linux/drivers/acpi/osl.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   4 *
   5 *  Copyright (C) 2000       Andrew Henroid
   6 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   7 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   8 *  Copyright (c) 2008 Intel Corporation
   9 *   Author: Matthew Wilcox <willy@linux.intel.com>
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/mm.h>
  16#include <linux/highmem.h>
  17#include <linux/pci.h>
  18#include <linux/interrupt.h>
  19#include <linux/kmod.h>
  20#include <linux/delay.h>
  21#include <linux/workqueue.h>
  22#include <linux/nmi.h>
  23#include <linux/acpi.h>
  24#include <linux/efi.h>
  25#include <linux/ioport.h>
  26#include <linux/list.h>
  27#include <linux/jiffies.h>
  28#include <linux/semaphore.h>
  29
  30#include <asm/io.h>
  31#include <linux/uaccess.h>
  32#include <linux/io-64-nonatomic-lo-hi.h>
  33
  34#include "acpica/accommon.h"
  35#include "acpica/acnamesp.h"
  36#include "internal.h"
  37
  38#define _COMPONENT              ACPI_OS_SERVICES
  39ACPI_MODULE_NAME("osl");
  40
  41struct acpi_os_dpc {
  42        acpi_osd_exec_callback function;
  43        void *context;
  44        struct work_struct work;
  45};
  46
  47#ifdef ENABLE_DEBUGGER
  48#include <linux/kdb.h>
  49
  50/* stuff for debugger support */
  51int acpi_in_debugger;
  52EXPORT_SYMBOL(acpi_in_debugger);
  53#endif                          /*ENABLE_DEBUGGER */
  54
  55static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
  56                                      u32 pm1b_ctrl);
  57static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
  58                                      u32 val_b);
  59
  60static acpi_osd_handler acpi_irq_handler;
  61static void *acpi_irq_context;
  62static struct workqueue_struct *kacpid_wq;
  63static struct workqueue_struct *kacpi_notify_wq;
  64static struct workqueue_struct *kacpi_hotplug_wq;
  65static bool acpi_os_initialized;
  66unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
  67bool acpi_permanent_mmap = false;
  68
  69/*
  70 * This list of permanent mappings is for memory that may be accessed from
  71 * interrupt context, where we can't do the ioremap().
  72 */
  73struct acpi_ioremap {
  74        struct list_head list;
  75        void __iomem *virt;
  76        acpi_physical_address phys;
  77        acpi_size size;
  78        unsigned long refcount;
  79};
  80
  81static LIST_HEAD(acpi_ioremaps);
  82static DEFINE_MUTEX(acpi_ioremap_lock);
  83
  84static void __init acpi_request_region (struct acpi_generic_address *gas,
  85        unsigned int length, char *desc)
  86{
  87        u64 addr;
  88
  89        /* Handle possible alignment issues */
  90        memcpy(&addr, &gas->address, sizeof(addr));
  91        if (!addr || !length)
  92                return;
  93
  94        /* Resources are never freed */
  95        if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
  96                request_region(addr, length, desc);
  97        else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
  98                request_mem_region(addr, length, desc);
  99}
 100
 101static int __init acpi_reserve_resources(void)
 102{
 103        acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 104                "ACPI PM1a_EVT_BLK");
 105
 106        acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 107                "ACPI PM1b_EVT_BLK");
 108
 109        acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 110                "ACPI PM1a_CNT_BLK");
 111
 112        acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 113                "ACPI PM1b_CNT_BLK");
 114
 115        if (acpi_gbl_FADT.pm_timer_length == 4)
 116                acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 117
 118        acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 119                "ACPI PM2_CNT_BLK");
 120
 121        /* Length of GPE blocks must be a non-negative multiple of 2 */
 122
 123        if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 124                acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 125                               acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 126
 127        if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 128                acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 129                               acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 130
 131        return 0;
 132}
 133fs_initcall_sync(acpi_reserve_resources);
 134
 135void acpi_os_printf(const char *fmt, ...)
 136{
 137        va_list args;
 138        va_start(args, fmt);
 139        acpi_os_vprintf(fmt, args);
 140        va_end(args);
 141}
 142EXPORT_SYMBOL(acpi_os_printf);
 143
 144void acpi_os_vprintf(const char *fmt, va_list args)
 145{
 146        static char buffer[512];
 147
 148        vsprintf(buffer, fmt, args);
 149
 150#ifdef ENABLE_DEBUGGER
 151        if (acpi_in_debugger) {
 152                kdb_printf("%s", buffer);
 153        } else {
 154                if (printk_get_level(buffer))
 155                        printk("%s", buffer);
 156                else
 157                        printk(KERN_CONT "%s", buffer);
 158        }
 159#else
 160        if (acpi_debugger_write_log(buffer) < 0) {
 161                if (printk_get_level(buffer))
 162                        printk("%s", buffer);
 163                else
 164                        printk(KERN_CONT "%s", buffer);
 165        }
 166#endif
 167}
 168
 169#ifdef CONFIG_KEXEC
 170static unsigned long acpi_rsdp;
 171static int __init setup_acpi_rsdp(char *arg)
 172{
 173        return kstrtoul(arg, 16, &acpi_rsdp);
 174}
 175early_param("acpi_rsdp", setup_acpi_rsdp);
 176#endif
 177
 178acpi_physical_address __init acpi_os_get_root_pointer(void)
 179{
 180        acpi_physical_address pa;
 181
 182#ifdef CONFIG_KEXEC
 183        if (acpi_rsdp)
 184                return acpi_rsdp;
 185#endif
 186        pa = acpi_arch_get_root_pointer();
 187        if (pa)
 188                return pa;
 189
 190        if (efi_enabled(EFI_CONFIG_TABLES)) {
 191                if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 192                        return efi.acpi20;
 193                if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 194                        return efi.acpi;
 195                pr_err(PREFIX "System description tables not found\n");
 196        } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
 197                acpi_find_root_pointer(&pa);
 198        }
 199
 200        return pa;
 201}
 202
 203/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 204static struct acpi_ioremap *
 205acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 206{
 207        struct acpi_ioremap *map;
 208
 209        list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 210                if (map->phys <= phys &&
 211                    phys + size <= map->phys + map->size)
 212                        return map;
 213
 214        return NULL;
 215}
 216
 217/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 218static void __iomem *
 219acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 220{
 221        struct acpi_ioremap *map;
 222
 223        map = acpi_map_lookup(phys, size);
 224        if (map)
 225                return map->virt + (phys - map->phys);
 226
 227        return NULL;
 228}
 229
 230void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 231{
 232        struct acpi_ioremap *map;
 233        void __iomem *virt = NULL;
 234
 235        mutex_lock(&acpi_ioremap_lock);
 236        map = acpi_map_lookup(phys, size);
 237        if (map) {
 238                virt = map->virt + (phys - map->phys);
 239                map->refcount++;
 240        }
 241        mutex_unlock(&acpi_ioremap_lock);
 242        return virt;
 243}
 244EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 245
 246/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 247static struct acpi_ioremap *
 248acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 249{
 250        struct acpi_ioremap *map;
 251
 252        list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 253                if (map->virt <= virt &&
 254                    virt + size <= map->virt + map->size)
 255                        return map;
 256
 257        return NULL;
 258}
 259
 260#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
 261/* ioremap will take care of cache attributes */
 262#define should_use_kmap(pfn)   0
 263#else
 264#define should_use_kmap(pfn)   page_is_ram(pfn)
 265#endif
 266
 267static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
 268{
 269        unsigned long pfn;
 270
 271        pfn = pg_off >> PAGE_SHIFT;
 272        if (should_use_kmap(pfn)) {
 273                if (pg_sz > PAGE_SIZE)
 274                        return NULL;
 275                return (void __iomem __force *)kmap(pfn_to_page(pfn));
 276        } else
 277                return acpi_os_ioremap(pg_off, pg_sz);
 278}
 279
 280static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
 281{
 282        unsigned long pfn;
 283
 284        pfn = pg_off >> PAGE_SHIFT;
 285        if (should_use_kmap(pfn))
 286                kunmap(pfn_to_page(pfn));
 287        else
 288                iounmap(vaddr);
 289}
 290
 291/**
 292 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
 293 * @phys: Start of the physical address range to map.
 294 * @size: Size of the physical address range to map.
 295 *
 296 * Look up the given physical address range in the list of existing ACPI memory
 297 * mappings.  If found, get a reference to it and return a pointer to it (its
 298 * virtual address).  If not found, map it, add it to that list and return a
 299 * pointer to it.
 300 *
 301 * During early init (when acpi_permanent_mmap has not been set yet) this
 302 * routine simply calls __acpi_map_table() to get the job done.
 303 */
 304void __iomem __ref
 305*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
 306{
 307        struct acpi_ioremap *map;
 308        void __iomem *virt;
 309        acpi_physical_address pg_off;
 310        acpi_size pg_sz;
 311
 312        if (phys > ULONG_MAX) {
 313                printk(KERN_ERR PREFIX "Cannot map memory that high\n");
 314                return NULL;
 315        }
 316
 317        if (!acpi_permanent_mmap)
 318                return __acpi_map_table((unsigned long)phys, size);
 319
 320        mutex_lock(&acpi_ioremap_lock);
 321        /* Check if there's a suitable mapping already. */
 322        map = acpi_map_lookup(phys, size);
 323        if (map) {
 324                map->refcount++;
 325                goto out;
 326        }
 327
 328        map = kzalloc(sizeof(*map), GFP_KERNEL);
 329        if (!map) {
 330                mutex_unlock(&acpi_ioremap_lock);
 331                return NULL;
 332        }
 333
 334        pg_off = round_down(phys, PAGE_SIZE);
 335        pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 336        virt = acpi_map(pg_off, pg_sz);
 337        if (!virt) {
 338                mutex_unlock(&acpi_ioremap_lock);
 339                kfree(map);
 340                return NULL;
 341        }
 342
 343        INIT_LIST_HEAD(&map->list);
 344        map->virt = virt;
 345        map->phys = pg_off;
 346        map->size = pg_sz;
 347        map->refcount = 1;
 348
 349        list_add_tail_rcu(&map->list, &acpi_ioremaps);
 350
 351out:
 352        mutex_unlock(&acpi_ioremap_lock);
 353        return map->virt + (phys - map->phys);
 354}
 355EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
 356
 357void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 358{
 359        return (void *)acpi_os_map_iomem(phys, size);
 360}
 361EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 362
 363static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
 364{
 365        if (!--map->refcount)
 366                list_del_rcu(&map->list);
 367}
 368
 369static void acpi_os_map_cleanup(struct acpi_ioremap *map)
 370{
 371        if (!map->refcount) {
 372                synchronize_rcu_expedited();
 373                acpi_unmap(map->phys, map->virt);
 374                kfree(map);
 375        }
 376}
 377
 378/**
 379 * acpi_os_unmap_iomem - Drop a memory mapping reference.
 380 * @virt: Start of the address range to drop a reference to.
 381 * @size: Size of the address range to drop a reference to.
 382 *
 383 * Look up the given virtual address range in the list of existing ACPI memory
 384 * mappings, drop a reference to it and unmap it if there are no more active
 385 * references to it.
 386 *
 387 * During early init (when acpi_permanent_mmap has not been set yet) this
 388 * routine simply calls __acpi_unmap_table() to get the job done.  Since
 389 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
 390 * here.
 391 */
 392void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
 393{
 394        struct acpi_ioremap *map;
 395
 396        if (!acpi_permanent_mmap) {
 397                __acpi_unmap_table(virt, size);
 398                return;
 399        }
 400
 401        mutex_lock(&acpi_ioremap_lock);
 402        map = acpi_map_lookup_virt(virt, size);
 403        if (!map) {
 404                mutex_unlock(&acpi_ioremap_lock);
 405                WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
 406                return;
 407        }
 408        acpi_os_drop_map_ref(map);
 409        mutex_unlock(&acpi_ioremap_lock);
 410
 411        acpi_os_map_cleanup(map);
 412}
 413EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
 414
 415void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
 416{
 417        return acpi_os_unmap_iomem((void __iomem *)virt, size);
 418}
 419EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 420
 421int acpi_os_map_generic_address(struct acpi_generic_address *gas)
 422{
 423        u64 addr;
 424        void __iomem *virt;
 425
 426        if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 427                return 0;
 428
 429        /* Handle possible alignment issues */
 430        memcpy(&addr, &gas->address, sizeof(addr));
 431        if (!addr || !gas->bit_width)
 432                return -EINVAL;
 433
 434        virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
 435        if (!virt)
 436                return -EIO;
 437
 438        return 0;
 439}
 440EXPORT_SYMBOL(acpi_os_map_generic_address);
 441
 442void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
 443{
 444        u64 addr;
 445        struct acpi_ioremap *map;
 446
 447        if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 448                return;
 449
 450        /* Handle possible alignment issues */
 451        memcpy(&addr, &gas->address, sizeof(addr));
 452        if (!addr || !gas->bit_width)
 453                return;
 454
 455        mutex_lock(&acpi_ioremap_lock);
 456        map = acpi_map_lookup(addr, gas->bit_width / 8);
 457        if (!map) {
 458                mutex_unlock(&acpi_ioremap_lock);
 459                return;
 460        }
 461        acpi_os_drop_map_ref(map);
 462        mutex_unlock(&acpi_ioremap_lock);
 463
 464        acpi_os_map_cleanup(map);
 465}
 466EXPORT_SYMBOL(acpi_os_unmap_generic_address);
 467
 468#ifdef ACPI_FUTURE_USAGE
 469acpi_status
 470acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
 471{
 472        if (!phys || !virt)
 473                return AE_BAD_PARAMETER;
 474
 475        *phys = virt_to_phys(virt);
 476
 477        return AE_OK;
 478}
 479#endif
 480
 481#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
 482static bool acpi_rev_override;
 483
 484int __init acpi_rev_override_setup(char *str)
 485{
 486        acpi_rev_override = true;
 487        return 1;
 488}
 489__setup("acpi_rev_override", acpi_rev_override_setup);
 490#else
 491#define acpi_rev_override       false
 492#endif
 493
 494#define ACPI_MAX_OVERRIDE_LEN 100
 495
 496static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 497
 498acpi_status
 499acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 500                            acpi_string *new_val)
 501{
 502        if (!init_val || !new_val)
 503                return AE_BAD_PARAMETER;
 504
 505        *new_val = NULL;
 506        if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 507                printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
 508                       acpi_os_name);
 509                *new_val = acpi_os_name;
 510        }
 511
 512        if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
 513                printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
 514                *new_val = (char *)5;
 515        }
 516
 517        return AE_OK;
 518}
 519
 520static irqreturn_t acpi_irq(int irq, void *dev_id)
 521{
 522        u32 handled;
 523
 524        handled = (*acpi_irq_handler) (acpi_irq_context);
 525
 526        if (handled) {
 527                acpi_irq_handled++;
 528                return IRQ_HANDLED;
 529        } else {
 530                acpi_irq_not_handled++;
 531                return IRQ_NONE;
 532        }
 533}
 534
 535acpi_status
 536acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 537                                  void *context)
 538{
 539        unsigned int irq;
 540
 541        acpi_irq_stats_init();
 542
 543        /*
 544         * ACPI interrupts different from the SCI in our copy of the FADT are
 545         * not supported.
 546         */
 547        if (gsi != acpi_gbl_FADT.sci_interrupt)
 548                return AE_BAD_PARAMETER;
 549
 550        if (acpi_irq_handler)
 551                return AE_ALREADY_ACQUIRED;
 552
 553        if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 554                printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
 555                       gsi);
 556                return AE_OK;
 557        }
 558
 559        acpi_irq_handler = handler;
 560        acpi_irq_context = context;
 561        if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
 562                printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
 563                acpi_irq_handler = NULL;
 564                return AE_NOT_ACQUIRED;
 565        }
 566        acpi_sci_irq = irq;
 567
 568        return AE_OK;
 569}
 570
 571acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
 572{
 573        if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
 574                return AE_BAD_PARAMETER;
 575
 576        free_irq(acpi_sci_irq, acpi_irq);
 577        acpi_irq_handler = NULL;
 578        acpi_sci_irq = INVALID_ACPI_IRQ;
 579
 580        return AE_OK;
 581}
 582
 583/*
 584 * Running in interpreter thread context, safe to sleep
 585 */
 586
 587void acpi_os_sleep(u64 ms)
 588{
 589        msleep(ms);
 590}
 591
 592void acpi_os_stall(u32 us)
 593{
 594        while (us) {
 595                u32 delay = 1000;
 596
 597                if (delay > us)
 598                        delay = us;
 599                udelay(delay);
 600                touch_nmi_watchdog();
 601                us -= delay;
 602        }
 603}
 604
 605/*
 606 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
 607 * monotonically increasing timer with 100ns granularity. Do not use
 608 * ktime_get() to implement this function because this function may get
 609 * called after timekeeping has been suspended. Note: calling this function
 610 * after timekeeping has been suspended may lead to unexpected results
 611 * because when timekeeping is suspended the jiffies counter is not
 612 * incremented. See also timekeeping_suspend().
 613 */
 614u64 acpi_os_get_timer(void)
 615{
 616        return (get_jiffies_64() - INITIAL_JIFFIES) *
 617                (ACPI_100NSEC_PER_SEC / HZ);
 618}
 619
 620acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
 621{
 622        u32 dummy;
 623
 624        if (!value)
 625                value = &dummy;
 626
 627        *value = 0;
 628        if (width <= 8) {
 629                *(u8 *) value = inb(port);
 630        } else if (width <= 16) {
 631                *(u16 *) value = inw(port);
 632        } else if (width <= 32) {
 633                *(u32 *) value = inl(port);
 634        } else {
 635                BUG();
 636        }
 637
 638        return AE_OK;
 639}
 640
 641EXPORT_SYMBOL(acpi_os_read_port);
 642
 643acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 644{
 645        if (width <= 8) {
 646                outb(value, port);
 647        } else if (width <= 16) {
 648                outw(value, port);
 649        } else if (width <= 32) {
 650                outl(value, port);
 651        } else {
 652                BUG();
 653        }
 654
 655        return AE_OK;
 656}
 657
 658EXPORT_SYMBOL(acpi_os_write_port);
 659
 660int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
 661{
 662
 663        switch (width) {
 664        case 8:
 665                *(u8 *) value = readb(virt_addr);
 666                break;
 667        case 16:
 668                *(u16 *) value = readw(virt_addr);
 669                break;
 670        case 32:
 671                *(u32 *) value = readl(virt_addr);
 672                break;
 673        case 64:
 674                *(u64 *) value = readq(virt_addr);
 675                break;
 676        default:
 677                return -EINVAL;
 678        }
 679
 680        return 0;
 681}
 682
 683acpi_status
 684acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
 685{
 686        void __iomem *virt_addr;
 687        unsigned int size = width / 8;
 688        bool unmap = false;
 689        u64 dummy;
 690        int error;
 691
 692        rcu_read_lock();
 693        virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 694        if (!virt_addr) {
 695                rcu_read_unlock();
 696                virt_addr = acpi_os_ioremap(phys_addr, size);
 697                if (!virt_addr)
 698                        return AE_BAD_ADDRESS;
 699                unmap = true;
 700        }
 701
 702        if (!value)
 703                value = &dummy;
 704
 705        error = acpi_os_read_iomem(virt_addr, value, width);
 706        BUG_ON(error);
 707
 708        if (unmap)
 709                iounmap(virt_addr);
 710        else
 711                rcu_read_unlock();
 712
 713        return AE_OK;
 714}
 715
 716acpi_status
 717acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
 718{
 719        void __iomem *virt_addr;
 720        unsigned int size = width / 8;
 721        bool unmap = false;
 722
 723        rcu_read_lock();
 724        virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 725        if (!virt_addr) {
 726                rcu_read_unlock();
 727                virt_addr = acpi_os_ioremap(phys_addr, size);
 728                if (!virt_addr)
 729                        return AE_BAD_ADDRESS;
 730                unmap = true;
 731        }
 732
 733        switch (width) {
 734        case 8:
 735                writeb(value, virt_addr);
 736                break;
 737        case 16:
 738                writew(value, virt_addr);
 739                break;
 740        case 32:
 741                writel(value, virt_addr);
 742                break;
 743        case 64:
 744                writeq(value, virt_addr);
 745                break;
 746        default:
 747                BUG();
 748        }
 749
 750        if (unmap)
 751                iounmap(virt_addr);
 752        else
 753                rcu_read_unlock();
 754
 755        return AE_OK;
 756}
 757
 758#ifdef CONFIG_PCI
 759acpi_status
 760acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 761                               u64 *value, u32 width)
 762{
 763        int result, size;
 764        u32 value32;
 765
 766        if (!value)
 767                return AE_BAD_PARAMETER;
 768
 769        switch (width) {
 770        case 8:
 771                size = 1;
 772                break;
 773        case 16:
 774                size = 2;
 775                break;
 776        case 32:
 777                size = 4;
 778                break;
 779        default:
 780                return AE_ERROR;
 781        }
 782
 783        result = raw_pci_read(pci_id->segment, pci_id->bus,
 784                                PCI_DEVFN(pci_id->device, pci_id->function),
 785                                reg, size, &value32);
 786        *value = value32;
 787
 788        return (result ? AE_ERROR : AE_OK);
 789}
 790
 791acpi_status
 792acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 793                                u64 value, u32 width)
 794{
 795        int result, size;
 796
 797        switch (width) {
 798        case 8:
 799                size = 1;
 800                break;
 801        case 16:
 802                size = 2;
 803                break;
 804        case 32:
 805                size = 4;
 806                break;
 807        default:
 808                return AE_ERROR;
 809        }
 810
 811        result = raw_pci_write(pci_id->segment, pci_id->bus,
 812                                PCI_DEVFN(pci_id->device, pci_id->function),
 813                                reg, size, value);
 814
 815        return (result ? AE_ERROR : AE_OK);
 816}
 817#endif
 818
 819static void acpi_os_execute_deferred(struct work_struct *work)
 820{
 821        struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 822
 823        dpc->function(dpc->context);
 824        kfree(dpc);
 825}
 826
 827#ifdef CONFIG_ACPI_DEBUGGER
 828static struct acpi_debugger acpi_debugger;
 829static bool acpi_debugger_initialized;
 830
 831int acpi_register_debugger(struct module *owner,
 832                           const struct acpi_debugger_ops *ops)
 833{
 834        int ret = 0;
 835
 836        mutex_lock(&acpi_debugger.lock);
 837        if (acpi_debugger.ops) {
 838                ret = -EBUSY;
 839                goto err_lock;
 840        }
 841
 842        acpi_debugger.owner = owner;
 843        acpi_debugger.ops = ops;
 844
 845err_lock:
 846        mutex_unlock(&acpi_debugger.lock);
 847        return ret;
 848}
 849EXPORT_SYMBOL(acpi_register_debugger);
 850
 851void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
 852{
 853        mutex_lock(&acpi_debugger.lock);
 854        if (ops == acpi_debugger.ops) {
 855                acpi_debugger.ops = NULL;
 856                acpi_debugger.owner = NULL;
 857        }
 858        mutex_unlock(&acpi_debugger.lock);
 859}
 860EXPORT_SYMBOL(acpi_unregister_debugger);
 861
 862int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
 863{
 864        int ret;
 865        int (*func)(acpi_osd_exec_callback, void *);
 866        struct module *owner;
 867
 868        if (!acpi_debugger_initialized)
 869                return -ENODEV;
 870        mutex_lock(&acpi_debugger.lock);
 871        if (!acpi_debugger.ops) {
 872                ret = -ENODEV;
 873                goto err_lock;
 874        }
 875        if (!try_module_get(acpi_debugger.owner)) {
 876                ret = -ENODEV;
 877                goto err_lock;
 878        }
 879        func = acpi_debugger.ops->create_thread;
 880        owner = acpi_debugger.owner;
 881        mutex_unlock(&acpi_debugger.lock);
 882
 883        ret = func(function, context);
 884
 885        mutex_lock(&acpi_debugger.lock);
 886        module_put(owner);
 887err_lock:
 888        mutex_unlock(&acpi_debugger.lock);
 889        return ret;
 890}
 891
 892ssize_t acpi_debugger_write_log(const char *msg)
 893{
 894        ssize_t ret;
 895        ssize_t (*func)(const char *);
 896        struct module *owner;
 897
 898        if (!acpi_debugger_initialized)
 899                return -ENODEV;
 900        mutex_lock(&acpi_debugger.lock);
 901        if (!acpi_debugger.ops) {
 902                ret = -ENODEV;
 903                goto err_lock;
 904        }
 905        if (!try_module_get(acpi_debugger.owner)) {
 906                ret = -ENODEV;
 907                goto err_lock;
 908        }
 909        func = acpi_debugger.ops->write_log;
 910        owner = acpi_debugger.owner;
 911        mutex_unlock(&acpi_debugger.lock);
 912
 913        ret = func(msg);
 914
 915        mutex_lock(&acpi_debugger.lock);
 916        module_put(owner);
 917err_lock:
 918        mutex_unlock(&acpi_debugger.lock);
 919        return ret;
 920}
 921
 922ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
 923{
 924        ssize_t ret;
 925        ssize_t (*func)(char *, size_t);
 926        struct module *owner;
 927
 928        if (!acpi_debugger_initialized)
 929                return -ENODEV;
 930        mutex_lock(&acpi_debugger.lock);
 931        if (!acpi_debugger.ops) {
 932                ret = -ENODEV;
 933                goto err_lock;
 934        }
 935        if (!try_module_get(acpi_debugger.owner)) {
 936                ret = -ENODEV;
 937                goto err_lock;
 938        }
 939        func = acpi_debugger.ops->read_cmd;
 940        owner = acpi_debugger.owner;
 941        mutex_unlock(&acpi_debugger.lock);
 942
 943        ret = func(buffer, buffer_length);
 944
 945        mutex_lock(&acpi_debugger.lock);
 946        module_put(owner);
 947err_lock:
 948        mutex_unlock(&acpi_debugger.lock);
 949        return ret;
 950}
 951
 952int acpi_debugger_wait_command_ready(void)
 953{
 954        int ret;
 955        int (*func)(bool, char *, size_t);
 956        struct module *owner;
 957
 958        if (!acpi_debugger_initialized)
 959                return -ENODEV;
 960        mutex_lock(&acpi_debugger.lock);
 961        if (!acpi_debugger.ops) {
 962                ret = -ENODEV;
 963                goto err_lock;
 964        }
 965        if (!try_module_get(acpi_debugger.owner)) {
 966                ret = -ENODEV;
 967                goto err_lock;
 968        }
 969        func = acpi_debugger.ops->wait_command_ready;
 970        owner = acpi_debugger.owner;
 971        mutex_unlock(&acpi_debugger.lock);
 972
 973        ret = func(acpi_gbl_method_executing,
 974                   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
 975
 976        mutex_lock(&acpi_debugger.lock);
 977        module_put(owner);
 978err_lock:
 979        mutex_unlock(&acpi_debugger.lock);
 980        return ret;
 981}
 982
 983int acpi_debugger_notify_command_complete(void)
 984{
 985        int ret;
 986        int (*func)(void);
 987        struct module *owner;
 988
 989        if (!acpi_debugger_initialized)
 990                return -ENODEV;
 991        mutex_lock(&acpi_debugger.lock);
 992        if (!acpi_debugger.ops) {
 993                ret = -ENODEV;
 994                goto err_lock;
 995        }
 996        if (!try_module_get(acpi_debugger.owner)) {
 997                ret = -ENODEV;
 998                goto err_lock;
 999        }
1000        func = acpi_debugger.ops->notify_command_complete;
1001        owner = acpi_debugger.owner;
1002        mutex_unlock(&acpi_debugger.lock);
1003
1004        ret = func();
1005
1006        mutex_lock(&acpi_debugger.lock);
1007        module_put(owner);
1008err_lock:
1009        mutex_unlock(&acpi_debugger.lock);
1010        return ret;
1011}
1012
1013int __init acpi_debugger_init(void)
1014{
1015        mutex_init(&acpi_debugger.lock);
1016        acpi_debugger_initialized = true;
1017        return 0;
1018}
1019#endif
1020
1021/*******************************************************************************
1022 *
1023 * FUNCTION:    acpi_os_execute
1024 *
1025 * PARAMETERS:  Type               - Type of the callback
1026 *              Function           - Function to be executed
1027 *              Context            - Function parameters
1028 *
1029 * RETURN:      Status
1030 *
1031 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1032 *              immediately executes function on a separate thread.
1033 *
1034 ******************************************************************************/
1035
1036acpi_status acpi_os_execute(acpi_execute_type type,
1037                            acpi_osd_exec_callback function, void *context)
1038{
1039        acpi_status status = AE_OK;
1040        struct acpi_os_dpc *dpc;
1041        struct workqueue_struct *queue;
1042        int ret;
1043        ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1044                          "Scheduling function [%p(%p)] for deferred execution.\n",
1045                          function, context));
1046
1047        if (type == OSL_DEBUGGER_MAIN_THREAD) {
1048                ret = acpi_debugger_create_thread(function, context);
1049                if (ret) {
1050                        pr_err("Call to kthread_create() failed.\n");
1051                        status = AE_ERROR;
1052                }
1053                goto out_thread;
1054        }
1055
1056        /*
1057         * Allocate/initialize DPC structure.  Note that this memory will be
1058         * freed by the callee.  The kernel handles the work_struct list  in a
1059         * way that allows us to also free its memory inside the callee.
1060         * Because we may want to schedule several tasks with different
1061         * parameters we can't use the approach some kernel code uses of
1062         * having a static work_struct.
1063         */
1064
1065        dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1066        if (!dpc)
1067                return AE_NO_MEMORY;
1068
1069        dpc->function = function;
1070        dpc->context = context;
1071
1072        /*
1073         * To prevent lockdep from complaining unnecessarily, make sure that
1074         * there is a different static lockdep key for each workqueue by using
1075         * INIT_WORK() for each of them separately.
1076         */
1077        if (type == OSL_NOTIFY_HANDLER) {
1078                queue = kacpi_notify_wq;
1079                INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1080        } else if (type == OSL_GPE_HANDLER) {
1081                queue = kacpid_wq;
1082                INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1083        } else {
1084                pr_err("Unsupported os_execute type %d.\n", type);
1085                status = AE_ERROR;
1086        }
1087
1088        if (ACPI_FAILURE(status))
1089                goto err_workqueue;
1090
1091        /*
1092         * On some machines, a software-initiated SMI causes corruption unless
1093         * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1094         * typically it's done in GPE-related methods that are run via
1095         * workqueues, so we can avoid the known corruption cases by always
1096         * queueing on CPU 0.
1097         */
1098        ret = queue_work_on(0, queue, &dpc->work);
1099        if (!ret) {
1100                printk(KERN_ERR PREFIX
1101                          "Call to queue_work() failed.\n");
1102                status = AE_ERROR;
1103        }
1104err_workqueue:
1105        if (ACPI_FAILURE(status))
1106                kfree(dpc);
1107out_thread:
1108        return status;
1109}
1110EXPORT_SYMBOL(acpi_os_execute);
1111
1112void acpi_os_wait_events_complete(void)
1113{
1114        /*
1115         * Make sure the GPE handler or the fixed event handler is not used
1116         * on another CPU after removal.
1117         */
1118        if (acpi_sci_irq_valid())
1119                synchronize_hardirq(acpi_sci_irq);
1120        flush_workqueue(kacpid_wq);
1121        flush_workqueue(kacpi_notify_wq);
1122}
1123EXPORT_SYMBOL(acpi_os_wait_events_complete);
1124
1125struct acpi_hp_work {
1126        struct work_struct work;
1127        struct acpi_device *adev;
1128        u32 src;
1129};
1130
1131static void acpi_hotplug_work_fn(struct work_struct *work)
1132{
1133        struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1134
1135        acpi_os_wait_events_complete();
1136        acpi_device_hotplug(hpw->adev, hpw->src);
1137        kfree(hpw);
1138}
1139
1140acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1141{
1142        struct acpi_hp_work *hpw;
1143
1144        ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1145                  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1146                  adev, src));
1147
1148        hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1149        if (!hpw)
1150                return AE_NO_MEMORY;
1151
1152        INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1153        hpw->adev = adev;
1154        hpw->src = src;
1155        /*
1156         * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1157         * the hotplug code may call driver .remove() functions, which may
1158         * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1159         * these workqueues.
1160         */
1161        if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1162                kfree(hpw);
1163                return AE_ERROR;
1164        }
1165        return AE_OK;
1166}
1167
1168bool acpi_queue_hotplug_work(struct work_struct *work)
1169{
1170        return queue_work(kacpi_hotplug_wq, work);
1171}
1172
1173acpi_status
1174acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1175{
1176        struct semaphore *sem = NULL;
1177
1178        sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1179        if (!sem)
1180                return AE_NO_MEMORY;
1181
1182        sema_init(sem, initial_units);
1183
1184        *handle = (acpi_handle *) sem;
1185
1186        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1187                          *handle, initial_units));
1188
1189        return AE_OK;
1190}
1191
1192/*
1193 * TODO: A better way to delete semaphores?  Linux doesn't have a
1194 * 'delete_semaphore()' function -- may result in an invalid
1195 * pointer dereference for non-synchronized consumers.  Should
1196 * we at least check for blocked threads and signal/cancel them?
1197 */
1198
1199acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1200{
1201        struct semaphore *sem = (struct semaphore *)handle;
1202
1203        if (!sem)
1204                return AE_BAD_PARAMETER;
1205
1206        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1207
1208        BUG_ON(!list_empty(&sem->wait_list));
1209        kfree(sem);
1210        sem = NULL;
1211
1212        return AE_OK;
1213}
1214
1215/*
1216 * TODO: Support for units > 1?
1217 */
1218acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1219{
1220        acpi_status status = AE_OK;
1221        struct semaphore *sem = (struct semaphore *)handle;
1222        long jiffies;
1223        int ret = 0;
1224
1225        if (!acpi_os_initialized)
1226                return AE_OK;
1227
1228        if (!sem || (units < 1))
1229                return AE_BAD_PARAMETER;
1230
1231        if (units > 1)
1232                return AE_SUPPORT;
1233
1234        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1235                          handle, units, timeout));
1236
1237        if (timeout == ACPI_WAIT_FOREVER)
1238                jiffies = MAX_SCHEDULE_TIMEOUT;
1239        else
1240                jiffies = msecs_to_jiffies(timeout);
1241
1242        ret = down_timeout(sem, jiffies);
1243        if (ret)
1244                status = AE_TIME;
1245
1246        if (ACPI_FAILURE(status)) {
1247                ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1248                                  "Failed to acquire semaphore[%p|%d|%d], %s",
1249                                  handle, units, timeout,
1250                                  acpi_format_exception(status)));
1251        } else {
1252                ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1253                                  "Acquired semaphore[%p|%d|%d]", handle,
1254                                  units, timeout));
1255        }
1256
1257        return status;
1258}
1259
1260/*
1261 * TODO: Support for units > 1?
1262 */
1263acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1264{
1265        struct semaphore *sem = (struct semaphore *)handle;
1266
1267        if (!acpi_os_initialized)
1268                return AE_OK;
1269
1270        if (!sem || (units < 1))
1271                return AE_BAD_PARAMETER;
1272
1273        if (units > 1)
1274                return AE_SUPPORT;
1275
1276        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1277                          units));
1278
1279        up(sem);
1280
1281        return AE_OK;
1282}
1283
1284acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1285{
1286#ifdef ENABLE_DEBUGGER
1287        if (acpi_in_debugger) {
1288                u32 chars;
1289
1290                kdb_read(buffer, buffer_length);
1291
1292                /* remove the CR kdb includes */
1293                chars = strlen(buffer) - 1;
1294                buffer[chars] = '\0';
1295        }
1296#else
1297        int ret;
1298
1299        ret = acpi_debugger_read_cmd(buffer, buffer_length);
1300        if (ret < 0)
1301                return AE_ERROR;
1302        if (bytes_read)
1303                *bytes_read = ret;
1304#endif
1305
1306        return AE_OK;
1307}
1308EXPORT_SYMBOL(acpi_os_get_line);
1309
1310acpi_status acpi_os_wait_command_ready(void)
1311{
1312        int ret;
1313
1314        ret = acpi_debugger_wait_command_ready();
1315        if (ret < 0)
1316                return AE_ERROR;
1317        return AE_OK;
1318}
1319
1320acpi_status acpi_os_notify_command_complete(void)
1321{
1322        int ret;
1323
1324        ret = acpi_debugger_notify_command_complete();
1325        if (ret < 0)
1326                return AE_ERROR;
1327        return AE_OK;
1328}
1329
1330acpi_status acpi_os_signal(u32 function, void *info)
1331{
1332        switch (function) {
1333        case ACPI_SIGNAL_FATAL:
1334                printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1335                break;
1336        case ACPI_SIGNAL_BREAKPOINT:
1337                /*
1338                 * AML Breakpoint
1339                 * ACPI spec. says to treat it as a NOP unless
1340                 * you are debugging.  So if/when we integrate
1341                 * AML debugger into the kernel debugger its
1342                 * hook will go here.  But until then it is
1343                 * not useful to print anything on breakpoints.
1344                 */
1345                break;
1346        default:
1347                break;
1348        }
1349
1350        return AE_OK;
1351}
1352
1353static int __init acpi_os_name_setup(char *str)
1354{
1355        char *p = acpi_os_name;
1356        int count = ACPI_MAX_OVERRIDE_LEN - 1;
1357
1358        if (!str || !*str)
1359                return 0;
1360
1361        for (; count-- && *str; str++) {
1362                if (isalnum(*str) || *str == ' ' || *str == ':')
1363                        *p++ = *str;
1364                else if (*str == '\'' || *str == '"')
1365                        continue;
1366                else
1367                        break;
1368        }
1369        *p = 0;
1370
1371        return 1;
1372
1373}
1374
1375__setup("acpi_os_name=", acpi_os_name_setup);
1376
1377/*
1378 * Disable the auto-serialization of named objects creation methods.
1379 *
1380 * This feature is enabled by default.  It marks the AML control methods
1381 * that contain the opcodes to create named objects as "Serialized".
1382 */
1383static int __init acpi_no_auto_serialize_setup(char *str)
1384{
1385        acpi_gbl_auto_serialize_methods = FALSE;
1386        pr_info("ACPI: auto-serialization disabled\n");
1387
1388        return 1;
1389}
1390
1391__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1392
1393/* Check of resource interference between native drivers and ACPI
1394 * OperationRegions (SystemIO and System Memory only).
1395 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1396 * in arbitrary AML code and can interfere with legacy drivers.
1397 * acpi_enforce_resources= can be set to:
1398 *
1399 *   - strict (default) (2)
1400 *     -> further driver trying to access the resources will not load
1401 *   - lax              (1)
1402 *     -> further driver trying to access the resources will load, but you
1403 *     get a system message that something might go wrong...
1404 *
1405 *   - no               (0)
1406 *     -> ACPI Operation Region resources will not be registered
1407 *
1408 */
1409#define ENFORCE_RESOURCES_STRICT 2
1410#define ENFORCE_RESOURCES_LAX    1
1411#define ENFORCE_RESOURCES_NO     0
1412
1413static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1414
1415static int __init acpi_enforce_resources_setup(char *str)
1416{
1417        if (str == NULL || *str == '\0')
1418                return 0;
1419
1420        if (!strcmp("strict", str))
1421                acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1422        else if (!strcmp("lax", str))
1423                acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1424        else if (!strcmp("no", str))
1425                acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1426
1427        return 1;
1428}
1429
1430__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1431
1432/* Check for resource conflicts between ACPI OperationRegions and native
1433 * drivers */
1434int acpi_check_resource_conflict(const struct resource *res)
1435{
1436        acpi_adr_space_type space_id;
1437        acpi_size length;
1438        u8 warn = 0;
1439        int clash = 0;
1440
1441        if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1442                return 0;
1443        if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1444                return 0;
1445
1446        if (res->flags & IORESOURCE_IO)
1447                space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1448        else
1449                space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1450
1451        length = resource_size(res);
1452        if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1453                warn = 1;
1454        clash = acpi_check_address_range(space_id, res->start, length, warn);
1455
1456        if (clash) {
1457                if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1458                        if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1459                                printk(KERN_NOTICE "ACPI: This conflict may"
1460                                       " cause random problems and system"
1461                                       " instability\n");
1462                        printk(KERN_INFO "ACPI: If an ACPI driver is available"
1463                               " for this device, you should use it instead of"
1464                               " the native driver\n");
1465                }
1466                if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1467                        return -EBUSY;
1468        }
1469        return 0;
1470}
1471EXPORT_SYMBOL(acpi_check_resource_conflict);
1472
1473int acpi_check_region(resource_size_t start, resource_size_t n,
1474                      const char *name)
1475{
1476        struct resource res = {
1477                .start = start,
1478                .end   = start + n - 1,
1479                .name  = name,
1480                .flags = IORESOURCE_IO,
1481        };
1482
1483        return acpi_check_resource_conflict(&res);
1484}
1485EXPORT_SYMBOL(acpi_check_region);
1486
1487static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1488                                              void *_res, void **return_value)
1489{
1490        struct acpi_mem_space_context **mem_ctx;
1491        union acpi_operand_object *handler_obj;
1492        union acpi_operand_object *region_obj2;
1493        union acpi_operand_object *region_obj;
1494        struct resource *res = _res;
1495        acpi_status status;
1496
1497        region_obj = acpi_ns_get_attached_object(handle);
1498        if (!region_obj)
1499                return AE_OK;
1500
1501        handler_obj = region_obj->region.handler;
1502        if (!handler_obj)
1503                return AE_OK;
1504
1505        if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1506                return AE_OK;
1507
1508        if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1509                return AE_OK;
1510
1511        region_obj2 = acpi_ns_get_secondary_object(region_obj);
1512        if (!region_obj2)
1513                return AE_OK;
1514
1515        mem_ctx = (void *)&region_obj2->extra.region_context;
1516
1517        if (!(mem_ctx[0]->address >= res->start &&
1518              mem_ctx[0]->address < res->end))
1519                return AE_OK;
1520
1521        status = handler_obj->address_space.setup(region_obj,
1522                                                  ACPI_REGION_DEACTIVATE,
1523                                                  NULL, (void **)mem_ctx);
1524        if (ACPI_SUCCESS(status))
1525                region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1526
1527        return status;
1528}
1529
1530/**
1531 * acpi_release_memory - Release any mappings done to a memory region
1532 * @handle: Handle to namespace node
1533 * @res: Memory resource
1534 * @level: A level that terminates the search
1535 *
1536 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1537 * overlap with @res and that have already been activated (mapped).
1538 *
1539 * This is a helper that allows drivers to place special requirements on memory
1540 * region that may overlap with operation regions, primarily allowing them to
1541 * safely map the region as non-cached memory.
1542 *
1543 * The unmapped Operation Regions will be automatically remapped next time they
1544 * are called, so the drivers do not need to do anything else.
1545 */
1546acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1547                                u32 level)
1548{
1549        if (!(res->flags & IORESOURCE_MEM))
1550                return AE_TYPE;
1551
1552        return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1553                                   acpi_deactivate_mem_region, NULL, res, NULL);
1554}
1555EXPORT_SYMBOL_GPL(acpi_release_memory);
1556
1557/*
1558 * Let drivers know whether the resource checks are effective
1559 */
1560int acpi_resources_are_enforced(void)
1561{
1562        return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1563}
1564EXPORT_SYMBOL(acpi_resources_are_enforced);
1565
1566/*
1567 * Deallocate the memory for a spinlock.
1568 */
1569void acpi_os_delete_lock(acpi_spinlock handle)
1570{
1571        ACPI_FREE(handle);
1572}
1573
1574/*
1575 * Acquire a spinlock.
1576 *
1577 * handle is a pointer to the spinlock_t.
1578 */
1579
1580acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1581{
1582        acpi_cpu_flags flags;
1583        spin_lock_irqsave(lockp, flags);
1584        return flags;
1585}
1586
1587/*
1588 * Release a spinlock. See above.
1589 */
1590
1591void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1592{
1593        spin_unlock_irqrestore(lockp, flags);
1594}
1595
1596#ifndef ACPI_USE_LOCAL_CACHE
1597
1598/*******************************************************************************
1599 *
1600 * FUNCTION:    acpi_os_create_cache
1601 *
1602 * PARAMETERS:  name      - Ascii name for the cache
1603 *              size      - Size of each cached object
1604 *              depth     - Maximum depth of the cache (in objects) <ignored>
1605 *              cache     - Where the new cache object is returned
1606 *
1607 * RETURN:      status
1608 *
1609 * DESCRIPTION: Create a cache object
1610 *
1611 ******************************************************************************/
1612
1613acpi_status
1614acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1615{
1616        *cache = kmem_cache_create(name, size, 0, 0, NULL);
1617        if (*cache == NULL)
1618                return AE_ERROR;
1619        else
1620                return AE_OK;
1621}
1622
1623/*******************************************************************************
1624 *
1625 * FUNCTION:    acpi_os_purge_cache
1626 *
1627 * PARAMETERS:  Cache           - Handle to cache object
1628 *
1629 * RETURN:      Status
1630 *
1631 * DESCRIPTION: Free all objects within the requested cache.
1632 *
1633 ******************************************************************************/
1634
1635acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1636{
1637        kmem_cache_shrink(cache);
1638        return (AE_OK);
1639}
1640
1641/*******************************************************************************
1642 *
1643 * FUNCTION:    acpi_os_delete_cache
1644 *
1645 * PARAMETERS:  Cache           - Handle to cache object
1646 *
1647 * RETURN:      Status
1648 *
1649 * DESCRIPTION: Free all objects within the requested cache and delete the
1650 *              cache object.
1651 *
1652 ******************************************************************************/
1653
1654acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1655{
1656        kmem_cache_destroy(cache);
1657        return (AE_OK);
1658}
1659
1660/*******************************************************************************
1661 *
1662 * FUNCTION:    acpi_os_release_object
1663 *
1664 * PARAMETERS:  Cache       - Handle to cache object
1665 *              Object      - The object to be released
1666 *
1667 * RETURN:      None
1668 *
1669 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1670 *              the object is deleted.
1671 *
1672 ******************************************************************************/
1673
1674acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1675{
1676        kmem_cache_free(cache, object);
1677        return (AE_OK);
1678}
1679#endif
1680
1681static int __init acpi_no_static_ssdt_setup(char *s)
1682{
1683        acpi_gbl_disable_ssdt_table_install = TRUE;
1684        pr_info("ACPI: static SSDT installation disabled\n");
1685
1686        return 0;
1687}
1688
1689early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1690
1691static int __init acpi_disable_return_repair(char *s)
1692{
1693        printk(KERN_NOTICE PREFIX
1694               "ACPI: Predefined validation mechanism disabled\n");
1695        acpi_gbl_disable_auto_repair = TRUE;
1696
1697        return 1;
1698}
1699
1700__setup("acpica_no_return_repair", acpi_disable_return_repair);
1701
1702acpi_status __init acpi_os_initialize(void)
1703{
1704        acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1705        acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1706        acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1707        acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1708        if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1709                /*
1710                 * Use acpi_os_map_generic_address to pre-map the reset
1711                 * register if it's in system memory.
1712                 */
1713                int rv;
1714
1715                rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1716                pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1717        }
1718        acpi_os_initialized = true;
1719
1720        return AE_OK;
1721}
1722
1723acpi_status __init acpi_os_initialize1(void)
1724{
1725        kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1726        kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1727        kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1728        BUG_ON(!kacpid_wq);
1729        BUG_ON(!kacpi_notify_wq);
1730        BUG_ON(!kacpi_hotplug_wq);
1731        acpi_osi_init();
1732        return AE_OK;
1733}
1734
1735acpi_status acpi_os_terminate(void)
1736{
1737        if (acpi_irq_handler) {
1738                acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1739                                                 acpi_irq_handler);
1740        }
1741
1742        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1743        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1744        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1745        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1746        if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1747                acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1748
1749        destroy_workqueue(kacpid_wq);
1750        destroy_workqueue(kacpi_notify_wq);
1751        destroy_workqueue(kacpi_hotplug_wq);
1752
1753        return AE_OK;
1754}
1755
1756acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1757                                  u32 pm1b_control)
1758{
1759        int rc = 0;
1760        if (__acpi_os_prepare_sleep)
1761                rc = __acpi_os_prepare_sleep(sleep_state,
1762                                             pm1a_control, pm1b_control);
1763        if (rc < 0)
1764                return AE_ERROR;
1765        else if (rc > 0)
1766                return AE_CTRL_TERMINATE;
1767
1768        return AE_OK;
1769}
1770
1771void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1772                               u32 pm1a_ctrl, u32 pm1b_ctrl))
1773{
1774        __acpi_os_prepare_sleep = func;
1775}
1776
1777#if (ACPI_REDUCED_HARDWARE)
1778acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1779                                  u32 val_b)
1780{
1781        int rc = 0;
1782        if (__acpi_os_prepare_extended_sleep)
1783                rc = __acpi_os_prepare_extended_sleep(sleep_state,
1784                                             val_a, val_b);
1785        if (rc < 0)
1786                return AE_ERROR;
1787        else if (rc > 0)
1788                return AE_CTRL_TERMINATE;
1789
1790        return AE_OK;
1791}
1792#else
1793acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1794                                  u32 val_b)
1795{
1796        return AE_OK;
1797}
1798#endif
1799
1800void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1801                               u32 val_a, u32 val_b))
1802{
1803        __acpi_os_prepare_extended_sleep = func;
1804}
1805
1806acpi_status acpi_os_enter_sleep(u8 sleep_state,
1807                                u32 reg_a_value, u32 reg_b_value)
1808{
1809        acpi_status status;
1810
1811        if (acpi_gbl_reduced_hardware)
1812                status = acpi_os_prepare_extended_sleep(sleep_state,
1813                                                        reg_a_value,
1814                                                        reg_b_value);
1815        else
1816                status = acpi_os_prepare_sleep(sleep_state,
1817                                               reg_a_value, reg_b_value);
1818        return status;
1819}
1820