linux/arch/x86/platform/efi/quirks.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#define pr_fmt(fmt) "efi: " fmt
   3
   4#include <linux/init.h>
   5#include <linux/kernel.h>
   6#include <linux/string.h>
   7#include <linux/time.h>
   8#include <linux/types.h>
   9#include <linux/efi.h>
  10#include <linux/slab.h>
  11#include <linux/memblock.h>
  12#include <linux/acpi.h>
  13#include <linux/dmi.h>
  14
  15#include <asm/e820/api.h>
  16#include <asm/efi.h>
  17#include <asm/uv/uv.h>
  18#include <asm/cpu_device_id.h>
  19#include <asm/reboot.h>
  20
  21#define EFI_MIN_RESERVE 5120
  22
  23#define EFI_DUMMY_GUID \
  24        EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
  25
  26#define QUARK_CSH_SIGNATURE             0x5f435348      /* _CSH */
  27#define QUARK_SECURITY_HEADER_SIZE      0x400
  28
  29/*
  30 * Header prepended to the standard EFI capsule on Quark systems the are based
  31 * on Intel firmware BSP.
  32 * @csh_signature:      Unique identifier to sanity check signed module
  33 *                      presence ("_CSH").
  34 * @version:            Current version of CSH used. Should be one for Quark A0.
  35 * @modulesize:         Size of the entire module including the module header
  36 *                      and payload.
  37 * @security_version_number_index: Index of SVN to use for validation of signed
  38 *                      module.
  39 * @security_version_number: Used to prevent against roll back of modules.
  40 * @rsvd_module_id:     Currently unused for Clanton (Quark).
  41 * @rsvd_module_vendor: Vendor Identifier. For Intel products value is
  42 *                      0x00008086.
  43 * @rsvd_date:          BCD representation of build date as yyyymmdd, where
  44 *                      yyyy=4 digit year, mm=1-12, dd=1-31.
  45 * @headersize:         Total length of the header including including any
  46 *                      padding optionally added by the signing tool.
  47 * @hash_algo:          What Hash is used in the module signing.
  48 * @cryp_algo:          What Crypto is used in the module signing.
  49 * @keysize:            Total length of the key data including including any
  50 *                      padding optionally added by the signing tool.
  51 * @signaturesize:      Total length of the signature including including any
  52 *                      padding optionally added by the signing tool.
  53 * @rsvd_next_header:   32-bit pointer to the next Secure Boot Module in the
  54 *                      chain, if there is a next header.
  55 * @rsvd:               Reserved, padding structure to required size.
  56 *
  57 * See also QuartSecurityHeader_t in
  58 * Quark_EDKII_v1.2.1.1/QuarkPlatformPkg/Include/QuarkBootRom.h
  59 * from https://downloadcenter.intel.com/download/23197/Intel-Quark-SoC-X1000-Board-Support-Package-BSP
  60 */
  61struct quark_security_header {
  62        u32 csh_signature;
  63        u32 version;
  64        u32 modulesize;
  65        u32 security_version_number_index;
  66        u32 security_version_number;
  67        u32 rsvd_module_id;
  68        u32 rsvd_module_vendor;
  69        u32 rsvd_date;
  70        u32 headersize;
  71        u32 hash_algo;
  72        u32 cryp_algo;
  73        u32 keysize;
  74        u32 signaturesize;
  75        u32 rsvd_next_header;
  76        u32 rsvd[2];
  77};
  78
  79static const efi_char16_t efi_dummy_name[] = L"DUMMY";
  80
  81static bool efi_no_storage_paranoia;
  82
  83/*
  84 * Some firmware implementations refuse to boot if there's insufficient
  85 * space in the variable store. The implementation of garbage collection
  86 * in some FW versions causes stale (deleted) variables to take up space
  87 * longer than intended and space is only freed once the store becomes
  88 * almost completely full.
  89 *
  90 * Enabling this option disables the space checks in
  91 * efi_query_variable_store() and forces garbage collection.
  92 *
  93 * Only enable this option if deleting EFI variables does not free up
  94 * space in your variable store, e.g. if despite deleting variables
  95 * you're unable to create new ones.
  96 */
  97static int __init setup_storage_paranoia(char *arg)
  98{
  99        efi_no_storage_paranoia = true;
 100        return 0;
 101}
 102early_param("efi_no_storage_paranoia", setup_storage_paranoia);
 103
 104/*
 105 * Deleting the dummy variable which kicks off garbage collection
 106*/
 107void efi_delete_dummy_variable(void)
 108{
 109        efi.set_variable_nonblocking((efi_char16_t *)efi_dummy_name,
 110                                     &EFI_DUMMY_GUID,
 111                                     EFI_VARIABLE_NON_VOLATILE |
 112                                     EFI_VARIABLE_BOOTSERVICE_ACCESS |
 113                                     EFI_VARIABLE_RUNTIME_ACCESS, 0, NULL);
 114}
 115
 116/*
 117 * In the nonblocking case we do not attempt to perform garbage
 118 * collection if we do not have enough free space. Rather, we do the
 119 * bare minimum check and give up immediately if the available space
 120 * is below EFI_MIN_RESERVE.
 121 *
 122 * This function is intended to be small and simple because it is
 123 * invoked from crash handler paths.
 124 */
 125static efi_status_t
 126query_variable_store_nonblocking(u32 attributes, unsigned long size)
 127{
 128        efi_status_t status;
 129        u64 storage_size, remaining_size, max_size;
 130
 131        status = efi.query_variable_info_nonblocking(attributes, &storage_size,
 132                                                     &remaining_size,
 133                                                     &max_size);
 134        if (status != EFI_SUCCESS)
 135                return status;
 136
 137        if (remaining_size - size < EFI_MIN_RESERVE)
 138                return EFI_OUT_OF_RESOURCES;
 139
 140        return EFI_SUCCESS;
 141}
 142
 143/*
 144 * Some firmware implementations refuse to boot if there's insufficient space
 145 * in the variable store. Ensure that we never use more than a safe limit.
 146 *
 147 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
 148 * store.
 149 */
 150efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
 151                                      bool nonblocking)
 152{
 153        efi_status_t status;
 154        u64 storage_size, remaining_size, max_size;
 155
 156        if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
 157                return 0;
 158
 159        if (nonblocking)
 160                return query_variable_store_nonblocking(attributes, size);
 161
 162        status = efi.query_variable_info(attributes, &storage_size,
 163                                         &remaining_size, &max_size);
 164        if (status != EFI_SUCCESS)
 165                return status;
 166
 167        /*
 168         * We account for that by refusing the write if permitting it would
 169         * reduce the available space to under 5KB. This figure was provided by
 170         * Samsung, so should be safe.
 171         */
 172        if ((remaining_size - size < EFI_MIN_RESERVE) &&
 173                !efi_no_storage_paranoia) {
 174
 175                /*
 176                 * Triggering garbage collection may require that the firmware
 177                 * generate a real EFI_OUT_OF_RESOURCES error. We can force
 178                 * that by attempting to use more space than is available.
 179                 */
 180                unsigned long dummy_size = remaining_size + 1024;
 181                void *dummy = kzalloc(dummy_size, GFP_KERNEL);
 182
 183                if (!dummy)
 184                        return EFI_OUT_OF_RESOURCES;
 185
 186                status = efi.set_variable((efi_char16_t *)efi_dummy_name,
 187                                          &EFI_DUMMY_GUID,
 188                                          EFI_VARIABLE_NON_VOLATILE |
 189                                          EFI_VARIABLE_BOOTSERVICE_ACCESS |
 190                                          EFI_VARIABLE_RUNTIME_ACCESS,
 191                                          dummy_size, dummy);
 192
 193                if (status == EFI_SUCCESS) {
 194                        /*
 195                         * This should have failed, so if it didn't make sure
 196                         * that we delete it...
 197                         */
 198                        efi_delete_dummy_variable();
 199                }
 200
 201                kfree(dummy);
 202
 203                /*
 204                 * The runtime code may now have triggered a garbage collection
 205                 * run, so check the variable info again
 206                 */
 207                status = efi.query_variable_info(attributes, &storage_size,
 208                                                 &remaining_size, &max_size);
 209
 210                if (status != EFI_SUCCESS)
 211                        return status;
 212
 213                /*
 214                 * There still isn't enough room, so return an error
 215                 */
 216                if (remaining_size - size < EFI_MIN_RESERVE)
 217                        return EFI_OUT_OF_RESOURCES;
 218        }
 219
 220        return EFI_SUCCESS;
 221}
 222EXPORT_SYMBOL_GPL(efi_query_variable_store);
 223
 224/*
 225 * The UEFI specification makes it clear that the operating system is
 226 * free to do whatever it wants with boot services code after
 227 * ExitBootServices() has been called. Ignoring this recommendation a
 228 * significant bunch of EFI implementations continue calling into boot
 229 * services code (SetVirtualAddressMap). In order to work around such
 230 * buggy implementations we reserve boot services region during EFI
 231 * init and make sure it stays executable. Then, after
 232 * SetVirtualAddressMap(), it is discarded.
 233 *
 234 * However, some boot services regions contain data that is required
 235 * by drivers, so we need to track which memory ranges can never be
 236 * freed. This is done by tagging those regions with the
 237 * EFI_MEMORY_RUNTIME attribute.
 238 *
 239 * Any driver that wants to mark a region as reserved must use
 240 * efi_mem_reserve() which will insert a new EFI memory descriptor
 241 * into efi.memmap (splitting existing regions if necessary) and tag
 242 * it with EFI_MEMORY_RUNTIME.
 243 */
 244void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)
 245{
 246        phys_addr_t new_phys, new_size;
 247        struct efi_mem_range mr;
 248        efi_memory_desc_t md;
 249        int num_entries;
 250        void *new;
 251
 252        if (efi_mem_desc_lookup(addr, &md) ||
 253            md.type != EFI_BOOT_SERVICES_DATA) {
 254                pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr);
 255                return;
 256        }
 257
 258        if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) {
 259                pr_err("Region spans EFI memory descriptors, %pa\n", &addr);
 260                return;
 261        }
 262
 263        /* No need to reserve regions that will never be freed. */
 264        if (md.attribute & EFI_MEMORY_RUNTIME)
 265                return;
 266
 267        size += addr % EFI_PAGE_SIZE;
 268        size = round_up(size, EFI_PAGE_SIZE);
 269        addr = round_down(addr, EFI_PAGE_SIZE);
 270
 271        mr.range.start = addr;
 272        mr.range.end = addr + size - 1;
 273        mr.attribute = md.attribute | EFI_MEMORY_RUNTIME;
 274
 275        num_entries = efi_memmap_split_count(&md, &mr.range);
 276        num_entries += efi.memmap.nr_map;
 277
 278        new_size = efi.memmap.desc_size * num_entries;
 279
 280        new_phys = efi_memmap_alloc(num_entries);
 281        if (!new_phys) {
 282                pr_err("Could not allocate boot services memmap\n");
 283                return;
 284        }
 285
 286        new = early_memremap(new_phys, new_size);
 287        if (!new) {
 288                pr_err("Failed to map new boot services memmap\n");
 289                return;
 290        }
 291
 292        efi_memmap_insert(&efi.memmap, new, &mr);
 293        early_memunmap(new, new_size);
 294
 295        efi_memmap_install(new_phys, num_entries);
 296}
 297
 298/*
 299 * Helper function for efi_reserve_boot_services() to figure out if we
 300 * can free regions in efi_free_boot_services().
 301 *
 302 * Use this function to ensure we do not free regions owned by somebody
 303 * else. We must only reserve (and then free) regions:
 304 *
 305 * - Not within any part of the kernel
 306 * - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc)
 307 */
 308static __init bool can_free_region(u64 start, u64 size)
 309{
 310        if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
 311                return false;
 312
 313        if (!e820__mapped_all(start, start+size, E820_TYPE_RAM))
 314                return false;
 315
 316        return true;
 317}
 318
 319void __init efi_reserve_boot_services(void)
 320{
 321        efi_memory_desc_t *md;
 322
 323        for_each_efi_memory_desc(md) {
 324                u64 start = md->phys_addr;
 325                u64 size = md->num_pages << EFI_PAGE_SHIFT;
 326                bool already_reserved;
 327
 328                if (md->type != EFI_BOOT_SERVICES_CODE &&
 329                    md->type != EFI_BOOT_SERVICES_DATA)
 330                        continue;
 331
 332                already_reserved = memblock_is_region_reserved(start, size);
 333
 334                /*
 335                 * Because the following memblock_reserve() is paired
 336                 * with memblock_free_late() for this region in
 337                 * efi_free_boot_services(), we must be extremely
 338                 * careful not to reserve, and subsequently free,
 339                 * critical regions of memory (like the kernel image) or
 340                 * those regions that somebody else has already
 341                 * reserved.
 342                 *
 343                 * A good example of a critical region that must not be
 344                 * freed is page zero (first 4Kb of memory), which may
 345                 * contain boot services code/data but is marked
 346                 * E820_TYPE_RESERVED by trim_bios_range().
 347                 */
 348                if (!already_reserved) {
 349                        memblock_reserve(start, size);
 350
 351                        /*
 352                         * If we are the first to reserve the region, no
 353                         * one else cares about it. We own it and can
 354                         * free it later.
 355                         */
 356                        if (can_free_region(start, size))
 357                                continue;
 358                }
 359
 360                /*
 361                 * We don't own the region. We must not free it.
 362                 *
 363                 * Setting this bit for a boot services region really
 364                 * doesn't make sense as far as the firmware is
 365                 * concerned, but it does provide us with a way to tag
 366                 * those regions that must not be paired with
 367                 * memblock_free_late().
 368                 */
 369                md->attribute |= EFI_MEMORY_RUNTIME;
 370        }
 371}
 372
 373/*
 374 * Apart from having VA mappings for EFI boot services code/data regions,
 375 * (duplicate) 1:1 mappings were also created as a quirk for buggy firmware. So,
 376 * unmap both 1:1 and VA mappings.
 377 */
 378static void __init efi_unmap_pages(efi_memory_desc_t *md)
 379{
 380        pgd_t *pgd = efi_mm.pgd;
 381        u64 pa = md->phys_addr;
 382        u64 va = md->virt_addr;
 383
 384        /*
 385         * To Do: Remove this check after adding functionality to unmap EFI boot
 386         * services code/data regions from direct mapping area because
 387         * "efi=old_map" maps EFI regions in swapper_pg_dir.
 388         */
 389        if (efi_enabled(EFI_OLD_MEMMAP))
 390                return;
 391
 392        /*
 393         * EFI mixed mode has all RAM mapped to access arguments while making
 394         * EFI runtime calls, hence don't unmap EFI boot services code/data
 395         * regions.
 396         */
 397        if (!efi_is_native())
 398                return;
 399
 400        if (kernel_unmap_pages_in_pgd(pgd, pa, md->num_pages))
 401                pr_err("Failed to unmap 1:1 mapping for 0x%llx\n", pa);
 402
 403        if (kernel_unmap_pages_in_pgd(pgd, va, md->num_pages))
 404                pr_err("Failed to unmap VA mapping for 0x%llx\n", va);
 405}
 406
 407void __init efi_free_boot_services(void)
 408{
 409        phys_addr_t new_phys, new_size;
 410        efi_memory_desc_t *md;
 411        int num_entries = 0;
 412        void *new, *new_md;
 413
 414        for_each_efi_memory_desc(md) {
 415                unsigned long long start = md->phys_addr;
 416                unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 417                size_t rm_size;
 418
 419                if (md->type != EFI_BOOT_SERVICES_CODE &&
 420                    md->type != EFI_BOOT_SERVICES_DATA) {
 421                        num_entries++;
 422                        continue;
 423                }
 424
 425                /* Do not free, someone else owns it: */
 426                if (md->attribute & EFI_MEMORY_RUNTIME) {
 427                        num_entries++;
 428                        continue;
 429                }
 430
 431                /*
 432                 * Before calling set_virtual_address_map(), EFI boot services
 433                 * code/data regions were mapped as a quirk for buggy firmware.
 434                 * Unmap them from efi_pgd before freeing them up.
 435                 */
 436                efi_unmap_pages(md);
 437
 438                /*
 439                 * Nasty quirk: if all sub-1MB memory is used for boot
 440                 * services, we can get here without having allocated the
 441                 * real mode trampoline.  It's too late to hand boot services
 442                 * memory back to the memblock allocator, so instead
 443                 * try to manually allocate the trampoline if needed.
 444                 *
 445                 * I've seen this on a Dell XPS 13 9350 with firmware
 446                 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
 447                 * grub2-efi on a hard disk.  (And no, I don't know why
 448                 * this happened, but Linux should still try to boot rather
 449                 * panicing early.)
 450                 */
 451                rm_size = real_mode_size_needed();
 452                if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) {
 453                        set_real_mode_mem(start);
 454                        start += rm_size;
 455                        size -= rm_size;
 456                }
 457
 458                memblock_free_late(start, size);
 459        }
 460
 461        if (!num_entries)
 462                return;
 463
 464        new_size = efi.memmap.desc_size * num_entries;
 465        new_phys = efi_memmap_alloc(num_entries);
 466        if (!new_phys) {
 467                pr_err("Failed to allocate new EFI memmap\n");
 468                return;
 469        }
 470
 471        new = memremap(new_phys, new_size, MEMREMAP_WB);
 472        if (!new) {
 473                pr_err("Failed to map new EFI memmap\n");
 474                return;
 475        }
 476
 477        /*
 478         * Build a new EFI memmap that excludes any boot services
 479         * regions that are not tagged EFI_MEMORY_RUNTIME, since those
 480         * regions have now been freed.
 481         */
 482        new_md = new;
 483        for_each_efi_memory_desc(md) {
 484                if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
 485                    (md->type == EFI_BOOT_SERVICES_CODE ||
 486                     md->type == EFI_BOOT_SERVICES_DATA))
 487                        continue;
 488
 489                memcpy(new_md, md, efi.memmap.desc_size);
 490                new_md += efi.memmap.desc_size;
 491        }
 492
 493        memunmap(new);
 494
 495        if (efi_memmap_install(new_phys, num_entries)) {
 496                pr_err("Could not install new EFI memmap\n");
 497                return;
 498        }
 499}
 500
 501/*
 502 * A number of config table entries get remapped to virtual addresses
 503 * after entering EFI virtual mode. However, the kexec kernel requires
 504 * their physical addresses therefore we pass them via setup_data and
 505 * correct those entries to their respective physical addresses here.
 506 *
 507 * Currently only handles smbios which is necessary for some firmware
 508 * implementation.
 509 */
 510int __init efi_reuse_config(u64 tables, int nr_tables)
 511{
 512        int i, sz, ret = 0;
 513        void *p, *tablep;
 514        struct efi_setup_data *data;
 515
 516        if (nr_tables == 0)
 517                return 0;
 518
 519        if (!efi_setup)
 520                return 0;
 521
 522        if (!efi_enabled(EFI_64BIT))
 523                return 0;
 524
 525        data = early_memremap(efi_setup, sizeof(*data));
 526        if (!data) {
 527                ret = -ENOMEM;
 528                goto out;
 529        }
 530
 531        if (!data->smbios)
 532                goto out_memremap;
 533
 534        sz = sizeof(efi_config_table_64_t);
 535
 536        p = tablep = early_memremap(tables, nr_tables * sz);
 537        if (!p) {
 538                pr_err("Could not map Configuration table!\n");
 539                ret = -ENOMEM;
 540                goto out_memremap;
 541        }
 542
 543        for (i = 0; i < efi.systab->nr_tables; i++) {
 544                efi_guid_t guid;
 545
 546                guid = ((efi_config_table_64_t *)p)->guid;
 547
 548                if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
 549                        ((efi_config_table_64_t *)p)->table = data->smbios;
 550                p += sz;
 551        }
 552        early_memunmap(tablep, nr_tables * sz);
 553
 554out_memremap:
 555        early_memunmap(data, sizeof(*data));
 556out:
 557        return ret;
 558}
 559
 560static const struct dmi_system_id sgi_uv1_dmi[] = {
 561        { NULL, "SGI UV1",
 562                {       DMI_MATCH(DMI_PRODUCT_NAME,     "Stoutland Platform"),
 563                        DMI_MATCH(DMI_PRODUCT_VERSION,  "1.0"),
 564                        DMI_MATCH(DMI_BIOS_VENDOR,      "SGI.COM"),
 565                }
 566        },
 567        { } /* NULL entry stops DMI scanning */
 568};
 569
 570void __init efi_apply_memmap_quirks(void)
 571{
 572        /*
 573         * Once setup is done earlier, unmap the EFI memory map on mismatched
 574         * firmware/kernel architectures since there is no support for runtime
 575         * services.
 576         */
 577        if (!efi_runtime_supported()) {
 578                pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
 579                efi_memmap_unmap();
 580        }
 581
 582        /* UV2+ BIOS has a fix for this issue.  UV1 still needs the quirk. */
 583        if (dmi_check_system(sgi_uv1_dmi))
 584                set_bit(EFI_OLD_MEMMAP, &efi.flags);
 585}
 586
 587/*
 588 * For most modern platforms the preferred method of powering off is via
 589 * ACPI. However, there are some that are known to require the use of
 590 * EFI runtime services and for which ACPI does not work at all.
 591 *
 592 * Using EFI is a last resort, to be used only if no other option
 593 * exists.
 594 */
 595bool efi_reboot_required(void)
 596{
 597        if (!acpi_gbl_reduced_hardware)
 598                return false;
 599
 600        efi_reboot_quirk_mode = EFI_RESET_WARM;
 601        return true;
 602}
 603
 604bool efi_poweroff_required(void)
 605{
 606        return acpi_gbl_reduced_hardware || acpi_no_s5;
 607}
 608
 609#ifdef CONFIG_EFI_CAPSULE_QUIRK_QUARK_CSH
 610
 611static int qrk_capsule_setup_info(struct capsule_info *cap_info, void **pkbuff,
 612                                  size_t hdr_bytes)
 613{
 614        struct quark_security_header *csh = *pkbuff;
 615
 616        /* Only process data block that is larger than the security header */
 617        if (hdr_bytes < sizeof(struct quark_security_header))
 618                return 0;
 619
 620        if (csh->csh_signature != QUARK_CSH_SIGNATURE ||
 621            csh->headersize != QUARK_SECURITY_HEADER_SIZE)
 622                return 1;
 623
 624        /* Only process data block if EFI header is included */
 625        if (hdr_bytes < QUARK_SECURITY_HEADER_SIZE +
 626                        sizeof(efi_capsule_header_t))
 627                return 0;
 628
 629        pr_debug("Quark security header detected\n");
 630
 631        if (csh->rsvd_next_header != 0) {
 632                pr_err("multiple Quark security headers not supported\n");
 633                return -EINVAL;
 634        }
 635
 636        *pkbuff += csh->headersize;
 637        cap_info->total_size = csh->headersize;
 638
 639        /*
 640         * Update the first page pointer to skip over the CSH header.
 641         */
 642        cap_info->phys[0] += csh->headersize;
 643
 644        /*
 645         * cap_info->capsule should point at a virtual mapping of the entire
 646         * capsule, starting at the capsule header. Our image has the Quark
 647         * security header prepended, so we cannot rely on the default vmap()
 648         * mapping created by the generic capsule code.
 649         * Given that the Quark firmware does not appear to care about the
 650         * virtual mapping, let's just point cap_info->capsule at our copy
 651         * of the capsule header.
 652         */
 653        cap_info->capsule = &cap_info->header;
 654
 655        return 1;
 656}
 657
 658#define ICPU(family, model, quirk_handler) \
 659        { X86_VENDOR_INTEL, family, model, X86_FEATURE_ANY, \
 660          (unsigned long)&quirk_handler }
 661
 662static const struct x86_cpu_id efi_capsule_quirk_ids[] = {
 663        ICPU(5, 9, qrk_capsule_setup_info),     /* Intel Quark X1000 */
 664        { }
 665};
 666
 667int efi_capsule_setup_info(struct capsule_info *cap_info, void *kbuff,
 668                           size_t hdr_bytes)
 669{
 670        int (*quirk_handler)(struct capsule_info *, void **, size_t);
 671        const struct x86_cpu_id *id;
 672        int ret;
 673
 674        if (hdr_bytes < sizeof(efi_capsule_header_t))
 675                return 0;
 676
 677        cap_info->total_size = 0;
 678
 679        id = x86_match_cpu(efi_capsule_quirk_ids);
 680        if (id) {
 681                /*
 682                 * The quirk handler is supposed to return
 683                 *  - a value > 0 if the setup should continue, after advancing
 684                 *    kbuff as needed
 685                 *  - 0 if not enough hdr_bytes are available yet
 686                 *  - a negative error code otherwise
 687                 */
 688                quirk_handler = (typeof(quirk_handler))id->driver_data;
 689                ret = quirk_handler(cap_info, &kbuff, hdr_bytes);
 690                if (ret <= 0)
 691                        return ret;
 692        }
 693
 694        memcpy(&cap_info->header, kbuff, sizeof(cap_info->header));
 695
 696        cap_info->total_size += cap_info->header.imagesize;
 697
 698        return __efi_capsule_setup_info(cap_info);
 699}
 700
 701#endif
 702
 703/*
 704 * If any access by any efi runtime service causes a page fault, then,
 705 * 1. If it's efi_reset_system(), reboot through BIOS.
 706 * 2. If any other efi runtime service, then
 707 *    a. Return error status to the efi caller process.
 708 *    b. Disable EFI Runtime Services forever and
 709 *    c. Freeze efi_rts_wq and schedule new process.
 710 *
 711 * @return: Returns, if the page fault is not handled. This function
 712 * will never return if the page fault is handled successfully.
 713 */
 714void efi_recover_from_page_fault(unsigned long phys_addr)
 715{
 716        if (!IS_ENABLED(CONFIG_X86_64))
 717                return;
 718
 719        /*
 720         * Make sure that an efi runtime service caused the page fault.
 721         * "efi_mm" cannot be used to check if the page fault had occurred
 722         * in the firmware context because efi=old_map doesn't use efi_pgd.
 723         */
 724        if (efi_rts_work.efi_rts_id == EFI_NONE)
 725                return;
 726
 727        /*
 728         * Address range 0x0000 - 0x0fff is always mapped in the efi_pgd, so
 729         * page faulting on these addresses isn't expected.
 730         */
 731        if (phys_addr <= 0x0fff)
 732                return;
 733
 734        /*
 735         * Print stack trace as it might be useful to know which EFI Runtime
 736         * Service is buggy.
 737         */
 738        WARN(1, FW_BUG "Page fault caused by firmware at PA: 0x%lx\n",
 739             phys_addr);
 740
 741        /*
 742         * Buggy efi_reset_system() is handled differently from other EFI
 743         * Runtime Services as it doesn't use efi_rts_wq. Although,
 744         * native_machine_emergency_restart() says that machine_real_restart()
 745         * could fail, it's better not to compilcate this fault handler
 746         * because this case occurs *very* rarely and hence could be improved
 747         * on a need by basis.
 748         */
 749        if (efi_rts_work.efi_rts_id == EFI_RESET_SYSTEM) {
 750                pr_info("efi_reset_system() buggy! Reboot through BIOS\n");
 751                machine_real_restart(MRR_BIOS);
 752                return;
 753        }
 754
 755        /*
 756         * Before calling EFI Runtime Service, the kernel has switched the
 757         * calling process to efi_mm. Hence, switch back to task_mm.
 758         */
 759        arch_efi_call_virt_teardown();
 760
 761        /* Signal error status to the efi caller process */
 762        efi_rts_work.status = EFI_ABORTED;
 763        complete(&efi_rts_work.efi_rts_comp);
 764
 765        clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 766        pr_info("Froze efi_rts_wq and disabled EFI Runtime Services\n");
 767
 768        /*
 769         * Call schedule() in an infinite loop, so that any spurious wake ups
 770         * will never run efi_rts_wq again.
 771         */
 772        for (;;) {
 773                set_current_state(TASK_IDLE);
 774                schedule();
 775        }
 776
 777        return;
 778}
 779