linux/arch/x86/platform/uv/tlb_uv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *      SGI UltraViolet TLB flush routines.
   4 *
   5 *      (c) 2008-2014 Cliff Wickman <cpw@sgi.com>, SGI.
   6 */
   7#include <linux/seq_file.h>
   8#include <linux/proc_fs.h>
   9#include <linux/debugfs.h>
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/delay.h>
  13
  14#include <asm/mmu_context.h>
  15#include <asm/uv/uv.h>
  16#include <asm/uv/uv_mmrs.h>
  17#include <asm/uv/uv_hub.h>
  18#include <asm/uv/uv_bau.h>
  19#include <asm/apic.h>
  20#include <asm/tsc.h>
  21#include <asm/irq_vectors.h>
  22#include <asm/timer.h>
  23
  24static struct bau_operations ops __ro_after_init;
  25
  26/* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
  27static const int timeout_base_ns[] = {
  28                20,
  29                160,
  30                1280,
  31                10240,
  32                81920,
  33                655360,
  34                5242880,
  35                167772160
  36};
  37
  38static int timeout_us;
  39static bool nobau = true;
  40static int nobau_perm;
  41
  42/* tunables: */
  43static int max_concurr          = MAX_BAU_CONCURRENT;
  44static int max_concurr_const    = MAX_BAU_CONCURRENT;
  45static int plugged_delay        = PLUGGED_DELAY;
  46static int plugsb4reset         = PLUGSB4RESET;
  47static int giveup_limit         = GIVEUP_LIMIT;
  48static int timeoutsb4reset      = TIMEOUTSB4RESET;
  49static int ipi_reset_limit      = IPI_RESET_LIMIT;
  50static int complete_threshold   = COMPLETE_THRESHOLD;
  51static int congested_respns_us  = CONGESTED_RESPONSE_US;
  52static int congested_reps       = CONGESTED_REPS;
  53static int disabled_period      = DISABLED_PERIOD;
  54
  55static struct tunables tunables[] = {
  56        {&max_concurr,           MAX_BAU_CONCURRENT}, /* must be [0] */
  57        {&plugged_delay,         PLUGGED_DELAY},
  58        {&plugsb4reset,          PLUGSB4RESET},
  59        {&timeoutsb4reset,       TIMEOUTSB4RESET},
  60        {&ipi_reset_limit,       IPI_RESET_LIMIT},
  61        {&complete_threshold,    COMPLETE_THRESHOLD},
  62        {&congested_respns_us,   CONGESTED_RESPONSE_US},
  63        {&congested_reps,        CONGESTED_REPS},
  64        {&disabled_period,       DISABLED_PERIOD},
  65        {&giveup_limit,          GIVEUP_LIMIT}
  66};
  67
  68static struct dentry *tunables_dir;
  69
  70/* these correspond to the statistics printed by ptc_seq_show() */
  71static char *stat_description[] = {
  72        "sent:     number of shootdown messages sent",
  73        "stime:    time spent sending messages",
  74        "numuvhubs: number of hubs targeted with shootdown",
  75        "numuvhubs16: number times 16 or more hubs targeted",
  76        "numuvhubs8: number times 8 or more hubs targeted",
  77        "numuvhubs4: number times 4 or more hubs targeted",
  78        "numuvhubs2: number times 2 or more hubs targeted",
  79        "numuvhubs1: number times 1 hub targeted",
  80        "numcpus:  number of cpus targeted with shootdown",
  81        "dto:      number of destination timeouts",
  82        "retries:  destination timeout retries sent",
  83        "rok:   :  destination timeouts successfully retried",
  84        "resetp:   ipi-style resource resets for plugs",
  85        "resett:   ipi-style resource resets for timeouts",
  86        "giveup:   fall-backs to ipi-style shootdowns",
  87        "sto:      number of source timeouts",
  88        "bz:       number of stay-busy's",
  89        "throt:    number times spun in throttle",
  90        "swack:   image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE",
  91        "recv:     shootdown messages received",
  92        "rtime:    time spent processing messages",
  93        "all:      shootdown all-tlb messages",
  94        "one:      shootdown one-tlb messages",
  95        "mult:     interrupts that found multiple messages",
  96        "none:     interrupts that found no messages",
  97        "retry:    number of retry messages processed",
  98        "canc:     number messages canceled by retries",
  99        "nocan:    number retries that found nothing to cancel",
 100        "reset:    number of ipi-style reset requests processed",
 101        "rcan:     number messages canceled by reset requests",
 102        "disable:  number times use of the BAU was disabled",
 103        "enable:   number times use of the BAU was re-enabled"
 104};
 105
 106static int __init setup_bau(char *arg)
 107{
 108        int result;
 109
 110        if (!arg)
 111                return -EINVAL;
 112
 113        result = strtobool(arg, &nobau);
 114        if (result)
 115                return result;
 116
 117        /* we need to flip the logic here, so that bau=y sets nobau to false */
 118        nobau = !nobau;
 119
 120        if (!nobau)
 121                pr_info("UV BAU Enabled\n");
 122        else
 123                pr_info("UV BAU Disabled\n");
 124
 125        return 0;
 126}
 127early_param("bau", setup_bau);
 128
 129/* base pnode in this partition */
 130static int uv_base_pnode __read_mostly;
 131
 132static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
 133static DEFINE_PER_CPU(struct bau_control, bau_control);
 134static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
 135
 136static void
 137set_bau_on(void)
 138{
 139        int cpu;
 140        struct bau_control *bcp;
 141
 142        if (nobau_perm) {
 143                pr_info("BAU not initialized; cannot be turned on\n");
 144                return;
 145        }
 146        nobau = false;
 147        for_each_present_cpu(cpu) {
 148                bcp = &per_cpu(bau_control, cpu);
 149                bcp->nobau = false;
 150        }
 151        pr_info("BAU turned on\n");
 152        return;
 153}
 154
 155static void
 156set_bau_off(void)
 157{
 158        int cpu;
 159        struct bau_control *bcp;
 160
 161        nobau = true;
 162        for_each_present_cpu(cpu) {
 163                bcp = &per_cpu(bau_control, cpu);
 164                bcp->nobau = true;
 165        }
 166        pr_info("BAU turned off\n");
 167        return;
 168}
 169
 170/*
 171 * Determine the first node on a uvhub. 'Nodes' are used for kernel
 172 * memory allocation.
 173 */
 174static int __init uvhub_to_first_node(int uvhub)
 175{
 176        int node, b;
 177
 178        for_each_online_node(node) {
 179                b = uv_node_to_blade_id(node);
 180                if (uvhub == b)
 181                        return node;
 182        }
 183        return -1;
 184}
 185
 186/*
 187 * Determine the apicid of the first cpu on a uvhub.
 188 */
 189static int __init uvhub_to_first_apicid(int uvhub)
 190{
 191        int cpu;
 192
 193        for_each_present_cpu(cpu)
 194                if (uvhub == uv_cpu_to_blade_id(cpu))
 195                        return per_cpu(x86_cpu_to_apicid, cpu);
 196        return -1;
 197}
 198
 199/*
 200 * Free a software acknowledge hardware resource by clearing its Pending
 201 * bit. This will return a reply to the sender.
 202 * If the message has timed out, a reply has already been sent by the
 203 * hardware but the resource has not been released. In that case our
 204 * clear of the Timeout bit (as well) will free the resource. No reply will
 205 * be sent (the hardware will only do one reply per message).
 206 */
 207static void reply_to_message(struct msg_desc *mdp, struct bau_control *bcp,
 208                                                int do_acknowledge)
 209{
 210        unsigned long dw;
 211        struct bau_pq_entry *msg;
 212
 213        msg = mdp->msg;
 214        if (!msg->canceled && do_acknowledge) {
 215                dw = (msg->swack_vec << UV_SW_ACK_NPENDING) | msg->swack_vec;
 216                ops.write_l_sw_ack(dw);
 217        }
 218        msg->replied_to = 1;
 219        msg->swack_vec = 0;
 220}
 221
 222/*
 223 * Process the receipt of a RETRY message
 224 */
 225static void bau_process_retry_msg(struct msg_desc *mdp,
 226                                        struct bau_control *bcp)
 227{
 228        int i;
 229        int cancel_count = 0;
 230        unsigned long msg_res;
 231        unsigned long mmr = 0;
 232        struct bau_pq_entry *msg = mdp->msg;
 233        struct bau_pq_entry *msg2;
 234        struct ptc_stats *stat = bcp->statp;
 235
 236        stat->d_retries++;
 237        /*
 238         * cancel any message from msg+1 to the retry itself
 239         */
 240        for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
 241                if (msg2 > mdp->queue_last)
 242                        msg2 = mdp->queue_first;
 243                if (msg2 == msg)
 244                        break;
 245
 246                /* same conditions for cancellation as do_reset */
 247                if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
 248                    (msg2->swack_vec) && ((msg2->swack_vec &
 249                        msg->swack_vec) == 0) &&
 250                    (msg2->sending_cpu == msg->sending_cpu) &&
 251                    (msg2->msg_type != MSG_NOOP)) {
 252                        mmr = ops.read_l_sw_ack();
 253                        msg_res = msg2->swack_vec;
 254                        /*
 255                         * This is a message retry; clear the resources held
 256                         * by the previous message only if they timed out.
 257                         * If it has not timed out we have an unexpected
 258                         * situation to report.
 259                         */
 260                        if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
 261                                unsigned long mr;
 262                                /*
 263                                 * Is the resource timed out?
 264                                 * Make everyone ignore the cancelled message.
 265                                 */
 266                                msg2->canceled = 1;
 267                                stat->d_canceled++;
 268                                cancel_count++;
 269                                mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
 270                                ops.write_l_sw_ack(mr);
 271                        }
 272                }
 273        }
 274        if (!cancel_count)
 275                stat->d_nocanceled++;
 276}
 277
 278/*
 279 * Do all the things a cpu should do for a TLB shootdown message.
 280 * Other cpu's may come here at the same time for this message.
 281 */
 282static void bau_process_message(struct msg_desc *mdp, struct bau_control *bcp,
 283                                                int do_acknowledge)
 284{
 285        short socket_ack_count = 0;
 286        short *sp;
 287        struct atomic_short *asp;
 288        struct ptc_stats *stat = bcp->statp;
 289        struct bau_pq_entry *msg = mdp->msg;
 290        struct bau_control *smaster = bcp->socket_master;
 291
 292        /*
 293         * This must be a normal message, or retry of a normal message
 294         */
 295        if (msg->address == TLB_FLUSH_ALL) {
 296                local_flush_tlb();
 297                stat->d_alltlb++;
 298        } else {
 299                __flush_tlb_one_user(msg->address);
 300                stat->d_onetlb++;
 301        }
 302        stat->d_requestee++;
 303
 304        /*
 305         * One cpu on each uvhub has the additional job on a RETRY
 306         * of releasing the resource held by the message that is
 307         * being retried.  That message is identified by sending
 308         * cpu number.
 309         */
 310        if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
 311                bau_process_retry_msg(mdp, bcp);
 312
 313        /*
 314         * This is a swack message, so we have to reply to it.
 315         * Count each responding cpu on the socket. This avoids
 316         * pinging the count's cache line back and forth between
 317         * the sockets.
 318         */
 319        sp = &smaster->socket_acknowledge_count[mdp->msg_slot];
 320        asp = (struct atomic_short *)sp;
 321        socket_ack_count = atom_asr(1, asp);
 322        if (socket_ack_count == bcp->cpus_in_socket) {
 323                int msg_ack_count;
 324                /*
 325                 * Both sockets dump their completed count total into
 326                 * the message's count.
 327                 */
 328                *sp = 0;
 329                asp = (struct atomic_short *)&msg->acknowledge_count;
 330                msg_ack_count = atom_asr(socket_ack_count, asp);
 331
 332                if (msg_ack_count == bcp->cpus_in_uvhub) {
 333                        /*
 334                         * All cpus in uvhub saw it; reply
 335                         * (unless we are in the UV2 workaround)
 336                         */
 337                        reply_to_message(mdp, bcp, do_acknowledge);
 338                }
 339        }
 340
 341        return;
 342}
 343
 344/*
 345 * Determine the first cpu on a pnode.
 346 */
 347static int pnode_to_first_cpu(int pnode, struct bau_control *smaster)
 348{
 349        int cpu;
 350        struct hub_and_pnode *hpp;
 351
 352        for_each_present_cpu(cpu) {
 353                hpp = &smaster->thp[cpu];
 354                if (pnode == hpp->pnode)
 355                        return cpu;
 356        }
 357        return -1;
 358}
 359
 360/*
 361 * Last resort when we get a large number of destination timeouts is
 362 * to clear resources held by a given cpu.
 363 * Do this with IPI so that all messages in the BAU message queue
 364 * can be identified by their nonzero swack_vec field.
 365 *
 366 * This is entered for a single cpu on the uvhub.
 367 * The sender want's this uvhub to free a specific message's
 368 * swack resources.
 369 */
 370static void do_reset(void *ptr)
 371{
 372        int i;
 373        struct bau_control *bcp = &per_cpu(bau_control, smp_processor_id());
 374        struct reset_args *rap = (struct reset_args *)ptr;
 375        struct bau_pq_entry *msg;
 376        struct ptc_stats *stat = bcp->statp;
 377
 378        stat->d_resets++;
 379        /*
 380         * We're looking for the given sender, and
 381         * will free its swack resource.
 382         * If all cpu's finally responded after the timeout, its
 383         * message 'replied_to' was set.
 384         */
 385        for (msg = bcp->queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
 386                unsigned long msg_res;
 387                /* do_reset: same conditions for cancellation as
 388                   bau_process_retry_msg() */
 389                if ((msg->replied_to == 0) &&
 390                    (msg->canceled == 0) &&
 391                    (msg->sending_cpu == rap->sender) &&
 392                    (msg->swack_vec) &&
 393                    (msg->msg_type != MSG_NOOP)) {
 394                        unsigned long mmr;
 395                        unsigned long mr;
 396                        /*
 397                         * make everyone else ignore this message
 398                         */
 399                        msg->canceled = 1;
 400                        /*
 401                         * only reset the resource if it is still pending
 402                         */
 403                        mmr = ops.read_l_sw_ack();
 404                        msg_res = msg->swack_vec;
 405                        mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
 406                        if (mmr & msg_res) {
 407                                stat->d_rcanceled++;
 408                                ops.write_l_sw_ack(mr);
 409                        }
 410                }
 411        }
 412        return;
 413}
 414
 415/*
 416 * Use IPI to get all target uvhubs to release resources held by
 417 * a given sending cpu number.
 418 */
 419static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp)
 420{
 421        int pnode;
 422        int apnode;
 423        int maskbits;
 424        int sender = bcp->cpu;
 425        cpumask_t *mask = bcp->uvhub_master->cpumask;
 426        struct bau_control *smaster = bcp->socket_master;
 427        struct reset_args reset_args;
 428
 429        reset_args.sender = sender;
 430        cpumask_clear(mask);
 431        /* find a single cpu for each uvhub in this distribution mask */
 432        maskbits = sizeof(struct pnmask) * BITSPERBYTE;
 433        /* each bit is a pnode relative to the partition base pnode */
 434        for (pnode = 0; pnode < maskbits; pnode++) {
 435                int cpu;
 436                if (!bau_uvhub_isset(pnode, distribution))
 437                        continue;
 438                apnode = pnode + bcp->partition_base_pnode;
 439                cpu = pnode_to_first_cpu(apnode, smaster);
 440                cpumask_set_cpu(cpu, mask);
 441        }
 442
 443        /* IPI all cpus; preemption is already disabled */
 444        smp_call_function_many(mask, do_reset, (void *)&reset_args, 1);
 445        return;
 446}
 447
 448/*
 449 * Not to be confused with cycles_2_ns() from tsc.c; this gives a relative
 450 * number, not an absolute. It converts a duration in cycles to a duration in
 451 * ns.
 452 */
 453static inline unsigned long long cycles_2_ns(unsigned long long cyc)
 454{
 455        struct cyc2ns_data data;
 456        unsigned long long ns;
 457
 458        cyc2ns_read_begin(&data);
 459        ns = mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
 460        cyc2ns_read_end();
 461
 462        return ns;
 463}
 464
 465/*
 466 * The reverse of the above; converts a duration in ns to a duration in cycles.
 467 */
 468static inline unsigned long long ns_2_cycles(unsigned long long ns)
 469{
 470        struct cyc2ns_data data;
 471        unsigned long long cyc;
 472
 473        cyc2ns_read_begin(&data);
 474        cyc = (ns << data.cyc2ns_shift) / data.cyc2ns_mul;
 475        cyc2ns_read_end();
 476
 477        return cyc;
 478}
 479
 480static inline unsigned long cycles_2_us(unsigned long long cyc)
 481{
 482        return cycles_2_ns(cyc) / NSEC_PER_USEC;
 483}
 484
 485static inline cycles_t sec_2_cycles(unsigned long sec)
 486{
 487        return ns_2_cycles(sec * NSEC_PER_SEC);
 488}
 489
 490static inline unsigned long long usec_2_cycles(unsigned long usec)
 491{
 492        return ns_2_cycles(usec * NSEC_PER_USEC);
 493}
 494
 495/*
 496 * wait for all cpus on this hub to finish their sends and go quiet
 497 * leaves uvhub_quiesce set so that no new broadcasts are started by
 498 * bau_flush_send_and_wait()
 499 */
 500static inline void quiesce_local_uvhub(struct bau_control *hmaster)
 501{
 502        atom_asr(1, (struct atomic_short *)&hmaster->uvhub_quiesce);
 503}
 504
 505/*
 506 * mark this quiet-requestor as done
 507 */
 508static inline void end_uvhub_quiesce(struct bau_control *hmaster)
 509{
 510        atom_asr(-1, (struct atomic_short *)&hmaster->uvhub_quiesce);
 511}
 512
 513static unsigned long uv1_read_status(unsigned long mmr_offset, int right_shift)
 514{
 515        unsigned long descriptor_status;
 516
 517        descriptor_status = uv_read_local_mmr(mmr_offset);
 518        descriptor_status >>= right_shift;
 519        descriptor_status &= UV_ACT_STATUS_MASK;
 520        return descriptor_status;
 521}
 522
 523/*
 524 * Wait for completion of a broadcast software ack message
 525 * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
 526 */
 527static int uv1_wait_completion(struct bau_desc *bau_desc,
 528                                struct bau_control *bcp, long try)
 529{
 530        unsigned long descriptor_status;
 531        cycles_t ttm;
 532        u64 mmr_offset = bcp->status_mmr;
 533        int right_shift = bcp->status_index;
 534        struct ptc_stats *stat = bcp->statp;
 535
 536        descriptor_status = uv1_read_status(mmr_offset, right_shift);
 537        /* spin on the status MMR, waiting for it to go idle */
 538        while ((descriptor_status != DS_IDLE)) {
 539                /*
 540                 * Our software ack messages may be blocked because
 541                 * there are no swack resources available.  As long
 542                 * as none of them has timed out hardware will NACK
 543                 * our message and its state will stay IDLE.
 544                 */
 545                if (descriptor_status == DS_SOURCE_TIMEOUT) {
 546                        stat->s_stimeout++;
 547                        return FLUSH_GIVEUP;
 548                } else if (descriptor_status == DS_DESTINATION_TIMEOUT) {
 549                        stat->s_dtimeout++;
 550                        ttm = get_cycles();
 551
 552                        /*
 553                         * Our retries may be blocked by all destination
 554                         * swack resources being consumed, and a timeout
 555                         * pending.  In that case hardware returns the
 556                         * ERROR that looks like a destination timeout.
 557                         */
 558                        if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
 559                                bcp->conseccompletes = 0;
 560                                return FLUSH_RETRY_PLUGGED;
 561                        }
 562
 563                        bcp->conseccompletes = 0;
 564                        return FLUSH_RETRY_TIMEOUT;
 565                } else {
 566                        /*
 567                         * descriptor_status is still BUSY
 568                         */
 569                        cpu_relax();
 570                }
 571                descriptor_status = uv1_read_status(mmr_offset, right_shift);
 572        }
 573        bcp->conseccompletes++;
 574        return FLUSH_COMPLETE;
 575}
 576
 577/*
 578 * UV2 could have an extra bit of status in the ACTIVATION_STATUS_2 register.
 579 * But not currently used.
 580 */
 581static unsigned long uv2_3_read_status(unsigned long offset, int rshft, int desc)
 582{
 583        return ((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK) << 1;
 584}
 585
 586/*
 587 * Entered when a bau descriptor has gone into a permanent busy wait because
 588 * of a hardware bug.
 589 * Workaround the bug.
 590 */
 591static int handle_uv2_busy(struct bau_control *bcp)
 592{
 593        struct ptc_stats *stat = bcp->statp;
 594
 595        stat->s_uv2_wars++;
 596        bcp->busy = 1;
 597        return FLUSH_GIVEUP;
 598}
 599
 600static int uv2_3_wait_completion(struct bau_desc *bau_desc,
 601                                struct bau_control *bcp, long try)
 602{
 603        unsigned long descriptor_stat;
 604        cycles_t ttm;
 605        u64 mmr_offset = bcp->status_mmr;
 606        int right_shift = bcp->status_index;
 607        int desc = bcp->uvhub_cpu;
 608        long busy_reps = 0;
 609        struct ptc_stats *stat = bcp->statp;
 610
 611        descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc);
 612
 613        /* spin on the status MMR, waiting for it to go idle */
 614        while (descriptor_stat != UV2H_DESC_IDLE) {
 615                if (descriptor_stat == UV2H_DESC_SOURCE_TIMEOUT) {
 616                        /*
 617                         * A h/w bug on the destination side may
 618                         * have prevented the message being marked
 619                         * pending, thus it doesn't get replied to
 620                         * and gets continually nacked until it times
 621                         * out with a SOURCE_TIMEOUT.
 622                         */
 623                        stat->s_stimeout++;
 624                        return FLUSH_GIVEUP;
 625                } else if (descriptor_stat == UV2H_DESC_DEST_TIMEOUT) {
 626                        ttm = get_cycles();
 627
 628                        /*
 629                         * Our retries may be blocked by all destination
 630                         * swack resources being consumed, and a timeout
 631                         * pending.  In that case hardware returns the
 632                         * ERROR that looks like a destination timeout.
 633                         * Without using the extended status we have to
 634                         * deduce from the short time that this was a
 635                         * strong nack.
 636                         */
 637                        if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
 638                                bcp->conseccompletes = 0;
 639                                stat->s_plugged++;
 640                                /* FLUSH_RETRY_PLUGGED causes hang on boot */
 641                                return FLUSH_GIVEUP;
 642                        }
 643                        stat->s_dtimeout++;
 644                        bcp->conseccompletes = 0;
 645                        /* FLUSH_RETRY_TIMEOUT causes hang on boot */
 646                        return FLUSH_GIVEUP;
 647                } else {
 648                        busy_reps++;
 649                        if (busy_reps > 1000000) {
 650                                /* not to hammer on the clock */
 651                                busy_reps = 0;
 652                                ttm = get_cycles();
 653                                if ((ttm - bcp->send_message) > bcp->timeout_interval)
 654                                        return handle_uv2_busy(bcp);
 655                        }
 656                        /*
 657                         * descriptor_stat is still BUSY
 658                         */
 659                        cpu_relax();
 660                }
 661                descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc);
 662        }
 663        bcp->conseccompletes++;
 664        return FLUSH_COMPLETE;
 665}
 666
 667/*
 668 * Returns the status of current BAU message for cpu desc as a bit field
 669 * [Error][Busy][Aux]
 670 */
 671static u64 read_status(u64 status_mmr, int index, int desc)
 672{
 673        u64 stat;
 674
 675        stat = ((read_lmmr(status_mmr) >> index) & UV_ACT_STATUS_MASK) << 1;
 676        stat |= (read_lmmr(UVH_LB_BAU_SB_ACTIVATION_STATUS_2) >> desc) & 0x1;
 677
 678        return stat;
 679}
 680
 681static int uv4_wait_completion(struct bau_desc *bau_desc,
 682                                struct bau_control *bcp, long try)
 683{
 684        struct ptc_stats *stat = bcp->statp;
 685        u64 descriptor_stat;
 686        u64 mmr = bcp->status_mmr;
 687        int index = bcp->status_index;
 688        int desc = bcp->uvhub_cpu;
 689
 690        descriptor_stat = read_status(mmr, index, desc);
 691
 692        /* spin on the status MMR, waiting for it to go idle */
 693        while (descriptor_stat != UV2H_DESC_IDLE) {
 694                switch (descriptor_stat) {
 695                case UV2H_DESC_SOURCE_TIMEOUT:
 696                        stat->s_stimeout++;
 697                        return FLUSH_GIVEUP;
 698
 699                case UV2H_DESC_DEST_TIMEOUT:
 700                        stat->s_dtimeout++;
 701                        bcp->conseccompletes = 0;
 702                        return FLUSH_RETRY_TIMEOUT;
 703
 704                case UV2H_DESC_DEST_STRONG_NACK:
 705                        stat->s_plugged++;
 706                        bcp->conseccompletes = 0;
 707                        return FLUSH_RETRY_PLUGGED;
 708
 709                case UV2H_DESC_DEST_PUT_ERR:
 710                        bcp->conseccompletes = 0;
 711                        return FLUSH_GIVEUP;
 712
 713                default:
 714                        /* descriptor_stat is still BUSY */
 715                        cpu_relax();
 716                }
 717                descriptor_stat = read_status(mmr, index, desc);
 718        }
 719        bcp->conseccompletes++;
 720        return FLUSH_COMPLETE;
 721}
 722
 723/*
 724 * Our retries are blocked by all destination sw ack resources being
 725 * in use, and a timeout is pending. In that case hardware immediately
 726 * returns the ERROR that looks like a destination timeout.
 727 */
 728static void destination_plugged(struct bau_desc *bau_desc,
 729                        struct bau_control *bcp,
 730                        struct bau_control *hmaster, struct ptc_stats *stat)
 731{
 732        udelay(bcp->plugged_delay);
 733        bcp->plugged_tries++;
 734
 735        if (bcp->plugged_tries >= bcp->plugsb4reset) {
 736                bcp->plugged_tries = 0;
 737
 738                quiesce_local_uvhub(hmaster);
 739
 740                spin_lock(&hmaster->queue_lock);
 741                reset_with_ipi(&bau_desc->distribution, bcp);
 742                spin_unlock(&hmaster->queue_lock);
 743
 744                end_uvhub_quiesce(hmaster);
 745
 746                bcp->ipi_attempts++;
 747                stat->s_resets_plug++;
 748        }
 749}
 750
 751static void destination_timeout(struct bau_desc *bau_desc,
 752                        struct bau_control *bcp, struct bau_control *hmaster,
 753                        struct ptc_stats *stat)
 754{
 755        hmaster->max_concurr = 1;
 756        bcp->timeout_tries++;
 757        if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
 758                bcp->timeout_tries = 0;
 759
 760                quiesce_local_uvhub(hmaster);
 761
 762                spin_lock(&hmaster->queue_lock);
 763                reset_with_ipi(&bau_desc->distribution, bcp);
 764                spin_unlock(&hmaster->queue_lock);
 765
 766                end_uvhub_quiesce(hmaster);
 767
 768                bcp->ipi_attempts++;
 769                stat->s_resets_timeout++;
 770        }
 771}
 772
 773/*
 774 * Stop all cpus on a uvhub from using the BAU for a period of time.
 775 * This is reversed by check_enable.
 776 */
 777static void disable_for_period(struct bau_control *bcp, struct ptc_stats *stat)
 778{
 779        int tcpu;
 780        struct bau_control *tbcp;
 781        struct bau_control *hmaster;
 782        cycles_t tm1;
 783
 784        hmaster = bcp->uvhub_master;
 785        spin_lock(&hmaster->disable_lock);
 786        if (!bcp->baudisabled) {
 787                stat->s_bau_disabled++;
 788                tm1 = get_cycles();
 789                for_each_present_cpu(tcpu) {
 790                        tbcp = &per_cpu(bau_control, tcpu);
 791                        if (tbcp->uvhub_master == hmaster) {
 792                                tbcp->baudisabled = 1;
 793                                tbcp->set_bau_on_time =
 794                                        tm1 + bcp->disabled_period;
 795                        }
 796                }
 797        }
 798        spin_unlock(&hmaster->disable_lock);
 799}
 800
 801static void count_max_concurr(int stat, struct bau_control *bcp,
 802                                struct bau_control *hmaster)
 803{
 804        bcp->plugged_tries = 0;
 805        bcp->timeout_tries = 0;
 806        if (stat != FLUSH_COMPLETE)
 807                return;
 808        if (bcp->conseccompletes <= bcp->complete_threshold)
 809                return;
 810        if (hmaster->max_concurr >= hmaster->max_concurr_const)
 811                return;
 812        hmaster->max_concurr++;
 813}
 814
 815static void record_send_stats(cycles_t time1, cycles_t time2,
 816                struct bau_control *bcp, struct ptc_stats *stat,
 817                int completion_status, int try)
 818{
 819        cycles_t elapsed;
 820
 821        if (time2 > time1) {
 822                elapsed = time2 - time1;
 823                stat->s_time += elapsed;
 824
 825                if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
 826                        bcp->period_requests++;
 827                        bcp->period_time += elapsed;
 828                        if ((elapsed > usec_2_cycles(bcp->cong_response_us)) &&
 829                            (bcp->period_requests > bcp->cong_reps) &&
 830                            ((bcp->period_time / bcp->period_requests) >
 831                                        usec_2_cycles(bcp->cong_response_us))) {
 832                                stat->s_congested++;
 833                                disable_for_period(bcp, stat);
 834                        }
 835                }
 836        } else
 837                stat->s_requestor--;
 838
 839        if (completion_status == FLUSH_COMPLETE && try > 1)
 840                stat->s_retriesok++;
 841        else if (completion_status == FLUSH_GIVEUP) {
 842                stat->s_giveup++;
 843                if (get_cycles() > bcp->period_end)
 844                        bcp->period_giveups = 0;
 845                bcp->period_giveups++;
 846                if (bcp->period_giveups == 1)
 847                        bcp->period_end = get_cycles() + bcp->disabled_period;
 848                if (bcp->period_giveups > bcp->giveup_limit) {
 849                        disable_for_period(bcp, stat);
 850                        stat->s_giveuplimit++;
 851                }
 852        }
 853}
 854
 855/*
 856 * Because of a uv1 hardware bug only a limited number of concurrent
 857 * requests can be made.
 858 */
 859static void uv1_throttle(struct bau_control *hmaster, struct ptc_stats *stat)
 860{
 861        spinlock_t *lock = &hmaster->uvhub_lock;
 862        atomic_t *v;
 863
 864        v = &hmaster->active_descriptor_count;
 865        if (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr)) {
 866                stat->s_throttles++;
 867                do {
 868                        cpu_relax();
 869                } while (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr));
 870        }
 871}
 872
 873/*
 874 * Handle the completion status of a message send.
 875 */
 876static void handle_cmplt(int completion_status, struct bau_desc *bau_desc,
 877                        struct bau_control *bcp, struct bau_control *hmaster,
 878                        struct ptc_stats *stat)
 879{
 880        if (completion_status == FLUSH_RETRY_PLUGGED)
 881                destination_plugged(bau_desc, bcp, hmaster, stat);
 882        else if (completion_status == FLUSH_RETRY_TIMEOUT)
 883                destination_timeout(bau_desc, bcp, hmaster, stat);
 884}
 885
 886/*
 887 * Send a broadcast and wait for it to complete.
 888 *
 889 * The flush_mask contains the cpus the broadcast is to be sent to including
 890 * cpus that are on the local uvhub.
 891 *
 892 * Returns 0 if all flushing represented in the mask was done.
 893 * Returns 1 if it gives up entirely and the original cpu mask is to be
 894 * returned to the kernel.
 895 */
 896static int uv_flush_send_and_wait(struct cpumask *flush_mask,
 897                                  struct bau_control *bcp,
 898                                  struct bau_desc *bau_desc)
 899{
 900        int seq_number = 0;
 901        int completion_stat = 0;
 902        int uv1 = 0;
 903        long try = 0;
 904        unsigned long index;
 905        cycles_t time1;
 906        cycles_t time2;
 907        struct ptc_stats *stat = bcp->statp;
 908        struct bau_control *hmaster = bcp->uvhub_master;
 909        struct uv1_bau_msg_header *uv1_hdr = NULL;
 910        struct uv2_3_bau_msg_header *uv2_3_hdr = NULL;
 911
 912        if (bcp->uvhub_version == UV_BAU_V1) {
 913                uv1 = 1;
 914                uv1_throttle(hmaster, stat);
 915        }
 916
 917        while (hmaster->uvhub_quiesce)
 918                cpu_relax();
 919
 920        time1 = get_cycles();
 921        if (uv1)
 922                uv1_hdr = &bau_desc->header.uv1_hdr;
 923        else
 924                /* uv2 and uv3 */
 925                uv2_3_hdr = &bau_desc->header.uv2_3_hdr;
 926
 927        do {
 928                if (try == 0) {
 929                        if (uv1)
 930                                uv1_hdr->msg_type = MSG_REGULAR;
 931                        else
 932                                uv2_3_hdr->msg_type = MSG_REGULAR;
 933                        seq_number = bcp->message_number++;
 934                } else {
 935                        if (uv1)
 936                                uv1_hdr->msg_type = MSG_RETRY;
 937                        else
 938                                uv2_3_hdr->msg_type = MSG_RETRY;
 939                        stat->s_retry_messages++;
 940                }
 941
 942                if (uv1)
 943                        uv1_hdr->sequence = seq_number;
 944                else
 945                        uv2_3_hdr->sequence = seq_number;
 946                index = (1UL << AS_PUSH_SHIFT) | bcp->uvhub_cpu;
 947                bcp->send_message = get_cycles();
 948
 949                write_mmr_activation(index);
 950
 951                try++;
 952                completion_stat = ops.wait_completion(bau_desc, bcp, try);
 953
 954                handle_cmplt(completion_stat, bau_desc, bcp, hmaster, stat);
 955
 956                if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
 957                        bcp->ipi_attempts = 0;
 958                        stat->s_overipilimit++;
 959                        completion_stat = FLUSH_GIVEUP;
 960                        break;
 961                }
 962                cpu_relax();
 963        } while ((completion_stat == FLUSH_RETRY_PLUGGED) ||
 964                 (completion_stat == FLUSH_RETRY_TIMEOUT));
 965
 966        time2 = get_cycles();
 967
 968        count_max_concurr(completion_stat, bcp, hmaster);
 969
 970        while (hmaster->uvhub_quiesce)
 971                cpu_relax();
 972
 973        atomic_dec(&hmaster->active_descriptor_count);
 974
 975        record_send_stats(time1, time2, bcp, stat, completion_stat, try);
 976
 977        if (completion_stat == FLUSH_GIVEUP)
 978                /* FLUSH_GIVEUP will fall back to using IPI's for tlb flush */
 979                return 1;
 980        return 0;
 981}
 982
 983/*
 984 * The BAU is disabled for this uvhub. When the disabled time period has
 985 * expired re-enable it.
 986 * Return 0 if it is re-enabled for all cpus on this uvhub.
 987 */
 988static int check_enable(struct bau_control *bcp, struct ptc_stats *stat)
 989{
 990        int tcpu;
 991        struct bau_control *tbcp;
 992        struct bau_control *hmaster;
 993
 994        hmaster = bcp->uvhub_master;
 995        spin_lock(&hmaster->disable_lock);
 996        if (bcp->baudisabled && (get_cycles() >= bcp->set_bau_on_time)) {
 997                stat->s_bau_reenabled++;
 998                for_each_present_cpu(tcpu) {
 999                        tbcp = &per_cpu(bau_control, tcpu);
1000                        if (tbcp->uvhub_master == hmaster) {
1001                                tbcp->baudisabled = 0;
1002                                tbcp->period_requests = 0;
1003                                tbcp->period_time = 0;
1004                                tbcp->period_giveups = 0;
1005                        }
1006                }
1007                spin_unlock(&hmaster->disable_lock);
1008                return 0;
1009        }
1010        spin_unlock(&hmaster->disable_lock);
1011        return -1;
1012}
1013
1014static void record_send_statistics(struct ptc_stats *stat, int locals, int hubs,
1015                                int remotes, struct bau_desc *bau_desc)
1016{
1017        stat->s_requestor++;
1018        stat->s_ntargcpu += remotes + locals;
1019        stat->s_ntargremotes += remotes;
1020        stat->s_ntarglocals += locals;
1021
1022        /* uvhub statistics */
1023        hubs = bau_uvhub_weight(&bau_desc->distribution);
1024        if (locals) {
1025                stat->s_ntarglocaluvhub++;
1026                stat->s_ntargremoteuvhub += (hubs - 1);
1027        } else
1028                stat->s_ntargremoteuvhub += hubs;
1029
1030        stat->s_ntarguvhub += hubs;
1031
1032        if (hubs >= 16)
1033                stat->s_ntarguvhub16++;
1034        else if (hubs >= 8)
1035                stat->s_ntarguvhub8++;
1036        else if (hubs >= 4)
1037                stat->s_ntarguvhub4++;
1038        else if (hubs >= 2)
1039                stat->s_ntarguvhub2++;
1040        else
1041                stat->s_ntarguvhub1++;
1042}
1043
1044/*
1045 * Translate a cpu mask to the uvhub distribution mask in the BAU
1046 * activation descriptor.
1047 */
1048static int set_distrib_bits(struct cpumask *flush_mask, struct bau_control *bcp,
1049                        struct bau_desc *bau_desc, int *localsp, int *remotesp)
1050{
1051        int cpu;
1052        int pnode;
1053        int cnt = 0;
1054        struct hub_and_pnode *hpp;
1055
1056        for_each_cpu(cpu, flush_mask) {
1057                /*
1058                 * The distribution vector is a bit map of pnodes, relative
1059                 * to the partition base pnode (and the partition base nasid
1060                 * in the header).
1061                 * Translate cpu to pnode and hub using a local memory array.
1062                 */
1063                hpp = &bcp->socket_master->thp[cpu];
1064                pnode = hpp->pnode - bcp->partition_base_pnode;
1065                bau_uvhub_set(pnode, &bau_desc->distribution);
1066                cnt++;
1067                if (hpp->uvhub == bcp->uvhub)
1068                        (*localsp)++;
1069                else
1070                        (*remotesp)++;
1071        }
1072        if (!cnt)
1073                return 1;
1074        return 0;
1075}
1076
1077/*
1078 * globally purge translation cache of a virtual address or all TLB's
1079 * @cpumask: mask of all cpu's in which the address is to be removed
1080 * @mm: mm_struct containing virtual address range
1081 * @start: start virtual address to be removed from TLB
1082 * @end: end virtual address to be remove from TLB
1083 * @cpu: the current cpu
1084 *
1085 * This is the entry point for initiating any UV global TLB shootdown.
1086 *
1087 * Purges the translation caches of all specified processors of the given
1088 * virtual address, or purges all TLB's on specified processors.
1089 *
1090 * The caller has derived the cpumask from the mm_struct.  This function
1091 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
1092 *
1093 * The cpumask is converted into a uvhubmask of the uvhubs containing
1094 * those cpus.
1095 *
1096 * Note that this function should be called with preemption disabled.
1097 *
1098 * Returns NULL if all remote flushing was done.
1099 * Returns pointer to cpumask if some remote flushing remains to be
1100 * done.  The returned pointer is valid till preemption is re-enabled.
1101 */
1102const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
1103                                          const struct flush_tlb_info *info)
1104{
1105        unsigned int cpu = smp_processor_id();
1106        int locals = 0, remotes = 0, hubs = 0;
1107        struct bau_desc *bau_desc;
1108        struct cpumask *flush_mask;
1109        struct ptc_stats *stat;
1110        struct bau_control *bcp;
1111        unsigned long descriptor_status, status, address;
1112
1113        bcp = &per_cpu(bau_control, cpu);
1114
1115        if (bcp->nobau)
1116                return cpumask;
1117
1118        stat = bcp->statp;
1119        stat->s_enters++;
1120
1121        if (bcp->busy) {
1122                descriptor_status =
1123                        read_lmmr(UVH_LB_BAU_SB_ACTIVATION_STATUS_0);
1124                status = ((descriptor_status >> (bcp->uvhub_cpu *
1125                        UV_ACT_STATUS_SIZE)) & UV_ACT_STATUS_MASK) << 1;
1126                if (status == UV2H_DESC_BUSY)
1127                        return cpumask;
1128                bcp->busy = 0;
1129        }
1130
1131        /* bau was disabled due to slow response */
1132        if (bcp->baudisabled) {
1133                if (check_enable(bcp, stat)) {
1134                        stat->s_ipifordisabled++;
1135                        return cpumask;
1136                }
1137        }
1138
1139        /*
1140         * Each sending cpu has a per-cpu mask which it fills from the caller's
1141         * cpu mask.  All cpus are converted to uvhubs and copied to the
1142         * activation descriptor.
1143         */
1144        flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
1145        /* don't actually do a shootdown of the local cpu */
1146        cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
1147
1148        if (cpumask_test_cpu(cpu, cpumask))
1149                stat->s_ntargself++;
1150
1151        bau_desc = bcp->descriptor_base;
1152        bau_desc += (ITEMS_PER_DESC * bcp->uvhub_cpu);
1153        bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
1154        if (set_distrib_bits(flush_mask, bcp, bau_desc, &locals, &remotes))
1155                return NULL;
1156
1157        record_send_statistics(stat, locals, hubs, remotes, bau_desc);
1158
1159        if (!info->end || (info->end - info->start) <= PAGE_SIZE)
1160                address = info->start;
1161        else
1162                address = TLB_FLUSH_ALL;
1163
1164        switch (bcp->uvhub_version) {
1165        case UV_BAU_V1:
1166        case UV_BAU_V2:
1167        case UV_BAU_V3:
1168                bau_desc->payload.uv1_2_3.address = address;
1169                bau_desc->payload.uv1_2_3.sending_cpu = cpu;
1170                break;
1171        case UV_BAU_V4:
1172                bau_desc->payload.uv4.address = address;
1173                bau_desc->payload.uv4.sending_cpu = cpu;
1174                bau_desc->payload.uv4.qualifier = BAU_DESC_QUALIFIER;
1175                break;
1176        }
1177
1178        /*
1179         * uv_flush_send_and_wait returns 0 if all cpu's were messaged,
1180         * or 1 if it gave up and the original cpumask should be returned.
1181         */
1182        if (!uv_flush_send_and_wait(flush_mask, bcp, bau_desc))
1183                return NULL;
1184        else
1185                return cpumask;
1186}
1187
1188/*
1189 * Search the message queue for any 'other' unprocessed message with the
1190 * same software acknowledge resource bit vector as the 'msg' message.
1191 */
1192static struct bau_pq_entry *find_another_by_swack(struct bau_pq_entry *msg,
1193                                                  struct bau_control *bcp)
1194{
1195        struct bau_pq_entry *msg_next = msg + 1;
1196        unsigned char swack_vec = msg->swack_vec;
1197
1198        if (msg_next > bcp->queue_last)
1199                msg_next = bcp->queue_first;
1200        while (msg_next != msg) {
1201                if ((msg_next->canceled == 0) && (msg_next->replied_to == 0) &&
1202                                (msg_next->swack_vec == swack_vec))
1203                        return msg_next;
1204                msg_next++;
1205                if (msg_next > bcp->queue_last)
1206                        msg_next = bcp->queue_first;
1207        }
1208        return NULL;
1209}
1210
1211/*
1212 * UV2 needs to work around a bug in which an arriving message has not
1213 * set a bit in the UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE register.
1214 * Such a message must be ignored.
1215 */
1216static void process_uv2_message(struct msg_desc *mdp, struct bau_control *bcp)
1217{
1218        unsigned long mmr_image;
1219        unsigned char swack_vec;
1220        struct bau_pq_entry *msg = mdp->msg;
1221        struct bau_pq_entry *other_msg;
1222
1223        mmr_image = ops.read_l_sw_ack();
1224        swack_vec = msg->swack_vec;
1225
1226        if ((swack_vec & mmr_image) == 0) {
1227                /*
1228                 * This message was assigned a swack resource, but no
1229                 * reserved acknowlegment is pending.
1230                 * The bug has prevented this message from setting the MMR.
1231                 */
1232                /*
1233                 * Some message has set the MMR 'pending' bit; it might have
1234                 * been another message.  Look for that message.
1235                 */
1236                other_msg = find_another_by_swack(msg, bcp);
1237                if (other_msg) {
1238                        /*
1239                         * There is another. Process this one but do not
1240                         * ack it.
1241                         */
1242                        bau_process_message(mdp, bcp, 0);
1243                        /*
1244                         * Let the natural processing of that other message
1245                         * acknowledge it. Don't get the processing of sw_ack's
1246                         * out of order.
1247                         */
1248                        return;
1249                }
1250        }
1251
1252        /*
1253         * Either the MMR shows this one pending a reply or there is no
1254         * other message using this sw_ack, so it is safe to acknowledge it.
1255         */
1256        bau_process_message(mdp, bcp, 1);
1257
1258        return;
1259}
1260
1261/*
1262 * The BAU message interrupt comes here. (registered by set_intr_gate)
1263 * See entry_64.S
1264 *
1265 * We received a broadcast assist message.
1266 *
1267 * Interrupts are disabled; this interrupt could represent
1268 * the receipt of several messages.
1269 *
1270 * All cores/threads on this hub get this interrupt.
1271 * The last one to see it does the software ack.
1272 * (the resource will not be freed until noninterruptable cpus see this
1273 *  interrupt; hardware may timeout the s/w ack and reply ERROR)
1274 */
1275void uv_bau_message_interrupt(struct pt_regs *regs)
1276{
1277        int count = 0;
1278        cycles_t time_start;
1279        struct bau_pq_entry *msg;
1280        struct bau_control *bcp;
1281        struct ptc_stats *stat;
1282        struct msg_desc msgdesc;
1283
1284        ack_APIC_irq();
1285        kvm_set_cpu_l1tf_flush_l1d();
1286        time_start = get_cycles();
1287
1288        bcp = &per_cpu(bau_control, smp_processor_id());
1289        stat = bcp->statp;
1290
1291        msgdesc.queue_first = bcp->queue_first;
1292        msgdesc.queue_last = bcp->queue_last;
1293
1294        msg = bcp->bau_msg_head;
1295        while (msg->swack_vec) {
1296                count++;
1297
1298                msgdesc.msg_slot = msg - msgdesc.queue_first;
1299                msgdesc.msg = msg;
1300                if (bcp->uvhub_version == UV_BAU_V2)
1301                        process_uv2_message(&msgdesc, bcp);
1302                else
1303                        /* no error workaround for uv1 or uv3 */
1304                        bau_process_message(&msgdesc, bcp, 1);
1305
1306                msg++;
1307                if (msg > msgdesc.queue_last)
1308                        msg = msgdesc.queue_first;
1309                bcp->bau_msg_head = msg;
1310        }
1311        stat->d_time += (get_cycles() - time_start);
1312        if (!count)
1313                stat->d_nomsg++;
1314        else if (count > 1)
1315                stat->d_multmsg++;
1316}
1317
1318/*
1319 * Each target uvhub (i.e. a uvhub that has cpu's) needs to have
1320 * shootdown message timeouts enabled.  The timeout does not cause
1321 * an interrupt, but causes an error message to be returned to
1322 * the sender.
1323 */
1324static void __init enable_timeouts(void)
1325{
1326        int uvhub;
1327        int nuvhubs;
1328        int pnode;
1329        unsigned long mmr_image;
1330
1331        nuvhubs = uv_num_possible_blades();
1332
1333        for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1334                if (!uv_blade_nr_possible_cpus(uvhub))
1335                        continue;
1336
1337                pnode = uv_blade_to_pnode(uvhub);
1338                mmr_image = read_mmr_misc_control(pnode);
1339                /*
1340                 * Set the timeout period and then lock it in, in three
1341                 * steps; captures and locks in the period.
1342                 *
1343                 * To program the period, the SOFT_ACK_MODE must be off.
1344                 */
1345                mmr_image &= ~(1L << SOFTACK_MSHIFT);
1346                write_mmr_misc_control(pnode, mmr_image);
1347                /*
1348                 * Set the 4-bit period.
1349                 */
1350                mmr_image &= ~((unsigned long)0xf << SOFTACK_PSHIFT);
1351                mmr_image |= (SOFTACK_TIMEOUT_PERIOD << SOFTACK_PSHIFT);
1352                write_mmr_misc_control(pnode, mmr_image);
1353                /*
1354                 * UV1:
1355                 * Subsequent reversals of the timebase bit (3) cause an
1356                 * immediate timeout of one or all INTD resources as
1357                 * indicated in bits 2:0 (7 causes all of them to timeout).
1358                 */
1359                mmr_image |= (1L << SOFTACK_MSHIFT);
1360                if (is_uv2_hub()) {
1361                        /* do not touch the legacy mode bit */
1362                        /* hw bug workaround; do not use extended status */
1363                        mmr_image &= ~(1L << UV2_EXT_SHFT);
1364                } else if (is_uv3_hub()) {
1365                        mmr_image &= ~(1L << PREFETCH_HINT_SHFT);
1366                        mmr_image |= (1L << SB_STATUS_SHFT);
1367                }
1368                write_mmr_misc_control(pnode, mmr_image);
1369        }
1370}
1371
1372static void *ptc_seq_start(struct seq_file *file, loff_t *offset)
1373{
1374        if (*offset < num_possible_cpus())
1375                return offset;
1376        return NULL;
1377}
1378
1379static void *ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
1380{
1381        (*offset)++;
1382        if (*offset < num_possible_cpus())
1383                return offset;
1384        return NULL;
1385}
1386
1387static void ptc_seq_stop(struct seq_file *file, void *data)
1388{
1389}
1390
1391/*
1392 * Display the statistics thru /proc/sgi_uv/ptc_statistics
1393 * 'data' points to the cpu number
1394 * Note: see the descriptions in stat_description[].
1395 */
1396static int ptc_seq_show(struct seq_file *file, void *data)
1397{
1398        struct ptc_stats *stat;
1399        struct bau_control *bcp;
1400        int cpu;
1401
1402        cpu = *(loff_t *)data;
1403        if (!cpu) {
1404                seq_puts(file,
1405                         "# cpu bauoff sent stime self locals remotes ncpus localhub ");
1406                seq_puts(file, "remotehub numuvhubs numuvhubs16 numuvhubs8 ");
1407                seq_puts(file,
1408                         "numuvhubs4 numuvhubs2 numuvhubs1 dto snacks retries ");
1409                seq_puts(file,
1410                         "rok resetp resett giveup sto bz throt disable ");
1411                seq_puts(file,
1412                         "enable wars warshw warwaits enters ipidis plugged ");
1413                seq_puts(file,
1414                         "ipiover glim cong swack recv rtime all one mult ");
1415                seq_puts(file, "none retry canc nocan reset rcan\n");
1416        }
1417        if (cpu < num_possible_cpus() && cpu_online(cpu)) {
1418                bcp = &per_cpu(bau_control, cpu);
1419                if (bcp->nobau) {
1420                        seq_printf(file, "cpu %d bau disabled\n", cpu);
1421                        return 0;
1422                }
1423                stat = bcp->statp;
1424                /* source side statistics */
1425                seq_printf(file,
1426                        "cpu %d %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1427                           cpu, bcp->nobau, stat->s_requestor,
1428                           cycles_2_us(stat->s_time),
1429                           stat->s_ntargself, stat->s_ntarglocals,
1430                           stat->s_ntargremotes, stat->s_ntargcpu,
1431                           stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
1432                           stat->s_ntarguvhub, stat->s_ntarguvhub16);
1433                seq_printf(file, "%ld %ld %ld %ld %ld %ld ",
1434                           stat->s_ntarguvhub8, stat->s_ntarguvhub4,
1435                           stat->s_ntarguvhub2, stat->s_ntarguvhub1,
1436                           stat->s_dtimeout, stat->s_strongnacks);
1437                seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
1438                           stat->s_retry_messages, stat->s_retriesok,
1439                           stat->s_resets_plug, stat->s_resets_timeout,
1440                           stat->s_giveup, stat->s_stimeout,
1441                           stat->s_busy, stat->s_throttles);
1442                seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1443                           stat->s_bau_disabled, stat->s_bau_reenabled,
1444                           stat->s_uv2_wars, stat->s_uv2_wars_hw,
1445                           stat->s_uv2_war_waits, stat->s_enters,
1446                           stat->s_ipifordisabled, stat->s_plugged,
1447                           stat->s_overipilimit, stat->s_giveuplimit,
1448                           stat->s_congested);
1449
1450                /* destination side statistics */
1451                seq_printf(file,
1452                        "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n",
1453                           ops.read_g_sw_ack(uv_cpu_to_pnode(cpu)),
1454                           stat->d_requestee, cycles_2_us(stat->d_time),
1455                           stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
1456                           stat->d_nomsg, stat->d_retries, stat->d_canceled,
1457                           stat->d_nocanceled, stat->d_resets,
1458                           stat->d_rcanceled);
1459        }
1460        return 0;
1461}
1462
1463/*
1464 * Display the tunables thru debugfs
1465 */
1466static ssize_t tunables_read(struct file *file, char __user *userbuf,
1467                                size_t count, loff_t *ppos)
1468{
1469        char *buf;
1470        int ret;
1471
1472        buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d %d\n",
1473                "max_concur plugged_delay plugsb4reset timeoutsb4reset",
1474                "ipi_reset_limit complete_threshold congested_response_us",
1475                "congested_reps disabled_period giveup_limit",
1476                max_concurr, plugged_delay, plugsb4reset,
1477                timeoutsb4reset, ipi_reset_limit, complete_threshold,
1478                congested_respns_us, congested_reps, disabled_period,
1479                giveup_limit);
1480
1481        if (!buf)
1482                return -ENOMEM;
1483
1484        ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
1485        kfree(buf);
1486        return ret;
1487}
1488
1489/*
1490 * handle a write to /proc/sgi_uv/ptc_statistics
1491 * -1: reset the statistics
1492 *  0: display meaning of the statistics
1493 */
1494static ssize_t ptc_proc_write(struct file *file, const char __user *user,
1495                                size_t count, loff_t *data)
1496{
1497        int cpu;
1498        int i;
1499        int elements;
1500        long input_arg;
1501        char optstr[64];
1502        struct ptc_stats *stat;
1503
1504        if (count == 0 || count > sizeof(optstr))
1505                return -EINVAL;
1506        if (copy_from_user(optstr, user, count))
1507                return -EFAULT;
1508        optstr[count - 1] = '\0';
1509
1510        if (!strcmp(optstr, "on")) {
1511                set_bau_on();
1512                return count;
1513        } else if (!strcmp(optstr, "off")) {
1514                set_bau_off();
1515                return count;
1516        }
1517
1518        if (kstrtol(optstr, 10, &input_arg) < 0) {
1519                pr_debug("%s is invalid\n", optstr);
1520                return -EINVAL;
1521        }
1522
1523        if (input_arg == 0) {
1524                elements = ARRAY_SIZE(stat_description);
1525                pr_debug("# cpu:      cpu number\n");
1526                pr_debug("Sender statistics:\n");
1527                for (i = 0; i < elements; i++)
1528                        pr_debug("%s\n", stat_description[i]);
1529        } else if (input_arg == -1) {
1530                for_each_present_cpu(cpu) {
1531                        stat = &per_cpu(ptcstats, cpu);
1532                        memset(stat, 0, sizeof(struct ptc_stats));
1533                }
1534        }
1535
1536        return count;
1537}
1538
1539static int local_atoi(const char *name)
1540{
1541        int val = 0;
1542
1543        for (;; name++) {
1544                switch (*name) {
1545                case '0' ... '9':
1546                        val = 10*val+(*name-'0');
1547                        break;
1548                default:
1549                        return val;
1550                }
1551        }
1552}
1553
1554/*
1555 * Parse the values written to /sys/kernel/debug/sgi_uv/bau_tunables.
1556 * Zero values reset them to defaults.
1557 */
1558static int parse_tunables_write(struct bau_control *bcp, char *instr,
1559                                int count)
1560{
1561        char *p;
1562        char *q;
1563        int cnt = 0;
1564        int val;
1565        int e = ARRAY_SIZE(tunables);
1566
1567        p = instr + strspn(instr, WHITESPACE);
1568        q = p;
1569        for (; *p; p = q + strspn(q, WHITESPACE)) {
1570                q = p + strcspn(p, WHITESPACE);
1571                cnt++;
1572                if (q == p)
1573                        break;
1574        }
1575        if (cnt != e) {
1576                pr_info("bau tunable error: should be %d values\n", e);
1577                return -EINVAL;
1578        }
1579
1580        p = instr + strspn(instr, WHITESPACE);
1581        q = p;
1582        for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
1583                q = p + strcspn(p, WHITESPACE);
1584                val = local_atoi(p);
1585                switch (cnt) {
1586                case 0:
1587                        if (val == 0) {
1588                                max_concurr = MAX_BAU_CONCURRENT;
1589                                max_concurr_const = MAX_BAU_CONCURRENT;
1590                                continue;
1591                        }
1592                        if (val < 1 || val > bcp->cpus_in_uvhub) {
1593                                pr_debug(
1594                                "Error: BAU max concurrent %d is invalid\n",
1595                                val);
1596                                return -EINVAL;
1597                        }
1598                        max_concurr = val;
1599                        max_concurr_const = val;
1600                        continue;
1601                default:
1602                        if (val == 0)
1603                                *tunables[cnt].tunp = tunables[cnt].deflt;
1604                        else
1605                                *tunables[cnt].tunp = val;
1606                        continue;
1607                }
1608        }
1609        return 0;
1610}
1611
1612/*
1613 * Handle a write to debugfs. (/sys/kernel/debug/sgi_uv/bau_tunables)
1614 */
1615static ssize_t tunables_write(struct file *file, const char __user *user,
1616                                size_t count, loff_t *data)
1617{
1618        int cpu;
1619        int ret;
1620        char instr[100];
1621        struct bau_control *bcp;
1622
1623        if (count == 0 || count > sizeof(instr)-1)
1624                return -EINVAL;
1625        if (copy_from_user(instr, user, count))
1626                return -EFAULT;
1627
1628        instr[count] = '\0';
1629
1630        cpu = get_cpu();
1631        bcp = &per_cpu(bau_control, cpu);
1632        ret = parse_tunables_write(bcp, instr, count);
1633        put_cpu();
1634        if (ret)
1635                return ret;
1636
1637        for_each_present_cpu(cpu) {
1638                bcp = &per_cpu(bau_control, cpu);
1639                bcp->max_concurr         = max_concurr;
1640                bcp->max_concurr_const   = max_concurr;
1641                bcp->plugged_delay       = plugged_delay;
1642                bcp->plugsb4reset        = plugsb4reset;
1643                bcp->timeoutsb4reset     = timeoutsb4reset;
1644                bcp->ipi_reset_limit     = ipi_reset_limit;
1645                bcp->complete_threshold  = complete_threshold;
1646                bcp->cong_response_us    = congested_respns_us;
1647                bcp->cong_reps           = congested_reps;
1648                bcp->disabled_period     = sec_2_cycles(disabled_period);
1649                bcp->giveup_limit        = giveup_limit;
1650        }
1651        return count;
1652}
1653
1654static const struct seq_operations uv_ptc_seq_ops = {
1655        .start          = ptc_seq_start,
1656        .next           = ptc_seq_next,
1657        .stop           = ptc_seq_stop,
1658        .show           = ptc_seq_show
1659};
1660
1661static int ptc_proc_open(struct inode *inode, struct file *file)
1662{
1663        return seq_open(file, &uv_ptc_seq_ops);
1664}
1665
1666static int tunables_open(struct inode *inode, struct file *file)
1667{
1668        return 0;
1669}
1670
1671static const struct file_operations proc_uv_ptc_operations = {
1672        .open           = ptc_proc_open,
1673        .read           = seq_read,
1674        .write          = ptc_proc_write,
1675        .llseek         = seq_lseek,
1676        .release        = seq_release,
1677};
1678
1679static const struct file_operations tunables_fops = {
1680        .open           = tunables_open,
1681        .read           = tunables_read,
1682        .write          = tunables_write,
1683        .llseek         = default_llseek,
1684};
1685
1686static int __init uv_ptc_init(void)
1687{
1688        struct proc_dir_entry *proc_uv_ptc;
1689
1690        if (!is_uv_system())
1691                return 0;
1692
1693        proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
1694                                  &proc_uv_ptc_operations);
1695        if (!proc_uv_ptc) {
1696                pr_err("unable to create %s proc entry\n",
1697                       UV_PTC_BASENAME);
1698                return -EINVAL;
1699        }
1700
1701        tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
1702        debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600, tunables_dir, NULL,
1703                            &tunables_fops);
1704        return 0;
1705}
1706
1707/*
1708 * Initialize the sending side's sending buffers.
1709 */
1710static void activation_descriptor_init(int node, int pnode, int base_pnode)
1711{
1712        int i;
1713        int cpu;
1714        int uv1 = 0;
1715        unsigned long gpa;
1716        unsigned long m;
1717        unsigned long n;
1718        size_t dsize;
1719        struct bau_desc *bau_desc;
1720        struct bau_desc *bd2;
1721        struct uv1_bau_msg_header *uv1_hdr;
1722        struct uv2_3_bau_msg_header *uv2_3_hdr;
1723        struct bau_control *bcp;
1724
1725        /*
1726         * each bau_desc is 64 bytes; there are 8 (ITEMS_PER_DESC)
1727         * per cpu; and one per cpu on the uvhub (ADP_SZ)
1728         */
1729        dsize = sizeof(struct bau_desc) * ADP_SZ * ITEMS_PER_DESC;
1730        bau_desc = kmalloc_node(dsize, GFP_KERNEL, node);
1731        BUG_ON(!bau_desc);
1732
1733        gpa = uv_gpa(bau_desc);
1734        n = uv_gpa_to_gnode(gpa);
1735        m = ops.bau_gpa_to_offset(gpa);
1736        if (is_uv1_hub())
1737                uv1 = 1;
1738
1739        /* the 14-bit pnode */
1740        write_mmr_descriptor_base(pnode,
1741                (n << UVH_LB_BAU_SB_DESCRIPTOR_BASE_NODE_ID_SHFT | m));
1742        /*
1743         * Initializing all 8 (ITEMS_PER_DESC) descriptors for each
1744         * cpu even though we only use the first one; one descriptor can
1745         * describe a broadcast to 256 uv hubs.
1746         */
1747        for (i = 0, bd2 = bau_desc; i < (ADP_SZ * ITEMS_PER_DESC); i++, bd2++) {
1748                memset(bd2, 0, sizeof(struct bau_desc));
1749                if (uv1) {
1750                        uv1_hdr = &bd2->header.uv1_hdr;
1751                        uv1_hdr->swack_flag = 1;
1752                        /*
1753                         * The base_dest_nasid set in the message header
1754                         * is the nasid of the first uvhub in the partition.
1755                         * The bit map will indicate destination pnode numbers
1756                         * relative to that base. They may not be consecutive
1757                         * if nasid striding is being used.
1758                         */
1759                        uv1_hdr->base_dest_nasid =
1760                                                  UV_PNODE_TO_NASID(base_pnode);
1761                        uv1_hdr->dest_subnodeid  = UV_LB_SUBNODEID;
1762                        uv1_hdr->command         = UV_NET_ENDPOINT_INTD;
1763                        uv1_hdr->int_both        = 1;
1764                        /*
1765                         * all others need to be set to zero:
1766                         *   fairness chaining multilevel count replied_to
1767                         */
1768                } else {
1769                        /*
1770                         * BIOS uses legacy mode, but uv2 and uv3 hardware always
1771                         * uses native mode for selective broadcasts.
1772                         */
1773                        uv2_3_hdr = &bd2->header.uv2_3_hdr;
1774                        uv2_3_hdr->swack_flag      = 1;
1775                        uv2_3_hdr->base_dest_nasid =
1776                                                  UV_PNODE_TO_NASID(base_pnode);
1777                        uv2_3_hdr->dest_subnodeid  = UV_LB_SUBNODEID;
1778                        uv2_3_hdr->command         = UV_NET_ENDPOINT_INTD;
1779                }
1780        }
1781        for_each_present_cpu(cpu) {
1782                if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
1783                        continue;
1784                bcp = &per_cpu(bau_control, cpu);
1785                bcp->descriptor_base = bau_desc;
1786        }
1787}
1788
1789/*
1790 * initialize the destination side's receiving buffers
1791 * entered for each uvhub in the partition
1792 * - node is first node (kernel memory notion) on the uvhub
1793 * - pnode is the uvhub's physical identifier
1794 */
1795static void pq_init(int node, int pnode)
1796{
1797        int cpu;
1798        size_t plsize;
1799        char *cp;
1800        void *vp;
1801        unsigned long gnode, first, last, tail;
1802        struct bau_pq_entry *pqp;
1803        struct bau_control *bcp;
1804
1805        plsize = (DEST_Q_SIZE + 1) * sizeof(struct bau_pq_entry);
1806        vp = kmalloc_node(plsize, GFP_KERNEL, node);
1807        pqp = (struct bau_pq_entry *)vp;
1808        BUG_ON(!pqp);
1809
1810        cp = (char *)pqp + 31;
1811        pqp = (struct bau_pq_entry *)(((unsigned long)cp >> 5) << 5);
1812
1813        for_each_present_cpu(cpu) {
1814                if (pnode != uv_cpu_to_pnode(cpu))
1815                        continue;
1816                /* for every cpu on this pnode: */
1817                bcp = &per_cpu(bau_control, cpu);
1818                bcp->queue_first        = pqp;
1819                bcp->bau_msg_head       = pqp;
1820                bcp->queue_last         = pqp + (DEST_Q_SIZE - 1);
1821        }
1822
1823        first = ops.bau_gpa_to_offset(uv_gpa(pqp));
1824        last = ops.bau_gpa_to_offset(uv_gpa(pqp + (DEST_Q_SIZE - 1)));
1825
1826        /*
1827         * Pre UV4, the gnode is required to locate the payload queue
1828         * and the payload queue tail must be maintained by the kernel.
1829         */
1830        bcp = &per_cpu(bau_control, smp_processor_id());
1831        if (bcp->uvhub_version <= UV_BAU_V3) {
1832                tail = first;
1833                gnode = uv_gpa_to_gnode(uv_gpa(pqp));
1834                first = (gnode << UV_PAYLOADQ_GNODE_SHIFT) | tail;
1835                write_mmr_payload_tail(pnode, tail);
1836        }
1837
1838        ops.write_payload_first(pnode, first);
1839        ops.write_payload_last(pnode, last);
1840
1841        /* in effect, all msg_type's are set to MSG_NOOP */
1842        memset(pqp, 0, sizeof(struct bau_pq_entry) * DEST_Q_SIZE);
1843}
1844
1845/*
1846 * Initialization of each UV hub's structures
1847 */
1848static void __init init_uvhub(int uvhub, int vector, int base_pnode)
1849{
1850        int node;
1851        int pnode;
1852        unsigned long apicid;
1853
1854        node = uvhub_to_first_node(uvhub);
1855        pnode = uv_blade_to_pnode(uvhub);
1856
1857        activation_descriptor_init(node, pnode, base_pnode);
1858
1859        pq_init(node, pnode);
1860        /*
1861         * The below initialization can't be in firmware because the
1862         * messaging IRQ will be determined by the OS.
1863         */
1864        apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
1865        write_mmr_data_config(pnode, ((apicid << 32) | vector));
1866}
1867
1868/*
1869 * We will set BAU_MISC_CONTROL with a timeout period.
1870 * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
1871 * So the destination timeout period has to be calculated from them.
1872 */
1873static int calculate_destination_timeout(void)
1874{
1875        unsigned long mmr_image;
1876        int mult1;
1877        int mult2;
1878        int index;
1879        int base;
1880        int ret;
1881        unsigned long ts_ns;
1882
1883        if (is_uv1_hub()) {
1884                mult1 = SOFTACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
1885                mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
1886                index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
1887                mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
1888                mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
1889                ts_ns = timeout_base_ns[index];
1890                ts_ns *= (mult1 * mult2);
1891                ret = ts_ns / 1000;
1892        } else {
1893                /* same destination timeout for uv2 and uv3 */
1894                /* 4 bits  0/1 for 10/80us base, 3 bits of multiplier */
1895                mmr_image = uv_read_local_mmr(UVH_LB_BAU_MISC_CONTROL);
1896                mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT;
1897                if (mmr_image & (1L << UV2_ACK_UNITS_SHFT))
1898                        base = 80;
1899                else
1900                        base = 10;
1901                mult1 = mmr_image & UV2_ACK_MASK;
1902                ret = mult1 * base;
1903        }
1904        return ret;
1905}
1906
1907static void __init init_per_cpu_tunables(void)
1908{
1909        int cpu;
1910        struct bau_control *bcp;
1911
1912        for_each_present_cpu(cpu) {
1913                bcp = &per_cpu(bau_control, cpu);
1914                bcp->baudisabled                = 0;
1915                if (nobau)
1916                        bcp->nobau              = true;
1917                bcp->statp                      = &per_cpu(ptcstats, cpu);
1918                /* time interval to catch a hardware stay-busy bug */
1919                bcp->timeout_interval           = usec_2_cycles(2*timeout_us);
1920                bcp->max_concurr                = max_concurr;
1921                bcp->max_concurr_const          = max_concurr;
1922                bcp->plugged_delay              = plugged_delay;
1923                bcp->plugsb4reset               = plugsb4reset;
1924                bcp->timeoutsb4reset            = timeoutsb4reset;
1925                bcp->ipi_reset_limit            = ipi_reset_limit;
1926                bcp->complete_threshold         = complete_threshold;
1927                bcp->cong_response_us           = congested_respns_us;
1928                bcp->cong_reps                  = congested_reps;
1929                bcp->disabled_period            = sec_2_cycles(disabled_period);
1930                bcp->giveup_limit               = giveup_limit;
1931                spin_lock_init(&bcp->queue_lock);
1932                spin_lock_init(&bcp->uvhub_lock);
1933                spin_lock_init(&bcp->disable_lock);
1934        }
1935}
1936
1937/*
1938 * Scan all cpus to collect blade and socket summaries.
1939 */
1940static int __init get_cpu_topology(int base_pnode,
1941                                        struct uvhub_desc *uvhub_descs,
1942                                        unsigned char *uvhub_mask)
1943{
1944        int cpu;
1945        int pnode;
1946        int uvhub;
1947        int socket;
1948        struct bau_control *bcp;
1949        struct uvhub_desc *bdp;
1950        struct socket_desc *sdp;
1951
1952        for_each_present_cpu(cpu) {
1953                bcp = &per_cpu(bau_control, cpu);
1954
1955                memset(bcp, 0, sizeof(struct bau_control));
1956
1957                pnode = uv_cpu_hub_info(cpu)->pnode;
1958                if ((pnode - base_pnode) >= UV_DISTRIBUTION_SIZE) {
1959                        pr_emerg(
1960                                "cpu %d pnode %d-%d beyond %d; BAU disabled\n",
1961                                cpu, pnode, base_pnode, UV_DISTRIBUTION_SIZE);
1962                        return 1;
1963                }
1964
1965                bcp->osnode = cpu_to_node(cpu);
1966                bcp->partition_base_pnode = base_pnode;
1967
1968                uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1969                *(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
1970                bdp = &uvhub_descs[uvhub];
1971
1972                bdp->num_cpus++;
1973                bdp->uvhub = uvhub;
1974                bdp->pnode = pnode;
1975
1976                /* kludge: 'assuming' one node per socket, and assuming that
1977                   disabling a socket just leaves a gap in node numbers */
1978                socket = bcp->osnode & 1;
1979                bdp->socket_mask |= (1 << socket);
1980                sdp = &bdp->socket[socket];
1981                sdp->cpu_number[sdp->num_cpus] = cpu;
1982                sdp->num_cpus++;
1983                if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
1984                        pr_emerg("%d cpus per socket invalid\n",
1985                                sdp->num_cpus);
1986                        return 1;
1987                }
1988        }
1989        return 0;
1990}
1991
1992/*
1993 * Each socket is to get a local array of pnodes/hubs.
1994 */
1995static void make_per_cpu_thp(struct bau_control *smaster)
1996{
1997        int cpu;
1998        size_t hpsz = sizeof(struct hub_and_pnode) * num_possible_cpus();
1999
2000        smaster->thp = kzalloc_node(hpsz, GFP_KERNEL, smaster->osnode);
2001        for_each_present_cpu(cpu) {
2002                smaster->thp[cpu].pnode = uv_cpu_hub_info(cpu)->pnode;
2003                smaster->thp[cpu].uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
2004        }
2005}
2006
2007/*
2008 * Each uvhub is to get a local cpumask.
2009 */
2010static void make_per_hub_cpumask(struct bau_control *hmaster)
2011{
2012        int sz = sizeof(cpumask_t);
2013
2014        hmaster->cpumask = kzalloc_node(sz, GFP_KERNEL, hmaster->osnode);
2015}
2016
2017/*
2018 * Initialize all the per_cpu information for the cpu's on a given socket,
2019 * given what has been gathered into the socket_desc struct.
2020 * And reports the chosen hub and socket masters back to the caller.
2021 */
2022static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp,
2023                        struct bau_control **smasterp,
2024                        struct bau_control **hmasterp)
2025{
2026        int i, cpu, uvhub_cpu;
2027        struct bau_control *bcp;
2028
2029        for (i = 0; i < sdp->num_cpus; i++) {
2030                cpu = sdp->cpu_number[i];
2031                bcp = &per_cpu(bau_control, cpu);
2032                bcp->cpu = cpu;
2033                if (i == 0) {
2034                        *smasterp = bcp;
2035                        if (!(*hmasterp))
2036                                *hmasterp = bcp;
2037                }
2038                bcp->cpus_in_uvhub = bdp->num_cpus;
2039                bcp->cpus_in_socket = sdp->num_cpus;
2040                bcp->socket_master = *smasterp;
2041                bcp->uvhub = bdp->uvhub;
2042                if (is_uv1_hub())
2043                        bcp->uvhub_version = UV_BAU_V1;
2044                else if (is_uv2_hub())
2045                        bcp->uvhub_version = UV_BAU_V2;
2046                else if (is_uv3_hub())
2047                        bcp->uvhub_version = UV_BAU_V3;
2048                else if (is_uv4_hub())
2049                        bcp->uvhub_version = UV_BAU_V4;
2050                else {
2051                        pr_emerg("uvhub version not 1, 2, 3, or 4\n");
2052                        return 1;
2053                }
2054                bcp->uvhub_master = *hmasterp;
2055                uvhub_cpu = uv_cpu_blade_processor_id(cpu);
2056                bcp->uvhub_cpu = uvhub_cpu;
2057
2058                /*
2059                 * The ERROR and BUSY status registers are located pairwise over
2060                 * the STATUS_0 and STATUS_1 mmrs; each an array[32] of 2 bits.
2061                 */
2062                if (uvhub_cpu < UV_CPUS_PER_AS) {
2063                        bcp->status_mmr = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
2064                        bcp->status_index = uvhub_cpu * UV_ACT_STATUS_SIZE;
2065                } else {
2066                        bcp->status_mmr = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
2067                        bcp->status_index = (uvhub_cpu - UV_CPUS_PER_AS)
2068                                                * UV_ACT_STATUS_SIZE;
2069                }
2070
2071                if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
2072                        pr_emerg("%d cpus per uvhub invalid\n",
2073                                bcp->uvhub_cpu);
2074                        return 1;
2075                }
2076        }
2077        return 0;
2078}
2079
2080/*
2081 * Summarize the blade and socket topology into the per_cpu structures.
2082 */
2083static int __init summarize_uvhub_sockets(int nuvhubs,
2084                        struct uvhub_desc *uvhub_descs,
2085                        unsigned char *uvhub_mask)
2086{
2087        int socket;
2088        int uvhub;
2089        unsigned short socket_mask;
2090
2091        for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
2092                struct uvhub_desc *bdp;
2093                struct bau_control *smaster = NULL;
2094                struct bau_control *hmaster = NULL;
2095
2096                if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
2097                        continue;
2098
2099                bdp = &uvhub_descs[uvhub];
2100                socket_mask = bdp->socket_mask;
2101                socket = 0;
2102                while (socket_mask) {
2103                        struct socket_desc *sdp;
2104                        if ((socket_mask & 1)) {
2105                                sdp = &bdp->socket[socket];
2106                                if (scan_sock(sdp, bdp, &smaster, &hmaster))
2107                                        return 1;
2108                                make_per_cpu_thp(smaster);
2109                        }
2110                        socket++;
2111                        socket_mask = (socket_mask >> 1);
2112                }
2113                make_per_hub_cpumask(hmaster);
2114        }
2115        return 0;
2116}
2117
2118/*
2119 * initialize the bau_control structure for each cpu
2120 */
2121static int __init init_per_cpu(int nuvhubs, int base_part_pnode)
2122{
2123        struct uvhub_desc *uvhub_descs;
2124        unsigned char *uvhub_mask = NULL;
2125
2126        if (is_uv3_hub() || is_uv2_hub() || is_uv1_hub())
2127                timeout_us = calculate_destination_timeout();
2128
2129        uvhub_descs = kcalloc(nuvhubs, sizeof(struct uvhub_desc), GFP_KERNEL);
2130        if (!uvhub_descs)
2131                goto fail;
2132
2133        uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
2134        if (!uvhub_mask)
2135                goto fail;
2136
2137        if (get_cpu_topology(base_part_pnode, uvhub_descs, uvhub_mask))
2138                goto fail;
2139
2140        if (summarize_uvhub_sockets(nuvhubs, uvhub_descs, uvhub_mask))
2141                goto fail;
2142
2143        kfree(uvhub_descs);
2144        kfree(uvhub_mask);
2145        init_per_cpu_tunables();
2146        return 0;
2147
2148fail:
2149        kfree(uvhub_descs);
2150        kfree(uvhub_mask);
2151        return 1;
2152}
2153
2154static const struct bau_operations uv1_bau_ops __initconst = {
2155        .bau_gpa_to_offset       = uv_gpa_to_offset,
2156        .read_l_sw_ack           = read_mmr_sw_ack,
2157        .read_g_sw_ack           = read_gmmr_sw_ack,
2158        .write_l_sw_ack          = write_mmr_sw_ack,
2159        .write_g_sw_ack          = write_gmmr_sw_ack,
2160        .write_payload_first     = write_mmr_payload_first,
2161        .write_payload_last      = write_mmr_payload_last,
2162        .wait_completion         = uv1_wait_completion,
2163};
2164
2165static const struct bau_operations uv2_3_bau_ops __initconst = {
2166        .bau_gpa_to_offset       = uv_gpa_to_offset,
2167        .read_l_sw_ack           = read_mmr_sw_ack,
2168        .read_g_sw_ack           = read_gmmr_sw_ack,
2169        .write_l_sw_ack          = write_mmr_sw_ack,
2170        .write_g_sw_ack          = write_gmmr_sw_ack,
2171        .write_payload_first     = write_mmr_payload_first,
2172        .write_payload_last      = write_mmr_payload_last,
2173        .wait_completion         = uv2_3_wait_completion,
2174};
2175
2176static const struct bau_operations uv4_bau_ops __initconst = {
2177        .bau_gpa_to_offset       = uv_gpa_to_soc_phys_ram,
2178        .read_l_sw_ack           = read_mmr_proc_sw_ack,
2179        .read_g_sw_ack           = read_gmmr_proc_sw_ack,
2180        .write_l_sw_ack          = write_mmr_proc_sw_ack,
2181        .write_g_sw_ack          = write_gmmr_proc_sw_ack,
2182        .write_payload_first     = write_mmr_proc_payload_first,
2183        .write_payload_last      = write_mmr_proc_payload_last,
2184        .wait_completion         = uv4_wait_completion,
2185};
2186
2187/*
2188 * Initialization of BAU-related structures
2189 */
2190static int __init uv_bau_init(void)
2191{
2192        int uvhub;
2193        int pnode;
2194        int nuvhubs;
2195        int cur_cpu;
2196        int cpus;
2197        int vector;
2198        cpumask_var_t *mask;
2199
2200        if (!is_uv_system())
2201                return 0;
2202
2203        if (is_uv4_hub())
2204                ops = uv4_bau_ops;
2205        else if (is_uv3_hub())
2206                ops = uv2_3_bau_ops;
2207        else if (is_uv2_hub())
2208                ops = uv2_3_bau_ops;
2209        else if (is_uv1_hub())
2210                ops = uv1_bau_ops;
2211
2212        nuvhubs = uv_num_possible_blades();
2213        if (nuvhubs < 2) {
2214                pr_crit("UV: BAU disabled - insufficient hub count\n");
2215                goto err_bau_disable;
2216        }
2217
2218        for_each_possible_cpu(cur_cpu) {
2219                mask = &per_cpu(uv_flush_tlb_mask, cur_cpu);
2220                zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cur_cpu));
2221        }
2222
2223        uv_base_pnode = 0x7fffffff;
2224        for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
2225                cpus = uv_blade_nr_possible_cpus(uvhub);
2226                if (cpus && (uv_blade_to_pnode(uvhub) < uv_base_pnode))
2227                        uv_base_pnode = uv_blade_to_pnode(uvhub);
2228        }
2229
2230        /* software timeouts are not supported on UV4 */
2231        if (is_uv3_hub() || is_uv2_hub() || is_uv1_hub())
2232                enable_timeouts();
2233
2234        if (init_per_cpu(nuvhubs, uv_base_pnode)) {
2235                pr_crit("UV: BAU disabled - per CPU init failed\n");
2236                goto err_bau_disable;
2237        }
2238
2239        vector = UV_BAU_MESSAGE;
2240        for_each_possible_blade(uvhub) {
2241                if (uv_blade_nr_possible_cpus(uvhub))
2242                        init_uvhub(uvhub, vector, uv_base_pnode);
2243        }
2244
2245        for_each_possible_blade(uvhub) {
2246                if (uv_blade_nr_possible_cpus(uvhub)) {
2247                        unsigned long val;
2248                        unsigned long mmr;
2249                        pnode = uv_blade_to_pnode(uvhub);
2250                        /* INIT the bau */
2251                        val = 1L << 63;
2252                        write_gmmr_activation(pnode, val);
2253                        mmr = 1; /* should be 1 to broadcast to both sockets */
2254                        if (!is_uv1_hub())
2255                                write_mmr_data_broadcast(pnode, mmr);
2256                }
2257        }
2258
2259        return 0;
2260
2261err_bau_disable:
2262
2263        for_each_possible_cpu(cur_cpu)
2264                free_cpumask_var(per_cpu(uv_flush_tlb_mask, cur_cpu));
2265
2266        set_bau_off();
2267        nobau_perm = 1;
2268
2269        return -EINVAL;
2270}
2271core_initcall(uv_bau_init);
2272fs_initcall(uv_ptc_init);
2273