linux/block/blk-settings.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Functions related to setting various queue properties from drivers
   4 */
   5#include <linux/kernel.h>
   6#include <linux/module.h>
   7#include <linux/init.h>
   8#include <linux/bio.h>
   9#include <linux/blkdev.h>
  10#include <linux/memblock.h>     /* for max_pfn/max_low_pfn */
  11#include <linux/gcd.h>
  12#include <linux/lcm.h>
  13#include <linux/jiffies.h>
  14#include <linux/gfp.h>
  15
  16#include "blk.h"
  17#include "blk-wbt.h"
  18
  19unsigned long blk_max_low_pfn;
  20EXPORT_SYMBOL(blk_max_low_pfn);
  21
  22unsigned long blk_max_pfn;
  23
  24void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
  25{
  26        q->rq_timeout = timeout;
  27}
  28EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
  29
  30/**
  31 * blk_set_default_limits - reset limits to default values
  32 * @lim:  the queue_limits structure to reset
  33 *
  34 * Description:
  35 *   Returns a queue_limit struct to its default state.
  36 */
  37void blk_set_default_limits(struct queue_limits *lim)
  38{
  39        lim->max_segments = BLK_MAX_SEGMENTS;
  40        lim->max_discard_segments = 1;
  41        lim->max_integrity_segments = 0;
  42        lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
  43        lim->virt_boundary_mask = 0;
  44        lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
  45        lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
  46        lim->max_dev_sectors = 0;
  47        lim->chunk_sectors = 0;
  48        lim->max_write_same_sectors = 0;
  49        lim->max_write_zeroes_sectors = 0;
  50        lim->max_discard_sectors = 0;
  51        lim->max_hw_discard_sectors = 0;
  52        lim->discard_granularity = 0;
  53        lim->discard_alignment = 0;
  54        lim->discard_misaligned = 0;
  55        lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
  56        lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
  57        lim->alignment_offset = 0;
  58        lim->io_opt = 0;
  59        lim->misaligned = 0;
  60        lim->zoned = BLK_ZONED_NONE;
  61}
  62EXPORT_SYMBOL(blk_set_default_limits);
  63
  64/**
  65 * blk_set_stacking_limits - set default limits for stacking devices
  66 * @lim:  the queue_limits structure to reset
  67 *
  68 * Description:
  69 *   Returns a queue_limit struct to its default state. Should be used
  70 *   by stacking drivers like DM that have no internal limits.
  71 */
  72void blk_set_stacking_limits(struct queue_limits *lim)
  73{
  74        blk_set_default_limits(lim);
  75
  76        /* Inherit limits from component devices */
  77        lim->max_segments = USHRT_MAX;
  78        lim->max_discard_segments = USHRT_MAX;
  79        lim->max_hw_sectors = UINT_MAX;
  80        lim->max_segment_size = UINT_MAX;
  81        lim->max_sectors = UINT_MAX;
  82        lim->max_dev_sectors = UINT_MAX;
  83        lim->max_write_same_sectors = UINT_MAX;
  84        lim->max_write_zeroes_sectors = UINT_MAX;
  85}
  86EXPORT_SYMBOL(blk_set_stacking_limits);
  87
  88/**
  89 * blk_queue_make_request - define an alternate make_request function for a device
  90 * @q:  the request queue for the device to be affected
  91 * @mfn: the alternate make_request function
  92 *
  93 * Description:
  94 *    The normal way for &struct bios to be passed to a device
  95 *    driver is for them to be collected into requests on a request
  96 *    queue, and then to allow the device driver to select requests
  97 *    off that queue when it is ready.  This works well for many block
  98 *    devices. However some block devices (typically virtual devices
  99 *    such as md or lvm) do not benefit from the processing on the
 100 *    request queue, and are served best by having the requests passed
 101 *    directly to them.  This can be achieved by providing a function
 102 *    to blk_queue_make_request().
 103 *
 104 * Caveat:
 105 *    The driver that does this *must* be able to deal appropriately
 106 *    with buffers in "highmemory". This can be accomplished by either calling
 107 *    kmap_atomic() to get a temporary kernel mapping, or by calling
 108 *    blk_queue_bounce() to create a buffer in normal memory.
 109 **/
 110void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
 111{
 112        /*
 113         * set defaults
 114         */
 115        q->nr_requests = BLKDEV_MAX_RQ;
 116
 117        q->make_request_fn = mfn;
 118        blk_queue_dma_alignment(q, 511);
 119
 120        blk_set_default_limits(&q->limits);
 121}
 122EXPORT_SYMBOL(blk_queue_make_request);
 123
 124/**
 125 * blk_queue_bounce_limit - set bounce buffer limit for queue
 126 * @q: the request queue for the device
 127 * @max_addr: the maximum address the device can handle
 128 *
 129 * Description:
 130 *    Different hardware can have different requirements as to what pages
 131 *    it can do I/O directly to. A low level driver can call
 132 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
 133 *    buffers for doing I/O to pages residing above @max_addr.
 134 **/
 135void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
 136{
 137        unsigned long b_pfn = max_addr >> PAGE_SHIFT;
 138        int dma = 0;
 139
 140        q->bounce_gfp = GFP_NOIO;
 141#if BITS_PER_LONG == 64
 142        /*
 143         * Assume anything <= 4GB can be handled by IOMMU.  Actually
 144         * some IOMMUs can handle everything, but I don't know of a
 145         * way to test this here.
 146         */
 147        if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
 148                dma = 1;
 149        q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
 150#else
 151        if (b_pfn < blk_max_low_pfn)
 152                dma = 1;
 153        q->limits.bounce_pfn = b_pfn;
 154#endif
 155        if (dma) {
 156                init_emergency_isa_pool();
 157                q->bounce_gfp = GFP_NOIO | GFP_DMA;
 158                q->limits.bounce_pfn = b_pfn;
 159        }
 160}
 161EXPORT_SYMBOL(blk_queue_bounce_limit);
 162
 163/**
 164 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
 165 * @q:  the request queue for the device
 166 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
 167 *
 168 * Description:
 169 *    Enables a low level driver to set a hard upper limit,
 170 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
 171 *    the device driver based upon the capabilities of the I/O
 172 *    controller.
 173 *
 174 *    max_dev_sectors is a hard limit imposed by the storage device for
 175 *    READ/WRITE requests. It is set by the disk driver.
 176 *
 177 *    max_sectors is a soft limit imposed by the block layer for
 178 *    filesystem type requests.  This value can be overridden on a
 179 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
 180 *    The soft limit can not exceed max_hw_sectors.
 181 **/
 182void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
 183{
 184        struct queue_limits *limits = &q->limits;
 185        unsigned int max_sectors;
 186
 187        if ((max_hw_sectors << 9) < PAGE_SIZE) {
 188                max_hw_sectors = 1 << (PAGE_SHIFT - 9);
 189                printk(KERN_INFO "%s: set to minimum %d\n",
 190                       __func__, max_hw_sectors);
 191        }
 192
 193        limits->max_hw_sectors = max_hw_sectors;
 194        max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
 195        max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
 196        limits->max_sectors = max_sectors;
 197        q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
 198}
 199EXPORT_SYMBOL(blk_queue_max_hw_sectors);
 200
 201/**
 202 * blk_queue_chunk_sectors - set size of the chunk for this queue
 203 * @q:  the request queue for the device
 204 * @chunk_sectors:  chunk sectors in the usual 512b unit
 205 *
 206 * Description:
 207 *    If a driver doesn't want IOs to cross a given chunk size, it can set
 208 *    this limit and prevent merging across chunks. Note that the chunk size
 209 *    must currently be a power-of-2 in sectors. Also note that the block
 210 *    layer must accept a page worth of data at any offset. So if the
 211 *    crossing of chunks is a hard limitation in the driver, it must still be
 212 *    prepared to split single page bios.
 213 **/
 214void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
 215{
 216        BUG_ON(!is_power_of_2(chunk_sectors));
 217        q->limits.chunk_sectors = chunk_sectors;
 218}
 219EXPORT_SYMBOL(blk_queue_chunk_sectors);
 220
 221/**
 222 * blk_queue_max_discard_sectors - set max sectors for a single discard
 223 * @q:  the request queue for the device
 224 * @max_discard_sectors: maximum number of sectors to discard
 225 **/
 226void blk_queue_max_discard_sectors(struct request_queue *q,
 227                unsigned int max_discard_sectors)
 228{
 229        q->limits.max_hw_discard_sectors = max_discard_sectors;
 230        q->limits.max_discard_sectors = max_discard_sectors;
 231}
 232EXPORT_SYMBOL(blk_queue_max_discard_sectors);
 233
 234/**
 235 * blk_queue_max_write_same_sectors - set max sectors for a single write same
 236 * @q:  the request queue for the device
 237 * @max_write_same_sectors: maximum number of sectors to write per command
 238 **/
 239void blk_queue_max_write_same_sectors(struct request_queue *q,
 240                                      unsigned int max_write_same_sectors)
 241{
 242        q->limits.max_write_same_sectors = max_write_same_sectors;
 243}
 244EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
 245
 246/**
 247 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
 248 *                                      write zeroes
 249 * @q:  the request queue for the device
 250 * @max_write_zeroes_sectors: maximum number of sectors to write per command
 251 **/
 252void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
 253                unsigned int max_write_zeroes_sectors)
 254{
 255        q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
 256}
 257EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
 258
 259/**
 260 * blk_queue_max_segments - set max hw segments for a request for this queue
 261 * @q:  the request queue for the device
 262 * @max_segments:  max number of segments
 263 *
 264 * Description:
 265 *    Enables a low level driver to set an upper limit on the number of
 266 *    hw data segments in a request.
 267 **/
 268void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
 269{
 270        if (!max_segments) {
 271                max_segments = 1;
 272                printk(KERN_INFO "%s: set to minimum %d\n",
 273                       __func__, max_segments);
 274        }
 275
 276        q->limits.max_segments = max_segments;
 277}
 278EXPORT_SYMBOL(blk_queue_max_segments);
 279
 280/**
 281 * blk_queue_max_discard_segments - set max segments for discard requests
 282 * @q:  the request queue for the device
 283 * @max_segments:  max number of segments
 284 *
 285 * Description:
 286 *    Enables a low level driver to set an upper limit on the number of
 287 *    segments in a discard request.
 288 **/
 289void blk_queue_max_discard_segments(struct request_queue *q,
 290                unsigned short max_segments)
 291{
 292        q->limits.max_discard_segments = max_segments;
 293}
 294EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
 295
 296/**
 297 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
 298 * @q:  the request queue for the device
 299 * @max_size:  max size of segment in bytes
 300 *
 301 * Description:
 302 *    Enables a low level driver to set an upper limit on the size of a
 303 *    coalesced segment
 304 **/
 305void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
 306{
 307        if (max_size < PAGE_SIZE) {
 308                max_size = PAGE_SIZE;
 309                printk(KERN_INFO "%s: set to minimum %d\n",
 310                       __func__, max_size);
 311        }
 312
 313        /* see blk_queue_virt_boundary() for the explanation */
 314        WARN_ON_ONCE(q->limits.virt_boundary_mask);
 315
 316        q->limits.max_segment_size = max_size;
 317}
 318EXPORT_SYMBOL(blk_queue_max_segment_size);
 319
 320/**
 321 * blk_queue_logical_block_size - set logical block size for the queue
 322 * @q:  the request queue for the device
 323 * @size:  the logical block size, in bytes
 324 *
 325 * Description:
 326 *   This should be set to the lowest possible block size that the
 327 *   storage device can address.  The default of 512 covers most
 328 *   hardware.
 329 **/
 330void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
 331{
 332        q->limits.logical_block_size = size;
 333
 334        if (q->limits.physical_block_size < size)
 335                q->limits.physical_block_size = size;
 336
 337        if (q->limits.io_min < q->limits.physical_block_size)
 338                q->limits.io_min = q->limits.physical_block_size;
 339}
 340EXPORT_SYMBOL(blk_queue_logical_block_size);
 341
 342/**
 343 * blk_queue_physical_block_size - set physical block size for the queue
 344 * @q:  the request queue for the device
 345 * @size:  the physical block size, in bytes
 346 *
 347 * Description:
 348 *   This should be set to the lowest possible sector size that the
 349 *   hardware can operate on without reverting to read-modify-write
 350 *   operations.
 351 */
 352void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
 353{
 354        q->limits.physical_block_size = size;
 355
 356        if (q->limits.physical_block_size < q->limits.logical_block_size)
 357                q->limits.physical_block_size = q->limits.logical_block_size;
 358
 359        if (q->limits.io_min < q->limits.physical_block_size)
 360                q->limits.io_min = q->limits.physical_block_size;
 361}
 362EXPORT_SYMBOL(blk_queue_physical_block_size);
 363
 364/**
 365 * blk_queue_alignment_offset - set physical block alignment offset
 366 * @q:  the request queue for the device
 367 * @offset: alignment offset in bytes
 368 *
 369 * Description:
 370 *   Some devices are naturally misaligned to compensate for things like
 371 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
 372 *   should call this function for devices whose first sector is not
 373 *   naturally aligned.
 374 */
 375void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
 376{
 377        q->limits.alignment_offset =
 378                offset & (q->limits.physical_block_size - 1);
 379        q->limits.misaligned = 0;
 380}
 381EXPORT_SYMBOL(blk_queue_alignment_offset);
 382
 383/**
 384 * blk_limits_io_min - set minimum request size for a device
 385 * @limits: the queue limits
 386 * @min:  smallest I/O size in bytes
 387 *
 388 * Description:
 389 *   Some devices have an internal block size bigger than the reported
 390 *   hardware sector size.  This function can be used to signal the
 391 *   smallest I/O the device can perform without incurring a performance
 392 *   penalty.
 393 */
 394void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
 395{
 396        limits->io_min = min;
 397
 398        if (limits->io_min < limits->logical_block_size)
 399                limits->io_min = limits->logical_block_size;
 400
 401        if (limits->io_min < limits->physical_block_size)
 402                limits->io_min = limits->physical_block_size;
 403}
 404EXPORT_SYMBOL(blk_limits_io_min);
 405
 406/**
 407 * blk_queue_io_min - set minimum request size for the queue
 408 * @q:  the request queue for the device
 409 * @min:  smallest I/O size in bytes
 410 *
 411 * Description:
 412 *   Storage devices may report a granularity or preferred minimum I/O
 413 *   size which is the smallest request the device can perform without
 414 *   incurring a performance penalty.  For disk drives this is often the
 415 *   physical block size.  For RAID arrays it is often the stripe chunk
 416 *   size.  A properly aligned multiple of minimum_io_size is the
 417 *   preferred request size for workloads where a high number of I/O
 418 *   operations is desired.
 419 */
 420void blk_queue_io_min(struct request_queue *q, unsigned int min)
 421{
 422        blk_limits_io_min(&q->limits, min);
 423}
 424EXPORT_SYMBOL(blk_queue_io_min);
 425
 426/**
 427 * blk_limits_io_opt - set optimal request size for a device
 428 * @limits: the queue limits
 429 * @opt:  smallest I/O size in bytes
 430 *
 431 * Description:
 432 *   Storage devices may report an optimal I/O size, which is the
 433 *   device's preferred unit for sustained I/O.  This is rarely reported
 434 *   for disk drives.  For RAID arrays it is usually the stripe width or
 435 *   the internal track size.  A properly aligned multiple of
 436 *   optimal_io_size is the preferred request size for workloads where
 437 *   sustained throughput is desired.
 438 */
 439void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
 440{
 441        limits->io_opt = opt;
 442}
 443EXPORT_SYMBOL(blk_limits_io_opt);
 444
 445/**
 446 * blk_queue_io_opt - set optimal request size for the queue
 447 * @q:  the request queue for the device
 448 * @opt:  optimal request size in bytes
 449 *
 450 * Description:
 451 *   Storage devices may report an optimal I/O size, which is the
 452 *   device's preferred unit for sustained I/O.  This is rarely reported
 453 *   for disk drives.  For RAID arrays it is usually the stripe width or
 454 *   the internal track size.  A properly aligned multiple of
 455 *   optimal_io_size is the preferred request size for workloads where
 456 *   sustained throughput is desired.
 457 */
 458void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
 459{
 460        blk_limits_io_opt(&q->limits, opt);
 461}
 462EXPORT_SYMBOL(blk_queue_io_opt);
 463
 464/**
 465 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
 466 * @t:  the stacking driver (top)
 467 * @b:  the underlying device (bottom)
 468 **/
 469void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
 470{
 471        blk_stack_limits(&t->limits, &b->limits, 0);
 472}
 473EXPORT_SYMBOL(blk_queue_stack_limits);
 474
 475/**
 476 * blk_stack_limits - adjust queue_limits for stacked devices
 477 * @t:  the stacking driver limits (top device)
 478 * @b:  the underlying queue limits (bottom, component device)
 479 * @start:  first data sector within component device
 480 *
 481 * Description:
 482 *    This function is used by stacking drivers like MD and DM to ensure
 483 *    that all component devices have compatible block sizes and
 484 *    alignments.  The stacking driver must provide a queue_limits
 485 *    struct (top) and then iteratively call the stacking function for
 486 *    all component (bottom) devices.  The stacking function will
 487 *    attempt to combine the values and ensure proper alignment.
 488 *
 489 *    Returns 0 if the top and bottom queue_limits are compatible.  The
 490 *    top device's block sizes and alignment offsets may be adjusted to
 491 *    ensure alignment with the bottom device. If no compatible sizes
 492 *    and alignments exist, -1 is returned and the resulting top
 493 *    queue_limits will have the misaligned flag set to indicate that
 494 *    the alignment_offset is undefined.
 495 */
 496int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
 497                     sector_t start)
 498{
 499        unsigned int top, bottom, alignment, ret = 0;
 500
 501        t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
 502        t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
 503        t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
 504        t->max_write_same_sectors = min(t->max_write_same_sectors,
 505                                        b->max_write_same_sectors);
 506        t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
 507                                        b->max_write_zeroes_sectors);
 508        t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
 509
 510        t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
 511                                            b->seg_boundary_mask);
 512        t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
 513                                            b->virt_boundary_mask);
 514
 515        t->max_segments = min_not_zero(t->max_segments, b->max_segments);
 516        t->max_discard_segments = min_not_zero(t->max_discard_segments,
 517                                               b->max_discard_segments);
 518        t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
 519                                                 b->max_integrity_segments);
 520
 521        t->max_segment_size = min_not_zero(t->max_segment_size,
 522                                           b->max_segment_size);
 523
 524        t->misaligned |= b->misaligned;
 525
 526        alignment = queue_limit_alignment_offset(b, start);
 527
 528        /* Bottom device has different alignment.  Check that it is
 529         * compatible with the current top alignment.
 530         */
 531        if (t->alignment_offset != alignment) {
 532
 533                top = max(t->physical_block_size, t->io_min)
 534                        + t->alignment_offset;
 535                bottom = max(b->physical_block_size, b->io_min) + alignment;
 536
 537                /* Verify that top and bottom intervals line up */
 538                if (max(top, bottom) % min(top, bottom)) {
 539                        t->misaligned = 1;
 540                        ret = -1;
 541                }
 542        }
 543
 544        t->logical_block_size = max(t->logical_block_size,
 545                                    b->logical_block_size);
 546
 547        t->physical_block_size = max(t->physical_block_size,
 548                                     b->physical_block_size);
 549
 550        t->io_min = max(t->io_min, b->io_min);
 551        t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
 552
 553        /* Physical block size a multiple of the logical block size? */
 554        if (t->physical_block_size & (t->logical_block_size - 1)) {
 555                t->physical_block_size = t->logical_block_size;
 556                t->misaligned = 1;
 557                ret = -1;
 558        }
 559
 560        /* Minimum I/O a multiple of the physical block size? */
 561        if (t->io_min & (t->physical_block_size - 1)) {
 562                t->io_min = t->physical_block_size;
 563                t->misaligned = 1;
 564                ret = -1;
 565        }
 566
 567        /* Optimal I/O a multiple of the physical block size? */
 568        if (t->io_opt & (t->physical_block_size - 1)) {
 569                t->io_opt = 0;
 570                t->misaligned = 1;
 571                ret = -1;
 572        }
 573
 574        t->raid_partial_stripes_expensive =
 575                max(t->raid_partial_stripes_expensive,
 576                    b->raid_partial_stripes_expensive);
 577
 578        /* Find lowest common alignment_offset */
 579        t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
 580                % max(t->physical_block_size, t->io_min);
 581
 582        /* Verify that new alignment_offset is on a logical block boundary */
 583        if (t->alignment_offset & (t->logical_block_size - 1)) {
 584                t->misaligned = 1;
 585                ret = -1;
 586        }
 587
 588        /* Discard alignment and granularity */
 589        if (b->discard_granularity) {
 590                alignment = queue_limit_discard_alignment(b, start);
 591
 592                if (t->discard_granularity != 0 &&
 593                    t->discard_alignment != alignment) {
 594                        top = t->discard_granularity + t->discard_alignment;
 595                        bottom = b->discard_granularity + alignment;
 596
 597                        /* Verify that top and bottom intervals line up */
 598                        if ((max(top, bottom) % min(top, bottom)) != 0)
 599                                t->discard_misaligned = 1;
 600                }
 601
 602                t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
 603                                                      b->max_discard_sectors);
 604                t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
 605                                                         b->max_hw_discard_sectors);
 606                t->discard_granularity = max(t->discard_granularity,
 607                                             b->discard_granularity);
 608                t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
 609                        t->discard_granularity;
 610        }
 611
 612        if (b->chunk_sectors)
 613                t->chunk_sectors = min_not_zero(t->chunk_sectors,
 614                                                b->chunk_sectors);
 615
 616        return ret;
 617}
 618EXPORT_SYMBOL(blk_stack_limits);
 619
 620/**
 621 * bdev_stack_limits - adjust queue limits for stacked drivers
 622 * @t:  the stacking driver limits (top device)
 623 * @bdev:  the component block_device (bottom)
 624 * @start:  first data sector within component device
 625 *
 626 * Description:
 627 *    Merges queue limits for a top device and a block_device.  Returns
 628 *    0 if alignment didn't change.  Returns -1 if adding the bottom
 629 *    device caused misalignment.
 630 */
 631int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
 632                      sector_t start)
 633{
 634        struct request_queue *bq = bdev_get_queue(bdev);
 635
 636        start += get_start_sect(bdev);
 637
 638        return blk_stack_limits(t, &bq->limits, start);
 639}
 640EXPORT_SYMBOL(bdev_stack_limits);
 641
 642/**
 643 * disk_stack_limits - adjust queue limits for stacked drivers
 644 * @disk:  MD/DM gendisk (top)
 645 * @bdev:  the underlying block device (bottom)
 646 * @offset:  offset to beginning of data within component device
 647 *
 648 * Description:
 649 *    Merges the limits for a top level gendisk and a bottom level
 650 *    block_device.
 651 */
 652void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
 653                       sector_t offset)
 654{
 655        struct request_queue *t = disk->queue;
 656
 657        if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
 658                char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
 659
 660                disk_name(disk, 0, top);
 661                bdevname(bdev, bottom);
 662
 663                printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
 664                       top, bottom);
 665        }
 666}
 667EXPORT_SYMBOL(disk_stack_limits);
 668
 669/**
 670 * blk_queue_update_dma_pad - update pad mask
 671 * @q:     the request queue for the device
 672 * @mask:  pad mask
 673 *
 674 * Update dma pad mask.
 675 *
 676 * Appending pad buffer to a request modifies the last entry of a
 677 * scatter list such that it includes the pad buffer.
 678 **/
 679void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
 680{
 681        if (mask > q->dma_pad_mask)
 682                q->dma_pad_mask = mask;
 683}
 684EXPORT_SYMBOL(blk_queue_update_dma_pad);
 685
 686/**
 687 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
 688 * @q:  the request queue for the device
 689 * @dma_drain_needed: fn which returns non-zero if drain is necessary
 690 * @buf:        physically contiguous buffer
 691 * @size:       size of the buffer in bytes
 692 *
 693 * Some devices have excess DMA problems and can't simply discard (or
 694 * zero fill) the unwanted piece of the transfer.  They have to have a
 695 * real area of memory to transfer it into.  The use case for this is
 696 * ATAPI devices in DMA mode.  If the packet command causes a transfer
 697 * bigger than the transfer size some HBAs will lock up if there
 698 * aren't DMA elements to contain the excess transfer.  What this API
 699 * does is adjust the queue so that the buf is always appended
 700 * silently to the scatterlist.
 701 *
 702 * Note: This routine adjusts max_hw_segments to make room for appending
 703 * the drain buffer.  If you call blk_queue_max_segments() after calling
 704 * this routine, you must set the limit to one fewer than your device
 705 * can support otherwise there won't be room for the drain buffer.
 706 */
 707int blk_queue_dma_drain(struct request_queue *q,
 708                               dma_drain_needed_fn *dma_drain_needed,
 709                               void *buf, unsigned int size)
 710{
 711        if (queue_max_segments(q) < 2)
 712                return -EINVAL;
 713        /* make room for appending the drain */
 714        blk_queue_max_segments(q, queue_max_segments(q) - 1);
 715        q->dma_drain_needed = dma_drain_needed;
 716        q->dma_drain_buffer = buf;
 717        q->dma_drain_size = size;
 718
 719        return 0;
 720}
 721EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
 722
 723/**
 724 * blk_queue_segment_boundary - set boundary rules for segment merging
 725 * @q:  the request queue for the device
 726 * @mask:  the memory boundary mask
 727 **/
 728void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
 729{
 730        if (mask < PAGE_SIZE - 1) {
 731                mask = PAGE_SIZE - 1;
 732                printk(KERN_INFO "%s: set to minimum %lx\n",
 733                       __func__, mask);
 734        }
 735
 736        q->limits.seg_boundary_mask = mask;
 737}
 738EXPORT_SYMBOL(blk_queue_segment_boundary);
 739
 740/**
 741 * blk_queue_virt_boundary - set boundary rules for bio merging
 742 * @q:  the request queue for the device
 743 * @mask:  the memory boundary mask
 744 **/
 745void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
 746{
 747        q->limits.virt_boundary_mask = mask;
 748
 749        /*
 750         * Devices that require a virtual boundary do not support scatter/gather
 751         * I/O natively, but instead require a descriptor list entry for each
 752         * page (which might not be idential to the Linux PAGE_SIZE).  Because
 753         * of that they are not limited by our notion of "segment size".
 754         */
 755        if (mask)
 756                q->limits.max_segment_size = UINT_MAX;
 757}
 758EXPORT_SYMBOL(blk_queue_virt_boundary);
 759
 760/**
 761 * blk_queue_dma_alignment - set dma length and memory alignment
 762 * @q:     the request queue for the device
 763 * @mask:  alignment mask
 764 *
 765 * description:
 766 *    set required memory and length alignment for direct dma transactions.
 767 *    this is used when building direct io requests for the queue.
 768 *
 769 **/
 770void blk_queue_dma_alignment(struct request_queue *q, int mask)
 771{
 772        q->dma_alignment = mask;
 773}
 774EXPORT_SYMBOL(blk_queue_dma_alignment);
 775
 776/**
 777 * blk_queue_update_dma_alignment - update dma length and memory alignment
 778 * @q:     the request queue for the device
 779 * @mask:  alignment mask
 780 *
 781 * description:
 782 *    update required memory and length alignment for direct dma transactions.
 783 *    If the requested alignment is larger than the current alignment, then
 784 *    the current queue alignment is updated to the new value, otherwise it
 785 *    is left alone.  The design of this is to allow multiple objects
 786 *    (driver, device, transport etc) to set their respective
 787 *    alignments without having them interfere.
 788 *
 789 **/
 790void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
 791{
 792        BUG_ON(mask > PAGE_SIZE);
 793
 794        if (mask > q->dma_alignment)
 795                q->dma_alignment = mask;
 796}
 797EXPORT_SYMBOL(blk_queue_update_dma_alignment);
 798
 799/**
 800 * blk_set_queue_depth - tell the block layer about the device queue depth
 801 * @q:          the request queue for the device
 802 * @depth:              queue depth
 803 *
 804 */
 805void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
 806{
 807        q->queue_depth = depth;
 808        wbt_set_queue_depth(q, depth);
 809}
 810EXPORT_SYMBOL(blk_set_queue_depth);
 811
 812/**
 813 * blk_queue_write_cache - configure queue's write cache
 814 * @q:          the request queue for the device
 815 * @wc:         write back cache on or off
 816 * @fua:        device supports FUA writes, if true
 817 *
 818 * Tell the block layer about the write cache of @q.
 819 */
 820void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
 821{
 822        if (wc)
 823                blk_queue_flag_set(QUEUE_FLAG_WC, q);
 824        else
 825                blk_queue_flag_clear(QUEUE_FLAG_WC, q);
 826        if (fua)
 827                blk_queue_flag_set(QUEUE_FLAG_FUA, q);
 828        else
 829                blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
 830
 831        wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
 832}
 833EXPORT_SYMBOL_GPL(blk_queue_write_cache);
 834
 835static int __init blk_settings_init(void)
 836{
 837        blk_max_low_pfn = max_low_pfn - 1;
 838        blk_max_pfn = max_pfn - 1;
 839        return 0;
 840}
 841subsys_initcall(blk_settings_init);
 842