linux/block/blk-merge.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Functions related to segment and merge handling
   4 */
   5#include <linux/kernel.h>
   6#include <linux/module.h>
   7#include <linux/bio.h>
   8#include <linux/blkdev.h>
   9#include <linux/scatterlist.h>
  10
  11#include <trace/events/block.h>
  12
  13#include "blk.h"
  14
  15static inline bool bio_will_gap(struct request_queue *q,
  16                struct request *prev_rq, struct bio *prev, struct bio *next)
  17{
  18        struct bio_vec pb, nb;
  19
  20        if (!bio_has_data(prev) || !queue_virt_boundary(q))
  21                return false;
  22
  23        /*
  24         * Don't merge if the 1st bio starts with non-zero offset, otherwise it
  25         * is quite difficult to respect the sg gap limit.  We work hard to
  26         * merge a huge number of small single bios in case of mkfs.
  27         */
  28        if (prev_rq)
  29                bio_get_first_bvec(prev_rq->bio, &pb);
  30        else
  31                bio_get_first_bvec(prev, &pb);
  32        if (pb.bv_offset & queue_virt_boundary(q))
  33                return true;
  34
  35        /*
  36         * We don't need to worry about the situation that the merged segment
  37         * ends in unaligned virt boundary:
  38         *
  39         * - if 'pb' ends aligned, the merged segment ends aligned
  40         * - if 'pb' ends unaligned, the next bio must include
  41         *   one single bvec of 'nb', otherwise the 'nb' can't
  42         *   merge with 'pb'
  43         */
  44        bio_get_last_bvec(prev, &pb);
  45        bio_get_first_bvec(next, &nb);
  46        if (biovec_phys_mergeable(q, &pb, &nb))
  47                return false;
  48        return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
  49}
  50
  51static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
  52{
  53        return bio_will_gap(req->q, req, req->biotail, bio);
  54}
  55
  56static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
  57{
  58        return bio_will_gap(req->q, NULL, bio, req->bio);
  59}
  60
  61static struct bio *blk_bio_discard_split(struct request_queue *q,
  62                                         struct bio *bio,
  63                                         struct bio_set *bs,
  64                                         unsigned *nsegs)
  65{
  66        unsigned int max_discard_sectors, granularity;
  67        int alignment;
  68        sector_t tmp;
  69        unsigned split_sectors;
  70
  71        *nsegs = 1;
  72
  73        /* Zero-sector (unknown) and one-sector granularities are the same.  */
  74        granularity = max(q->limits.discard_granularity >> 9, 1U);
  75
  76        max_discard_sectors = min(q->limits.max_discard_sectors,
  77                        bio_allowed_max_sectors(q));
  78        max_discard_sectors -= max_discard_sectors % granularity;
  79
  80        if (unlikely(!max_discard_sectors)) {
  81                /* XXX: warn */
  82                return NULL;
  83        }
  84
  85        if (bio_sectors(bio) <= max_discard_sectors)
  86                return NULL;
  87
  88        split_sectors = max_discard_sectors;
  89
  90        /*
  91         * If the next starting sector would be misaligned, stop the discard at
  92         * the previous aligned sector.
  93         */
  94        alignment = (q->limits.discard_alignment >> 9) % granularity;
  95
  96        tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
  97        tmp = sector_div(tmp, granularity);
  98
  99        if (split_sectors > tmp)
 100                split_sectors -= tmp;
 101
 102        return bio_split(bio, split_sectors, GFP_NOIO, bs);
 103}
 104
 105static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
 106                struct bio *bio, struct bio_set *bs, unsigned *nsegs)
 107{
 108        *nsegs = 0;
 109
 110        if (!q->limits.max_write_zeroes_sectors)
 111                return NULL;
 112
 113        if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
 114                return NULL;
 115
 116        return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
 117}
 118
 119static struct bio *blk_bio_write_same_split(struct request_queue *q,
 120                                            struct bio *bio,
 121                                            struct bio_set *bs,
 122                                            unsigned *nsegs)
 123{
 124        *nsegs = 1;
 125
 126        if (!q->limits.max_write_same_sectors)
 127                return NULL;
 128
 129        if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
 130                return NULL;
 131
 132        return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
 133}
 134
 135static inline unsigned get_max_io_size(struct request_queue *q,
 136                                       struct bio *bio)
 137{
 138        unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
 139        unsigned mask = queue_logical_block_size(q) - 1;
 140
 141        /* aligned to logical block size */
 142        sectors &= ~(mask >> 9);
 143
 144        return sectors;
 145}
 146
 147static unsigned get_max_segment_size(struct request_queue *q,
 148                                     unsigned offset)
 149{
 150        unsigned long mask = queue_segment_boundary(q);
 151
 152        /* default segment boundary mask means no boundary limit */
 153        if (mask == BLK_SEG_BOUNDARY_MASK)
 154                return queue_max_segment_size(q);
 155
 156        return min_t(unsigned long, mask - (mask & offset) + 1,
 157                     queue_max_segment_size(q));
 158}
 159
 160/*
 161 * Split the bvec @bv into segments, and update all kinds of
 162 * variables.
 163 */
 164static bool bvec_split_segs(struct request_queue *q, struct bio_vec *bv,
 165                unsigned *nsegs, unsigned *sectors, unsigned max_segs)
 166{
 167        unsigned len = bv->bv_len;
 168        unsigned total_len = 0;
 169        unsigned new_nsegs = 0, seg_size = 0;
 170
 171        /*
 172         * Multi-page bvec may be too big to hold in one segment, so the
 173         * current bvec has to be splitted as multiple segments.
 174         */
 175        while (len && new_nsegs + *nsegs < max_segs) {
 176                seg_size = get_max_segment_size(q, bv->bv_offset + total_len);
 177                seg_size = min(seg_size, len);
 178
 179                new_nsegs++;
 180                total_len += seg_size;
 181                len -= seg_size;
 182
 183                if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
 184                        break;
 185        }
 186
 187        if (new_nsegs) {
 188                *nsegs += new_nsegs;
 189                if (sectors)
 190                        *sectors += total_len >> 9;
 191        }
 192
 193        /* split in the middle of the bvec if len != 0 */
 194        return !!len;
 195}
 196
 197static struct bio *blk_bio_segment_split(struct request_queue *q,
 198                                         struct bio *bio,
 199                                         struct bio_set *bs,
 200                                         unsigned *segs)
 201{
 202        struct bio_vec bv, bvprv, *bvprvp = NULL;
 203        struct bvec_iter iter;
 204        unsigned nsegs = 0, sectors = 0;
 205        const unsigned max_sectors = get_max_io_size(q, bio);
 206        const unsigned max_segs = queue_max_segments(q);
 207
 208        bio_for_each_bvec(bv, bio, iter) {
 209                /*
 210                 * If the queue doesn't support SG gaps and adding this
 211                 * offset would create a gap, disallow it.
 212                 */
 213                if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
 214                        goto split;
 215
 216                if (sectors + (bv.bv_len >> 9) > max_sectors) {
 217                        /*
 218                         * Consider this a new segment if we're splitting in
 219                         * the middle of this vector.
 220                         */
 221                        if (nsegs < max_segs &&
 222                            sectors < max_sectors) {
 223                                /* split in the middle of bvec */
 224                                bv.bv_len = (max_sectors - sectors) << 9;
 225                                bvec_split_segs(q, &bv, &nsegs,
 226                                                &sectors, max_segs);
 227                        }
 228                        goto split;
 229                }
 230
 231                if (nsegs == max_segs)
 232                        goto split;
 233
 234                bvprv = bv;
 235                bvprvp = &bvprv;
 236
 237                if (bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
 238                        nsegs++;
 239                        sectors += bv.bv_len >> 9;
 240                } else if (bvec_split_segs(q, &bv, &nsegs, &sectors,
 241                                max_segs)) {
 242                        goto split;
 243                }
 244        }
 245
 246        *segs = nsegs;
 247        return NULL;
 248split:
 249        *segs = nsegs;
 250        return bio_split(bio, sectors, GFP_NOIO, bs);
 251}
 252
 253void __blk_queue_split(struct request_queue *q, struct bio **bio,
 254                unsigned int *nr_segs)
 255{
 256        struct bio *split;
 257
 258        switch (bio_op(*bio)) {
 259        case REQ_OP_DISCARD:
 260        case REQ_OP_SECURE_ERASE:
 261                split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
 262                break;
 263        case REQ_OP_WRITE_ZEROES:
 264                split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
 265                                nr_segs);
 266                break;
 267        case REQ_OP_WRITE_SAME:
 268                split = blk_bio_write_same_split(q, *bio, &q->bio_split,
 269                                nr_segs);
 270                break;
 271        default:
 272                split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
 273                break;
 274        }
 275
 276        if (split) {
 277                /* there isn't chance to merge the splitted bio */
 278                split->bi_opf |= REQ_NOMERGE;
 279
 280                /*
 281                 * Since we're recursing into make_request here, ensure
 282                 * that we mark this bio as already having entered the queue.
 283                 * If not, and the queue is going away, we can get stuck
 284                 * forever on waiting for the queue reference to drop. But
 285                 * that will never happen, as we're already holding a
 286                 * reference to it.
 287                 */
 288                bio_set_flag(*bio, BIO_QUEUE_ENTERED);
 289
 290                bio_chain(split, *bio);
 291                trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
 292                generic_make_request(*bio);
 293                *bio = split;
 294        }
 295}
 296
 297void blk_queue_split(struct request_queue *q, struct bio **bio)
 298{
 299        unsigned int nr_segs;
 300
 301        __blk_queue_split(q, bio, &nr_segs);
 302}
 303EXPORT_SYMBOL(blk_queue_split);
 304
 305unsigned int blk_recalc_rq_segments(struct request *rq)
 306{
 307        unsigned int nr_phys_segs = 0;
 308        struct req_iterator iter;
 309        struct bio_vec bv;
 310
 311        if (!rq->bio)
 312                return 0;
 313
 314        switch (bio_op(rq->bio)) {
 315        case REQ_OP_DISCARD:
 316        case REQ_OP_SECURE_ERASE:
 317        case REQ_OP_WRITE_ZEROES:
 318                return 0;
 319        case REQ_OP_WRITE_SAME:
 320                return 1;
 321        }
 322
 323        rq_for_each_bvec(bv, rq, iter)
 324                bvec_split_segs(rq->q, &bv, &nr_phys_segs, NULL, UINT_MAX);
 325        return nr_phys_segs;
 326}
 327
 328static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
 329                struct scatterlist *sglist)
 330{
 331        if (!*sg)
 332                return sglist;
 333
 334        /*
 335         * If the driver previously mapped a shorter list, we could see a
 336         * termination bit prematurely unless it fully inits the sg table
 337         * on each mapping. We KNOW that there must be more entries here
 338         * or the driver would be buggy, so force clear the termination bit
 339         * to avoid doing a full sg_init_table() in drivers for each command.
 340         */
 341        sg_unmark_end(*sg);
 342        return sg_next(*sg);
 343}
 344
 345static unsigned blk_bvec_map_sg(struct request_queue *q,
 346                struct bio_vec *bvec, struct scatterlist *sglist,
 347                struct scatterlist **sg)
 348{
 349        unsigned nbytes = bvec->bv_len;
 350        unsigned nsegs = 0, total = 0;
 351
 352        while (nbytes > 0) {
 353                unsigned offset = bvec->bv_offset + total;
 354                unsigned len = min(get_max_segment_size(q, offset), nbytes);
 355                struct page *page = bvec->bv_page;
 356
 357                /*
 358                 * Unfortunately a fair number of drivers barf on scatterlists
 359                 * that have an offset larger than PAGE_SIZE, despite other
 360                 * subsystems dealing with that invariant just fine.  For now
 361                 * stick to the legacy format where we never present those from
 362                 * the block layer, but the code below should be removed once
 363                 * these offenders (mostly MMC/SD drivers) are fixed.
 364                 */
 365                page += (offset >> PAGE_SHIFT);
 366                offset &= ~PAGE_MASK;
 367
 368                *sg = blk_next_sg(sg, sglist);
 369                sg_set_page(*sg, page, len, offset);
 370
 371                total += len;
 372                nbytes -= len;
 373                nsegs++;
 374        }
 375
 376        return nsegs;
 377}
 378
 379static inline int __blk_bvec_map_sg(struct bio_vec bv,
 380                struct scatterlist *sglist, struct scatterlist **sg)
 381{
 382        *sg = blk_next_sg(sg, sglist);
 383        sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
 384        return 1;
 385}
 386
 387/* only try to merge bvecs into one sg if they are from two bios */
 388static inline bool
 389__blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
 390                           struct bio_vec *bvprv, struct scatterlist **sg)
 391{
 392
 393        int nbytes = bvec->bv_len;
 394
 395        if (!*sg)
 396                return false;
 397
 398        if ((*sg)->length + nbytes > queue_max_segment_size(q))
 399                return false;
 400
 401        if (!biovec_phys_mergeable(q, bvprv, bvec))
 402                return false;
 403
 404        (*sg)->length += nbytes;
 405
 406        return true;
 407}
 408
 409static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
 410                             struct scatterlist *sglist,
 411                             struct scatterlist **sg)
 412{
 413        struct bio_vec uninitialized_var(bvec), bvprv = { NULL };
 414        struct bvec_iter iter;
 415        int nsegs = 0;
 416        bool new_bio = false;
 417
 418        for_each_bio(bio) {
 419                bio_for_each_bvec(bvec, bio, iter) {
 420                        /*
 421                         * Only try to merge bvecs from two bios given we
 422                         * have done bio internal merge when adding pages
 423                         * to bio
 424                         */
 425                        if (new_bio &&
 426                            __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
 427                                goto next_bvec;
 428
 429                        if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
 430                                nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
 431                        else
 432                                nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
 433 next_bvec:
 434                        new_bio = false;
 435                }
 436                if (likely(bio->bi_iter.bi_size)) {
 437                        bvprv = bvec;
 438                        new_bio = true;
 439                }
 440        }
 441
 442        return nsegs;
 443}
 444
 445/*
 446 * map a request to scatterlist, return number of sg entries setup. Caller
 447 * must make sure sg can hold rq->nr_phys_segments entries
 448 */
 449int blk_rq_map_sg(struct request_queue *q, struct request *rq,
 450                  struct scatterlist *sglist)
 451{
 452        struct scatterlist *sg = NULL;
 453        int nsegs = 0;
 454
 455        if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
 456                nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, &sg);
 457        else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
 458                nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, &sg);
 459        else if (rq->bio)
 460                nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
 461
 462        if (unlikely(rq->rq_flags & RQF_COPY_USER) &&
 463            (blk_rq_bytes(rq) & q->dma_pad_mask)) {
 464                unsigned int pad_len =
 465                        (q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
 466
 467                sg->length += pad_len;
 468                rq->extra_len += pad_len;
 469        }
 470
 471        if (q->dma_drain_size && q->dma_drain_needed(rq)) {
 472                if (op_is_write(req_op(rq)))
 473                        memset(q->dma_drain_buffer, 0, q->dma_drain_size);
 474
 475                sg_unmark_end(sg);
 476                sg = sg_next(sg);
 477                sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
 478                            q->dma_drain_size,
 479                            ((unsigned long)q->dma_drain_buffer) &
 480                            (PAGE_SIZE - 1));
 481                nsegs++;
 482                rq->extra_len += q->dma_drain_size;
 483        }
 484
 485        if (sg)
 486                sg_mark_end(sg);
 487
 488        /*
 489         * Something must have been wrong if the figured number of
 490         * segment is bigger than number of req's physical segments
 491         */
 492        WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
 493
 494        return nsegs;
 495}
 496EXPORT_SYMBOL(blk_rq_map_sg);
 497
 498static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
 499                unsigned int nr_phys_segs)
 500{
 501        if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(req->q))
 502                goto no_merge;
 503
 504        if (blk_integrity_merge_bio(req->q, req, bio) == false)
 505                goto no_merge;
 506
 507        /*
 508         * This will form the start of a new hw segment.  Bump both
 509         * counters.
 510         */
 511        req->nr_phys_segments += nr_phys_segs;
 512        return 1;
 513
 514no_merge:
 515        req_set_nomerge(req->q, req);
 516        return 0;
 517}
 518
 519int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
 520{
 521        if (req_gap_back_merge(req, bio))
 522                return 0;
 523        if (blk_integrity_rq(req) &&
 524            integrity_req_gap_back_merge(req, bio))
 525                return 0;
 526        if (blk_rq_sectors(req) + bio_sectors(bio) >
 527            blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
 528                req_set_nomerge(req->q, req);
 529                return 0;
 530        }
 531
 532        return ll_new_hw_segment(req, bio, nr_segs);
 533}
 534
 535int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
 536{
 537        if (req_gap_front_merge(req, bio))
 538                return 0;
 539        if (blk_integrity_rq(req) &&
 540            integrity_req_gap_front_merge(req, bio))
 541                return 0;
 542        if (blk_rq_sectors(req) + bio_sectors(bio) >
 543            blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
 544                req_set_nomerge(req->q, req);
 545                return 0;
 546        }
 547
 548        return ll_new_hw_segment(req, bio, nr_segs);
 549}
 550
 551static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
 552                struct request *next)
 553{
 554        unsigned short segments = blk_rq_nr_discard_segments(req);
 555
 556        if (segments >= queue_max_discard_segments(q))
 557                goto no_merge;
 558        if (blk_rq_sectors(req) + bio_sectors(next->bio) >
 559            blk_rq_get_max_sectors(req, blk_rq_pos(req)))
 560                goto no_merge;
 561
 562        req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
 563        return true;
 564no_merge:
 565        req_set_nomerge(q, req);
 566        return false;
 567}
 568
 569static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
 570                                struct request *next)
 571{
 572        int total_phys_segments;
 573
 574        if (req_gap_back_merge(req, next->bio))
 575                return 0;
 576
 577        /*
 578         * Will it become too large?
 579         */
 580        if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
 581            blk_rq_get_max_sectors(req, blk_rq_pos(req)))
 582                return 0;
 583
 584        total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
 585        if (total_phys_segments > queue_max_segments(q))
 586                return 0;
 587
 588        if (blk_integrity_merge_rq(q, req, next) == false)
 589                return 0;
 590
 591        /* Merge is OK... */
 592        req->nr_phys_segments = total_phys_segments;
 593        return 1;
 594}
 595
 596/**
 597 * blk_rq_set_mixed_merge - mark a request as mixed merge
 598 * @rq: request to mark as mixed merge
 599 *
 600 * Description:
 601 *     @rq is about to be mixed merged.  Make sure the attributes
 602 *     which can be mixed are set in each bio and mark @rq as mixed
 603 *     merged.
 604 */
 605void blk_rq_set_mixed_merge(struct request *rq)
 606{
 607        unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
 608        struct bio *bio;
 609
 610        if (rq->rq_flags & RQF_MIXED_MERGE)
 611                return;
 612
 613        /*
 614         * @rq will no longer represent mixable attributes for all the
 615         * contained bios.  It will just track those of the first one.
 616         * Distributes the attributs to each bio.
 617         */
 618        for (bio = rq->bio; bio; bio = bio->bi_next) {
 619                WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
 620                             (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
 621                bio->bi_opf |= ff;
 622        }
 623        rq->rq_flags |= RQF_MIXED_MERGE;
 624}
 625
 626static void blk_account_io_merge(struct request *req)
 627{
 628        if (blk_do_io_stat(req)) {
 629                struct hd_struct *part;
 630
 631                part_stat_lock();
 632                part = req->part;
 633
 634                part_dec_in_flight(req->q, part, rq_data_dir(req));
 635
 636                hd_struct_put(part);
 637                part_stat_unlock();
 638        }
 639}
 640/*
 641 * Two cases of handling DISCARD merge:
 642 * If max_discard_segments > 1, the driver takes every bio
 643 * as a range and send them to controller together. The ranges
 644 * needn't to be contiguous.
 645 * Otherwise, the bios/requests will be handled as same as
 646 * others which should be contiguous.
 647 */
 648static inline bool blk_discard_mergable(struct request *req)
 649{
 650        if (req_op(req) == REQ_OP_DISCARD &&
 651            queue_max_discard_segments(req->q) > 1)
 652                return true;
 653        return false;
 654}
 655
 656static enum elv_merge blk_try_req_merge(struct request *req,
 657                                        struct request *next)
 658{
 659        if (blk_discard_mergable(req))
 660                return ELEVATOR_DISCARD_MERGE;
 661        else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
 662                return ELEVATOR_BACK_MERGE;
 663
 664        return ELEVATOR_NO_MERGE;
 665}
 666
 667/*
 668 * For non-mq, this has to be called with the request spinlock acquired.
 669 * For mq with scheduling, the appropriate queue wide lock should be held.
 670 */
 671static struct request *attempt_merge(struct request_queue *q,
 672                                     struct request *req, struct request *next)
 673{
 674        if (!rq_mergeable(req) || !rq_mergeable(next))
 675                return NULL;
 676
 677        if (req_op(req) != req_op(next))
 678                return NULL;
 679
 680        if (rq_data_dir(req) != rq_data_dir(next)
 681            || req->rq_disk != next->rq_disk)
 682                return NULL;
 683
 684        if (req_op(req) == REQ_OP_WRITE_SAME &&
 685            !blk_write_same_mergeable(req->bio, next->bio))
 686                return NULL;
 687
 688        /*
 689         * Don't allow merge of different write hints, or for a hint with
 690         * non-hint IO.
 691         */
 692        if (req->write_hint != next->write_hint)
 693                return NULL;
 694
 695        if (req->ioprio != next->ioprio)
 696                return NULL;
 697
 698        /*
 699         * If we are allowed to merge, then append bio list
 700         * from next to rq and release next. merge_requests_fn
 701         * will have updated segment counts, update sector
 702         * counts here. Handle DISCARDs separately, as they
 703         * have separate settings.
 704         */
 705
 706        switch (blk_try_req_merge(req, next)) {
 707        case ELEVATOR_DISCARD_MERGE:
 708                if (!req_attempt_discard_merge(q, req, next))
 709                        return NULL;
 710                break;
 711        case ELEVATOR_BACK_MERGE:
 712                if (!ll_merge_requests_fn(q, req, next))
 713                        return NULL;
 714                break;
 715        default:
 716                return NULL;
 717        }
 718
 719        /*
 720         * If failfast settings disagree or any of the two is already
 721         * a mixed merge, mark both as mixed before proceeding.  This
 722         * makes sure that all involved bios have mixable attributes
 723         * set properly.
 724         */
 725        if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
 726            (req->cmd_flags & REQ_FAILFAST_MASK) !=
 727            (next->cmd_flags & REQ_FAILFAST_MASK)) {
 728                blk_rq_set_mixed_merge(req);
 729                blk_rq_set_mixed_merge(next);
 730        }
 731
 732        /*
 733         * At this point we have either done a back merge or front merge. We
 734         * need the smaller start_time_ns of the merged requests to be the
 735         * current request for accounting purposes.
 736         */
 737        if (next->start_time_ns < req->start_time_ns)
 738                req->start_time_ns = next->start_time_ns;
 739
 740        req->biotail->bi_next = next->bio;
 741        req->biotail = next->biotail;
 742
 743        req->__data_len += blk_rq_bytes(next);
 744
 745        if (!blk_discard_mergable(req))
 746                elv_merge_requests(q, req, next);
 747
 748        /*
 749         * 'next' is going away, so update stats accordingly
 750         */
 751        blk_account_io_merge(next);
 752
 753        /*
 754         * ownership of bio passed from next to req, return 'next' for
 755         * the caller to free
 756         */
 757        next->bio = NULL;
 758        return next;
 759}
 760
 761struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
 762{
 763        struct request *next = elv_latter_request(q, rq);
 764
 765        if (next)
 766                return attempt_merge(q, rq, next);
 767
 768        return NULL;
 769}
 770
 771struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
 772{
 773        struct request *prev = elv_former_request(q, rq);
 774
 775        if (prev)
 776                return attempt_merge(q, prev, rq);
 777
 778        return NULL;
 779}
 780
 781int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
 782                          struct request *next)
 783{
 784        struct request *free;
 785
 786        free = attempt_merge(q, rq, next);
 787        if (free) {
 788                blk_put_request(free);
 789                return 1;
 790        }
 791
 792        return 0;
 793}
 794
 795bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
 796{
 797        if (!rq_mergeable(rq) || !bio_mergeable(bio))
 798                return false;
 799
 800        if (req_op(rq) != bio_op(bio))
 801                return false;
 802
 803        /* different data direction or already started, don't merge */
 804        if (bio_data_dir(bio) != rq_data_dir(rq))
 805                return false;
 806
 807        /* must be same device */
 808        if (rq->rq_disk != bio->bi_disk)
 809                return false;
 810
 811        /* only merge integrity protected bio into ditto rq */
 812        if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
 813                return false;
 814
 815        /* must be using the same buffer */
 816        if (req_op(rq) == REQ_OP_WRITE_SAME &&
 817            !blk_write_same_mergeable(rq->bio, bio))
 818                return false;
 819
 820        /*
 821         * Don't allow merge of different write hints, or for a hint with
 822         * non-hint IO.
 823         */
 824        if (rq->write_hint != bio->bi_write_hint)
 825                return false;
 826
 827        if (rq->ioprio != bio_prio(bio))
 828                return false;
 829
 830        return true;
 831}
 832
 833enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
 834{
 835        if (blk_discard_mergable(rq))
 836                return ELEVATOR_DISCARD_MERGE;
 837        else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
 838                return ELEVATOR_BACK_MERGE;
 839        else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
 840                return ELEVATOR_FRONT_MERGE;
 841        return ELEVATOR_NO_MERGE;
 842}
 843