linux/block/blk-throttle.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Interface for controlling IO bandwidth on a request queue
   4 *
   5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
   6 */
   7
   8#include <linux/module.h>
   9#include <linux/slab.h>
  10#include <linux/blkdev.h>
  11#include <linux/bio.h>
  12#include <linux/blktrace_api.h>
  13#include <linux/blk-cgroup.h>
  14#include "blk.h"
  15
  16/* Max dispatch from a group in 1 round */
  17static int throtl_grp_quantum = 8;
  18
  19/* Total max dispatch from all groups in one round */
  20static int throtl_quantum = 32;
  21
  22/* Throttling is performed over a slice and after that slice is renewed */
  23#define DFL_THROTL_SLICE_HD (HZ / 10)
  24#define DFL_THROTL_SLICE_SSD (HZ / 50)
  25#define MAX_THROTL_SLICE (HZ)
  26#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
  27#define MIN_THROTL_BPS (320 * 1024)
  28#define MIN_THROTL_IOPS (10)
  29#define DFL_LATENCY_TARGET (-1L)
  30#define DFL_IDLE_THRESHOLD (0)
  31#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
  32#define LATENCY_FILTERED_SSD (0)
  33/*
  34 * For HD, very small latency comes from sequential IO. Such IO is helpless to
  35 * help determine if its IO is impacted by others, hence we ignore the IO
  36 */
  37#define LATENCY_FILTERED_HD (1000L) /* 1ms */
  38
  39static struct blkcg_policy blkcg_policy_throtl;
  40
  41/* A workqueue to queue throttle related work */
  42static struct workqueue_struct *kthrotld_workqueue;
  43
  44/*
  45 * To implement hierarchical throttling, throtl_grps form a tree and bios
  46 * are dispatched upwards level by level until they reach the top and get
  47 * issued.  When dispatching bios from the children and local group at each
  48 * level, if the bios are dispatched into a single bio_list, there's a risk
  49 * of a local or child group which can queue many bios at once filling up
  50 * the list starving others.
  51 *
  52 * To avoid such starvation, dispatched bios are queued separately
  53 * according to where they came from.  When they are again dispatched to
  54 * the parent, they're popped in round-robin order so that no single source
  55 * hogs the dispatch window.
  56 *
  57 * throtl_qnode is used to keep the queued bios separated by their sources.
  58 * Bios are queued to throtl_qnode which in turn is queued to
  59 * throtl_service_queue and then dispatched in round-robin order.
  60 *
  61 * It's also used to track the reference counts on blkg's.  A qnode always
  62 * belongs to a throtl_grp and gets queued on itself or the parent, so
  63 * incrementing the reference of the associated throtl_grp when a qnode is
  64 * queued and decrementing when dequeued is enough to keep the whole blkg
  65 * tree pinned while bios are in flight.
  66 */
  67struct throtl_qnode {
  68        struct list_head        node;           /* service_queue->queued[] */
  69        struct bio_list         bios;           /* queued bios */
  70        struct throtl_grp       *tg;            /* tg this qnode belongs to */
  71};
  72
  73struct throtl_service_queue {
  74        struct throtl_service_queue *parent_sq; /* the parent service_queue */
  75
  76        /*
  77         * Bios queued directly to this service_queue or dispatched from
  78         * children throtl_grp's.
  79         */
  80        struct list_head        queued[2];      /* throtl_qnode [READ/WRITE] */
  81        unsigned int            nr_queued[2];   /* number of queued bios */
  82
  83        /*
  84         * RB tree of active children throtl_grp's, which are sorted by
  85         * their ->disptime.
  86         */
  87        struct rb_root_cached   pending_tree;   /* RB tree of active tgs */
  88        unsigned int            nr_pending;     /* # queued in the tree */
  89        unsigned long           first_pending_disptime; /* disptime of the first tg */
  90        struct timer_list       pending_timer;  /* fires on first_pending_disptime */
  91};
  92
  93enum tg_state_flags {
  94        THROTL_TG_PENDING       = 1 << 0,       /* on parent's pending tree */
  95        THROTL_TG_WAS_EMPTY     = 1 << 1,       /* bio_lists[] became non-empty */
  96};
  97
  98#define rb_entry_tg(node)       rb_entry((node), struct throtl_grp, rb_node)
  99
 100enum {
 101        LIMIT_LOW,
 102        LIMIT_MAX,
 103        LIMIT_CNT,
 104};
 105
 106struct throtl_grp {
 107        /* must be the first member */
 108        struct blkg_policy_data pd;
 109
 110        /* active throtl group service_queue member */
 111        struct rb_node rb_node;
 112
 113        /* throtl_data this group belongs to */
 114        struct throtl_data *td;
 115
 116        /* this group's service queue */
 117        struct throtl_service_queue service_queue;
 118
 119        /*
 120         * qnode_on_self is used when bios are directly queued to this
 121         * throtl_grp so that local bios compete fairly with bios
 122         * dispatched from children.  qnode_on_parent is used when bios are
 123         * dispatched from this throtl_grp into its parent and will compete
 124         * with the sibling qnode_on_parents and the parent's
 125         * qnode_on_self.
 126         */
 127        struct throtl_qnode qnode_on_self[2];
 128        struct throtl_qnode qnode_on_parent[2];
 129
 130        /*
 131         * Dispatch time in jiffies. This is the estimated time when group
 132         * will unthrottle and is ready to dispatch more bio. It is used as
 133         * key to sort active groups in service tree.
 134         */
 135        unsigned long disptime;
 136
 137        unsigned int flags;
 138
 139        /* are there any throtl rules between this group and td? */
 140        bool has_rules[2];
 141
 142        /* internally used bytes per second rate limits */
 143        uint64_t bps[2][LIMIT_CNT];
 144        /* user configured bps limits */
 145        uint64_t bps_conf[2][LIMIT_CNT];
 146
 147        /* internally used IOPS limits */
 148        unsigned int iops[2][LIMIT_CNT];
 149        /* user configured IOPS limits */
 150        unsigned int iops_conf[2][LIMIT_CNT];
 151
 152        /* Number of bytes disptached in current slice */
 153        uint64_t bytes_disp[2];
 154        /* Number of bio's dispatched in current slice */
 155        unsigned int io_disp[2];
 156
 157        unsigned long last_low_overflow_time[2];
 158
 159        uint64_t last_bytes_disp[2];
 160        unsigned int last_io_disp[2];
 161
 162        unsigned long last_check_time;
 163
 164        unsigned long latency_target; /* us */
 165        unsigned long latency_target_conf; /* us */
 166        /* When did we start a new slice */
 167        unsigned long slice_start[2];
 168        unsigned long slice_end[2];
 169
 170        unsigned long last_finish_time; /* ns / 1024 */
 171        unsigned long checked_last_finish_time; /* ns / 1024 */
 172        unsigned long avg_idletime; /* ns / 1024 */
 173        unsigned long idletime_threshold; /* us */
 174        unsigned long idletime_threshold_conf; /* us */
 175
 176        unsigned int bio_cnt; /* total bios */
 177        unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
 178        unsigned long bio_cnt_reset_time;
 179};
 180
 181/* We measure latency for request size from <= 4k to >= 1M */
 182#define LATENCY_BUCKET_SIZE 9
 183
 184struct latency_bucket {
 185        unsigned long total_latency; /* ns / 1024 */
 186        int samples;
 187};
 188
 189struct avg_latency_bucket {
 190        unsigned long latency; /* ns / 1024 */
 191        bool valid;
 192};
 193
 194struct throtl_data
 195{
 196        /* service tree for active throtl groups */
 197        struct throtl_service_queue service_queue;
 198
 199        struct request_queue *queue;
 200
 201        /* Total Number of queued bios on READ and WRITE lists */
 202        unsigned int nr_queued[2];
 203
 204        unsigned int throtl_slice;
 205
 206        /* Work for dispatching throttled bios */
 207        struct work_struct dispatch_work;
 208        unsigned int limit_index;
 209        bool limit_valid[LIMIT_CNT];
 210
 211        unsigned long low_upgrade_time;
 212        unsigned long low_downgrade_time;
 213
 214        unsigned int scale;
 215
 216        struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
 217        struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
 218        struct latency_bucket __percpu *latency_buckets[2];
 219        unsigned long last_calculate_time;
 220        unsigned long filtered_latency;
 221
 222        bool track_bio_latency;
 223};
 224
 225static void throtl_pending_timer_fn(struct timer_list *t);
 226
 227static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
 228{
 229        return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
 230}
 231
 232static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
 233{
 234        return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
 235}
 236
 237static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
 238{
 239        return pd_to_blkg(&tg->pd);
 240}
 241
 242/**
 243 * sq_to_tg - return the throl_grp the specified service queue belongs to
 244 * @sq: the throtl_service_queue of interest
 245 *
 246 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 247 * embedded in throtl_data, %NULL is returned.
 248 */
 249static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
 250{
 251        if (sq && sq->parent_sq)
 252                return container_of(sq, struct throtl_grp, service_queue);
 253        else
 254                return NULL;
 255}
 256
 257/**
 258 * sq_to_td - return throtl_data the specified service queue belongs to
 259 * @sq: the throtl_service_queue of interest
 260 *
 261 * A service_queue can be embedded in either a throtl_grp or throtl_data.
 262 * Determine the associated throtl_data accordingly and return it.
 263 */
 264static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
 265{
 266        struct throtl_grp *tg = sq_to_tg(sq);
 267
 268        if (tg)
 269                return tg->td;
 270        else
 271                return container_of(sq, struct throtl_data, service_queue);
 272}
 273
 274/*
 275 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 276 * make the IO dispatch more smooth.
 277 * Scale up: linearly scale up according to lapsed time since upgrade. For
 278 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 279 *           limit hits .max limit
 280 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 281 */
 282static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
 283{
 284        /* arbitrary value to avoid too big scale */
 285        if (td->scale < 4096 && time_after_eq(jiffies,
 286            td->low_upgrade_time + td->scale * td->throtl_slice))
 287                td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
 288
 289        return low + (low >> 1) * td->scale;
 290}
 291
 292static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
 293{
 294        struct blkcg_gq *blkg = tg_to_blkg(tg);
 295        struct throtl_data *td;
 296        uint64_t ret;
 297
 298        if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
 299                return U64_MAX;
 300
 301        td = tg->td;
 302        ret = tg->bps[rw][td->limit_index];
 303        if (ret == 0 && td->limit_index == LIMIT_LOW) {
 304                /* intermediate node or iops isn't 0 */
 305                if (!list_empty(&blkg->blkcg->css.children) ||
 306                    tg->iops[rw][td->limit_index])
 307                        return U64_MAX;
 308                else
 309                        return MIN_THROTL_BPS;
 310        }
 311
 312        if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
 313            tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
 314                uint64_t adjusted;
 315
 316                adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
 317                ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
 318        }
 319        return ret;
 320}
 321
 322static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
 323{
 324        struct blkcg_gq *blkg = tg_to_blkg(tg);
 325        struct throtl_data *td;
 326        unsigned int ret;
 327
 328        if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
 329                return UINT_MAX;
 330
 331        td = tg->td;
 332        ret = tg->iops[rw][td->limit_index];
 333        if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
 334                /* intermediate node or bps isn't 0 */
 335                if (!list_empty(&blkg->blkcg->css.children) ||
 336                    tg->bps[rw][td->limit_index])
 337                        return UINT_MAX;
 338                else
 339                        return MIN_THROTL_IOPS;
 340        }
 341
 342        if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
 343            tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
 344                uint64_t adjusted;
 345
 346                adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
 347                if (adjusted > UINT_MAX)
 348                        adjusted = UINT_MAX;
 349                ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
 350        }
 351        return ret;
 352}
 353
 354#define request_bucket_index(sectors) \
 355        clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
 356
 357/**
 358 * throtl_log - log debug message via blktrace
 359 * @sq: the service_queue being reported
 360 * @fmt: printf format string
 361 * @args: printf args
 362 *
 363 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 364 * throtl_grp; otherwise, just "throtl".
 365 */
 366#define throtl_log(sq, fmt, args...)    do {                            \
 367        struct throtl_grp *__tg = sq_to_tg((sq));                       \
 368        struct throtl_data *__td = sq_to_td((sq));                      \
 369                                                                        \
 370        (void)__td;                                                     \
 371        if (likely(!blk_trace_note_message_enabled(__td->queue)))       \
 372                break;                                                  \
 373        if ((__tg)) {                                                   \
 374                blk_add_cgroup_trace_msg(__td->queue,                   \
 375                        tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
 376        } else {                                                        \
 377                blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);  \
 378        }                                                               \
 379} while (0)
 380
 381static inline unsigned int throtl_bio_data_size(struct bio *bio)
 382{
 383        /* assume it's one sector */
 384        if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
 385                return 512;
 386        return bio->bi_iter.bi_size;
 387}
 388
 389static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
 390{
 391        INIT_LIST_HEAD(&qn->node);
 392        bio_list_init(&qn->bios);
 393        qn->tg = tg;
 394}
 395
 396/**
 397 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 398 * @bio: bio being added
 399 * @qn: qnode to add bio to
 400 * @queued: the service_queue->queued[] list @qn belongs to
 401 *
 402 * Add @bio to @qn and put @qn on @queued if it's not already on.
 403 * @qn->tg's reference count is bumped when @qn is activated.  See the
 404 * comment on top of throtl_qnode definition for details.
 405 */
 406static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
 407                                 struct list_head *queued)
 408{
 409        bio_list_add(&qn->bios, bio);
 410        if (list_empty(&qn->node)) {
 411                list_add_tail(&qn->node, queued);
 412                blkg_get(tg_to_blkg(qn->tg));
 413        }
 414}
 415
 416/**
 417 * throtl_peek_queued - peek the first bio on a qnode list
 418 * @queued: the qnode list to peek
 419 */
 420static struct bio *throtl_peek_queued(struct list_head *queued)
 421{
 422        struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
 423        struct bio *bio;
 424
 425        if (list_empty(queued))
 426                return NULL;
 427
 428        bio = bio_list_peek(&qn->bios);
 429        WARN_ON_ONCE(!bio);
 430        return bio;
 431}
 432
 433/**
 434 * throtl_pop_queued - pop the first bio form a qnode list
 435 * @queued: the qnode list to pop a bio from
 436 * @tg_to_put: optional out argument for throtl_grp to put
 437 *
 438 * Pop the first bio from the qnode list @queued.  After popping, the first
 439 * qnode is removed from @queued if empty or moved to the end of @queued so
 440 * that the popping order is round-robin.
 441 *
 442 * When the first qnode is removed, its associated throtl_grp should be put
 443 * too.  If @tg_to_put is NULL, this function automatically puts it;
 444 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 445 * responsible for putting it.
 446 */
 447static struct bio *throtl_pop_queued(struct list_head *queued,
 448                                     struct throtl_grp **tg_to_put)
 449{
 450        struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
 451        struct bio *bio;
 452
 453        if (list_empty(queued))
 454                return NULL;
 455
 456        bio = bio_list_pop(&qn->bios);
 457        WARN_ON_ONCE(!bio);
 458
 459        if (bio_list_empty(&qn->bios)) {
 460                list_del_init(&qn->node);
 461                if (tg_to_put)
 462                        *tg_to_put = qn->tg;
 463                else
 464                        blkg_put(tg_to_blkg(qn->tg));
 465        } else {
 466                list_move_tail(&qn->node, queued);
 467        }
 468
 469        return bio;
 470}
 471
 472/* init a service_queue, assumes the caller zeroed it */
 473static void throtl_service_queue_init(struct throtl_service_queue *sq)
 474{
 475        INIT_LIST_HEAD(&sq->queued[0]);
 476        INIT_LIST_HEAD(&sq->queued[1]);
 477        sq->pending_tree = RB_ROOT_CACHED;
 478        timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
 479}
 480
 481static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
 482{
 483        struct throtl_grp *tg;
 484        int rw;
 485
 486        tg = kzalloc_node(sizeof(*tg), gfp, node);
 487        if (!tg)
 488                return NULL;
 489
 490        throtl_service_queue_init(&tg->service_queue);
 491
 492        for (rw = READ; rw <= WRITE; rw++) {
 493                throtl_qnode_init(&tg->qnode_on_self[rw], tg);
 494                throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
 495        }
 496
 497        RB_CLEAR_NODE(&tg->rb_node);
 498        tg->bps[READ][LIMIT_MAX] = U64_MAX;
 499        tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
 500        tg->iops[READ][LIMIT_MAX] = UINT_MAX;
 501        tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
 502        tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
 503        tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
 504        tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
 505        tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
 506        /* LIMIT_LOW will have default value 0 */
 507
 508        tg->latency_target = DFL_LATENCY_TARGET;
 509        tg->latency_target_conf = DFL_LATENCY_TARGET;
 510        tg->idletime_threshold = DFL_IDLE_THRESHOLD;
 511        tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
 512
 513        return &tg->pd;
 514}
 515
 516static void throtl_pd_init(struct blkg_policy_data *pd)
 517{
 518        struct throtl_grp *tg = pd_to_tg(pd);
 519        struct blkcg_gq *blkg = tg_to_blkg(tg);
 520        struct throtl_data *td = blkg->q->td;
 521        struct throtl_service_queue *sq = &tg->service_queue;
 522
 523        /*
 524         * If on the default hierarchy, we switch to properly hierarchical
 525         * behavior where limits on a given throtl_grp are applied to the
 526         * whole subtree rather than just the group itself.  e.g. If 16M
 527         * read_bps limit is set on the root group, the whole system can't
 528         * exceed 16M for the device.
 529         *
 530         * If not on the default hierarchy, the broken flat hierarchy
 531         * behavior is retained where all throtl_grps are treated as if
 532         * they're all separate root groups right below throtl_data.
 533         * Limits of a group don't interact with limits of other groups
 534         * regardless of the position of the group in the hierarchy.
 535         */
 536        sq->parent_sq = &td->service_queue;
 537        if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
 538                sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
 539        tg->td = td;
 540}
 541
 542/*
 543 * Set has_rules[] if @tg or any of its parents have limits configured.
 544 * This doesn't require walking up to the top of the hierarchy as the
 545 * parent's has_rules[] is guaranteed to be correct.
 546 */
 547static void tg_update_has_rules(struct throtl_grp *tg)
 548{
 549        struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
 550        struct throtl_data *td = tg->td;
 551        int rw;
 552
 553        for (rw = READ; rw <= WRITE; rw++)
 554                tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
 555                        (td->limit_valid[td->limit_index] &&
 556                         (tg_bps_limit(tg, rw) != U64_MAX ||
 557                          tg_iops_limit(tg, rw) != UINT_MAX));
 558}
 559
 560static void throtl_pd_online(struct blkg_policy_data *pd)
 561{
 562        struct throtl_grp *tg = pd_to_tg(pd);
 563        /*
 564         * We don't want new groups to escape the limits of its ancestors.
 565         * Update has_rules[] after a new group is brought online.
 566         */
 567        tg_update_has_rules(tg);
 568}
 569
 570static void blk_throtl_update_limit_valid(struct throtl_data *td)
 571{
 572        struct cgroup_subsys_state *pos_css;
 573        struct blkcg_gq *blkg;
 574        bool low_valid = false;
 575
 576        rcu_read_lock();
 577        blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
 578                struct throtl_grp *tg = blkg_to_tg(blkg);
 579
 580                if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
 581                    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
 582                        low_valid = true;
 583                        break;
 584                }
 585        }
 586        rcu_read_unlock();
 587
 588        td->limit_valid[LIMIT_LOW] = low_valid;
 589}
 590
 591static void throtl_upgrade_state(struct throtl_data *td);
 592static void throtl_pd_offline(struct blkg_policy_data *pd)
 593{
 594        struct throtl_grp *tg = pd_to_tg(pd);
 595
 596        tg->bps[READ][LIMIT_LOW] = 0;
 597        tg->bps[WRITE][LIMIT_LOW] = 0;
 598        tg->iops[READ][LIMIT_LOW] = 0;
 599        tg->iops[WRITE][LIMIT_LOW] = 0;
 600
 601        blk_throtl_update_limit_valid(tg->td);
 602
 603        if (!tg->td->limit_valid[tg->td->limit_index])
 604                throtl_upgrade_state(tg->td);
 605}
 606
 607static void throtl_pd_free(struct blkg_policy_data *pd)
 608{
 609        struct throtl_grp *tg = pd_to_tg(pd);
 610
 611        del_timer_sync(&tg->service_queue.pending_timer);
 612        kfree(tg);
 613}
 614
 615static struct throtl_grp *
 616throtl_rb_first(struct throtl_service_queue *parent_sq)
 617{
 618        struct rb_node *n;
 619        /* Service tree is empty */
 620        if (!parent_sq->nr_pending)
 621                return NULL;
 622
 623        n = rb_first_cached(&parent_sq->pending_tree);
 624        WARN_ON_ONCE(!n);
 625        if (!n)
 626                return NULL;
 627        return rb_entry_tg(n);
 628}
 629
 630static void throtl_rb_erase(struct rb_node *n,
 631                            struct throtl_service_queue *parent_sq)
 632{
 633        rb_erase_cached(n, &parent_sq->pending_tree);
 634        RB_CLEAR_NODE(n);
 635        --parent_sq->nr_pending;
 636}
 637
 638static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
 639{
 640        struct throtl_grp *tg;
 641
 642        tg = throtl_rb_first(parent_sq);
 643        if (!tg)
 644                return;
 645
 646        parent_sq->first_pending_disptime = tg->disptime;
 647}
 648
 649static void tg_service_queue_add(struct throtl_grp *tg)
 650{
 651        struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
 652        struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
 653        struct rb_node *parent = NULL;
 654        struct throtl_grp *__tg;
 655        unsigned long key = tg->disptime;
 656        bool leftmost = true;
 657
 658        while (*node != NULL) {
 659                parent = *node;
 660                __tg = rb_entry_tg(parent);
 661
 662                if (time_before(key, __tg->disptime))
 663                        node = &parent->rb_left;
 664                else {
 665                        node = &parent->rb_right;
 666                        leftmost = false;
 667                }
 668        }
 669
 670        rb_link_node(&tg->rb_node, parent, node);
 671        rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
 672                               leftmost);
 673}
 674
 675static void __throtl_enqueue_tg(struct throtl_grp *tg)
 676{
 677        tg_service_queue_add(tg);
 678        tg->flags |= THROTL_TG_PENDING;
 679        tg->service_queue.parent_sq->nr_pending++;
 680}
 681
 682static void throtl_enqueue_tg(struct throtl_grp *tg)
 683{
 684        if (!(tg->flags & THROTL_TG_PENDING))
 685                __throtl_enqueue_tg(tg);
 686}
 687
 688static void __throtl_dequeue_tg(struct throtl_grp *tg)
 689{
 690        throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
 691        tg->flags &= ~THROTL_TG_PENDING;
 692}
 693
 694static void throtl_dequeue_tg(struct throtl_grp *tg)
 695{
 696        if (tg->flags & THROTL_TG_PENDING)
 697                __throtl_dequeue_tg(tg);
 698}
 699
 700/* Call with queue lock held */
 701static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
 702                                          unsigned long expires)
 703{
 704        unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
 705
 706        /*
 707         * Since we are adjusting the throttle limit dynamically, the sleep
 708         * time calculated according to previous limit might be invalid. It's
 709         * possible the cgroup sleep time is very long and no other cgroups
 710         * have IO running so notify the limit changes. Make sure the cgroup
 711         * doesn't sleep too long to avoid the missed notification.
 712         */
 713        if (time_after(expires, max_expire))
 714                expires = max_expire;
 715        mod_timer(&sq->pending_timer, expires);
 716        throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
 717                   expires - jiffies, jiffies);
 718}
 719
 720/**
 721 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 722 * @sq: the service_queue to schedule dispatch for
 723 * @force: force scheduling
 724 *
 725 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 726 * dispatch time of the first pending child.  Returns %true if either timer
 727 * is armed or there's no pending child left.  %false if the current
 728 * dispatch window is still open and the caller should continue
 729 * dispatching.
 730 *
 731 * If @force is %true, the dispatch timer is always scheduled and this
 732 * function is guaranteed to return %true.  This is to be used when the
 733 * caller can't dispatch itself and needs to invoke pending_timer
 734 * unconditionally.  Note that forced scheduling is likely to induce short
 735 * delay before dispatch starts even if @sq->first_pending_disptime is not
 736 * in the future and thus shouldn't be used in hot paths.
 737 */
 738static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
 739                                          bool force)
 740{
 741        /* any pending children left? */
 742        if (!sq->nr_pending)
 743                return true;
 744
 745        update_min_dispatch_time(sq);
 746
 747        /* is the next dispatch time in the future? */
 748        if (force || time_after(sq->first_pending_disptime, jiffies)) {
 749                throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
 750                return true;
 751        }
 752
 753        /* tell the caller to continue dispatching */
 754        return false;
 755}
 756
 757static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
 758                bool rw, unsigned long start)
 759{
 760        tg->bytes_disp[rw] = 0;
 761        tg->io_disp[rw] = 0;
 762
 763        /*
 764         * Previous slice has expired. We must have trimmed it after last
 765         * bio dispatch. That means since start of last slice, we never used
 766         * that bandwidth. Do try to make use of that bandwidth while giving
 767         * credit.
 768         */
 769        if (time_after_eq(start, tg->slice_start[rw]))
 770                tg->slice_start[rw] = start;
 771
 772        tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
 773        throtl_log(&tg->service_queue,
 774                   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
 775                   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 776                   tg->slice_end[rw], jiffies);
 777}
 778
 779static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
 780{
 781        tg->bytes_disp[rw] = 0;
 782        tg->io_disp[rw] = 0;
 783        tg->slice_start[rw] = jiffies;
 784        tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
 785        throtl_log(&tg->service_queue,
 786                   "[%c] new slice start=%lu end=%lu jiffies=%lu",
 787                   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 788                   tg->slice_end[rw], jiffies);
 789}
 790
 791static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
 792                                        unsigned long jiffy_end)
 793{
 794        tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
 795}
 796
 797static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
 798                                       unsigned long jiffy_end)
 799{
 800        tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
 801        throtl_log(&tg->service_queue,
 802                   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
 803                   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 804                   tg->slice_end[rw], jiffies);
 805}
 806
 807/* Determine if previously allocated or extended slice is complete or not */
 808static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
 809{
 810        if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
 811                return false;
 812
 813        return true;
 814}
 815
 816/* Trim the used slices and adjust slice start accordingly */
 817static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
 818{
 819        unsigned long nr_slices, time_elapsed, io_trim;
 820        u64 bytes_trim, tmp;
 821
 822        BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
 823
 824        /*
 825         * If bps are unlimited (-1), then time slice don't get
 826         * renewed. Don't try to trim the slice if slice is used. A new
 827         * slice will start when appropriate.
 828         */
 829        if (throtl_slice_used(tg, rw))
 830                return;
 831
 832        /*
 833         * A bio has been dispatched. Also adjust slice_end. It might happen
 834         * that initially cgroup limit was very low resulting in high
 835         * slice_end, but later limit was bumped up and bio was dispached
 836         * sooner, then we need to reduce slice_end. A high bogus slice_end
 837         * is bad because it does not allow new slice to start.
 838         */
 839
 840        throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
 841
 842        time_elapsed = jiffies - tg->slice_start[rw];
 843
 844        nr_slices = time_elapsed / tg->td->throtl_slice;
 845
 846        if (!nr_slices)
 847                return;
 848        tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
 849        do_div(tmp, HZ);
 850        bytes_trim = tmp;
 851
 852        io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
 853                HZ;
 854
 855        if (!bytes_trim && !io_trim)
 856                return;
 857
 858        if (tg->bytes_disp[rw] >= bytes_trim)
 859                tg->bytes_disp[rw] -= bytes_trim;
 860        else
 861                tg->bytes_disp[rw] = 0;
 862
 863        if (tg->io_disp[rw] >= io_trim)
 864                tg->io_disp[rw] -= io_trim;
 865        else
 866                tg->io_disp[rw] = 0;
 867
 868        tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
 869
 870        throtl_log(&tg->service_queue,
 871                   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
 872                   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
 873                   tg->slice_start[rw], tg->slice_end[rw], jiffies);
 874}
 875
 876static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
 877                                  unsigned long *wait)
 878{
 879        bool rw = bio_data_dir(bio);
 880        unsigned int io_allowed;
 881        unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 882        u64 tmp;
 883
 884        jiffy_elapsed = jiffies - tg->slice_start[rw];
 885
 886        /* Round up to the next throttle slice, wait time must be nonzero */
 887        jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
 888
 889        /*
 890         * jiffy_elapsed_rnd should not be a big value as minimum iops can be
 891         * 1 then at max jiffy elapsed should be equivalent of 1 second as we
 892         * will allow dispatch after 1 second and after that slice should
 893         * have been trimmed.
 894         */
 895
 896        tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
 897        do_div(tmp, HZ);
 898
 899        if (tmp > UINT_MAX)
 900                io_allowed = UINT_MAX;
 901        else
 902                io_allowed = tmp;
 903
 904        if (tg->io_disp[rw] + 1 <= io_allowed) {
 905                if (wait)
 906                        *wait = 0;
 907                return true;
 908        }
 909
 910        /* Calc approx time to dispatch */
 911        jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
 912
 913        if (wait)
 914                *wait = jiffy_wait;
 915        return false;
 916}
 917
 918static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
 919                                 unsigned long *wait)
 920{
 921        bool rw = bio_data_dir(bio);
 922        u64 bytes_allowed, extra_bytes, tmp;
 923        unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 924        unsigned int bio_size = throtl_bio_data_size(bio);
 925
 926        jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 927
 928        /* Slice has just started. Consider one slice interval */
 929        if (!jiffy_elapsed)
 930                jiffy_elapsed_rnd = tg->td->throtl_slice;
 931
 932        jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
 933
 934        tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
 935        do_div(tmp, HZ);
 936        bytes_allowed = tmp;
 937
 938        if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
 939                if (wait)
 940                        *wait = 0;
 941                return true;
 942        }
 943
 944        /* Calc approx time to dispatch */
 945        extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
 946        jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
 947
 948        if (!jiffy_wait)
 949                jiffy_wait = 1;
 950
 951        /*
 952         * This wait time is without taking into consideration the rounding
 953         * up we did. Add that time also.
 954         */
 955        jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
 956        if (wait)
 957                *wait = jiffy_wait;
 958        return false;
 959}
 960
 961/*
 962 * Returns whether one can dispatch a bio or not. Also returns approx number
 963 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 964 */
 965static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
 966                            unsigned long *wait)
 967{
 968        bool rw = bio_data_dir(bio);
 969        unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
 970
 971        /*
 972         * Currently whole state machine of group depends on first bio
 973         * queued in the group bio list. So one should not be calling
 974         * this function with a different bio if there are other bios
 975         * queued.
 976         */
 977        BUG_ON(tg->service_queue.nr_queued[rw] &&
 978               bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
 979
 980        /* If tg->bps = -1, then BW is unlimited */
 981        if (tg_bps_limit(tg, rw) == U64_MAX &&
 982            tg_iops_limit(tg, rw) == UINT_MAX) {
 983                if (wait)
 984                        *wait = 0;
 985                return true;
 986        }
 987
 988        /*
 989         * If previous slice expired, start a new one otherwise renew/extend
 990         * existing slice to make sure it is at least throtl_slice interval
 991         * long since now. New slice is started only for empty throttle group.
 992         * If there is queued bio, that means there should be an active
 993         * slice and it should be extended instead.
 994         */
 995        if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
 996                throtl_start_new_slice(tg, rw);
 997        else {
 998                if (time_before(tg->slice_end[rw],
 999                    jiffies + tg->td->throtl_slice))
1000                        throtl_extend_slice(tg, rw,
1001                                jiffies + tg->td->throtl_slice);
1002        }
1003
1004        if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
1005            tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1006                if (wait)
1007                        *wait = 0;
1008                return true;
1009        }
1010
1011        max_wait = max(bps_wait, iops_wait);
1012
1013        if (wait)
1014                *wait = max_wait;
1015
1016        if (time_before(tg->slice_end[rw], jiffies + max_wait))
1017                throtl_extend_slice(tg, rw, jiffies + max_wait);
1018
1019        return false;
1020}
1021
1022static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1023{
1024        bool rw = bio_data_dir(bio);
1025        unsigned int bio_size = throtl_bio_data_size(bio);
1026
1027        /* Charge the bio to the group */
1028        tg->bytes_disp[rw] += bio_size;
1029        tg->io_disp[rw]++;
1030        tg->last_bytes_disp[rw] += bio_size;
1031        tg->last_io_disp[rw]++;
1032
1033        /*
1034         * BIO_THROTTLED is used to prevent the same bio to be throttled
1035         * more than once as a throttled bio will go through blk-throtl the
1036         * second time when it eventually gets issued.  Set it when a bio
1037         * is being charged to a tg.
1038         */
1039        if (!bio_flagged(bio, BIO_THROTTLED))
1040                bio_set_flag(bio, BIO_THROTTLED);
1041}
1042
1043/**
1044 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1045 * @bio: bio to add
1046 * @qn: qnode to use
1047 * @tg: the target throtl_grp
1048 *
1049 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1050 * tg->qnode_on_self[] is used.
1051 */
1052static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1053                              struct throtl_grp *tg)
1054{
1055        struct throtl_service_queue *sq = &tg->service_queue;
1056        bool rw = bio_data_dir(bio);
1057
1058        if (!qn)
1059                qn = &tg->qnode_on_self[rw];
1060
1061        /*
1062         * If @tg doesn't currently have any bios queued in the same
1063         * direction, queueing @bio can change when @tg should be
1064         * dispatched.  Mark that @tg was empty.  This is automatically
1065         * cleaered on the next tg_update_disptime().
1066         */
1067        if (!sq->nr_queued[rw])
1068                tg->flags |= THROTL_TG_WAS_EMPTY;
1069
1070        throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1071
1072        sq->nr_queued[rw]++;
1073        throtl_enqueue_tg(tg);
1074}
1075
1076static void tg_update_disptime(struct throtl_grp *tg)
1077{
1078        struct throtl_service_queue *sq = &tg->service_queue;
1079        unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1080        struct bio *bio;
1081
1082        bio = throtl_peek_queued(&sq->queued[READ]);
1083        if (bio)
1084                tg_may_dispatch(tg, bio, &read_wait);
1085
1086        bio = throtl_peek_queued(&sq->queued[WRITE]);
1087        if (bio)
1088                tg_may_dispatch(tg, bio, &write_wait);
1089
1090        min_wait = min(read_wait, write_wait);
1091        disptime = jiffies + min_wait;
1092
1093        /* Update dispatch time */
1094        throtl_dequeue_tg(tg);
1095        tg->disptime = disptime;
1096        throtl_enqueue_tg(tg);
1097
1098        /* see throtl_add_bio_tg() */
1099        tg->flags &= ~THROTL_TG_WAS_EMPTY;
1100}
1101
1102static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1103                                        struct throtl_grp *parent_tg, bool rw)
1104{
1105        if (throtl_slice_used(parent_tg, rw)) {
1106                throtl_start_new_slice_with_credit(parent_tg, rw,
1107                                child_tg->slice_start[rw]);
1108        }
1109
1110}
1111
1112static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1113{
1114        struct throtl_service_queue *sq = &tg->service_queue;
1115        struct throtl_service_queue *parent_sq = sq->parent_sq;
1116        struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1117        struct throtl_grp *tg_to_put = NULL;
1118        struct bio *bio;
1119
1120        /*
1121         * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1122         * from @tg may put its reference and @parent_sq might end up
1123         * getting released prematurely.  Remember the tg to put and put it
1124         * after @bio is transferred to @parent_sq.
1125         */
1126        bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1127        sq->nr_queued[rw]--;
1128
1129        throtl_charge_bio(tg, bio);
1130
1131        /*
1132         * If our parent is another tg, we just need to transfer @bio to
1133         * the parent using throtl_add_bio_tg().  If our parent is
1134         * @td->service_queue, @bio is ready to be issued.  Put it on its
1135         * bio_lists[] and decrease total number queued.  The caller is
1136         * responsible for issuing these bios.
1137         */
1138        if (parent_tg) {
1139                throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1140                start_parent_slice_with_credit(tg, parent_tg, rw);
1141        } else {
1142                throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1143                                     &parent_sq->queued[rw]);
1144                BUG_ON(tg->td->nr_queued[rw] <= 0);
1145                tg->td->nr_queued[rw]--;
1146        }
1147
1148        throtl_trim_slice(tg, rw);
1149
1150        if (tg_to_put)
1151                blkg_put(tg_to_blkg(tg_to_put));
1152}
1153
1154static int throtl_dispatch_tg(struct throtl_grp *tg)
1155{
1156        struct throtl_service_queue *sq = &tg->service_queue;
1157        unsigned int nr_reads = 0, nr_writes = 0;
1158        unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1159        unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1160        struct bio *bio;
1161
1162        /* Try to dispatch 75% READS and 25% WRITES */
1163
1164        while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1165               tg_may_dispatch(tg, bio, NULL)) {
1166
1167                tg_dispatch_one_bio(tg, bio_data_dir(bio));
1168                nr_reads++;
1169
1170                if (nr_reads >= max_nr_reads)
1171                        break;
1172        }
1173
1174        while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1175               tg_may_dispatch(tg, bio, NULL)) {
1176
1177                tg_dispatch_one_bio(tg, bio_data_dir(bio));
1178                nr_writes++;
1179
1180                if (nr_writes >= max_nr_writes)
1181                        break;
1182        }
1183
1184        return nr_reads + nr_writes;
1185}
1186
1187static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1188{
1189        unsigned int nr_disp = 0;
1190
1191        while (1) {
1192                struct throtl_grp *tg = throtl_rb_first(parent_sq);
1193                struct throtl_service_queue *sq;
1194
1195                if (!tg)
1196                        break;
1197
1198                if (time_before(jiffies, tg->disptime))
1199                        break;
1200
1201                throtl_dequeue_tg(tg);
1202
1203                nr_disp += throtl_dispatch_tg(tg);
1204
1205                sq = &tg->service_queue;
1206                if (sq->nr_queued[0] || sq->nr_queued[1])
1207                        tg_update_disptime(tg);
1208
1209                if (nr_disp >= throtl_quantum)
1210                        break;
1211        }
1212
1213        return nr_disp;
1214}
1215
1216static bool throtl_can_upgrade(struct throtl_data *td,
1217        struct throtl_grp *this_tg);
1218/**
1219 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1220 * @t: the pending_timer member of the throtl_service_queue being serviced
1221 *
1222 * This timer is armed when a child throtl_grp with active bio's become
1223 * pending and queued on the service_queue's pending_tree and expires when
1224 * the first child throtl_grp should be dispatched.  This function
1225 * dispatches bio's from the children throtl_grps to the parent
1226 * service_queue.
1227 *
1228 * If the parent's parent is another throtl_grp, dispatching is propagated
1229 * by either arming its pending_timer or repeating dispatch directly.  If
1230 * the top-level service_tree is reached, throtl_data->dispatch_work is
1231 * kicked so that the ready bio's are issued.
1232 */
1233static void throtl_pending_timer_fn(struct timer_list *t)
1234{
1235        struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1236        struct throtl_grp *tg = sq_to_tg(sq);
1237        struct throtl_data *td = sq_to_td(sq);
1238        struct request_queue *q = td->queue;
1239        struct throtl_service_queue *parent_sq;
1240        bool dispatched;
1241        int ret;
1242
1243        spin_lock_irq(&q->queue_lock);
1244        if (throtl_can_upgrade(td, NULL))
1245                throtl_upgrade_state(td);
1246
1247again:
1248        parent_sq = sq->parent_sq;
1249        dispatched = false;
1250
1251        while (true) {
1252                throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1253                           sq->nr_queued[READ] + sq->nr_queued[WRITE],
1254                           sq->nr_queued[READ], sq->nr_queued[WRITE]);
1255
1256                ret = throtl_select_dispatch(sq);
1257                if (ret) {
1258                        throtl_log(sq, "bios disp=%u", ret);
1259                        dispatched = true;
1260                }
1261
1262                if (throtl_schedule_next_dispatch(sq, false))
1263                        break;
1264
1265                /* this dispatch windows is still open, relax and repeat */
1266                spin_unlock_irq(&q->queue_lock);
1267                cpu_relax();
1268                spin_lock_irq(&q->queue_lock);
1269        }
1270
1271        if (!dispatched)
1272                goto out_unlock;
1273
1274        if (parent_sq) {
1275                /* @parent_sq is another throl_grp, propagate dispatch */
1276                if (tg->flags & THROTL_TG_WAS_EMPTY) {
1277                        tg_update_disptime(tg);
1278                        if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1279                                /* window is already open, repeat dispatching */
1280                                sq = parent_sq;
1281                                tg = sq_to_tg(sq);
1282                                goto again;
1283                        }
1284                }
1285        } else {
1286                /* reached the top-level, queue issueing */
1287                queue_work(kthrotld_workqueue, &td->dispatch_work);
1288        }
1289out_unlock:
1290        spin_unlock_irq(&q->queue_lock);
1291}
1292
1293/**
1294 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1295 * @work: work item being executed
1296 *
1297 * This function is queued for execution when bio's reach the bio_lists[]
1298 * of throtl_data->service_queue.  Those bio's are ready and issued by this
1299 * function.
1300 */
1301static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1302{
1303        struct throtl_data *td = container_of(work, struct throtl_data,
1304                                              dispatch_work);
1305        struct throtl_service_queue *td_sq = &td->service_queue;
1306        struct request_queue *q = td->queue;
1307        struct bio_list bio_list_on_stack;
1308        struct bio *bio;
1309        struct blk_plug plug;
1310        int rw;
1311
1312        bio_list_init(&bio_list_on_stack);
1313
1314        spin_lock_irq(&q->queue_lock);
1315        for (rw = READ; rw <= WRITE; rw++)
1316                while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1317                        bio_list_add(&bio_list_on_stack, bio);
1318        spin_unlock_irq(&q->queue_lock);
1319
1320        if (!bio_list_empty(&bio_list_on_stack)) {
1321                blk_start_plug(&plug);
1322                while((bio = bio_list_pop(&bio_list_on_stack)))
1323                        generic_make_request(bio);
1324                blk_finish_plug(&plug);
1325        }
1326}
1327
1328static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1329                              int off)
1330{
1331        struct throtl_grp *tg = pd_to_tg(pd);
1332        u64 v = *(u64 *)((void *)tg + off);
1333
1334        if (v == U64_MAX)
1335                return 0;
1336        return __blkg_prfill_u64(sf, pd, v);
1337}
1338
1339static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1340                               int off)
1341{
1342        struct throtl_grp *tg = pd_to_tg(pd);
1343        unsigned int v = *(unsigned int *)((void *)tg + off);
1344
1345        if (v == UINT_MAX)
1346                return 0;
1347        return __blkg_prfill_u64(sf, pd, v);
1348}
1349
1350static int tg_print_conf_u64(struct seq_file *sf, void *v)
1351{
1352        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1353                          &blkcg_policy_throtl, seq_cft(sf)->private, false);
1354        return 0;
1355}
1356
1357static int tg_print_conf_uint(struct seq_file *sf, void *v)
1358{
1359        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1360                          &blkcg_policy_throtl, seq_cft(sf)->private, false);
1361        return 0;
1362}
1363
1364static void tg_conf_updated(struct throtl_grp *tg, bool global)
1365{
1366        struct throtl_service_queue *sq = &tg->service_queue;
1367        struct cgroup_subsys_state *pos_css;
1368        struct blkcg_gq *blkg;
1369
1370        throtl_log(&tg->service_queue,
1371                   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1372                   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1373                   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1374
1375        /*
1376         * Update has_rules[] flags for the updated tg's subtree.  A tg is
1377         * considered to have rules if either the tg itself or any of its
1378         * ancestors has rules.  This identifies groups without any
1379         * restrictions in the whole hierarchy and allows them to bypass
1380         * blk-throttle.
1381         */
1382        blkg_for_each_descendant_pre(blkg, pos_css,
1383                        global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1384                struct throtl_grp *this_tg = blkg_to_tg(blkg);
1385                struct throtl_grp *parent_tg;
1386
1387                tg_update_has_rules(this_tg);
1388                /* ignore root/second level */
1389                if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1390                    !blkg->parent->parent)
1391                        continue;
1392                parent_tg = blkg_to_tg(blkg->parent);
1393                /*
1394                 * make sure all children has lower idle time threshold and
1395                 * higher latency target
1396                 */
1397                this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1398                                parent_tg->idletime_threshold);
1399                this_tg->latency_target = max(this_tg->latency_target,
1400                                parent_tg->latency_target);
1401        }
1402
1403        /*
1404         * We're already holding queue_lock and know @tg is valid.  Let's
1405         * apply the new config directly.
1406         *
1407         * Restart the slices for both READ and WRITES. It might happen
1408         * that a group's limit are dropped suddenly and we don't want to
1409         * account recently dispatched IO with new low rate.
1410         */
1411        throtl_start_new_slice(tg, 0);
1412        throtl_start_new_slice(tg, 1);
1413
1414        if (tg->flags & THROTL_TG_PENDING) {
1415                tg_update_disptime(tg);
1416                throtl_schedule_next_dispatch(sq->parent_sq, true);
1417        }
1418}
1419
1420static ssize_t tg_set_conf(struct kernfs_open_file *of,
1421                           char *buf, size_t nbytes, loff_t off, bool is_u64)
1422{
1423        struct blkcg *blkcg = css_to_blkcg(of_css(of));
1424        struct blkg_conf_ctx ctx;
1425        struct throtl_grp *tg;
1426        int ret;
1427        u64 v;
1428
1429        ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1430        if (ret)
1431                return ret;
1432
1433        ret = -EINVAL;
1434        if (sscanf(ctx.body, "%llu", &v) != 1)
1435                goto out_finish;
1436        if (!v)
1437                v = U64_MAX;
1438
1439        tg = blkg_to_tg(ctx.blkg);
1440
1441        if (is_u64)
1442                *(u64 *)((void *)tg + of_cft(of)->private) = v;
1443        else
1444                *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1445
1446        tg_conf_updated(tg, false);
1447        ret = 0;
1448out_finish:
1449        blkg_conf_finish(&ctx);
1450        return ret ?: nbytes;
1451}
1452
1453static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1454                               char *buf, size_t nbytes, loff_t off)
1455{
1456        return tg_set_conf(of, buf, nbytes, off, true);
1457}
1458
1459static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1460                                char *buf, size_t nbytes, loff_t off)
1461{
1462        return tg_set_conf(of, buf, nbytes, off, false);
1463}
1464
1465static struct cftype throtl_legacy_files[] = {
1466        {
1467                .name = "throttle.read_bps_device",
1468                .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1469                .seq_show = tg_print_conf_u64,
1470                .write = tg_set_conf_u64,
1471        },
1472        {
1473                .name = "throttle.write_bps_device",
1474                .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1475                .seq_show = tg_print_conf_u64,
1476                .write = tg_set_conf_u64,
1477        },
1478        {
1479                .name = "throttle.read_iops_device",
1480                .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1481                .seq_show = tg_print_conf_uint,
1482                .write = tg_set_conf_uint,
1483        },
1484        {
1485                .name = "throttle.write_iops_device",
1486                .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1487                .seq_show = tg_print_conf_uint,
1488                .write = tg_set_conf_uint,
1489        },
1490        {
1491                .name = "throttle.io_service_bytes",
1492                .private = (unsigned long)&blkcg_policy_throtl,
1493                .seq_show = blkg_print_stat_bytes,
1494        },
1495        {
1496                .name = "throttle.io_service_bytes_recursive",
1497                .private = (unsigned long)&blkcg_policy_throtl,
1498                .seq_show = blkg_print_stat_bytes_recursive,
1499        },
1500        {
1501                .name = "throttle.io_serviced",
1502                .private = (unsigned long)&blkcg_policy_throtl,
1503                .seq_show = blkg_print_stat_ios,
1504        },
1505        {
1506                .name = "throttle.io_serviced_recursive",
1507                .private = (unsigned long)&blkcg_policy_throtl,
1508                .seq_show = blkg_print_stat_ios_recursive,
1509        },
1510        { }     /* terminate */
1511};
1512
1513static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1514                         int off)
1515{
1516        struct throtl_grp *tg = pd_to_tg(pd);
1517        const char *dname = blkg_dev_name(pd->blkg);
1518        char bufs[4][21] = { "max", "max", "max", "max" };
1519        u64 bps_dft;
1520        unsigned int iops_dft;
1521        char idle_time[26] = "";
1522        char latency_time[26] = "";
1523
1524        if (!dname)
1525                return 0;
1526
1527        if (off == LIMIT_LOW) {
1528                bps_dft = 0;
1529                iops_dft = 0;
1530        } else {
1531                bps_dft = U64_MAX;
1532                iops_dft = UINT_MAX;
1533        }
1534
1535        if (tg->bps_conf[READ][off] == bps_dft &&
1536            tg->bps_conf[WRITE][off] == bps_dft &&
1537            tg->iops_conf[READ][off] == iops_dft &&
1538            tg->iops_conf[WRITE][off] == iops_dft &&
1539            (off != LIMIT_LOW ||
1540             (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1541              tg->latency_target_conf == DFL_LATENCY_TARGET)))
1542                return 0;
1543
1544        if (tg->bps_conf[READ][off] != U64_MAX)
1545                snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1546                        tg->bps_conf[READ][off]);
1547        if (tg->bps_conf[WRITE][off] != U64_MAX)
1548                snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1549                        tg->bps_conf[WRITE][off]);
1550        if (tg->iops_conf[READ][off] != UINT_MAX)
1551                snprintf(bufs[2], sizeof(bufs[2]), "%u",
1552                        tg->iops_conf[READ][off]);
1553        if (tg->iops_conf[WRITE][off] != UINT_MAX)
1554                snprintf(bufs[3], sizeof(bufs[3]), "%u",
1555                        tg->iops_conf[WRITE][off]);
1556        if (off == LIMIT_LOW) {
1557                if (tg->idletime_threshold_conf == ULONG_MAX)
1558                        strcpy(idle_time, " idle=max");
1559                else
1560                        snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1561                                tg->idletime_threshold_conf);
1562
1563                if (tg->latency_target_conf == ULONG_MAX)
1564                        strcpy(latency_time, " latency=max");
1565                else
1566                        snprintf(latency_time, sizeof(latency_time),
1567                                " latency=%lu", tg->latency_target_conf);
1568        }
1569
1570        seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1571                   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1572                   latency_time);
1573        return 0;
1574}
1575
1576static int tg_print_limit(struct seq_file *sf, void *v)
1577{
1578        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1579                          &blkcg_policy_throtl, seq_cft(sf)->private, false);
1580        return 0;
1581}
1582
1583static ssize_t tg_set_limit(struct kernfs_open_file *of,
1584                          char *buf, size_t nbytes, loff_t off)
1585{
1586        struct blkcg *blkcg = css_to_blkcg(of_css(of));
1587        struct blkg_conf_ctx ctx;
1588        struct throtl_grp *tg;
1589        u64 v[4];
1590        unsigned long idle_time;
1591        unsigned long latency_time;
1592        int ret;
1593        int index = of_cft(of)->private;
1594
1595        ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1596        if (ret)
1597                return ret;
1598
1599        tg = blkg_to_tg(ctx.blkg);
1600
1601        v[0] = tg->bps_conf[READ][index];
1602        v[1] = tg->bps_conf[WRITE][index];
1603        v[2] = tg->iops_conf[READ][index];
1604        v[3] = tg->iops_conf[WRITE][index];
1605
1606        idle_time = tg->idletime_threshold_conf;
1607        latency_time = tg->latency_target_conf;
1608        while (true) {
1609                char tok[27];   /* wiops=18446744073709551616 */
1610                char *p;
1611                u64 val = U64_MAX;
1612                int len;
1613
1614                if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1615                        break;
1616                if (tok[0] == '\0')
1617                        break;
1618                ctx.body += len;
1619
1620                ret = -EINVAL;
1621                p = tok;
1622                strsep(&p, "=");
1623                if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1624                        goto out_finish;
1625
1626                ret = -ERANGE;
1627                if (!val)
1628                        goto out_finish;
1629
1630                ret = -EINVAL;
1631                if (!strcmp(tok, "rbps"))
1632                        v[0] = val;
1633                else if (!strcmp(tok, "wbps"))
1634                        v[1] = val;
1635                else if (!strcmp(tok, "riops"))
1636                        v[2] = min_t(u64, val, UINT_MAX);
1637                else if (!strcmp(tok, "wiops"))
1638                        v[3] = min_t(u64, val, UINT_MAX);
1639                else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1640                        idle_time = val;
1641                else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1642                        latency_time = val;
1643                else
1644                        goto out_finish;
1645        }
1646
1647        tg->bps_conf[READ][index] = v[0];
1648        tg->bps_conf[WRITE][index] = v[1];
1649        tg->iops_conf[READ][index] = v[2];
1650        tg->iops_conf[WRITE][index] = v[3];
1651
1652        if (index == LIMIT_MAX) {
1653                tg->bps[READ][index] = v[0];
1654                tg->bps[WRITE][index] = v[1];
1655                tg->iops[READ][index] = v[2];
1656                tg->iops[WRITE][index] = v[3];
1657        }
1658        tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1659                tg->bps_conf[READ][LIMIT_MAX]);
1660        tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1661                tg->bps_conf[WRITE][LIMIT_MAX]);
1662        tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1663                tg->iops_conf[READ][LIMIT_MAX]);
1664        tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1665                tg->iops_conf[WRITE][LIMIT_MAX]);
1666        tg->idletime_threshold_conf = idle_time;
1667        tg->latency_target_conf = latency_time;
1668
1669        /* force user to configure all settings for low limit  */
1670        if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1671              tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1672            tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1673            tg->latency_target_conf == DFL_LATENCY_TARGET) {
1674                tg->bps[READ][LIMIT_LOW] = 0;
1675                tg->bps[WRITE][LIMIT_LOW] = 0;
1676                tg->iops[READ][LIMIT_LOW] = 0;
1677                tg->iops[WRITE][LIMIT_LOW] = 0;
1678                tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1679                tg->latency_target = DFL_LATENCY_TARGET;
1680        } else if (index == LIMIT_LOW) {
1681                tg->idletime_threshold = tg->idletime_threshold_conf;
1682                tg->latency_target = tg->latency_target_conf;
1683        }
1684
1685        blk_throtl_update_limit_valid(tg->td);
1686        if (tg->td->limit_valid[LIMIT_LOW]) {
1687                if (index == LIMIT_LOW)
1688                        tg->td->limit_index = LIMIT_LOW;
1689        } else
1690                tg->td->limit_index = LIMIT_MAX;
1691        tg_conf_updated(tg, index == LIMIT_LOW &&
1692                tg->td->limit_valid[LIMIT_LOW]);
1693        ret = 0;
1694out_finish:
1695        blkg_conf_finish(&ctx);
1696        return ret ?: nbytes;
1697}
1698
1699static struct cftype throtl_files[] = {
1700#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1701        {
1702                .name = "low",
1703                .flags = CFTYPE_NOT_ON_ROOT,
1704                .seq_show = tg_print_limit,
1705                .write = tg_set_limit,
1706                .private = LIMIT_LOW,
1707        },
1708#endif
1709        {
1710                .name = "max",
1711                .flags = CFTYPE_NOT_ON_ROOT,
1712                .seq_show = tg_print_limit,
1713                .write = tg_set_limit,
1714                .private = LIMIT_MAX,
1715        },
1716        { }     /* terminate */
1717};
1718
1719static void throtl_shutdown_wq(struct request_queue *q)
1720{
1721        struct throtl_data *td = q->td;
1722
1723        cancel_work_sync(&td->dispatch_work);
1724}
1725
1726static struct blkcg_policy blkcg_policy_throtl = {
1727        .dfl_cftypes            = throtl_files,
1728        .legacy_cftypes         = throtl_legacy_files,
1729
1730        .pd_alloc_fn            = throtl_pd_alloc,
1731        .pd_init_fn             = throtl_pd_init,
1732        .pd_online_fn           = throtl_pd_online,
1733        .pd_offline_fn          = throtl_pd_offline,
1734        .pd_free_fn             = throtl_pd_free,
1735};
1736
1737static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1738{
1739        unsigned long rtime = jiffies, wtime = jiffies;
1740
1741        if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1742                rtime = tg->last_low_overflow_time[READ];
1743        if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1744                wtime = tg->last_low_overflow_time[WRITE];
1745        return min(rtime, wtime);
1746}
1747
1748/* tg should not be an intermediate node */
1749static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1750{
1751        struct throtl_service_queue *parent_sq;
1752        struct throtl_grp *parent = tg;
1753        unsigned long ret = __tg_last_low_overflow_time(tg);
1754
1755        while (true) {
1756                parent_sq = parent->service_queue.parent_sq;
1757                parent = sq_to_tg(parent_sq);
1758                if (!parent)
1759                        break;
1760
1761                /*
1762                 * The parent doesn't have low limit, it always reaches low
1763                 * limit. Its overflow time is useless for children
1764                 */
1765                if (!parent->bps[READ][LIMIT_LOW] &&
1766                    !parent->iops[READ][LIMIT_LOW] &&
1767                    !parent->bps[WRITE][LIMIT_LOW] &&
1768                    !parent->iops[WRITE][LIMIT_LOW])
1769                        continue;
1770                if (time_after(__tg_last_low_overflow_time(parent), ret))
1771                        ret = __tg_last_low_overflow_time(parent);
1772        }
1773        return ret;
1774}
1775
1776static bool throtl_tg_is_idle(struct throtl_grp *tg)
1777{
1778        /*
1779         * cgroup is idle if:
1780         * - single idle is too long, longer than a fixed value (in case user
1781         *   configure a too big threshold) or 4 times of idletime threshold
1782         * - average think time is more than threshold
1783         * - IO latency is largely below threshold
1784         */
1785        unsigned long time;
1786        bool ret;
1787
1788        time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1789        ret = tg->latency_target == DFL_LATENCY_TARGET ||
1790              tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1791              (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1792              tg->avg_idletime > tg->idletime_threshold ||
1793              (tg->latency_target && tg->bio_cnt &&
1794                tg->bad_bio_cnt * 5 < tg->bio_cnt);
1795        throtl_log(&tg->service_queue,
1796                "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1797                tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1798                tg->bio_cnt, ret, tg->td->scale);
1799        return ret;
1800}
1801
1802static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1803{
1804        struct throtl_service_queue *sq = &tg->service_queue;
1805        bool read_limit, write_limit;
1806
1807        /*
1808         * if cgroup reaches low limit (if low limit is 0, the cgroup always
1809         * reaches), it's ok to upgrade to next limit
1810         */
1811        read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1812        write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1813        if (!read_limit && !write_limit)
1814                return true;
1815        if (read_limit && sq->nr_queued[READ] &&
1816            (!write_limit || sq->nr_queued[WRITE]))
1817                return true;
1818        if (write_limit && sq->nr_queued[WRITE] &&
1819            (!read_limit || sq->nr_queued[READ]))
1820                return true;
1821
1822        if (time_after_eq(jiffies,
1823                tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1824            throtl_tg_is_idle(tg))
1825                return true;
1826        return false;
1827}
1828
1829static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1830{
1831        while (true) {
1832                if (throtl_tg_can_upgrade(tg))
1833                        return true;
1834                tg = sq_to_tg(tg->service_queue.parent_sq);
1835                if (!tg || !tg_to_blkg(tg)->parent)
1836                        return false;
1837        }
1838        return false;
1839}
1840
1841static bool throtl_can_upgrade(struct throtl_data *td,
1842        struct throtl_grp *this_tg)
1843{
1844        struct cgroup_subsys_state *pos_css;
1845        struct blkcg_gq *blkg;
1846
1847        if (td->limit_index != LIMIT_LOW)
1848                return false;
1849
1850        if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1851                return false;
1852
1853        rcu_read_lock();
1854        blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1855                struct throtl_grp *tg = blkg_to_tg(blkg);
1856
1857                if (tg == this_tg)
1858                        continue;
1859                if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1860                        continue;
1861                if (!throtl_hierarchy_can_upgrade(tg)) {
1862                        rcu_read_unlock();
1863                        return false;
1864                }
1865        }
1866        rcu_read_unlock();
1867        return true;
1868}
1869
1870static void throtl_upgrade_check(struct throtl_grp *tg)
1871{
1872        unsigned long now = jiffies;
1873
1874        if (tg->td->limit_index != LIMIT_LOW)
1875                return;
1876
1877        if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1878                return;
1879
1880        tg->last_check_time = now;
1881
1882        if (!time_after_eq(now,
1883             __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1884                return;
1885
1886        if (throtl_can_upgrade(tg->td, NULL))
1887                throtl_upgrade_state(tg->td);
1888}
1889
1890static void throtl_upgrade_state(struct throtl_data *td)
1891{
1892        struct cgroup_subsys_state *pos_css;
1893        struct blkcg_gq *blkg;
1894
1895        throtl_log(&td->service_queue, "upgrade to max");
1896        td->limit_index = LIMIT_MAX;
1897        td->low_upgrade_time = jiffies;
1898        td->scale = 0;
1899        rcu_read_lock();
1900        blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1901                struct throtl_grp *tg = blkg_to_tg(blkg);
1902                struct throtl_service_queue *sq = &tg->service_queue;
1903
1904                tg->disptime = jiffies - 1;
1905                throtl_select_dispatch(sq);
1906                throtl_schedule_next_dispatch(sq, true);
1907        }
1908        rcu_read_unlock();
1909        throtl_select_dispatch(&td->service_queue);
1910        throtl_schedule_next_dispatch(&td->service_queue, true);
1911        queue_work(kthrotld_workqueue, &td->dispatch_work);
1912}
1913
1914static void throtl_downgrade_state(struct throtl_data *td, int new)
1915{
1916        td->scale /= 2;
1917
1918        throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1919        if (td->scale) {
1920                td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1921                return;
1922        }
1923
1924        td->limit_index = new;
1925        td->low_downgrade_time = jiffies;
1926}
1927
1928static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1929{
1930        struct throtl_data *td = tg->td;
1931        unsigned long now = jiffies;
1932
1933        /*
1934         * If cgroup is below low limit, consider downgrade and throttle other
1935         * cgroups
1936         */
1937        if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1938            time_after_eq(now, tg_last_low_overflow_time(tg) +
1939                                        td->throtl_slice) &&
1940            (!throtl_tg_is_idle(tg) ||
1941             !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1942                return true;
1943        return false;
1944}
1945
1946static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1947{
1948        while (true) {
1949                if (!throtl_tg_can_downgrade(tg))
1950                        return false;
1951                tg = sq_to_tg(tg->service_queue.parent_sq);
1952                if (!tg || !tg_to_blkg(tg)->parent)
1953                        break;
1954        }
1955        return true;
1956}
1957
1958static void throtl_downgrade_check(struct throtl_grp *tg)
1959{
1960        uint64_t bps;
1961        unsigned int iops;
1962        unsigned long elapsed_time;
1963        unsigned long now = jiffies;
1964
1965        if (tg->td->limit_index != LIMIT_MAX ||
1966            !tg->td->limit_valid[LIMIT_LOW])
1967                return;
1968        if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1969                return;
1970        if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1971                return;
1972
1973        elapsed_time = now - tg->last_check_time;
1974        tg->last_check_time = now;
1975
1976        if (time_before(now, tg_last_low_overflow_time(tg) +
1977                        tg->td->throtl_slice))
1978                return;
1979
1980        if (tg->bps[READ][LIMIT_LOW]) {
1981                bps = tg->last_bytes_disp[READ] * HZ;
1982                do_div(bps, elapsed_time);
1983                if (bps >= tg->bps[READ][LIMIT_LOW])
1984                        tg->last_low_overflow_time[READ] = now;
1985        }
1986
1987        if (tg->bps[WRITE][LIMIT_LOW]) {
1988                bps = tg->last_bytes_disp[WRITE] * HZ;
1989                do_div(bps, elapsed_time);
1990                if (bps >= tg->bps[WRITE][LIMIT_LOW])
1991                        tg->last_low_overflow_time[WRITE] = now;
1992        }
1993
1994        if (tg->iops[READ][LIMIT_LOW]) {
1995                iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1996                if (iops >= tg->iops[READ][LIMIT_LOW])
1997                        tg->last_low_overflow_time[READ] = now;
1998        }
1999
2000        if (tg->iops[WRITE][LIMIT_LOW]) {
2001                iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2002                if (iops >= tg->iops[WRITE][LIMIT_LOW])
2003                        tg->last_low_overflow_time[WRITE] = now;
2004        }
2005
2006        /*
2007         * If cgroup is below low limit, consider downgrade and throttle other
2008         * cgroups
2009         */
2010        if (throtl_hierarchy_can_downgrade(tg))
2011                throtl_downgrade_state(tg->td, LIMIT_LOW);
2012
2013        tg->last_bytes_disp[READ] = 0;
2014        tg->last_bytes_disp[WRITE] = 0;
2015        tg->last_io_disp[READ] = 0;
2016        tg->last_io_disp[WRITE] = 0;
2017}
2018
2019static void blk_throtl_update_idletime(struct throtl_grp *tg)
2020{
2021        unsigned long now = ktime_get_ns() >> 10;
2022        unsigned long last_finish_time = tg->last_finish_time;
2023
2024        if (now <= last_finish_time || last_finish_time == 0 ||
2025            last_finish_time == tg->checked_last_finish_time)
2026                return;
2027
2028        tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2029        tg->checked_last_finish_time = last_finish_time;
2030}
2031
2032#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2033static void throtl_update_latency_buckets(struct throtl_data *td)
2034{
2035        struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2036        int i, cpu, rw;
2037        unsigned long last_latency[2] = { 0 };
2038        unsigned long latency[2];
2039
2040        if (!blk_queue_nonrot(td->queue))
2041                return;
2042        if (time_before(jiffies, td->last_calculate_time + HZ))
2043                return;
2044        td->last_calculate_time = jiffies;
2045
2046        memset(avg_latency, 0, sizeof(avg_latency));
2047        for (rw = READ; rw <= WRITE; rw++) {
2048                for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2049                        struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2050
2051                        for_each_possible_cpu(cpu) {
2052                                struct latency_bucket *bucket;
2053
2054                                /* this isn't race free, but ok in practice */
2055                                bucket = per_cpu_ptr(td->latency_buckets[rw],
2056                                        cpu);
2057                                tmp->total_latency += bucket[i].total_latency;
2058                                tmp->samples += bucket[i].samples;
2059                                bucket[i].total_latency = 0;
2060                                bucket[i].samples = 0;
2061                        }
2062
2063                        if (tmp->samples >= 32) {
2064                                int samples = tmp->samples;
2065
2066                                latency[rw] = tmp->total_latency;
2067
2068                                tmp->total_latency = 0;
2069                                tmp->samples = 0;
2070                                latency[rw] /= samples;
2071                                if (latency[rw] == 0)
2072                                        continue;
2073                                avg_latency[rw][i].latency = latency[rw];
2074                        }
2075                }
2076        }
2077
2078        for (rw = READ; rw <= WRITE; rw++) {
2079                for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2080                        if (!avg_latency[rw][i].latency) {
2081                                if (td->avg_buckets[rw][i].latency < last_latency[rw])
2082                                        td->avg_buckets[rw][i].latency =
2083                                                last_latency[rw];
2084                                continue;
2085                        }
2086
2087                        if (!td->avg_buckets[rw][i].valid)
2088                                latency[rw] = avg_latency[rw][i].latency;
2089                        else
2090                                latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2091                                        avg_latency[rw][i].latency) >> 3;
2092
2093                        td->avg_buckets[rw][i].latency = max(latency[rw],
2094                                last_latency[rw]);
2095                        td->avg_buckets[rw][i].valid = true;
2096                        last_latency[rw] = td->avg_buckets[rw][i].latency;
2097                }
2098        }
2099
2100        for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2101                throtl_log(&td->service_queue,
2102                        "Latency bucket %d: read latency=%ld, read valid=%d, "
2103                        "write latency=%ld, write valid=%d", i,
2104                        td->avg_buckets[READ][i].latency,
2105                        td->avg_buckets[READ][i].valid,
2106                        td->avg_buckets[WRITE][i].latency,
2107                        td->avg_buckets[WRITE][i].valid);
2108}
2109#else
2110static inline void throtl_update_latency_buckets(struct throtl_data *td)
2111{
2112}
2113#endif
2114
2115bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2116                    struct bio *bio)
2117{
2118        struct throtl_qnode *qn = NULL;
2119        struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2120        struct throtl_service_queue *sq;
2121        bool rw = bio_data_dir(bio);
2122        bool throttled = false;
2123        struct throtl_data *td = tg->td;
2124
2125        WARN_ON_ONCE(!rcu_read_lock_held());
2126
2127        /* see throtl_charge_bio() */
2128        if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2129                goto out;
2130
2131        spin_lock_irq(&q->queue_lock);
2132
2133        throtl_update_latency_buckets(td);
2134
2135        blk_throtl_update_idletime(tg);
2136
2137        sq = &tg->service_queue;
2138
2139again:
2140        while (true) {
2141                if (tg->last_low_overflow_time[rw] == 0)
2142                        tg->last_low_overflow_time[rw] = jiffies;
2143                throtl_downgrade_check(tg);
2144                throtl_upgrade_check(tg);
2145                /* throtl is FIFO - if bios are already queued, should queue */
2146                if (sq->nr_queued[rw])
2147                        break;
2148
2149                /* if above limits, break to queue */
2150                if (!tg_may_dispatch(tg, bio, NULL)) {
2151                        tg->last_low_overflow_time[rw] = jiffies;
2152                        if (throtl_can_upgrade(td, tg)) {
2153                                throtl_upgrade_state(td);
2154                                goto again;
2155                        }
2156                        break;
2157                }
2158
2159                /* within limits, let's charge and dispatch directly */
2160                throtl_charge_bio(tg, bio);
2161
2162                /*
2163                 * We need to trim slice even when bios are not being queued
2164                 * otherwise it might happen that a bio is not queued for
2165                 * a long time and slice keeps on extending and trim is not
2166                 * called for a long time. Now if limits are reduced suddenly
2167                 * we take into account all the IO dispatched so far at new
2168                 * low rate and * newly queued IO gets a really long dispatch
2169                 * time.
2170                 *
2171                 * So keep on trimming slice even if bio is not queued.
2172                 */
2173                throtl_trim_slice(tg, rw);
2174
2175                /*
2176                 * @bio passed through this layer without being throttled.
2177                 * Climb up the ladder.  If we''re already at the top, it
2178                 * can be executed directly.
2179                 */
2180                qn = &tg->qnode_on_parent[rw];
2181                sq = sq->parent_sq;
2182                tg = sq_to_tg(sq);
2183                if (!tg)
2184                        goto out_unlock;
2185        }
2186
2187        /* out-of-limit, queue to @tg */
2188        throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2189                   rw == READ ? 'R' : 'W',
2190                   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2191                   tg_bps_limit(tg, rw),
2192                   tg->io_disp[rw], tg_iops_limit(tg, rw),
2193                   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2194
2195        tg->last_low_overflow_time[rw] = jiffies;
2196
2197        td->nr_queued[rw]++;
2198        throtl_add_bio_tg(bio, qn, tg);
2199        throttled = true;
2200
2201        /*
2202         * Update @tg's dispatch time and force schedule dispatch if @tg
2203         * was empty before @bio.  The forced scheduling isn't likely to
2204         * cause undue delay as @bio is likely to be dispatched directly if
2205         * its @tg's disptime is not in the future.
2206         */
2207        if (tg->flags & THROTL_TG_WAS_EMPTY) {
2208                tg_update_disptime(tg);
2209                throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2210        }
2211
2212out_unlock:
2213        spin_unlock_irq(&q->queue_lock);
2214out:
2215        bio_set_flag(bio, BIO_THROTTLED);
2216
2217#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2218        if (throttled || !td->track_bio_latency)
2219                bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2220#endif
2221        return throttled;
2222}
2223
2224#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2225static void throtl_track_latency(struct throtl_data *td, sector_t size,
2226        int op, unsigned long time)
2227{
2228        struct latency_bucket *latency;
2229        int index;
2230
2231        if (!td || td->limit_index != LIMIT_LOW ||
2232            !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2233            !blk_queue_nonrot(td->queue))
2234                return;
2235
2236        index = request_bucket_index(size);
2237
2238        latency = get_cpu_ptr(td->latency_buckets[op]);
2239        latency[index].total_latency += time;
2240        latency[index].samples++;
2241        put_cpu_ptr(td->latency_buckets[op]);
2242}
2243
2244void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2245{
2246        struct request_queue *q = rq->q;
2247        struct throtl_data *td = q->td;
2248
2249        throtl_track_latency(td, rq->throtl_size, req_op(rq), time_ns >> 10);
2250}
2251
2252void blk_throtl_bio_endio(struct bio *bio)
2253{
2254        struct blkcg_gq *blkg;
2255        struct throtl_grp *tg;
2256        u64 finish_time_ns;
2257        unsigned long finish_time;
2258        unsigned long start_time;
2259        unsigned long lat;
2260        int rw = bio_data_dir(bio);
2261
2262        blkg = bio->bi_blkg;
2263        if (!blkg)
2264                return;
2265        tg = blkg_to_tg(blkg);
2266
2267        finish_time_ns = ktime_get_ns();
2268        tg->last_finish_time = finish_time_ns >> 10;
2269
2270        start_time = bio_issue_time(&bio->bi_issue) >> 10;
2271        finish_time = __bio_issue_time(finish_time_ns) >> 10;
2272        if (!start_time || finish_time <= start_time)
2273                return;
2274
2275        lat = finish_time - start_time;
2276        /* this is only for bio based driver */
2277        if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2278                throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2279                                     bio_op(bio), lat);
2280
2281        if (tg->latency_target && lat >= tg->td->filtered_latency) {
2282                int bucket;
2283                unsigned int threshold;
2284
2285                bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2286                threshold = tg->td->avg_buckets[rw][bucket].latency +
2287                        tg->latency_target;
2288                if (lat > threshold)
2289                        tg->bad_bio_cnt++;
2290                /*
2291                 * Not race free, could get wrong count, which means cgroups
2292                 * will be throttled
2293                 */
2294                tg->bio_cnt++;
2295        }
2296
2297        if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2298                tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2299                tg->bio_cnt /= 2;
2300                tg->bad_bio_cnt /= 2;
2301        }
2302}
2303#endif
2304
2305/*
2306 * Dispatch all bios from all children tg's queued on @parent_sq.  On
2307 * return, @parent_sq is guaranteed to not have any active children tg's
2308 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2309 */
2310static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2311{
2312        struct throtl_grp *tg;
2313
2314        while ((tg = throtl_rb_first(parent_sq))) {
2315                struct throtl_service_queue *sq = &tg->service_queue;
2316                struct bio *bio;
2317
2318                throtl_dequeue_tg(tg);
2319
2320                while ((bio = throtl_peek_queued(&sq->queued[READ])))
2321                        tg_dispatch_one_bio(tg, bio_data_dir(bio));
2322                while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2323                        tg_dispatch_one_bio(tg, bio_data_dir(bio));
2324        }
2325}
2326
2327/**
2328 * blk_throtl_drain - drain throttled bios
2329 * @q: request_queue to drain throttled bios for
2330 *
2331 * Dispatch all currently throttled bios on @q through ->make_request_fn().
2332 */
2333void blk_throtl_drain(struct request_queue *q)
2334        __releases(&q->queue_lock) __acquires(&q->queue_lock)
2335{
2336        struct throtl_data *td = q->td;
2337        struct blkcg_gq *blkg;
2338        struct cgroup_subsys_state *pos_css;
2339        struct bio *bio;
2340        int rw;
2341
2342        rcu_read_lock();
2343
2344        /*
2345         * Drain each tg while doing post-order walk on the blkg tree, so
2346         * that all bios are propagated to td->service_queue.  It'd be
2347         * better to walk service_queue tree directly but blkg walk is
2348         * easier.
2349         */
2350        blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2351                tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2352
2353        /* finally, transfer bios from top-level tg's into the td */
2354        tg_drain_bios(&td->service_queue);
2355
2356        rcu_read_unlock();
2357        spin_unlock_irq(&q->queue_lock);
2358
2359        /* all bios now should be in td->service_queue, issue them */
2360        for (rw = READ; rw <= WRITE; rw++)
2361                while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2362                                                NULL)))
2363                        generic_make_request(bio);
2364
2365        spin_lock_irq(&q->queue_lock);
2366}
2367
2368int blk_throtl_init(struct request_queue *q)
2369{
2370        struct throtl_data *td;
2371        int ret;
2372
2373        td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2374        if (!td)
2375                return -ENOMEM;
2376        td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2377                LATENCY_BUCKET_SIZE, __alignof__(u64));
2378        if (!td->latency_buckets[READ]) {
2379                kfree(td);
2380                return -ENOMEM;
2381        }
2382        td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2383                LATENCY_BUCKET_SIZE, __alignof__(u64));
2384        if (!td->latency_buckets[WRITE]) {
2385                free_percpu(td->latency_buckets[READ]);
2386                kfree(td);
2387                return -ENOMEM;
2388        }
2389
2390        INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2391        throtl_service_queue_init(&td->service_queue);
2392
2393        q->td = td;
2394        td->queue = q;
2395
2396        td->limit_valid[LIMIT_MAX] = true;
2397        td->limit_index = LIMIT_MAX;
2398        td->low_upgrade_time = jiffies;
2399        td->low_downgrade_time = jiffies;
2400
2401        /* activate policy */
2402        ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2403        if (ret) {
2404                free_percpu(td->latency_buckets[READ]);
2405                free_percpu(td->latency_buckets[WRITE]);
2406                kfree(td);
2407        }
2408        return ret;
2409}
2410
2411void blk_throtl_exit(struct request_queue *q)
2412{
2413        BUG_ON(!q->td);
2414        throtl_shutdown_wq(q);
2415        blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2416        free_percpu(q->td->latency_buckets[READ]);
2417        free_percpu(q->td->latency_buckets[WRITE]);
2418        kfree(q->td);
2419}
2420
2421void blk_throtl_register_queue(struct request_queue *q)
2422{
2423        struct throtl_data *td;
2424        int i;
2425
2426        td = q->td;
2427        BUG_ON(!td);
2428
2429        if (blk_queue_nonrot(q)) {
2430                td->throtl_slice = DFL_THROTL_SLICE_SSD;
2431                td->filtered_latency = LATENCY_FILTERED_SSD;
2432        } else {
2433                td->throtl_slice = DFL_THROTL_SLICE_HD;
2434                td->filtered_latency = LATENCY_FILTERED_HD;
2435                for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2436                        td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2437                        td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2438                }
2439        }
2440#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2441        /* if no low limit, use previous default */
2442        td->throtl_slice = DFL_THROTL_SLICE_HD;
2443#endif
2444
2445        td->track_bio_latency = !queue_is_mq(q);
2446        if (!td->track_bio_latency)
2447                blk_stat_enable_accounting(q);
2448}
2449
2450#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2451ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2452{
2453        if (!q->td)
2454                return -EINVAL;
2455        return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2456}
2457
2458ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2459        const char *page, size_t count)
2460{
2461        unsigned long v;
2462        unsigned long t;
2463
2464        if (!q->td)
2465                return -EINVAL;
2466        if (kstrtoul(page, 10, &v))
2467                return -EINVAL;
2468        t = msecs_to_jiffies(v);
2469        if (t == 0 || t > MAX_THROTL_SLICE)
2470                return -EINVAL;
2471        q->td->throtl_slice = t;
2472        return count;
2473}
2474#endif
2475
2476static int __init throtl_init(void)
2477{
2478        kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2479        if (!kthrotld_workqueue)
2480                panic("Failed to create kthrotld\n");
2481
2482        return blkcg_policy_register(&blkcg_policy_throtl);
2483}
2484
2485module_init(throtl_init);
2486