linux/arch/xtensa/kernel/process.c
<<
>>
Prefs
   1/*
   2 * arch/xtensa/kernel/process.c
   3 *
   4 * Xtensa Processor version.
   5 *
   6 * This file is subject to the terms and conditions of the GNU General Public
   7 * License.  See the file "COPYING" in the main directory of this archive
   8 * for more details.
   9 *
  10 * Copyright (C) 2001 - 2005 Tensilica Inc.
  11 *
  12 * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
  13 * Chris Zankel <chris@zankel.net>
  14 * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
  15 * Kevin Chea
  16 */
  17
  18#include <linux/errno.h>
  19#include <linux/sched.h>
  20#include <linux/sched/debug.h>
  21#include <linux/sched/task.h>
  22#include <linux/sched/task_stack.h>
  23#include <linux/kernel.h>
  24#include <linux/mm.h>
  25#include <linux/smp.h>
  26#include <linux/stddef.h>
  27#include <linux/unistd.h>
  28#include <linux/ptrace.h>
  29#include <linux/elf.h>
  30#include <linux/hw_breakpoint.h>
  31#include <linux/init.h>
  32#include <linux/prctl.h>
  33#include <linux/init_task.h>
  34#include <linux/module.h>
  35#include <linux/mqueue.h>
  36#include <linux/fs.h>
  37#include <linux/slab.h>
  38#include <linux/rcupdate.h>
  39
  40#include <asm/pgtable.h>
  41#include <linux/uaccess.h>
  42#include <asm/io.h>
  43#include <asm/processor.h>
  44#include <asm/platform.h>
  45#include <asm/mmu.h>
  46#include <asm/irq.h>
  47#include <linux/atomic.h>
  48#include <asm/asm-offsets.h>
  49#include <asm/regs.h>
  50#include <asm/hw_breakpoint.h>
  51
  52extern void ret_from_fork(void);
  53extern void ret_from_kernel_thread(void);
  54
  55void (*pm_power_off)(void) = NULL;
  56EXPORT_SYMBOL(pm_power_off);
  57
  58
  59#ifdef CONFIG_STACKPROTECTOR
  60#include <linux/stackprotector.h>
  61unsigned long __stack_chk_guard __read_mostly;
  62EXPORT_SYMBOL(__stack_chk_guard);
  63#endif
  64
  65#if XTENSA_HAVE_COPROCESSORS
  66
  67void coprocessor_release_all(struct thread_info *ti)
  68{
  69        unsigned long cpenable;
  70        int i;
  71
  72        /* Make sure we don't switch tasks during this operation. */
  73
  74        preempt_disable();
  75
  76        /* Walk through all cp owners and release it for the requested one. */
  77
  78        cpenable = ti->cpenable;
  79
  80        for (i = 0; i < XCHAL_CP_MAX; i++) {
  81                if (coprocessor_owner[i] == ti) {
  82                        coprocessor_owner[i] = 0;
  83                        cpenable &= ~(1 << i);
  84                }
  85        }
  86
  87        ti->cpenable = cpenable;
  88        if (ti == current_thread_info())
  89                xtensa_set_sr(0, cpenable);
  90
  91        preempt_enable();
  92}
  93
  94void coprocessor_flush_all(struct thread_info *ti)
  95{
  96        unsigned long cpenable, old_cpenable;
  97        int i;
  98
  99        preempt_disable();
 100
 101        old_cpenable = xtensa_get_sr(cpenable);
 102        cpenable = ti->cpenable;
 103        xtensa_set_sr(cpenable, cpenable);
 104
 105        for (i = 0; i < XCHAL_CP_MAX; i++) {
 106                if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti)
 107                        coprocessor_flush(ti, i);
 108                cpenable >>= 1;
 109        }
 110        xtensa_set_sr(old_cpenable, cpenable);
 111
 112        preempt_enable();
 113}
 114
 115#endif
 116
 117
 118/*
 119 * Powermanagement idle function, if any is provided by the platform.
 120 */
 121void arch_cpu_idle(void)
 122{
 123        platform_idle();
 124}
 125
 126/*
 127 * This is called when the thread calls exit().
 128 */
 129void exit_thread(struct task_struct *tsk)
 130{
 131#if XTENSA_HAVE_COPROCESSORS
 132        coprocessor_release_all(task_thread_info(tsk));
 133#endif
 134}
 135
 136/*
 137 * Flush thread state. This is called when a thread does an execve()
 138 * Note that we flush coprocessor registers for the case execve fails.
 139 */
 140void flush_thread(void)
 141{
 142#if XTENSA_HAVE_COPROCESSORS
 143        struct thread_info *ti = current_thread_info();
 144        coprocessor_flush_all(ti);
 145        coprocessor_release_all(ti);
 146#endif
 147        flush_ptrace_hw_breakpoint(current);
 148}
 149
 150/*
 151 * this gets called so that we can store coprocessor state into memory and
 152 * copy the current task into the new thread.
 153 */
 154int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 155{
 156#if XTENSA_HAVE_COPROCESSORS
 157        coprocessor_flush_all(task_thread_info(src));
 158#endif
 159        *dst = *src;
 160        return 0;
 161}
 162
 163/*
 164 * Copy thread.
 165 *
 166 * There are two modes in which this function is called:
 167 * 1) Userspace thread creation,
 168 *    regs != NULL, usp_thread_fn is userspace stack pointer.
 169 *    It is expected to copy parent regs (in case CLONE_VM is not set
 170 *    in the clone_flags) and set up passed usp in the childregs.
 171 * 2) Kernel thread creation,
 172 *    regs == NULL, usp_thread_fn is the function to run in the new thread
 173 *    and thread_fn_arg is its parameter.
 174 *    childregs are not used for the kernel threads.
 175 *
 176 * The stack layout for the new thread looks like this:
 177 *
 178 *      +------------------------+
 179 *      |       childregs        |
 180 *      +------------------------+ <- thread.sp = sp in dummy-frame
 181 *      |      dummy-frame       |    (saved in dummy-frame spill-area)
 182 *      +------------------------+
 183 *
 184 * We create a dummy frame to return to either ret_from_fork or
 185 *   ret_from_kernel_thread:
 186 *   a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
 187 *   sp points to itself (thread.sp)
 188 *   a2, a3 are unused for userspace threads,
 189 *   a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
 190 *
 191 * Note: This is a pristine frame, so we don't need any spill region on top of
 192 *       childregs.
 193 *
 194 * The fun part:  if we're keeping the same VM (i.e. cloning a thread,
 195 * not an entire process), we're normally given a new usp, and we CANNOT share
 196 * any live address register windows.  If we just copy those live frames over,
 197 * the two threads (parent and child) will overflow the same frames onto the
 198 * parent stack at different times, likely corrupting the parent stack (esp.
 199 * if the parent returns from functions that called clone() and calls new
 200 * ones, before the child overflows its now old copies of its parent windows).
 201 * One solution is to spill windows to the parent stack, but that's fairly
 202 * involved.  Much simpler to just not copy those live frames across.
 203 */
 204
 205int copy_thread(unsigned long clone_flags, unsigned long usp_thread_fn,
 206                unsigned long thread_fn_arg, struct task_struct *p)
 207{
 208        struct pt_regs *childregs = task_pt_regs(p);
 209
 210#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
 211        struct thread_info *ti;
 212#endif
 213
 214        /* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
 215        SPILL_SLOT(childregs, 1) = (unsigned long)childregs;
 216        SPILL_SLOT(childregs, 0) = 0;
 217
 218        p->thread.sp = (unsigned long)childregs;
 219
 220        if (!(p->flags & PF_KTHREAD)) {
 221                struct pt_regs *regs = current_pt_regs();
 222                unsigned long usp = usp_thread_fn ?
 223                        usp_thread_fn : regs->areg[1];
 224
 225                p->thread.ra = MAKE_RA_FOR_CALL(
 226                                (unsigned long)ret_from_fork, 0x1);
 227
 228                /* This does not copy all the regs.
 229                 * In a bout of brilliance or madness,
 230                 * ARs beyond a0-a15 exist past the end of the struct.
 231                 */
 232                *childregs = *regs;
 233                childregs->areg[1] = usp;
 234                childregs->areg[2] = 0;
 235
 236                /* When sharing memory with the parent thread, the child
 237                   usually starts on a pristine stack, so we have to reset
 238                   windowbase, windowstart and wmask.
 239                   (Note that such a new thread is required to always create
 240                   an initial call4 frame)
 241                   The exception is vfork, where the new thread continues to
 242                   run on the parent's stack until it calls execve. This could
 243                   be a call8 or call12, which requires a legal stack frame
 244                   of the previous caller for the overflow handlers to work.
 245                   (Note that it's always legal to overflow live registers).
 246                   In this case, ensure to spill at least the stack pointer
 247                   of that frame. */
 248
 249                if (clone_flags & CLONE_VM) {
 250                        /* check that caller window is live and same stack */
 251                        int len = childregs->wmask & ~0xf;
 252                        if (regs->areg[1] == usp && len != 0) {
 253                                int callinc = (regs->areg[0] >> 30) & 3;
 254                                int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
 255                                put_user(regs->areg[caller_ars+1],
 256                                         (unsigned __user*)(usp - 12));
 257                        }
 258                        childregs->wmask = 1;
 259                        childregs->windowstart = 1;
 260                        childregs->windowbase = 0;
 261                } else {
 262                        int len = childregs->wmask & ~0xf;
 263                        memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
 264                               &regs->areg[XCHAL_NUM_AREGS - len/4], len);
 265                }
 266
 267                /* The thread pointer is passed in the '4th argument' (= a5) */
 268                if (clone_flags & CLONE_SETTLS)
 269                        childregs->threadptr = childregs->areg[5];
 270        } else {
 271                p->thread.ra = MAKE_RA_FOR_CALL(
 272                                (unsigned long)ret_from_kernel_thread, 1);
 273
 274                /* pass parameters to ret_from_kernel_thread:
 275                 * a2 = thread_fn, a3 = thread_fn arg
 276                 */
 277                SPILL_SLOT(childregs, 3) = thread_fn_arg;
 278                SPILL_SLOT(childregs, 2) = usp_thread_fn;
 279
 280                /* Childregs are only used when we're going to userspace
 281                 * in which case start_thread will set them up.
 282                 */
 283        }
 284
 285#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
 286        ti = task_thread_info(p);
 287        ti->cpenable = 0;
 288#endif
 289
 290        clear_ptrace_hw_breakpoint(p);
 291
 292        return 0;
 293}
 294
 295
 296/*
 297 * These bracket the sleeping functions..
 298 */
 299
 300unsigned long get_wchan(struct task_struct *p)
 301{
 302        unsigned long sp, pc;
 303        unsigned long stack_page = (unsigned long) task_stack_page(p);
 304        int count = 0;
 305
 306        if (!p || p == current || p->state == TASK_RUNNING)
 307                return 0;
 308
 309        sp = p->thread.sp;
 310        pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
 311
 312        do {
 313                if (sp < stack_page + sizeof(struct task_struct) ||
 314                    sp >= (stack_page + THREAD_SIZE) ||
 315                    pc == 0)
 316                        return 0;
 317                if (!in_sched_functions(pc))
 318                        return pc;
 319
 320                /* Stack layout: sp-4: ra, sp-3: sp' */
 321
 322                pc = MAKE_PC_FROM_RA(SPILL_SLOT(sp, 0), sp);
 323                sp = SPILL_SLOT(sp, 1);
 324        } while (count++ < 16);
 325        return 0;
 326}
 327