the
1051 * associated segment is stored in @regoff, this parameter can later be used to
1052 * determine such segment.
1053 *
1054 * Returns:
1055 *
1056 * 0 on success. @eff_addr will have the referenced effective address.
1057 * @base_offset will have a register, as an offset from the base of pt_regs,
1058 * that can be used to resolve the associated segment.
1059 *
1060 * -EINVAL on error.
1061 */
1062static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
1063                            int *base_offset, long *eff_addr)
1064{
1065        long base, indx;
1066        int indx_offset;
1067
1068        if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1069                return -EINVAL;
1070
1071        insn_get_modrm(insn);
1072
1073        if (!insn->modrm.nbytes)
1074                return -EINVAL;
1075
1076        if (X86_MODRM_MOD(insn->modrm.value) > 2)
1077                return -EINVAL;
1078
1079        insn_get_sib(insn);
1080
1081        if (!insn->sib.nbytes)
1082                return -EINVAL;
1083
1084        *base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
1085        indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
1086
1087        /*
1088         * Negative values in the base and index offset means an error when
1089         * decoding the SIB byte. Except -EDOM, which means that the registers
1090         * should not be used in the address computation.
1091         */
1092        if (*base_offset == -EDOM)
1093                base = 0;
1094        else if (*base_offset < 0)
1095                return -EINVAL;
1096        else
1097                base = regs_get_register(regs, *base_offset);
1098
1099        if (indx_offset == -EDOM)
1100                indx = 0;
1101        else if (indx_offset < 0)
1102                return -EINVAL;
1103        else
1104                indx = regs_get_register(regs, indx_offset);
1105
1106        if (insn->addr_bytes == 4) {
1107                int addr32, base32, idx32;
1108
1109                base32 = base & 0xffffffff;
1110                idx32 = indx & 0xffffffff;
1111
1112                addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value));
1113                addr32 += insn->displacement.value;
1114
1115                *eff_addr = addr32 & 0xffffffff;
1116        } else {
1117                *eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value));
1118                *eff_addr += insn->displacement.value;
1119        }
1120
1121        return 0;
1122}
1123
1124/**
1125 * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
1126 * @insn:       Instruction containing ModRM byte and displacement
1127 * @regs:       Register values as seen when entering kernel mode
1128 *
1129 * This function is to be used with 16-bit address encodings. Obtain the memory
1130 * address referred by the instruction's ModRM and displacement bytes. Also, the
1131 * segment used as base is determined by either any segment override prefixes in
1132 * @insn or the default segment of the registers involved in the address
1133 * computation. In protected mode, segment limits are enforced.
1134 *
1135 * Returns:
1136 *
1137 * Linear address referenced by the instruction operands on success.
1138 *
1139 * -1L on error.
1140 */
1141static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
1142{
1143        unsigned long linear_addr = -1L, seg_base, seg_limit;
1144        int ret, regoff;
1145        short eff_addr;
1146        long tmp;
1147
1148        insn_get_modrm(insn);
1149        insn_get_displacement(insn);
1150
1151        if (insn->addr_bytes != 2)
1152                goto out;
1153
1154        if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1155                ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1156                if (ret)
1157                        goto out;
1158
1159                eff_addr = tmp;
1160        } else {
1161                ret = get_eff_addr_modrm_16(insn, regs, &regoff, &eff_addr);
1162                if (ret)
1163                        goto out;
1164        }
1165
1166        ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1167        if (ret)
1168                goto out;
1169
1170        /*
1171         * Before computing the linear address, make sure the effective address
1172         * is within the limits of the segment. In virtual-8086 mode, segment
1173         * limits are not enforced. In such a case, the segment limit is -1L to
1174         * reflect this fact.
1175         */
1176        if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
1177                goto out;
1178
1179        linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
1180
1181        /* Limit linear address to 20 bits */
1182        if (v8086_mode(regs))
1183                linear_addr &= 0xfffff;
1184
1185out:
1186        return (void __user *)linear_addr;
1187}
1188
1189/**
1190 * get_addr_ref_32() - Obtain a 32-bit linear address
1191 * @insn:       Instruction with ModRM, SIB bytes and displacement
1192 * @regs:       Register values as seen when entering kernel mode
1193 *
1194 * This function is to be used with 32-bit address encodings to obtain the
1195 * linear memory address referred by the instruction's ModRM, SIB,
1196 * displacement bytes and segment base address, as applicable. If in protected
1197 * mode, segment limits are enforced.
1198 *
1199 * Returns:
1200 *
1201 * Linear address referenced by instruction and registers on success.
1202 *
1203 * -1L on error.
1204 */
1205static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs)
1206{
1207        unsigned long linear_addr = -1L, seg_base, seg_limit;
1208        int eff_addr, regoff;
1209        long tmp;
1210        int ret;
1211
1212        if (insn->addr_bytes != 4)
1213                goto out;
1214
1215        if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1216                ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1217                if (ret)
1218                        goto out;
1219
1220                eff_addr = tmp;
1221
1222        } else {
1223                if (insn->sib.nbytes) {
1224                        ret = get_eff_addr_sib(insn, regs, &regoff, &tmp);
1225                        if (ret)
1226                                goto out;
1227
1228                        eff_addr = tmp;
1229                } else {
1230                        ret = get_eff_addr_modrm(insn, regs, &regoff, &tmp);
1231                        if (ret)
1232                                goto out;
1233
1234                        eff_addr = tmp;
1235                }
1236        }
1237
1238        ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1239        if (ret)
1240                goto out;
1241
1242        /*
1243         * In protected mode, before computing the linear address, make sure
1244         * the effective address is within the limits of the segment.
1245         * 32-bit addresses can be used in long and virtual-8086 modes if an
1246         * address override prefix is used. In such cases, segment limits are
1247         * not enforced. When in virtual-8086 mode, the segment limit is -1L
1248         * to reflect this situation.
1249         *
1250         * After computed, the effective address is treated as an unsigned
1251         * quantity.
1252         */
1253        if (!user_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit))
1254                goto out;
1255
1256        /*
1257         * Even though 32-bit address encodings are allowed in virtual-8086
1258         * mode, the address range is still limited to [0x-0xffff].
1259         */
1260        if (v8086_mode(regs) && (eff_addr & ~0xffff))
1261                goto out;
1262
1263        /*
1264         * Data type long could be 64 bits in size. Ensure that our 32-bit
1265         * effective address is not sign-extended when computing the linear
1266         * address.
1267         */
1268        linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base;
1269
1270        /* Limit linear address to 20 bits */
1271        if (v8086_mode(regs))
1272                linear_addr &= 0xfffff;
1273
1274out:
1275        return (void __user *)linear_addr;
1276}
1277
1278/**
1279 * get_addr_ref_64() - Obtain a 64-bit linear address
1280 * @insn:       Instruction struct with ModRM and SIB bytes and displacement
1281 * @regs:       Structure with register values as seen when entering kernel mode
1282 *
1283 * This function is to be used with 64-bit address encodings to obtain the
1284 * linear memory address referred by the instruction's ModRM, SIB,
1285 * displacement bytes and segment base address, as applicable.
1286 *
1287 * Returns:
1288 *
1289 * Linear address referenced by instruction and registers on success.
1290 *
1291 * -1L on error.
1292 */
1293#ifndef CONFIG_X86_64
1294static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1295{
1296        return (void __user *)-1L;
1297}
1298#else
1299static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1300{
1301        unsigned long linear_addr = -1L, seg_base;
1302        int regoff, ret;
1303        long eff_addr;
1304
1305        if (insn->addr_bytes != 8)
1306                goto out;
1307
1308        if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1309                ret = get_eff_addr_reg(insn, regs, &regoff, &eff_addr);
1310                if (ret)
1311                        goto out;
1312
1313        } else {
1314                if (insn->sib.nbytes) {
1315                        ret = get_eff_addr_sib(insn, regs, &regoff, &eff_addr);
1316                        if (ret)
1317                                goto out;
1318                } else {
1319                        ret = get_eff_addr_modrm(insn, regs, &regoff, &eff_addr);
1320                        if (ret)
1321                                goto out;
1322                }
1323
1324        }
1325
1326        ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL);
1327        if (ret)
1328                goto out;
1329
1330        linear_addr = (unsigned long)eff_addr + seg_base;
1331
1332out:
1333        return (void __user *)linear_addr;
1334}
1335#endif /* CONFIG_X86_64 */
1336
1337/**
1338 * insn_get_addr_ref() - Obtain the linear address referred by instruction
1339 * @insn:       Instruction structure containing ModRM byte and displacement
1340 * @regs:       Structure with register values as seen when entering kernel mode
1341 *
1342 * Obtain the linear address referred by the instruction's ModRM, SIB and
1343 * displacement bytes, and segment base, as applicable. In protected mode,
1344 * segment limits are enforced.
1345 *
1346 * Returns:
1347 *
1348 * Linear address referenced by instruction and registers on success.
1349 *
1350 * -1L on error.
1351 */
1352void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
1353{
1354        if (!insn || !regs)
1355                return (void __user *)-1L;
1356
1357        switch (insn->addr_bytes) {
1358        case 2:
1359                return get_addr_ref_16(insn, regs);
1360        case 4:
1361                return get_addr_ref_32(insn, regs);
1362        case 8:
1363                return get_addr_ref_64(insn, regs);
1364        default:
1365                return (void __user *)-1L;
1366        }
1367}
1368