linux/crypto/jitterentropy.c
<<
>>
Prefs
   1/*
   2 * Non-physical true random number generator based on timing jitter --
   3 * Jitter RNG standalone code.
   4 *
   5 * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2019
   6 *
   7 * Design
   8 * ======
   9 *
  10 * See http://www.chronox.de/jent.html
  11 *
  12 * License
  13 * =======
  14 *
  15 * Redistribution and use in source and binary forms, with or without
  16 * modification, are permitted provided that the following conditions
  17 * are met:
  18 * 1. Redistributions of source code must retain the above copyright
  19 *    notice, and the entire permission notice in its entirety,
  20 *    including the disclaimer of warranties.
  21 * 2. Redistributions in binary form must reproduce the above copyright
  22 *    notice, this list of conditions and the following disclaimer in the
  23 *    documentation and/or other materials provided with the distribution.
  24 * 3. The name of the author may not be used to endorse or promote
  25 *    products derived from this software without specific prior
  26 *    written permission.
  27 *
  28 * ALTERNATIVELY, this product may be distributed under the terms of
  29 * the GNU General Public License, in which case the provisions of the GPL2 are
  30 * required INSTEAD OF the above restrictions.  (This clause is
  31 * necessary due to a potential bad interaction between the GPL and
  32 * the restrictions contained in a BSD-style copyright.)
  33 *
  34 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  35 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  36 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  37 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  38 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  39 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  40 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  41 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  42 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  44 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  45 * DAMAGE.
  46 */
  47
  48/*
  49 * This Jitterentropy RNG is based on the jitterentropy library
  50 * version 2.1.2 provided at http://www.chronox.de/jent.html
  51 */
  52
  53#ifdef __OPTIMIZE__
  54 #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
  55#endif
  56
  57typedef unsigned long long      __u64;
  58typedef long long               __s64;
  59typedef unsigned int            __u32;
  60#define NULL    ((void *) 0)
  61
  62/* The entropy pool */
  63struct rand_data {
  64        /* all data values that are vital to maintain the security
  65         * of the RNG are marked as SENSITIVE. A user must not
  66         * access that information while the RNG executes its loops to
  67         * calculate the next random value. */
  68        __u64 data;             /* SENSITIVE Actual random number */
  69        __u64 old_data;         /* SENSITIVE Previous random number */
  70        __u64 prev_time;        /* SENSITIVE Previous time stamp */
  71#define DATA_SIZE_BITS ((sizeof(__u64)) * 8)
  72        __u64 last_delta;       /* SENSITIVE stuck test */
  73        __s64 last_delta2;      /* SENSITIVE stuck test */
  74        unsigned int osr;       /* Oversample rate */
  75#define JENT_MEMORY_BLOCKS 64
  76#define JENT_MEMORY_BLOCKSIZE 32
  77#define JENT_MEMORY_ACCESSLOOPS 128
  78#define JENT_MEMORY_SIZE (JENT_MEMORY_BLOCKS*JENT_MEMORY_BLOCKSIZE)
  79        unsigned char *mem;     /* Memory access location with size of
  80                                 * memblocks * memblocksize */
  81        unsigned int memlocation; /* Pointer to byte in *mem */
  82        unsigned int memblocks; /* Number of memory blocks in *mem */
  83        unsigned int memblocksize; /* Size of one memory block in bytes */
  84        unsigned int memaccessloops; /* Number of memory accesses per random
  85                                      * bit generation */
  86};
  87
  88/* Flags that can be used to initialize the RNG */
  89#define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
  90                                           * entropy, saves MEMORY_SIZE RAM for
  91                                           * entropy collector */
  92
  93/* -- error codes for init function -- */
  94#define JENT_ENOTIME            1 /* Timer service not available */
  95#define JENT_ECOARSETIME        2 /* Timer too coarse for RNG */
  96#define JENT_ENOMONOTONIC       3 /* Timer is not monotonic increasing */
  97#define JENT_EVARVAR            5 /* Timer does not produce variations of
  98                                   * variations (2nd derivation of time is
  99                                   * zero). */
 100#define JENT_ESTUCK             8 /* Too many stuck results during init. */
 101
 102/***************************************************************************
 103 * Helper functions
 104 ***************************************************************************/
 105
 106void jent_get_nstime(__u64 *out);
 107void *jent_zalloc(unsigned int len);
 108void jent_zfree(void *ptr);
 109int jent_fips_enabled(void);
 110void jent_panic(char *s);
 111void jent_memcpy(void *dest, const void *src, unsigned int n);
 112
 113/**
 114 * Update of the loop count used for the next round of
 115 * an entropy collection.
 116 *
 117 * Input:
 118 * @ec entropy collector struct -- may be NULL
 119 * @bits is the number of low bits of the timer to consider
 120 * @min is the number of bits we shift the timer value to the right at
 121 *      the end to make sure we have a guaranteed minimum value
 122 *
 123 * @return Newly calculated loop counter
 124 */
 125static __u64 jent_loop_shuffle(struct rand_data *ec,
 126                               unsigned int bits, unsigned int min)
 127{
 128        __u64 time = 0;
 129        __u64 shuffle = 0;
 130        unsigned int i = 0;
 131        unsigned int mask = (1<<bits) - 1;
 132
 133        jent_get_nstime(&time);
 134        /*
 135         * Mix the current state of the random number into the shuffle
 136         * calculation to balance that shuffle a bit more.
 137         */
 138        if (ec)
 139                time ^= ec->data;
 140        /*
 141         * We fold the time value as much as possible to ensure that as many
 142         * bits of the time stamp are included as possible.
 143         */
 144        for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) {
 145                shuffle ^= time & mask;
 146                time = time >> bits;
 147        }
 148
 149        /*
 150         * We add a lower boundary value to ensure we have a minimum
 151         * RNG loop count.
 152         */
 153        return (shuffle + (1<<min));
 154}
 155
 156/***************************************************************************
 157 * Noise sources
 158 ***************************************************************************/
 159
 160/**
 161 * CPU Jitter noise source -- this is the noise source based on the CPU
 162 *                            execution time jitter
 163 *
 164 * This function injects the individual bits of the time value into the
 165 * entropy pool using an LFSR.
 166 *
 167 * The code is deliberately inefficient with respect to the bit shifting
 168 * and shall stay that way. This function is the root cause why the code
 169 * shall be compiled without optimization. This function not only acts as
 170 * folding operation, but this function's execution is used to measure
 171 * the CPU execution time jitter. Any change to the loop in this function
 172 * implies that careful retesting must be done.
 173 *
 174 * Input:
 175 * @ec entropy collector struct -- may be NULL
 176 * @time time stamp to be injected
 177 * @loop_cnt if a value not equal to 0 is set, use the given value as number of
 178 *           loops to perform the folding
 179 *
 180 * Output:
 181 * updated ec->data
 182 *
 183 * @return Number of loops the folding operation is performed
 184 */
 185static __u64 jent_lfsr_time(struct rand_data *ec, __u64 time, __u64 loop_cnt)
 186{
 187        unsigned int i;
 188        __u64 j = 0;
 189        __u64 new = 0;
 190#define MAX_FOLD_LOOP_BIT 4
 191#define MIN_FOLD_LOOP_BIT 0
 192        __u64 fold_loop_cnt =
 193                jent_loop_shuffle(ec, MAX_FOLD_LOOP_BIT, MIN_FOLD_LOOP_BIT);
 194
 195        /*
 196         * testing purposes -- allow test app to set the counter, not
 197         * needed during runtime
 198         */
 199        if (loop_cnt)
 200                fold_loop_cnt = loop_cnt;
 201        for (j = 0; j < fold_loop_cnt; j++) {
 202                new = ec->data;
 203                for (i = 1; (DATA_SIZE_BITS) >= i; i++) {
 204                        __u64 tmp = time << (DATA_SIZE_BITS - i);
 205
 206                        tmp = tmp >> (DATA_SIZE_BITS - 1);
 207
 208                        /*
 209                        * Fibonacci LSFR with polynomial of
 210                        *  x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is
 211                        *  primitive according to
 212                        *   http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf
 213                        * (the shift values are the polynomial values minus one
 214                        * due to counting bits from 0 to 63). As the current
 215                        * position is always the LSB, the polynomial only needs
 216                        * to shift data in from the left without wrap.
 217                        */
 218                        tmp ^= ((new >> 63) & 1);
 219                        tmp ^= ((new >> 60) & 1);
 220                        tmp ^= ((new >> 55) & 1);
 221                        tmp ^= ((new >> 30) & 1);
 222                        tmp ^= ((new >> 27) & 1);
 223                        tmp ^= ((new >> 22) & 1);
 224                        new <<= 1;
 225                        new ^= tmp;
 226                }
 227        }
 228        ec->data = new;
 229
 230        return fold_loop_cnt;
 231}
 232
 233/**
 234 * Memory Access noise source -- this is a noise source based on variations in
 235 *                               memory access times
 236 *
 237 * This function performs memory accesses which will add to the timing
 238 * variations due to an unknown amount of CPU wait states that need to be
 239 * added when accessing memory. The memory size should be larger than the L1
 240 * caches as outlined in the documentation and the associated testing.
 241 *
 242 * The L1 cache has a very high bandwidth, albeit its access rate is  usually
 243 * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
 244 * variations as the CPU has hardly to wait. Starting with L2, significant
 245 * variations are added because L2 typically does not belong to the CPU any more
 246 * and therefore a wider range of CPU wait states is necessary for accesses.
 247 * L3 and real memory accesses have even a wider range of wait states. However,
 248 * to reliably access either L3 or memory, the ec->mem memory must be quite
 249 * large which is usually not desirable.
 250 *
 251 * Input:
 252 * @ec Reference to the entropy collector with the memory access data -- if
 253 *     the reference to the memory block to be accessed is NULL, this noise
 254 *     source is disabled
 255 * @loop_cnt if a value not equal to 0 is set, use the given value as number of
 256 *           loops to perform the folding
 257 *
 258 * @return Number of memory access operations
 259 */
 260static unsigned int jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
 261{
 262        unsigned int wrap = 0;
 263        __u64 i = 0;
 264#define MAX_ACC_LOOP_BIT 7
 265#define MIN_ACC_LOOP_BIT 0
 266        __u64 acc_loop_cnt =
 267                jent_loop_shuffle(ec, MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
 268
 269        if (NULL == ec || NULL == ec->mem)
 270                return 0;
 271        wrap = ec->memblocksize * ec->memblocks;
 272
 273        /*
 274         * testing purposes -- allow test app to set the counter, not
 275         * needed during runtime
 276         */
 277        if (loop_cnt)
 278                acc_loop_cnt = loop_cnt;
 279
 280        for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
 281                unsigned char *tmpval = ec->mem + ec->memlocation;
 282                /*
 283                 * memory access: just add 1 to one byte,
 284                 * wrap at 255 -- memory access implies read
 285                 * from and write to memory location
 286                 */
 287                *tmpval = (*tmpval + 1) & 0xff;
 288                /*
 289                 * Addition of memblocksize - 1 to pointer
 290                 * with wrap around logic to ensure that every
 291                 * memory location is hit evenly
 292                 */
 293                ec->memlocation = ec->memlocation + ec->memblocksize - 1;
 294                ec->memlocation = ec->memlocation % wrap;
 295        }
 296        return i;
 297}
 298
 299/***************************************************************************
 300 * Start of entropy processing logic
 301 ***************************************************************************/
 302
 303/**
 304 * Stuck test by checking the:
 305 *      1st derivation of the jitter measurement (time delta)
 306 *      2nd derivation of the jitter measurement (delta of time deltas)
 307 *      3rd derivation of the jitter measurement (delta of delta of time deltas)
 308 *
 309 * All values must always be non-zero.
 310 *
 311 * Input:
 312 * @ec Reference to entropy collector
 313 * @current_delta Jitter time delta
 314 *
 315 * @return
 316 *      0 jitter measurement not stuck (good bit)
 317 *      1 jitter measurement stuck (reject bit)
 318 */
 319static int jent_stuck(struct rand_data *ec, __u64 current_delta)
 320{
 321        __s64 delta2 = ec->last_delta - current_delta;
 322        __s64 delta3 = delta2 - ec->last_delta2;
 323
 324        ec->last_delta = current_delta;
 325        ec->last_delta2 = delta2;
 326
 327        if (!current_delta || !delta2 || !delta3)
 328                return 1;
 329
 330        return 0;
 331}
 332
 333/**
 334 * This is the heart of the entropy generation: calculate time deltas and
 335 * use the CPU jitter in the time deltas. The jitter is injected into the
 336 * entropy pool.
 337 *
 338 * WARNING: ensure that ->prev_time is primed before using the output
 339 *          of this function! This can be done by calling this function
 340 *          and not using its result.
 341 *
 342 * Input:
 343 * @entropy_collector Reference to entropy collector
 344 *
 345 * @return result of stuck test
 346 */
 347static int jent_measure_jitter(struct rand_data *ec)
 348{
 349        __u64 time = 0;
 350        __u64 current_delta = 0;
 351
 352        /* Invoke one noise source before time measurement to add variations */
 353        jent_memaccess(ec, 0);
 354
 355        /*
 356         * Get time stamp and calculate time delta to previous
 357         * invocation to measure the timing variations
 358         */
 359        jent_get_nstime(&time);
 360        current_delta = time - ec->prev_time;
 361        ec->prev_time = time;
 362
 363        /* Now call the next noise sources which also injects the data */
 364        jent_lfsr_time(ec, current_delta, 0);
 365
 366        /* Check whether we have a stuck measurement. */
 367        return jent_stuck(ec, current_delta);
 368}
 369
 370/**
 371 * Generator of one 64 bit random number
 372 * Function fills rand_data->data
 373 *
 374 * Input:
 375 * @ec Reference to entropy collector
 376 */
 377static void jent_gen_entropy(struct rand_data *ec)
 378{
 379        unsigned int k = 0;
 380
 381        /* priming of the ->prev_time value */
 382        jent_measure_jitter(ec);
 383
 384        while (1) {
 385                /* If a stuck measurement is received, repeat measurement */
 386                if (jent_measure_jitter(ec))
 387                        continue;
 388
 389                /*
 390                 * We multiply the loop value with ->osr to obtain the
 391                 * oversampling rate requested by the caller
 392                 */
 393                if (++k >= (DATA_SIZE_BITS * ec->osr))
 394                        break;
 395        }
 396}
 397
 398/**
 399 * The continuous test required by FIPS 140-2 -- the function automatically
 400 * primes the test if needed.
 401 *
 402 * Return:
 403 * 0 if FIPS test passed
 404 * < 0 if FIPS test failed
 405 */
 406static void jent_fips_test(struct rand_data *ec)
 407{
 408        if (!jent_fips_enabled())
 409                return;
 410
 411        /* prime the FIPS test */
 412        if (!ec->old_data) {
 413                ec->old_data = ec->data;
 414                jent_gen_entropy(ec);
 415        }
 416
 417        if (ec->data == ec->old_data)
 418                jent_panic("jitterentropy: Duplicate output detected\n");
 419
 420        ec->old_data = ec->data;
 421}
 422
 423/**
 424 * Entry function: Obtain entropy for the caller.
 425 *
 426 * This function invokes the entropy gathering logic as often to generate
 427 * as many bytes as requested by the caller. The entropy gathering logic
 428 * creates 64 bit per invocation.
 429 *
 430 * This function truncates the last 64 bit entropy value output to the exact
 431 * size specified by the caller.
 432 *
 433 * Input:
 434 * @ec Reference to entropy collector
 435 * @data pointer to buffer for storing random data -- buffer must already
 436 *       exist
 437 * @len size of the buffer, specifying also the requested number of random
 438 *      in bytes
 439 *
 440 * @return 0 when request is fulfilled or an error
 441 *
 442 * The following error codes can occur:
 443 *      -1      entropy_collector is NULL
 444 */
 445int jent_read_entropy(struct rand_data *ec, unsigned char *data,
 446                      unsigned int len)
 447{
 448        unsigned char *p = data;
 449
 450        if (!ec)
 451                return -1;
 452
 453        while (0 < len) {
 454                unsigned int tocopy;
 455
 456                jent_gen_entropy(ec);
 457                jent_fips_test(ec);
 458                if ((DATA_SIZE_BITS / 8) < len)
 459                        tocopy = (DATA_SIZE_BITS / 8);
 460                else
 461                        tocopy = len;
 462                jent_memcpy(p, &ec->data, tocopy);
 463
 464                len -= tocopy;
 465                p += tocopy;
 466        }
 467
 468        return 0;
 469}
 470
 471/***************************************************************************
 472 * Initialization logic
 473 ***************************************************************************/
 474
 475struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
 476                                               unsigned int flags)
 477{
 478        struct rand_data *entropy_collector;
 479
 480        entropy_collector = jent_zalloc(sizeof(struct rand_data));
 481        if (!entropy_collector)
 482                return NULL;
 483
 484        if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
 485                /* Allocate memory for adding variations based on memory
 486                 * access
 487                 */
 488                entropy_collector->mem = jent_zalloc(JENT_MEMORY_SIZE);
 489                if (!entropy_collector->mem) {
 490                        jent_zfree(entropy_collector);
 491                        return NULL;
 492                }
 493                entropy_collector->memblocksize = JENT_MEMORY_BLOCKSIZE;
 494                entropy_collector->memblocks = JENT_MEMORY_BLOCKS;
 495                entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
 496        }
 497
 498        /* verify and set the oversampling rate */
 499        if (0 == osr)
 500                osr = 1; /* minimum sampling rate is 1 */
 501        entropy_collector->osr = osr;
 502
 503        /* fill the data pad with non-zero values */
 504        jent_gen_entropy(entropy_collector);
 505
 506        return entropy_collector;
 507}
 508
 509void jent_entropy_collector_free(struct rand_data *entropy_collector)
 510{
 511        jent_zfree(entropy_collector->mem);
 512        entropy_collector->mem = NULL;
 513        jent_zfree(entropy_collector);
 514}
 515
 516int jent_entropy_init(void)
 517{
 518        int i;
 519        __u64 delta_sum = 0;
 520        __u64 old_delta = 0;
 521        int time_backwards = 0;
 522        int count_mod = 0;
 523        int count_stuck = 0;
 524        struct rand_data ec = { 0 };
 525
 526        /* We could perform statistical tests here, but the problem is
 527         * that we only have a few loop counts to do testing. These
 528         * loop counts may show some slight skew and we produce
 529         * false positives.
 530         *
 531         * Moreover, only old systems show potentially problematic
 532         * jitter entropy that could potentially be caught here. But
 533         * the RNG is intended for hardware that is available or widely
 534         * used, but not old systems that are long out of favor. Thus,
 535         * no statistical tests.
 536         */
 537
 538        /*
 539         * We could add a check for system capabilities such as clock_getres or
 540         * check for CONFIG_X86_TSC, but it does not make much sense as the
 541         * following sanity checks verify that we have a high-resolution
 542         * timer.
 543         */
 544        /*
 545         * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
 546         * definitely too little.
 547         */
 548#define TESTLOOPCOUNT 300
 549#define CLEARCACHE 100
 550        for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
 551                __u64 time = 0;
 552                __u64 time2 = 0;
 553                __u64 delta = 0;
 554                unsigned int lowdelta = 0;
 555                int stuck;
 556
 557                /* Invoke core entropy collection logic */
 558                jent_get_nstime(&time);
 559                ec.prev_time = time;
 560                jent_lfsr_time(&ec, time, 0);
 561                jent_get_nstime(&time2);
 562
 563                /* test whether timer works */
 564                if (!time || !time2)
 565                        return JENT_ENOTIME;
 566                delta = time2 - time;
 567                /*
 568                 * test whether timer is fine grained enough to provide
 569                 * delta even when called shortly after each other -- this
 570                 * implies that we also have a high resolution timer
 571                 */
 572                if (!delta)
 573                        return JENT_ECOARSETIME;
 574
 575                stuck = jent_stuck(&ec, delta);
 576
 577                /*
 578                 * up to here we did not modify any variable that will be
 579                 * evaluated later, but we already performed some work. Thus we
 580                 * already have had an impact on the caches, branch prediction,
 581                 * etc. with the goal to clear it to get the worst case
 582                 * measurements.
 583                 */
 584                if (CLEARCACHE > i)
 585                        continue;
 586
 587                if (stuck)
 588                        count_stuck++;
 589
 590                /* test whether we have an increasing timer */
 591                if (!(time2 > time))
 592                        time_backwards++;
 593
 594                /* use 32 bit value to ensure compilation on 32 bit arches */
 595                lowdelta = time2 - time;
 596                if (!(lowdelta % 100))
 597                        count_mod++;
 598
 599                /*
 600                 * ensure that we have a varying delta timer which is necessary
 601                 * for the calculation of entropy -- perform this check
 602                 * only after the first loop is executed as we need to prime
 603                 * the old_data value
 604                 */
 605                if (delta > old_delta)
 606                        delta_sum += (delta - old_delta);
 607                else
 608                        delta_sum += (old_delta - delta);
 609                old_delta = delta;
 610        }
 611
 612        /*
 613         * we allow up to three times the time running backwards.
 614         * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
 615         * if such an operation just happens to interfere with our test, it
 616         * should not fail. The value of 3 should cover the NTP case being
 617         * performed during our test run.
 618         */
 619        if (3 < time_backwards)
 620                return JENT_ENOMONOTONIC;
 621
 622        /*
 623         * Variations of deltas of time must on average be larger
 624         * than 1 to ensure the entropy estimation
 625         * implied with 1 is preserved
 626         */
 627        if ((delta_sum) <= 1)
 628                return JENT_EVARVAR;
 629
 630        /*
 631         * Ensure that we have variations in the time stamp below 10 for at
 632         * least 10% of all checks -- on some platforms, the counter increments
 633         * in multiples of 100, but not always
 634         */
 635        if ((TESTLOOPCOUNT/10 * 9) < count_mod)
 636                return JENT_ECOARSETIME;
 637
 638        /*
 639         * If we have more than 90% stuck results, then this Jitter RNG is
 640         * likely to not work well.
 641         */
 642        if ((TESTLOOPCOUNT/10 * 9) < count_stuck)
 643                return JENT_ESTUCK;
 644
 645        return 0;
 646}
 647