linux/drivers/acpi/pptt.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * pptt.c - parsing of Processor Properties Topology Table (PPTT)
   4 *
   5 * Copyright (C) 2018, ARM
   6 *
   7 * This file implements parsing of the Processor Properties Topology Table
   8 * which is optionally used to describe the processor and cache topology.
   9 * Due to the relative pointers used throughout the table, this doesn't
  10 * leverage the existing subtable parsing in the kernel.
  11 *
  12 * The PPTT structure is an inverted tree, with each node potentially
  13 * holding one or two inverted tree data structures describing
  14 * the caches available at that level. Each cache structure optionally
  15 * contains properties describing the cache at a given level which can be
  16 * used to override hardware probed values.
  17 */
  18#define pr_fmt(fmt) "ACPI PPTT: " fmt
  19
  20#include <linux/acpi.h>
  21#include <linux/cacheinfo.h>
  22#include <acpi/processor.h>
  23
  24static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
  25                                                        u32 pptt_ref)
  26{
  27        struct acpi_subtable_header *entry;
  28
  29        /* there isn't a subtable at reference 0 */
  30        if (pptt_ref < sizeof(struct acpi_subtable_header))
  31                return NULL;
  32
  33        if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
  34                return NULL;
  35
  36        entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
  37
  38        if (entry->length == 0)
  39                return NULL;
  40
  41        if (pptt_ref + entry->length > table_hdr->length)
  42                return NULL;
  43
  44        return entry;
  45}
  46
  47static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
  48                                                   u32 pptt_ref)
  49{
  50        return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
  51}
  52
  53static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
  54                                                u32 pptt_ref)
  55{
  56        return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
  57}
  58
  59static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
  60                                                           struct acpi_pptt_processor *node,
  61                                                           int resource)
  62{
  63        u32 *ref;
  64
  65        if (resource >= node->number_of_priv_resources)
  66                return NULL;
  67
  68        ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
  69        ref += resource;
  70
  71        return fetch_pptt_subtable(table_hdr, *ref);
  72}
  73
  74static inline bool acpi_pptt_match_type(int table_type, int type)
  75{
  76        return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
  77                table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
  78}
  79
  80/**
  81 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
  82 * @table_hdr: Pointer to the head of the PPTT table
  83 * @local_level: passed res reflects this cache level
  84 * @res: cache resource in the PPTT we want to walk
  85 * @found: returns a pointer to the requested level if found
  86 * @level: the requested cache level
  87 * @type: the requested cache type
  88 *
  89 * Attempt to find a given cache level, while counting the max number
  90 * of cache levels for the cache node.
  91 *
  92 * Given a pptt resource, verify that it is a cache node, then walk
  93 * down each level of caches, counting how many levels are found
  94 * as well as checking the cache type (icache, dcache, unified). If a
  95 * level & type match, then we set found, and continue the search.
  96 * Once the entire cache branch has been walked return its max
  97 * depth.
  98 *
  99 * Return: The cache structure and the level we terminated with.
 100 */
 101static int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
 102                                int local_level,
 103                                struct acpi_subtable_header *res,
 104                                struct acpi_pptt_cache **found,
 105                                int level, int type)
 106{
 107        struct acpi_pptt_cache *cache;
 108
 109        if (res->type != ACPI_PPTT_TYPE_CACHE)
 110                return 0;
 111
 112        cache = (struct acpi_pptt_cache *) res;
 113        while (cache) {
 114                local_level++;
 115
 116                if (local_level == level &&
 117                    cache->flags & ACPI_PPTT_CACHE_TYPE_VALID &&
 118                    acpi_pptt_match_type(cache->attributes, type)) {
 119                        if (*found != NULL && cache != *found)
 120                                pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
 121
 122                        pr_debug("Found cache @ level %d\n", level);
 123                        *found = cache;
 124                        /*
 125                         * continue looking at this node's resource list
 126                         * to verify that we don't find a duplicate
 127                         * cache node.
 128                         */
 129                }
 130                cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
 131        }
 132        return local_level;
 133}
 134
 135static struct acpi_pptt_cache *acpi_find_cache_level(struct acpi_table_header *table_hdr,
 136                                                     struct acpi_pptt_processor *cpu_node,
 137                                                     int *starting_level, int level,
 138                                                     int type)
 139{
 140        struct acpi_subtable_header *res;
 141        int number_of_levels = *starting_level;
 142        int resource = 0;
 143        struct acpi_pptt_cache *ret = NULL;
 144        int local_level;
 145
 146        /* walk down from processor node */
 147        while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
 148                resource++;
 149
 150                local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
 151                                                   res, &ret, level, type);
 152                /*
 153                 * we are looking for the max depth. Since its potentially
 154                 * possible for a given node to have resources with differing
 155                 * depths verify that the depth we have found is the largest.
 156                 */
 157                if (number_of_levels < local_level)
 158                        number_of_levels = local_level;
 159        }
 160        if (number_of_levels > *starting_level)
 161                *starting_level = number_of_levels;
 162
 163        return ret;
 164}
 165
 166/**
 167 * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches
 168 * @table_hdr: Pointer to the head of the PPTT table
 169 * @cpu_node: processor node we wish to count caches for
 170 *
 171 * Given a processor node containing a processing unit, walk into it and count
 172 * how many levels exist solely for it, and then walk up each level until we hit
 173 * the root node (ignore the package level because it may be possible to have
 174 * caches that exist across packages). Count the number of cache levels that
 175 * exist at each level on the way up.
 176 *
 177 * Return: Total number of levels found.
 178 */
 179static int acpi_count_levels(struct acpi_table_header *table_hdr,
 180                             struct acpi_pptt_processor *cpu_node)
 181{
 182        int total_levels = 0;
 183
 184        do {
 185                acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
 186                cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
 187        } while (cpu_node);
 188
 189        return total_levels;
 190}
 191
 192/**
 193 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
 194 * @table_hdr: Pointer to the head of the PPTT table
 195 * @node: passed node is checked to see if its a leaf
 196 *
 197 * Determine if the *node parameter is a leaf node by iterating the
 198 * PPTT table, looking for nodes which reference it.
 199 *
 200 * Return: 0 if we find a node referencing the passed node (or table error),
 201 * or 1 if we don't.
 202 */
 203static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
 204                               struct acpi_pptt_processor *node)
 205{
 206        struct acpi_subtable_header *entry;
 207        unsigned long table_end;
 208        u32 node_entry;
 209        struct acpi_pptt_processor *cpu_node;
 210        u32 proc_sz;
 211
 212        if (table_hdr->revision > 1)
 213                return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);
 214
 215        table_end = (unsigned long)table_hdr + table_hdr->length;
 216        node_entry = ACPI_PTR_DIFF(node, table_hdr);
 217        entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
 218                             sizeof(struct acpi_table_pptt));
 219        proc_sz = sizeof(struct acpi_pptt_processor *);
 220
 221        while ((unsigned long)entry + proc_sz < table_end) {
 222                cpu_node = (struct acpi_pptt_processor *)entry;
 223                if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
 224                    cpu_node->parent == node_entry)
 225                        return 0;
 226                if (entry->length == 0)
 227                        return 0;
 228                entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
 229                                     entry->length);
 230
 231        }
 232        return 1;
 233}
 234
 235/**
 236 * acpi_find_processor_node() - Given a PPTT table find the requested processor
 237 * @table_hdr:  Pointer to the head of the PPTT table
 238 * @acpi_cpu_id: CPU we are searching for
 239 *
 240 * Find the subtable entry describing the provided processor.
 241 * This is done by iterating the PPTT table looking for processor nodes
 242 * which have an acpi_processor_id that matches the acpi_cpu_id parameter
 243 * passed into the function. If we find a node that matches this criteria
 244 * we verify that its a leaf node in the topology rather than depending
 245 * on the valid flag, which doesn't need to be set for leaf nodes.
 246 *
 247 * Return: NULL, or the processors acpi_pptt_processor*
 248 */
 249static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
 250                                                            u32 acpi_cpu_id)
 251{
 252        struct acpi_subtable_header *entry;
 253        unsigned long table_end;
 254        struct acpi_pptt_processor *cpu_node;
 255        u32 proc_sz;
 256
 257        table_end = (unsigned long)table_hdr + table_hdr->length;
 258        entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
 259                             sizeof(struct acpi_table_pptt));
 260        proc_sz = sizeof(struct acpi_pptt_processor *);
 261
 262        /* find the processor structure associated with this cpuid */
 263        while ((unsigned long)entry + proc_sz < table_end) {
 264                cpu_node = (struct acpi_pptt_processor *)entry;
 265
 266                if (entry->length == 0) {
 267                        pr_warn("Invalid zero length subtable\n");
 268                        break;
 269                }
 270                if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
 271                    acpi_cpu_id == cpu_node->acpi_processor_id &&
 272                     acpi_pptt_leaf_node(table_hdr, cpu_node)) {
 273                        return (struct acpi_pptt_processor *)entry;
 274                }
 275
 276                entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
 277                                     entry->length);
 278        }
 279
 280        return NULL;
 281}
 282
 283static int acpi_find_cache_levels(struct acpi_table_header *table_hdr,
 284                                  u32 acpi_cpu_id)
 285{
 286        int number_of_levels = 0;
 287        struct acpi_pptt_processor *cpu;
 288
 289        cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
 290        if (cpu)
 291                number_of_levels = acpi_count_levels(table_hdr, cpu);
 292
 293        return number_of_levels;
 294}
 295
 296static u8 acpi_cache_type(enum cache_type type)
 297{
 298        switch (type) {
 299        case CACHE_TYPE_DATA:
 300                pr_debug("Looking for data cache\n");
 301                return ACPI_PPTT_CACHE_TYPE_DATA;
 302        case CACHE_TYPE_INST:
 303                pr_debug("Looking for instruction cache\n");
 304                return ACPI_PPTT_CACHE_TYPE_INSTR;
 305        default:
 306        case CACHE_TYPE_UNIFIED:
 307                pr_debug("Looking for unified cache\n");
 308                /*
 309                 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
 310                 * contains the bit pattern that will match both
 311                 * ACPI unified bit patterns because we use it later
 312                 * to match both cases.
 313                 */
 314                return ACPI_PPTT_CACHE_TYPE_UNIFIED;
 315        }
 316}
 317
 318static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
 319                                                    u32 acpi_cpu_id,
 320                                                    enum cache_type type,
 321                                                    unsigned int level,
 322                                                    struct acpi_pptt_processor **node)
 323{
 324        int total_levels = 0;
 325        struct acpi_pptt_cache *found = NULL;
 326        struct acpi_pptt_processor *cpu_node;
 327        u8 acpi_type = acpi_cache_type(type);
 328
 329        pr_debug("Looking for CPU %d's level %d cache type %d\n",
 330                 acpi_cpu_id, level, acpi_type);
 331
 332        cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
 333
 334        while (cpu_node && !found) {
 335                found = acpi_find_cache_level(table_hdr, cpu_node,
 336                                              &total_levels, level, acpi_type);
 337                *node = cpu_node;
 338                cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
 339        }
 340
 341        return found;
 342}
 343
 344/**
 345 * update_cache_properties() - Update cacheinfo for the given processor
 346 * @this_leaf: Kernel cache info structure being updated
 347 * @found_cache: The PPTT node describing this cache instance
 348 * @cpu_node: A unique reference to describe this cache instance
 349 *
 350 * The ACPI spec implies that the fields in the cache structures are used to
 351 * extend and correct the information probed from the hardware. Lets only
 352 * set fields that we determine are VALID.
 353 *
 354 * Return: nothing. Side effect of updating the global cacheinfo
 355 */
 356static void update_cache_properties(struct cacheinfo *this_leaf,
 357                                    struct acpi_pptt_cache *found_cache,
 358                                    struct acpi_pptt_processor *cpu_node)
 359{
 360        this_leaf->fw_token = cpu_node;
 361        if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
 362                this_leaf->size = found_cache->size;
 363        if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
 364                this_leaf->coherency_line_size = found_cache->line_size;
 365        if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
 366                this_leaf->number_of_sets = found_cache->number_of_sets;
 367        if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
 368                this_leaf->ways_of_associativity = found_cache->associativity;
 369        if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
 370                switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
 371                case ACPI_PPTT_CACHE_POLICY_WT:
 372                        this_leaf->attributes = CACHE_WRITE_THROUGH;
 373                        break;
 374                case ACPI_PPTT_CACHE_POLICY_WB:
 375                        this_leaf->attributes = CACHE_WRITE_BACK;
 376                        break;
 377                }
 378        }
 379        if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
 380                switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
 381                case ACPI_PPTT_CACHE_READ_ALLOCATE:
 382                        this_leaf->attributes |= CACHE_READ_ALLOCATE;
 383                        break;
 384                case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
 385                        this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
 386                        break;
 387                case ACPI_PPTT_CACHE_RW_ALLOCATE:
 388                case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
 389                        this_leaf->attributes |=
 390                                CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
 391                        break;
 392                }
 393        }
 394        /*
 395         * If cache type is NOCACHE, then the cache hasn't been specified
 396         * via other mechanisms.  Update the type if a cache type has been
 397         * provided.
 398         *
 399         * Note, we assume such caches are unified based on conventional system
 400         * design and known examples.  Significant work is required elsewhere to
 401         * fully support data/instruction only type caches which are only
 402         * specified in PPTT.
 403         */
 404        if (this_leaf->type == CACHE_TYPE_NOCACHE &&
 405            found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
 406                this_leaf->type = CACHE_TYPE_UNIFIED;
 407}
 408
 409static void cache_setup_acpi_cpu(struct acpi_table_header *table,
 410                                 unsigned int cpu)
 411{
 412        struct acpi_pptt_cache *found_cache;
 413        struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
 414        u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
 415        struct cacheinfo *this_leaf;
 416        unsigned int index = 0;
 417        struct acpi_pptt_processor *cpu_node = NULL;
 418
 419        while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
 420                this_leaf = this_cpu_ci->info_list + index;
 421                found_cache = acpi_find_cache_node(table, acpi_cpu_id,
 422                                                   this_leaf->type,
 423                                                   this_leaf->level,
 424                                                   &cpu_node);
 425                pr_debug("found = %p %p\n", found_cache, cpu_node);
 426                if (found_cache)
 427                        update_cache_properties(this_leaf,
 428                                                found_cache,
 429                                                cpu_node);
 430
 431                index++;
 432        }
 433}
 434
 435static bool flag_identical(struct acpi_table_header *table_hdr,
 436                           struct acpi_pptt_processor *cpu)
 437{
 438        struct acpi_pptt_processor *next;
 439
 440        /* heterogeneous machines must use PPTT revision > 1 */
 441        if (table_hdr->revision < 2)
 442                return false;
 443
 444        /* Locate the last node in the tree with IDENTICAL set */
 445        if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
 446                next = fetch_pptt_node(table_hdr, cpu->parent);
 447                if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
 448                        return true;
 449        }
 450
 451        return false;
 452}
 453
 454/* Passing level values greater than this will result in search termination */
 455#define PPTT_ABORT_PACKAGE 0xFF
 456
 457static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
 458                                                           struct acpi_pptt_processor *cpu,
 459                                                           int level, int flag)
 460{
 461        struct acpi_pptt_processor *prev_node;
 462
 463        while (cpu && level) {
 464                /* special case the identical flag to find last identical */
 465                if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
 466                        if (flag_identical(table_hdr, cpu))
 467                                break;
 468                } else if (cpu->flags & flag)
 469                        break;
 470                pr_debug("level %d\n", level);
 471                prev_node = fetch_pptt_node(table_hdr, cpu->parent);
 472                if (prev_node == NULL)
 473                        break;
 474                cpu = prev_node;
 475                level--;
 476        }
 477        return cpu;
 478}
 479
 480static void acpi_pptt_warn_missing(void)
 481{
 482        pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
 483}
 484
 485/**
 486 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
 487 * @table: Pointer to the head of the PPTT table
 488 * @cpu: Kernel logical CPU number
 489 * @level: A level that terminates the search
 490 * @flag: A flag which terminates the search
 491 *
 492 * Get a unique value given a CPU, and a topology level, that can be
 493 * matched to determine which cpus share common topological features
 494 * at that level.
 495 *
 496 * Return: Unique value, or -ENOENT if unable to locate CPU
 497 */
 498static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
 499                                     unsigned int cpu, int level, int flag)
 500{
 501        struct acpi_pptt_processor *cpu_node;
 502        u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
 503
 504        cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
 505        if (cpu_node) {
 506                cpu_node = acpi_find_processor_tag(table, cpu_node,
 507                                                   level, flag);
 508                /*
 509                 * As per specification if the processor structure represents
 510                 * an actual processor, then ACPI processor ID must be valid.
 511                 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
 512                 * should be set if the UID is valid
 513                 */
 514                if (level == 0 ||
 515                    cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
 516                        return cpu_node->acpi_processor_id;
 517                return ACPI_PTR_DIFF(cpu_node, table);
 518        }
 519        pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
 520                    cpu, acpi_cpu_id);
 521        return -ENOENT;
 522}
 523
 524static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
 525{
 526        struct acpi_table_header *table;
 527        acpi_status status;
 528        int retval;
 529
 530        status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
 531        if (ACPI_FAILURE(status)) {
 532                acpi_pptt_warn_missing();
 533                return -ENOENT;
 534        }
 535        retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
 536        pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
 537                 cpu, level, retval);
 538        acpi_put_table(table);
 539
 540        return retval;
 541}
 542
 543/**
 544 * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
 545 * @cpu: Kernel logical CPU number
 546 *
 547 * Given a logical CPU number, returns the number of levels of cache represented
 548 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
 549 * indicating we didn't find any cache levels.
 550 *
 551 * Return: Cache levels visible to this core.
 552 */
 553int acpi_find_last_cache_level(unsigned int cpu)
 554{
 555        u32 acpi_cpu_id;
 556        struct acpi_table_header *table;
 557        int number_of_levels = 0;
 558        acpi_status status;
 559
 560        pr_debug("Cache Setup find last level CPU=%d\n", cpu);
 561
 562        acpi_cpu_id = get_acpi_id_for_cpu(cpu);
 563        status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
 564        if (ACPI_FAILURE(status)) {
 565                acpi_pptt_warn_missing();
 566        } else {
 567                number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id);
 568                acpi_put_table(table);
 569        }
 570        pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
 571
 572        return number_of_levels;
 573}
 574
 575/**
 576 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
 577 * @cpu: Kernel logical CPU number
 578 *
 579 * Updates the global cache info provided by cpu_get_cacheinfo()
 580 * when there are valid properties in the acpi_pptt_cache nodes. A
 581 * successful parse may not result in any updates if none of the
 582 * cache levels have any valid flags set.  Further, a unique value is
 583 * associated with each known CPU cache entry. This unique value
 584 * can be used to determine whether caches are shared between CPUs.
 585 *
 586 * Return: -ENOENT on failure to find table, or 0 on success
 587 */
 588int cache_setup_acpi(unsigned int cpu)
 589{
 590        struct acpi_table_header *table;
 591        acpi_status status;
 592
 593        pr_debug("Cache Setup ACPI CPU %d\n", cpu);
 594
 595        status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
 596        if (ACPI_FAILURE(status)) {
 597                acpi_pptt_warn_missing();
 598                return -ENOENT;
 599        }
 600
 601        cache_setup_acpi_cpu(table, cpu);
 602        acpi_put_table(table);
 603
 604        return status;
 605}
 606
 607/**
 608 * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
 609 * @cpu: Kernel logical CPU number
 610 * @level: The topological level for which we would like a unique ID
 611 *
 612 * Determine a topology unique ID for each thread/core/cluster/mc_grouping
 613 * /socket/etc. This ID can then be used to group peers, which will have
 614 * matching ids.
 615 *
 616 * The search terminates when either the requested level is found or
 617 * we reach a root node. Levels beyond the termination point will return the
 618 * same unique ID. The unique id for level 0 is the acpi processor id. All
 619 * other levels beyond this use a generated value to uniquely identify
 620 * a topological feature.
 621 *
 622 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
 623 * Otherwise returns a value which represents a unique topological feature.
 624 */
 625int find_acpi_cpu_topology(unsigned int cpu, int level)
 626{
 627        return find_acpi_cpu_topology_tag(cpu, level, 0);
 628}
 629
 630/**
 631 * find_acpi_cpu_cache_topology() - Determine a unique cache topology value
 632 * @cpu: Kernel logical CPU number
 633 * @level: The cache level for which we would like a unique ID
 634 *
 635 * Determine a unique ID for each unified cache in the system
 636 *
 637 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
 638 * Otherwise returns a value which represents a unique topological feature.
 639 */
 640int find_acpi_cpu_cache_topology(unsigned int cpu, int level)
 641{
 642        struct acpi_table_header *table;
 643        struct acpi_pptt_cache *found_cache;
 644        acpi_status status;
 645        u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
 646        struct acpi_pptt_processor *cpu_node = NULL;
 647        int ret = -1;
 648
 649        status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
 650        if (ACPI_FAILURE(status)) {
 651                acpi_pptt_warn_missing();
 652                return -ENOENT;
 653        }
 654
 655        found_cache = acpi_find_cache_node(table, acpi_cpu_id,
 656                                           CACHE_TYPE_UNIFIED,
 657                                           level,
 658                                           &cpu_node);
 659        if (found_cache)
 660                ret = ACPI_PTR_DIFF(cpu_node, table);
 661
 662        acpi_put_table(table);
 663
 664        return ret;
 665}
 666
 667
 668/**
 669 * find_acpi_cpu_topology_package() - Determine a unique CPU package value
 670 * @cpu: Kernel logical CPU number
 671 *
 672 * Determine a topology unique package ID for the given CPU.
 673 * This ID can then be used to group peers, which will have matching ids.
 674 *
 675 * The search terminates when either a level is found with the PHYSICAL_PACKAGE
 676 * flag set or we reach a root node.
 677 *
 678 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
 679 * Otherwise returns a value which represents the package for this CPU.
 680 */
 681int find_acpi_cpu_topology_package(unsigned int cpu)
 682{
 683        return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
 684                                          ACPI_PPTT_PHYSICAL_PACKAGE);
 685}
 686
 687/**
 688 * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
 689 * @cpu: Kernel logical CPU number
 690 *
 691 * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
 692 * implementation should have matching tags.
 693 *
 694 * The returned tag can be used to group peers with identical implementation.
 695 *
 696 * The search terminates when a level is found with the identical implementation
 697 * flag set or we reach a root node.
 698 *
 699 * Due to limitations in the PPTT data structure, there may be rare situations
 700 * where two cores in a heterogeneous machine may be identical, but won't have
 701 * the same tag.
 702 *
 703 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
 704 * Otherwise returns a value which represents a group of identical cores
 705 * similar to this CPU.
 706 */
 707int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
 708{
 709        return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
 710                                          ACPI_PPTT_ACPI_IDENTICAL);
 711}
 712