linux/crypto/asymmetric_keys/restrict.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Instantiate a public key crypto key from an X.509 Certificate
   3 *
   4 * Copyright (C) 2012, 2016 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
   6 */
   7
   8#define pr_fmt(fmt) "ASYM: "fmt
   9#include <linux/module.h>
  10#include <linux/kernel.h>
  11#include <linux/err.h>
  12#include <crypto/public_key.h>
  13#include "asymmetric_keys.h"
  14
  15static bool use_builtin_keys;
  16static struct asymmetric_key_id *ca_keyid;
  17
  18#ifndef MODULE
  19static struct {
  20        struct asymmetric_key_id id;
  21        unsigned char data[10];
  22} cakey;
  23
  24static int __init ca_keys_setup(char *str)
  25{
  26        if (!str)               /* default system keyring */
  27                return 1;
  28
  29        if (strncmp(str, "id:", 3) == 0) {
  30                struct asymmetric_key_id *p = &cakey.id;
  31                size_t hexlen = (strlen(str) - 3) / 2;
  32                int ret;
  33
  34                if (hexlen == 0 || hexlen > sizeof(cakey.data)) {
  35                        pr_err("Missing or invalid ca_keys id\n");
  36                        return 1;
  37                }
  38
  39                ret = __asymmetric_key_hex_to_key_id(str + 3, p, hexlen);
  40                if (ret < 0)
  41                        pr_err("Unparsable ca_keys id hex string\n");
  42                else
  43                        ca_keyid = p;   /* owner key 'id:xxxxxx' */
  44        } else if (strcmp(str, "builtin") == 0) {
  45                use_builtin_keys = true;
  46        }
  47
  48        return 1;
  49}
  50__setup("ca_keys=", ca_keys_setup);
  51#endif
  52
  53/**
  54 * restrict_link_by_signature - Restrict additions to a ring of public keys
  55 * @dest_keyring: Keyring being linked to.
  56 * @type: The type of key being added.
  57 * @payload: The payload of the new key.
  58 * @trust_keyring: A ring of keys that can be used to vouch for the new cert.
  59 *
  60 * Check the new certificate against the ones in the trust keyring.  If one of
  61 * those is the signing key and validates the new certificate, then mark the
  62 * new certificate as being trusted.
  63 *
  64 * Returns 0 if the new certificate was accepted, -ENOKEY if we couldn't find a
  65 * matching parent certificate in the trusted list, -EKEYREJECTED if the
  66 * signature check fails or the key is blacklisted, -ENOPKG if the signature
  67 * uses unsupported crypto, or some other error if there is a matching
  68 * certificate but the signature check cannot be performed.
  69 */
  70int restrict_link_by_signature(struct key *dest_keyring,
  71                               const struct key_type *type,
  72                               const union key_payload *payload,
  73                               struct key *trust_keyring)
  74{
  75        const struct public_key_signature *sig;
  76        struct key *key;
  77        int ret;
  78
  79        pr_devel("==>%s()\n", __func__);
  80
  81        if (!trust_keyring)
  82                return -ENOKEY;
  83
  84        if (type != &key_type_asymmetric)
  85                return -EOPNOTSUPP;
  86
  87        sig = payload->data[asym_auth];
  88        if (!sig)
  89                return -ENOPKG;
  90        if (!sig->auth_ids[0] && !sig->auth_ids[1])
  91                return -ENOKEY;
  92
  93        if (ca_keyid && !asymmetric_key_id_partial(sig->auth_ids[1], ca_keyid))
  94                return -EPERM;
  95
  96        /* See if we have a key that signed this one. */
  97        key = find_asymmetric_key(trust_keyring,
  98                                  sig->auth_ids[0], sig->auth_ids[1],
  99                                  false);
 100        if (IS_ERR(key))
 101                return -ENOKEY;
 102
 103        if (use_builtin_keys && !test_bit(KEY_FLAG_BUILTIN, &key->flags))
 104                ret = -ENOKEY;
 105        else
 106                ret = verify_signature(key, sig);
 107        key_put(key);
 108        return ret;
 109}
 110
 111static bool match_either_id(const struct asymmetric_key_ids *pair,
 112                            const struct asymmetric_key_id *single)
 113{
 114        return (asymmetric_key_id_same(pair->id[0], single) ||
 115                asymmetric_key_id_same(pair->id[1], single));
 116}
 117
 118static int key_or_keyring_common(struct key *dest_keyring,
 119                                 const struct key_type *type,
 120                                 const union key_payload *payload,
 121                                 struct key *trusted, bool check_dest)
 122{
 123        const struct public_key_signature *sig;
 124        struct key *key = NULL;
 125        int ret;
 126
 127        pr_devel("==>%s()\n", __func__);
 128
 129        if (!dest_keyring)
 130                return -ENOKEY;
 131        else if (dest_keyring->type != &key_type_keyring)
 132                return -EOPNOTSUPP;
 133
 134        if (!trusted && !check_dest)
 135                return -ENOKEY;
 136
 137        if (type != &key_type_asymmetric)
 138                return -EOPNOTSUPP;
 139
 140        sig = payload->data[asym_auth];
 141        if (!sig)
 142                return -ENOPKG;
 143        if (!sig->auth_ids[0] && !sig->auth_ids[1])
 144                return -ENOKEY;
 145
 146        if (trusted) {
 147                if (trusted->type == &key_type_keyring) {
 148                        /* See if we have a key that signed this one. */
 149                        key = find_asymmetric_key(trusted, sig->auth_ids[0],
 150                                                  sig->auth_ids[1], false);
 151                        if (IS_ERR(key))
 152                                key = NULL;
 153                } else if (trusted->type == &key_type_asymmetric) {
 154                        const struct asymmetric_key_ids *signer_ids;
 155
 156                        signer_ids = asymmetric_key_ids(trusted);
 157
 158                        /*
 159                         * The auth_ids come from the candidate key (the
 160                         * one that is being considered for addition to
 161                         * dest_keyring) and identify the key that was
 162                         * used to sign.
 163                         *
 164                         * The signer_ids are identifiers for the
 165                         * signing key specified for dest_keyring.
 166                         *
 167                         * The first auth_id is the preferred id, and
 168                         * the second is the fallback. If only one
 169                         * auth_id is present, it may match against
 170                         * either signer_id. If two auth_ids are
 171                         * present, the first auth_id must match one
 172                         * signer_id and the second auth_id must match
 173                         * the second signer_id.
 174                         */
 175                        if (!sig->auth_ids[0] || !sig->auth_ids[1]) {
 176                                const struct asymmetric_key_id *auth_id;
 177
 178                                auth_id = sig->auth_ids[0] ?: sig->auth_ids[1];
 179                                if (match_either_id(signer_ids, auth_id))
 180                                        key = __key_get(trusted);
 181
 182                        } else if (asymmetric_key_id_same(signer_ids->id[1],
 183                                                          sig->auth_ids[1]) &&
 184                                   match_either_id(signer_ids,
 185                                                   sig->auth_ids[0])) {
 186                                key = __key_get(trusted);
 187                        }
 188                } else {
 189                        return -EOPNOTSUPP;
 190                }
 191        }
 192
 193        if (check_dest && !key) {
 194                /* See if the destination has a key that signed this one. */
 195                key = find_asymmetric_key(dest_keyring, sig->auth_ids[0],
 196                                          sig->auth_ids[1], false);
 197                if (IS_ERR(key))
 198                        key = NULL;
 199        }
 200
 201        if (!key)
 202                return -ENOKEY;
 203
 204        ret = key_validate(key);
 205        if (ret == 0)
 206                ret = verify_signature(key, sig);
 207
 208        key_put(key);
 209        return ret;
 210}
 211
 212/**
 213 * restrict_link_by_key_or_keyring - Restrict additions to a ring of public
 214 * keys using the restrict_key information stored in the ring.
 215 * @dest_keyring: Keyring being linked to.
 216 * @type: The type of key being added.
 217 * @payload: The payload of the new key.
 218 * @trusted: A key or ring of keys that can be used to vouch for the new cert.
 219 *
 220 * Check the new certificate only against the key or keys passed in the data
 221 * parameter. If one of those is the signing key and validates the new
 222 * certificate, then mark the new certificate as being ok to link.
 223 *
 224 * Returns 0 if the new certificate was accepted, -ENOKEY if we
 225 * couldn't find a matching parent certificate in the trusted list,
 226 * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses
 227 * unsupported crypto, or some other error if there is a matching certificate
 228 * but the signature check cannot be performed.
 229 */
 230int restrict_link_by_key_or_keyring(struct key *dest_keyring,
 231                                    const struct key_type *type,
 232                                    const union key_payload *payload,
 233                                    struct key *trusted)
 234{
 235        return key_or_keyring_common(dest_keyring, type, payload, trusted,
 236                                     false);
 237}
 238
 239/**
 240 * restrict_link_by_key_or_keyring_chain - Restrict additions to a ring of
 241 * public keys using the restrict_key information stored in the ring.
 242 * @dest_keyring: Keyring being linked to.
 243 * @type: The type of key being added.
 244 * @payload: The payload of the new key.
 245 * @trusted: A key or ring of keys that can be used to vouch for the new cert.
 246 *
 247 * Check the new certificate only against the key or keys passed in the data
 248 * parameter. If one of those is the signing key and validates the new
 249 * certificate, then mark the new certificate as being ok to link.
 250 *
 251 * Returns 0 if the new certificate was accepted, -ENOKEY if we
 252 * couldn't find a matching parent certificate in the trusted list,
 253 * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses
 254 * unsupported crypto, or some other error if there is a matching certificate
 255 * but the signature check cannot be performed.
 256 */
 257int restrict_link_by_key_or_keyring_chain(struct key *dest_keyring,
 258                                          const struct key_type *type,
 259                                          const union key_payload *payload,
 260                                          struct key *trusted)
 261{
 262        return key_or_keyring_common(dest_keyring, type, payload, trusted,
 263                                     true);
 264}
 265