linux/drivers/ata/libata-sff.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  libata-sff.c - helper library for PCI IDE BMDMA
   4 *
   5 *  Maintained by:  Tejun Heo <tj@kernel.org>
   6 *                  Please ALWAYS copy linux-ide@vger.kernel.org
   7 *                  on emails.
   8 *
   9 *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
  10 *  Copyright 2003-2006 Jeff Garzik
  11 *
  12 *  libata documentation is available via 'make {ps|pdf}docs',
  13 *  as Documentation/driver-api/libata.rst
  14 *
  15 *  Hardware documentation available from http://www.t13.org/ and
  16 *  http://www.sata-io.org/
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/gfp.h>
  21#include <linux/pci.h>
  22#include <linux/module.h>
  23#include <linux/libata.h>
  24#include <linux/highmem.h>
  25
  26#include "libata.h"
  27
  28static struct workqueue_struct *ata_sff_wq;
  29
  30const struct ata_port_operations ata_sff_port_ops = {
  31        .inherits               = &ata_base_port_ops,
  32
  33        .qc_prep                = ata_noop_qc_prep,
  34        .qc_issue               = ata_sff_qc_issue,
  35        .qc_fill_rtf            = ata_sff_qc_fill_rtf,
  36
  37        .freeze                 = ata_sff_freeze,
  38        .thaw                   = ata_sff_thaw,
  39        .prereset               = ata_sff_prereset,
  40        .softreset              = ata_sff_softreset,
  41        .hardreset              = sata_sff_hardreset,
  42        .postreset              = ata_sff_postreset,
  43        .error_handler          = ata_sff_error_handler,
  44
  45        .sff_dev_select         = ata_sff_dev_select,
  46        .sff_check_status       = ata_sff_check_status,
  47        .sff_tf_load            = ata_sff_tf_load,
  48        .sff_tf_read            = ata_sff_tf_read,
  49        .sff_exec_command       = ata_sff_exec_command,
  50        .sff_data_xfer          = ata_sff_data_xfer,
  51        .sff_drain_fifo         = ata_sff_drain_fifo,
  52
  53        .lost_interrupt         = ata_sff_lost_interrupt,
  54};
  55EXPORT_SYMBOL_GPL(ata_sff_port_ops);
  56
  57/**
  58 *      ata_sff_check_status - Read device status reg & clear interrupt
  59 *      @ap: port where the device is
  60 *
  61 *      Reads ATA taskfile status register for currently-selected device
  62 *      and return its value. This also clears pending interrupts
  63 *      from this device
  64 *
  65 *      LOCKING:
  66 *      Inherited from caller.
  67 */
  68u8 ata_sff_check_status(struct ata_port *ap)
  69{
  70        return ioread8(ap->ioaddr.status_addr);
  71}
  72EXPORT_SYMBOL_GPL(ata_sff_check_status);
  73
  74/**
  75 *      ata_sff_altstatus - Read device alternate status reg
  76 *      @ap: port where the device is
  77 *
  78 *      Reads ATA taskfile alternate status register for
  79 *      currently-selected device and return its value.
  80 *
  81 *      Note: may NOT be used as the check_altstatus() entry in
  82 *      ata_port_operations.
  83 *
  84 *      LOCKING:
  85 *      Inherited from caller.
  86 */
  87static u8 ata_sff_altstatus(struct ata_port *ap)
  88{
  89        if (ap->ops->sff_check_altstatus)
  90                return ap->ops->sff_check_altstatus(ap);
  91
  92        return ioread8(ap->ioaddr.altstatus_addr);
  93}
  94
  95/**
  96 *      ata_sff_irq_status - Check if the device is busy
  97 *      @ap: port where the device is
  98 *
  99 *      Determine if the port is currently busy. Uses altstatus
 100 *      if available in order to avoid clearing shared IRQ status
 101 *      when finding an IRQ source. Non ctl capable devices don't
 102 *      share interrupt lines fortunately for us.
 103 *
 104 *      LOCKING:
 105 *      Inherited from caller.
 106 */
 107static u8 ata_sff_irq_status(struct ata_port *ap)
 108{
 109        u8 status;
 110
 111        if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
 112                status = ata_sff_altstatus(ap);
 113                /* Not us: We are busy */
 114                if (status & ATA_BUSY)
 115                        return status;
 116        }
 117        /* Clear INTRQ latch */
 118        status = ap->ops->sff_check_status(ap);
 119        return status;
 120}
 121
 122/**
 123 *      ata_sff_sync - Flush writes
 124 *      @ap: Port to wait for.
 125 *
 126 *      CAUTION:
 127 *      If we have an mmio device with no ctl and no altstatus
 128 *      method this will fail. No such devices are known to exist.
 129 *
 130 *      LOCKING:
 131 *      Inherited from caller.
 132 */
 133
 134static void ata_sff_sync(struct ata_port *ap)
 135{
 136        if (ap->ops->sff_check_altstatus)
 137                ap->ops->sff_check_altstatus(ap);
 138        else if (ap->ioaddr.altstatus_addr)
 139                ioread8(ap->ioaddr.altstatus_addr);
 140}
 141
 142/**
 143 *      ata_sff_pause           -       Flush writes and wait 400nS
 144 *      @ap: Port to pause for.
 145 *
 146 *      CAUTION:
 147 *      If we have an mmio device with no ctl and no altstatus
 148 *      method this will fail. No such devices are known to exist.
 149 *
 150 *      LOCKING:
 151 *      Inherited from caller.
 152 */
 153
 154void ata_sff_pause(struct ata_port *ap)
 155{
 156        ata_sff_sync(ap);
 157        ndelay(400);
 158}
 159EXPORT_SYMBOL_GPL(ata_sff_pause);
 160
 161/**
 162 *      ata_sff_dma_pause       -       Pause before commencing DMA
 163 *      @ap: Port to pause for.
 164 *
 165 *      Perform I/O fencing and ensure sufficient cycle delays occur
 166 *      for the HDMA1:0 transition
 167 */
 168
 169void ata_sff_dma_pause(struct ata_port *ap)
 170{
 171        if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
 172                /* An altstatus read will cause the needed delay without
 173                   messing up the IRQ status */
 174                ata_sff_altstatus(ap);
 175                return;
 176        }
 177        /* There are no DMA controllers without ctl. BUG here to ensure
 178           we never violate the HDMA1:0 transition timing and risk
 179           corruption. */
 180        BUG();
 181}
 182EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
 183
 184/**
 185 *      ata_sff_busy_sleep - sleep until BSY clears, or timeout
 186 *      @ap: port containing status register to be polled
 187 *      @tmout_pat: impatience timeout in msecs
 188 *      @tmout: overall timeout in msecs
 189 *
 190 *      Sleep until ATA Status register bit BSY clears,
 191 *      or a timeout occurs.
 192 *
 193 *      LOCKING:
 194 *      Kernel thread context (may sleep).
 195 *
 196 *      RETURNS:
 197 *      0 on success, -errno otherwise.
 198 */
 199int ata_sff_busy_sleep(struct ata_port *ap,
 200                       unsigned long tmout_pat, unsigned long tmout)
 201{
 202        unsigned long timer_start, timeout;
 203        u8 status;
 204
 205        status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
 206        timer_start = jiffies;
 207        timeout = ata_deadline(timer_start, tmout_pat);
 208        while (status != 0xff && (status & ATA_BUSY) &&
 209               time_before(jiffies, timeout)) {
 210                ata_msleep(ap, 50);
 211                status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
 212        }
 213
 214        if (status != 0xff && (status & ATA_BUSY))
 215                ata_port_warn(ap,
 216                              "port is slow to respond, please be patient (Status 0x%x)\n",
 217                              status);
 218
 219        timeout = ata_deadline(timer_start, tmout);
 220        while (status != 0xff && (status & ATA_BUSY) &&
 221               time_before(jiffies, timeout)) {
 222                ata_msleep(ap, 50);
 223                status = ap->ops->sff_check_status(ap);
 224        }
 225
 226        if (status == 0xff)
 227                return -ENODEV;
 228
 229        if (status & ATA_BUSY) {
 230                ata_port_err(ap,
 231                             "port failed to respond (%lu secs, Status 0x%x)\n",
 232                             DIV_ROUND_UP(tmout, 1000), status);
 233                return -EBUSY;
 234        }
 235
 236        return 0;
 237}
 238EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
 239
 240static int ata_sff_check_ready(struct ata_link *link)
 241{
 242        u8 status = link->ap->ops->sff_check_status(link->ap);
 243
 244        return ata_check_ready(status);
 245}
 246
 247/**
 248 *      ata_sff_wait_ready - sleep until BSY clears, or timeout
 249 *      @link: SFF link to wait ready status for
 250 *      @deadline: deadline jiffies for the operation
 251 *
 252 *      Sleep until ATA Status register bit BSY clears, or timeout
 253 *      occurs.
 254 *
 255 *      LOCKING:
 256 *      Kernel thread context (may sleep).
 257 *
 258 *      RETURNS:
 259 *      0 on success, -errno otherwise.
 260 */
 261int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
 262{
 263        return ata_wait_ready(link, deadline, ata_sff_check_ready);
 264}
 265EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
 266
 267/**
 268 *      ata_sff_set_devctl - Write device control reg
 269 *      @ap: port where the device is
 270 *      @ctl: value to write
 271 *
 272 *      Writes ATA taskfile device control register.
 273 *
 274 *      Note: may NOT be used as the sff_set_devctl() entry in
 275 *      ata_port_operations.
 276 *
 277 *      LOCKING:
 278 *      Inherited from caller.
 279 */
 280static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
 281{
 282        if (ap->ops->sff_set_devctl)
 283                ap->ops->sff_set_devctl(ap, ctl);
 284        else
 285                iowrite8(ctl, ap->ioaddr.ctl_addr);
 286}
 287
 288/**
 289 *      ata_sff_dev_select - Select device 0/1 on ATA bus
 290 *      @ap: ATA channel to manipulate
 291 *      @device: ATA device (numbered from zero) to select
 292 *
 293 *      Use the method defined in the ATA specification to
 294 *      make either device 0, or device 1, active on the
 295 *      ATA channel.  Works with both PIO and MMIO.
 296 *
 297 *      May be used as the dev_select() entry in ata_port_operations.
 298 *
 299 *      LOCKING:
 300 *      caller.
 301 */
 302void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
 303{
 304        u8 tmp;
 305
 306        if (device == 0)
 307                tmp = ATA_DEVICE_OBS;
 308        else
 309                tmp = ATA_DEVICE_OBS | ATA_DEV1;
 310
 311        iowrite8(tmp, ap->ioaddr.device_addr);
 312        ata_sff_pause(ap);      /* needed; also flushes, for mmio */
 313}
 314EXPORT_SYMBOL_GPL(ata_sff_dev_select);
 315
 316/**
 317 *      ata_dev_select - Select device 0/1 on ATA bus
 318 *      @ap: ATA channel to manipulate
 319 *      @device: ATA device (numbered from zero) to select
 320 *      @wait: non-zero to wait for Status register BSY bit to clear
 321 *      @can_sleep: non-zero if context allows sleeping
 322 *
 323 *      Use the method defined in the ATA specification to
 324 *      make either device 0, or device 1, active on the
 325 *      ATA channel.
 326 *
 327 *      This is a high-level version of ata_sff_dev_select(), which
 328 *      additionally provides the services of inserting the proper
 329 *      pauses and status polling, where needed.
 330 *
 331 *      LOCKING:
 332 *      caller.
 333 */
 334static void ata_dev_select(struct ata_port *ap, unsigned int device,
 335                           unsigned int wait, unsigned int can_sleep)
 336{
 337        if (ata_msg_probe(ap))
 338                ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
 339                              device, wait);
 340
 341        if (wait)
 342                ata_wait_idle(ap);
 343
 344        ap->ops->sff_dev_select(ap, device);
 345
 346        if (wait) {
 347                if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
 348                        ata_msleep(ap, 150);
 349                ata_wait_idle(ap);
 350        }
 351}
 352
 353/**
 354 *      ata_sff_irq_on - Enable interrupts on a port.
 355 *      @ap: Port on which interrupts are enabled.
 356 *
 357 *      Enable interrupts on a legacy IDE device using MMIO or PIO,
 358 *      wait for idle, clear any pending interrupts.
 359 *
 360 *      Note: may NOT be used as the sff_irq_on() entry in
 361 *      ata_port_operations.
 362 *
 363 *      LOCKING:
 364 *      Inherited from caller.
 365 */
 366void ata_sff_irq_on(struct ata_port *ap)
 367{
 368        struct ata_ioports *ioaddr = &ap->ioaddr;
 369
 370        if (ap->ops->sff_irq_on) {
 371                ap->ops->sff_irq_on(ap);
 372                return;
 373        }
 374
 375        ap->ctl &= ~ATA_NIEN;
 376        ap->last_ctl = ap->ctl;
 377
 378        if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
 379                ata_sff_set_devctl(ap, ap->ctl);
 380        ata_wait_idle(ap);
 381
 382        if (ap->ops->sff_irq_clear)
 383                ap->ops->sff_irq_clear(ap);
 384}
 385EXPORT_SYMBOL_GPL(ata_sff_irq_on);
 386
 387/**
 388 *      ata_sff_tf_load - send taskfile registers to host controller
 389 *      @ap: Port to which output is sent
 390 *      @tf: ATA taskfile register set
 391 *
 392 *      Outputs ATA taskfile to standard ATA host controller.
 393 *
 394 *      LOCKING:
 395 *      Inherited from caller.
 396 */
 397void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
 398{
 399        struct ata_ioports *ioaddr = &ap->ioaddr;
 400        unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
 401
 402        if (tf->ctl != ap->last_ctl) {
 403                if (ioaddr->ctl_addr)
 404                        iowrite8(tf->ctl, ioaddr->ctl_addr);
 405                ap->last_ctl = tf->ctl;
 406                ata_wait_idle(ap);
 407        }
 408
 409        if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
 410                WARN_ON_ONCE(!ioaddr->ctl_addr);
 411                iowrite8(tf->hob_feature, ioaddr->feature_addr);
 412                iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
 413                iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
 414                iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
 415                iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
 416                VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
 417                        tf->hob_feature,
 418                        tf->hob_nsect,
 419                        tf->hob_lbal,
 420                        tf->hob_lbam,
 421                        tf->hob_lbah);
 422        }
 423
 424        if (is_addr) {
 425                iowrite8(tf->feature, ioaddr->feature_addr);
 426                iowrite8(tf->nsect, ioaddr->nsect_addr);
 427                iowrite8(tf->lbal, ioaddr->lbal_addr);
 428                iowrite8(tf->lbam, ioaddr->lbam_addr);
 429                iowrite8(tf->lbah, ioaddr->lbah_addr);
 430                VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
 431                        tf->feature,
 432                        tf->nsect,
 433                        tf->lbal,
 434                        tf->lbam,
 435                        tf->lbah);
 436        }
 437
 438        if (tf->flags & ATA_TFLAG_DEVICE) {
 439                iowrite8(tf->device, ioaddr->device_addr);
 440                VPRINTK("device 0x%X\n", tf->device);
 441        }
 442
 443        ata_wait_idle(ap);
 444}
 445EXPORT_SYMBOL_GPL(ata_sff_tf_load);
 446
 447/**
 448 *      ata_sff_tf_read - input device's ATA taskfile shadow registers
 449 *      @ap: Port from which input is read
 450 *      @tf: ATA taskfile register set for storing input
 451 *
 452 *      Reads ATA taskfile registers for currently-selected device
 453 *      into @tf. Assumes the device has a fully SFF compliant task file
 454 *      layout and behaviour. If you device does not (eg has a different
 455 *      status method) then you will need to provide a replacement tf_read
 456 *
 457 *      LOCKING:
 458 *      Inherited from caller.
 459 */
 460void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
 461{
 462        struct ata_ioports *ioaddr = &ap->ioaddr;
 463
 464        tf->command = ata_sff_check_status(ap);
 465        tf->feature = ioread8(ioaddr->error_addr);
 466        tf->nsect = ioread8(ioaddr->nsect_addr);
 467        tf->lbal = ioread8(ioaddr->lbal_addr);
 468        tf->lbam = ioread8(ioaddr->lbam_addr);
 469        tf->lbah = ioread8(ioaddr->lbah_addr);
 470        tf->device = ioread8(ioaddr->device_addr);
 471
 472        if (tf->flags & ATA_TFLAG_LBA48) {
 473                if (likely(ioaddr->ctl_addr)) {
 474                        iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
 475                        tf->hob_feature = ioread8(ioaddr->error_addr);
 476                        tf->hob_nsect = ioread8(ioaddr->nsect_addr);
 477                        tf->hob_lbal = ioread8(ioaddr->lbal_addr);
 478                        tf->hob_lbam = ioread8(ioaddr->lbam_addr);
 479                        tf->hob_lbah = ioread8(ioaddr->lbah_addr);
 480                        iowrite8(tf->ctl, ioaddr->ctl_addr);
 481                        ap->last_ctl = tf->ctl;
 482                } else
 483                        WARN_ON_ONCE(1);
 484        }
 485}
 486EXPORT_SYMBOL_GPL(ata_sff_tf_read);
 487
 488/**
 489 *      ata_sff_exec_command - issue ATA command to host controller
 490 *      @ap: port to which command is being issued
 491 *      @tf: ATA taskfile register set
 492 *
 493 *      Issues ATA command, with proper synchronization with interrupt
 494 *      handler / other threads.
 495 *
 496 *      LOCKING:
 497 *      spin_lock_irqsave(host lock)
 498 */
 499void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
 500{
 501        DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
 502
 503        iowrite8(tf->command, ap->ioaddr.command_addr);
 504        ata_sff_pause(ap);
 505}
 506EXPORT_SYMBOL_GPL(ata_sff_exec_command);
 507
 508/**
 509 *      ata_tf_to_host - issue ATA taskfile to host controller
 510 *      @ap: port to which command is being issued
 511 *      @tf: ATA taskfile register set
 512 *
 513 *      Issues ATA taskfile register set to ATA host controller,
 514 *      with proper synchronization with interrupt handler and
 515 *      other threads.
 516 *
 517 *      LOCKING:
 518 *      spin_lock_irqsave(host lock)
 519 */
 520static inline void ata_tf_to_host(struct ata_port *ap,
 521                                  const struct ata_taskfile *tf)
 522{
 523        ap->ops->sff_tf_load(ap, tf);
 524        ap->ops->sff_exec_command(ap, tf);
 525}
 526
 527/**
 528 *      ata_sff_data_xfer - Transfer data by PIO
 529 *      @qc: queued command
 530 *      @buf: data buffer
 531 *      @buflen: buffer length
 532 *      @rw: read/write
 533 *
 534 *      Transfer data from/to the device data register by PIO.
 535 *
 536 *      LOCKING:
 537 *      Inherited from caller.
 538 *
 539 *      RETURNS:
 540 *      Bytes consumed.
 541 */
 542unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
 543                               unsigned int buflen, int rw)
 544{
 545        struct ata_port *ap = qc->dev->link->ap;
 546        void __iomem *data_addr = ap->ioaddr.data_addr;
 547        unsigned int words = buflen >> 1;
 548
 549        /* Transfer multiple of 2 bytes */
 550        if (rw == READ)
 551                ioread16_rep(data_addr, buf, words);
 552        else
 553                iowrite16_rep(data_addr, buf, words);
 554
 555        /* Transfer trailing byte, if any. */
 556        if (unlikely(buflen & 0x01)) {
 557                unsigned char pad[2] = { };
 558
 559                /* Point buf to the tail of buffer */
 560                buf += buflen - 1;
 561
 562                /*
 563                 * Use io*16_rep() accessors here as well to avoid pointlessly
 564                 * swapping bytes to and from on the big endian machines...
 565                 */
 566                if (rw == READ) {
 567                        ioread16_rep(data_addr, pad, 1);
 568                        *buf = pad[0];
 569                } else {
 570                        pad[0] = *buf;
 571                        iowrite16_rep(data_addr, pad, 1);
 572                }
 573                words++;
 574        }
 575
 576        return words << 1;
 577}
 578EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
 579
 580/**
 581 *      ata_sff_data_xfer32 - Transfer data by PIO
 582 *      @qc: queued command
 583 *      @buf: data buffer
 584 *      @buflen: buffer length
 585 *      @rw: read/write
 586 *
 587 *      Transfer data from/to the device data register by PIO using 32bit
 588 *      I/O operations.
 589 *
 590 *      LOCKING:
 591 *      Inherited from caller.
 592 *
 593 *      RETURNS:
 594 *      Bytes consumed.
 595 */
 596
 597unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
 598                               unsigned int buflen, int rw)
 599{
 600        struct ata_device *dev = qc->dev;
 601        struct ata_port *ap = dev->link->ap;
 602        void __iomem *data_addr = ap->ioaddr.data_addr;
 603        unsigned int words = buflen >> 2;
 604        int slop = buflen & 3;
 605
 606        if (!(ap->pflags & ATA_PFLAG_PIO32))
 607                return ata_sff_data_xfer(qc, buf, buflen, rw);
 608
 609        /* Transfer multiple of 4 bytes */
 610        if (rw == READ)
 611                ioread32_rep(data_addr, buf, words);
 612        else
 613                iowrite32_rep(data_addr, buf, words);
 614
 615        /* Transfer trailing bytes, if any */
 616        if (unlikely(slop)) {
 617                unsigned char pad[4] = { };
 618
 619                /* Point buf to the tail of buffer */
 620                buf += buflen - slop;
 621
 622                /*
 623                 * Use io*_rep() accessors here as well to avoid pointlessly
 624                 * swapping bytes to and from on the big endian machines...
 625                 */
 626                if (rw == READ) {
 627                        if (slop < 3)
 628                                ioread16_rep(data_addr, pad, 1);
 629                        else
 630                                ioread32_rep(data_addr, pad, 1);
 631                        memcpy(buf, pad, slop);
 632                } else {
 633                        memcpy(pad, buf, slop);
 634                        if (slop < 3)
 635                                iowrite16_rep(data_addr, pad, 1);
 636                        else
 637                                iowrite32_rep(data_addr, pad, 1);
 638                }
 639        }
 640        return (buflen + 1) & ~1;
 641}
 642EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
 643
 644/**
 645 *      ata_pio_sector - Transfer a sector of data.
 646 *      @qc: Command on going
 647 *
 648 *      Transfer qc->sect_size bytes of data from/to the ATA device.
 649 *
 650 *      LOCKING:
 651 *      Inherited from caller.
 652 */
 653static void ata_pio_sector(struct ata_queued_cmd *qc)
 654{
 655        int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
 656        struct ata_port *ap = qc->ap;
 657        struct page *page;
 658        unsigned int offset;
 659        unsigned char *buf;
 660
 661        if (!qc->cursg) {
 662                qc->curbytes = qc->nbytes;
 663                return;
 664        }
 665        if (qc->curbytes == qc->nbytes - qc->sect_size)
 666                ap->hsm_task_state = HSM_ST_LAST;
 667
 668        page = sg_page(qc->cursg);
 669        offset = qc->cursg->offset + qc->cursg_ofs;
 670
 671        /* get the current page and offset */
 672        page = nth_page(page, (offset >> PAGE_SHIFT));
 673        offset %= PAGE_SIZE;
 674
 675        DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
 676
 677        /* do the actual data transfer */
 678        buf = kmap_atomic(page);
 679        ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, do_write);
 680        kunmap_atomic(buf);
 681
 682        if (!do_write && !PageSlab(page))
 683                flush_dcache_page(page);
 684
 685        qc->curbytes += qc->sect_size;
 686        qc->cursg_ofs += qc->sect_size;
 687
 688        if (qc->cursg_ofs == qc->cursg->length) {
 689                qc->cursg = sg_next(qc->cursg);
 690                if (!qc->cursg)
 691                        ap->hsm_task_state = HSM_ST_LAST;
 692                qc->cursg_ofs = 0;
 693        }
 694}
 695
 696/**
 697 *      ata_pio_sectors - Transfer one or many sectors.
 698 *      @qc: Command on going
 699 *
 700 *      Transfer one or many sectors of data from/to the
 701 *      ATA device for the DRQ request.
 702 *
 703 *      LOCKING:
 704 *      Inherited from caller.
 705 */
 706static void ata_pio_sectors(struct ata_queued_cmd *qc)
 707{
 708        if (is_multi_taskfile(&qc->tf)) {
 709                /* READ/WRITE MULTIPLE */
 710                unsigned int nsect;
 711
 712                WARN_ON_ONCE(qc->dev->multi_count == 0);
 713
 714                nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
 715                            qc->dev->multi_count);
 716                while (nsect--)
 717                        ata_pio_sector(qc);
 718        } else
 719                ata_pio_sector(qc);
 720
 721        ata_sff_sync(qc->ap); /* flush */
 722}
 723
 724/**
 725 *      atapi_send_cdb - Write CDB bytes to hardware
 726 *      @ap: Port to which ATAPI device is attached.
 727 *      @qc: Taskfile currently active
 728 *
 729 *      When device has indicated its readiness to accept
 730 *      a CDB, this function is called.  Send the CDB.
 731 *
 732 *      LOCKING:
 733 *      caller.
 734 */
 735static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
 736{
 737        /* send SCSI cdb */
 738        DPRINTK("send cdb\n");
 739        WARN_ON_ONCE(qc->dev->cdb_len < 12);
 740
 741        ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
 742        ata_sff_sync(ap);
 743        /* FIXME: If the CDB is for DMA do we need to do the transition delay
 744           or is bmdma_start guaranteed to do it ? */
 745        switch (qc->tf.protocol) {
 746        case ATAPI_PROT_PIO:
 747                ap->hsm_task_state = HSM_ST;
 748                break;
 749        case ATAPI_PROT_NODATA:
 750                ap->hsm_task_state = HSM_ST_LAST;
 751                break;
 752#ifdef CONFIG_ATA_BMDMA
 753        case ATAPI_PROT_DMA:
 754                ap->hsm_task_state = HSM_ST_LAST;
 755                /* initiate bmdma */
 756                ap->ops->bmdma_start(qc);
 757                break;
 758#endif /* CONFIG_ATA_BMDMA */
 759        default:
 760                BUG();
 761        }
 762}
 763
 764/**
 765 *      __atapi_pio_bytes - Transfer data from/to the ATAPI device.
 766 *      @qc: Command on going
 767 *      @bytes: number of bytes
 768 *
 769 *      Transfer Transfer data from/to the ATAPI device.
 770 *
 771 *      LOCKING:
 772 *      Inherited from caller.
 773 *
 774 */
 775static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
 776{
 777        int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
 778        struct ata_port *ap = qc->ap;
 779        struct ata_device *dev = qc->dev;
 780        struct ata_eh_info *ehi = &dev->link->eh_info;
 781        struct scatterlist *sg;
 782        struct page *page;
 783        unsigned char *buf;
 784        unsigned int offset, count, consumed;
 785
 786next_sg:
 787        sg = qc->cursg;
 788        if (unlikely(!sg)) {
 789                ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
 790                                  "buf=%u cur=%u bytes=%u",
 791                                  qc->nbytes, qc->curbytes, bytes);
 792                return -1;
 793        }
 794
 795        page = sg_page(sg);
 796        offset = sg->offset + qc->cursg_ofs;
 797
 798        /* get the current page and offset */
 799        page = nth_page(page, (offset >> PAGE_SHIFT));
 800        offset %= PAGE_SIZE;
 801
 802        /* don't overrun current sg */
 803        count = min(sg->length - qc->cursg_ofs, bytes);
 804
 805        /* don't cross page boundaries */
 806        count = min(count, (unsigned int)PAGE_SIZE - offset);
 807
 808        DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
 809
 810        /* do the actual data transfer */
 811        buf = kmap_atomic(page);
 812        consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
 813        kunmap_atomic(buf);
 814
 815        bytes -= min(bytes, consumed);
 816        qc->curbytes += count;
 817        qc->cursg_ofs += count;
 818
 819        if (qc->cursg_ofs == sg->length) {
 820                qc->cursg = sg_next(qc->cursg);
 821                qc->cursg_ofs = 0;
 822        }
 823
 824        /*
 825         * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
 826         * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
 827         * check correctly as it doesn't know if it is the last request being
 828         * made. Somebody should implement a proper sanity check.
 829         */
 830        if (bytes)
 831                goto next_sg;
 832        return 0;
 833}
 834
 835/**
 836 *      atapi_pio_bytes - Transfer data from/to the ATAPI device.
 837 *      @qc: Command on going
 838 *
 839 *      Transfer Transfer data from/to the ATAPI device.
 840 *
 841 *      LOCKING:
 842 *      Inherited from caller.
 843 */
 844static void atapi_pio_bytes(struct ata_queued_cmd *qc)
 845{
 846        struct ata_port *ap = qc->ap;
 847        struct ata_device *dev = qc->dev;
 848        struct ata_eh_info *ehi = &dev->link->eh_info;
 849        unsigned int ireason, bc_lo, bc_hi, bytes;
 850        int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
 851
 852        /* Abuse qc->result_tf for temp storage of intermediate TF
 853         * here to save some kernel stack usage.
 854         * For normal completion, qc->result_tf is not relevant. For
 855         * error, qc->result_tf is later overwritten by ata_qc_complete().
 856         * So, the correctness of qc->result_tf is not affected.
 857         */
 858        ap->ops->sff_tf_read(ap, &qc->result_tf);
 859        ireason = qc->result_tf.nsect;
 860        bc_lo = qc->result_tf.lbam;
 861        bc_hi = qc->result_tf.lbah;
 862        bytes = (bc_hi << 8) | bc_lo;
 863
 864        /* shall be cleared to zero, indicating xfer of data */
 865        if (unlikely(ireason & ATAPI_COD))
 866                goto atapi_check;
 867
 868        /* make sure transfer direction matches expected */
 869        i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
 870        if (unlikely(do_write != i_write))
 871                goto atapi_check;
 872
 873        if (unlikely(!bytes))
 874                goto atapi_check;
 875
 876        VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
 877
 878        if (unlikely(__atapi_pio_bytes(qc, bytes)))
 879                goto err_out;
 880        ata_sff_sync(ap); /* flush */
 881
 882        return;
 883
 884 atapi_check:
 885        ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
 886                          ireason, bytes);
 887 err_out:
 888        qc->err_mask |= AC_ERR_HSM;
 889        ap->hsm_task_state = HSM_ST_ERR;
 890}
 891
 892/**
 893 *      ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
 894 *      @ap: the target ata_port
 895 *      @qc: qc on going
 896 *
 897 *      RETURNS:
 898 *      1 if ok in workqueue, 0 otherwise.
 899 */
 900static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
 901                                                struct ata_queued_cmd *qc)
 902{
 903        if (qc->tf.flags & ATA_TFLAG_POLLING)
 904                return 1;
 905
 906        if (ap->hsm_task_state == HSM_ST_FIRST) {
 907                if (qc->tf.protocol == ATA_PROT_PIO &&
 908                   (qc->tf.flags & ATA_TFLAG_WRITE))
 909                    return 1;
 910
 911                if (ata_is_atapi(qc->tf.protocol) &&
 912                   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
 913                        return 1;
 914        }
 915
 916        return 0;
 917}
 918
 919/**
 920 *      ata_hsm_qc_complete - finish a qc running on standard HSM
 921 *      @qc: Command to complete
 922 *      @in_wq: 1 if called from workqueue, 0 otherwise
 923 *
 924 *      Finish @qc which is running on standard HSM.
 925 *
 926 *      LOCKING:
 927 *      If @in_wq is zero, spin_lock_irqsave(host lock).
 928 *      Otherwise, none on entry and grabs host lock.
 929 */
 930static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
 931{
 932        struct ata_port *ap = qc->ap;
 933
 934        if (ap->ops->error_handler) {
 935                if (in_wq) {
 936                        /* EH might have kicked in while host lock is
 937                         * released.
 938                         */
 939                        qc = ata_qc_from_tag(ap, qc->tag);
 940                        if (qc) {
 941                                if (likely(!(qc->err_mask & AC_ERR_HSM))) {
 942                                        ata_sff_irq_on(ap);
 943                                        ata_qc_complete(qc);
 944                                } else
 945                                        ata_port_freeze(ap);
 946                        }
 947                } else {
 948                        if (likely(!(qc->err_mask & AC_ERR_HSM)))
 949                                ata_qc_complete(qc);
 950                        else
 951                                ata_port_freeze(ap);
 952                }
 953        } else {
 954                if (in_wq) {
 955                        ata_sff_irq_on(ap);
 956                        ata_qc_complete(qc);
 957                } else
 958                        ata_qc_complete(qc);
 959        }
 960}
 961
 962/**
 963 *      ata_sff_hsm_move - move the HSM to the next state.
 964 *      @ap: the target ata_port
 965 *      @qc: qc on going
 966 *      @status: current device status
 967 *      @in_wq: 1 if called from workqueue, 0 otherwise
 968 *
 969 *      RETURNS:
 970 *      1 when poll next status needed, 0 otherwise.
 971 */
 972int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
 973                     u8 status, int in_wq)
 974{
 975        struct ata_link *link = qc->dev->link;
 976        struct ata_eh_info *ehi = &link->eh_info;
 977        int poll_next;
 978
 979        lockdep_assert_held(ap->lock);
 980
 981        WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
 982
 983        /* Make sure ata_sff_qc_issue() does not throw things
 984         * like DMA polling into the workqueue. Notice that
 985         * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
 986         */
 987        WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
 988
 989fsm_start:
 990        DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
 991                ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
 992
 993        switch (ap->hsm_task_state) {
 994        case HSM_ST_FIRST:
 995                /* Send first data block or PACKET CDB */
 996
 997                /* If polling, we will stay in the work queue after
 998                 * sending the data. Otherwise, interrupt handler
 999                 * takes over after sending the data.
1000                 */
1001                poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1002
1003                /* check device status */
1004                if (unlikely((status & ATA_DRQ) == 0)) {
1005                        /* handle BSY=0, DRQ=0 as error */
1006                        if (likely(status & (ATA_ERR | ATA_DF)))
1007                                /* device stops HSM for abort/error */
1008                                qc->err_mask |= AC_ERR_DEV;
1009                        else {
1010                                /* HSM violation. Let EH handle this */
1011                                ata_ehi_push_desc(ehi,
1012                                        "ST_FIRST: !(DRQ|ERR|DF)");
1013                                qc->err_mask |= AC_ERR_HSM;
1014                        }
1015
1016                        ap->hsm_task_state = HSM_ST_ERR;
1017                        goto fsm_start;
1018                }
1019
1020                /* Device should not ask for data transfer (DRQ=1)
1021                 * when it finds something wrong.
1022                 * We ignore DRQ here and stop the HSM by
1023                 * changing hsm_task_state to HSM_ST_ERR and
1024                 * let the EH abort the command or reset the device.
1025                 */
1026                if (unlikely(status & (ATA_ERR | ATA_DF))) {
1027                        /* Some ATAPI tape drives forget to clear the ERR bit
1028                         * when doing the next command (mostly request sense).
1029                         * We ignore ERR here to workaround and proceed sending
1030                         * the CDB.
1031                         */
1032                        if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1033                                ata_ehi_push_desc(ehi, "ST_FIRST: "
1034                                        "DRQ=1 with device error, "
1035                                        "dev_stat 0x%X", status);
1036                                qc->err_mask |= AC_ERR_HSM;
1037                                ap->hsm_task_state = HSM_ST_ERR;
1038                                goto fsm_start;
1039                        }
1040                }
1041
1042                if (qc->tf.protocol == ATA_PROT_PIO) {
1043                        /* PIO data out protocol.
1044                         * send first data block.
1045                         */
1046
1047                        /* ata_pio_sectors() might change the state
1048                         * to HSM_ST_LAST. so, the state is changed here
1049                         * before ata_pio_sectors().
1050                         */
1051                        ap->hsm_task_state = HSM_ST;
1052                        ata_pio_sectors(qc);
1053                } else
1054                        /* send CDB */
1055                        atapi_send_cdb(ap, qc);
1056
1057                /* if polling, ata_sff_pio_task() handles the rest.
1058                 * otherwise, interrupt handler takes over from here.
1059                 */
1060                break;
1061
1062        case HSM_ST:
1063                /* complete command or read/write the data register */
1064                if (qc->tf.protocol == ATAPI_PROT_PIO) {
1065                        /* ATAPI PIO protocol */
1066                        if ((status & ATA_DRQ) == 0) {
1067                                /* No more data to transfer or device error.
1068                                 * Device error will be tagged in HSM_ST_LAST.
1069                                 */
1070                                ap->hsm_task_state = HSM_ST_LAST;
1071                                goto fsm_start;
1072                        }
1073
1074                        /* Device should not ask for data transfer (DRQ=1)
1075                         * when it finds something wrong.
1076                         * We ignore DRQ here and stop the HSM by
1077                         * changing hsm_task_state to HSM_ST_ERR and
1078                         * let the EH abort the command or reset the device.
1079                         */
1080                        if (unlikely(status & (ATA_ERR | ATA_DF))) {
1081                                ata_ehi_push_desc(ehi, "ST-ATAPI: "
1082                                        "DRQ=1 with device error, "
1083                                        "dev_stat 0x%X", status);
1084                                qc->err_mask |= AC_ERR_HSM;
1085                                ap->hsm_task_state = HSM_ST_ERR;
1086                                goto fsm_start;
1087                        }
1088
1089                        atapi_pio_bytes(qc);
1090
1091                        if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1092                                /* bad ireason reported by device */
1093                                goto fsm_start;
1094
1095                } else {
1096                        /* ATA PIO protocol */
1097                        if (unlikely((status & ATA_DRQ) == 0)) {
1098                                /* handle BSY=0, DRQ=0 as error */
1099                                if (likely(status & (ATA_ERR | ATA_DF))) {
1100                                        /* device stops HSM for abort/error */
1101                                        qc->err_mask |= AC_ERR_DEV;
1102
1103                                        /* If diagnostic failed and this is
1104                                         * IDENTIFY, it's likely a phantom
1105                                         * device.  Mark hint.
1106                                         */
1107                                        if (qc->dev->horkage &
1108                                            ATA_HORKAGE_DIAGNOSTIC)
1109                                                qc->err_mask |=
1110                                                        AC_ERR_NODEV_HINT;
1111                                } else {
1112                                        /* HSM violation. Let EH handle this.
1113                                         * Phantom devices also trigger this
1114                                         * condition.  Mark hint.
1115                                         */
1116                                        ata_ehi_push_desc(ehi, "ST-ATA: "
1117                                                "DRQ=0 without device error, "
1118                                                "dev_stat 0x%X", status);
1119                                        qc->err_mask |= AC_ERR_HSM |
1120                                                        AC_ERR_NODEV_HINT;
1121                                }
1122
1123                                ap->hsm_task_state = HSM_ST_ERR;
1124                                goto fsm_start;
1125                        }
1126
1127                        /* For PIO reads, some devices may ask for
1128                         * data transfer (DRQ=1) alone with ERR=1.
1129                         * We respect DRQ here and transfer one
1130                         * block of junk data before changing the
1131                         * hsm_task_state to HSM_ST_ERR.
1132                         *
1133                         * For PIO writes, ERR=1 DRQ=1 doesn't make
1134                         * sense since the data block has been
1135                         * transferred to the device.
1136                         */
1137                        if (unlikely(status & (ATA_ERR | ATA_DF))) {
1138                                /* data might be corrputed */
1139                                qc->err_mask |= AC_ERR_DEV;
1140
1141                                if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1142                                        ata_pio_sectors(qc);
1143                                        status = ata_wait_idle(ap);
1144                                }
1145
1146                                if (status & (ATA_BUSY | ATA_DRQ)) {
1147                                        ata_ehi_push_desc(ehi, "ST-ATA: "
1148                                                "BUSY|DRQ persists on ERR|DF, "
1149                                                "dev_stat 0x%X", status);
1150                                        qc->err_mask |= AC_ERR_HSM;
1151                                }
1152
1153                                /* There are oddball controllers with
1154                                 * status register stuck at 0x7f and
1155                                 * lbal/m/h at zero which makes it
1156                                 * pass all other presence detection
1157                                 * mechanisms we have.  Set NODEV_HINT
1158                                 * for it.  Kernel bz#7241.
1159                                 */
1160                                if (status == 0x7f)
1161                                        qc->err_mask |= AC_ERR_NODEV_HINT;
1162
1163                                /* ata_pio_sectors() might change the
1164                                 * state to HSM_ST_LAST. so, the state
1165                                 * is changed after ata_pio_sectors().
1166                                 */
1167                                ap->hsm_task_state = HSM_ST_ERR;
1168                                goto fsm_start;
1169                        }
1170
1171                        ata_pio_sectors(qc);
1172
1173                        if (ap->hsm_task_state == HSM_ST_LAST &&
1174                            (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1175                                /* all data read */
1176                                status = ata_wait_idle(ap);
1177                                goto fsm_start;
1178                        }
1179                }
1180
1181                poll_next = 1;
1182                break;
1183
1184        case HSM_ST_LAST:
1185                if (unlikely(!ata_ok(status))) {
1186                        qc->err_mask |= __ac_err_mask(status);
1187                        ap->hsm_task_state = HSM_ST_ERR;
1188                        goto fsm_start;
1189                }
1190
1191                /* no more data to transfer */
1192                DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1193                        ap->print_id, qc->dev->devno, status);
1194
1195                WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1196
1197                ap->hsm_task_state = HSM_ST_IDLE;
1198
1199                /* complete taskfile transaction */
1200                ata_hsm_qc_complete(qc, in_wq);
1201
1202                poll_next = 0;
1203                break;
1204
1205        case HSM_ST_ERR:
1206                ap->hsm_task_state = HSM_ST_IDLE;
1207
1208                /* complete taskfile transaction */
1209                ata_hsm_qc_complete(qc, in_wq);
1210
1211                poll_next = 0;
1212                break;
1213        default:
1214                poll_next = 0;
1215                WARN(true, "ata%d: SFF host state machine in invalid state %d",
1216                     ap->print_id, ap->hsm_task_state);
1217        }
1218
1219        return poll_next;
1220}
1221EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1222
1223void ata_sff_queue_work(struct work_struct *work)
1224{
1225        queue_work(ata_sff_wq, work);
1226}
1227EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1228
1229void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1230{
1231        queue_delayed_work(ata_sff_wq, dwork, delay);
1232}
1233EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1234
1235void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1236{
1237        struct ata_port *ap = link->ap;
1238
1239        WARN_ON((ap->sff_pio_task_link != NULL) &&
1240                (ap->sff_pio_task_link != link));
1241        ap->sff_pio_task_link = link;
1242
1243        /* may fail if ata_sff_flush_pio_task() in progress */
1244        ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1245}
1246EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1247
1248void ata_sff_flush_pio_task(struct ata_port *ap)
1249{
1250        DPRINTK("ENTER\n");
1251
1252        cancel_delayed_work_sync(&ap->sff_pio_task);
1253
1254        /*
1255         * We wanna reset the HSM state to IDLE.  If we do so without
1256         * grabbing the port lock, critical sections protected by it which
1257         * expect the HSM state to stay stable may get surprised.  For
1258         * example, we may set IDLE in between the time
1259         * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1260         * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1261         */
1262        spin_lock_irq(ap->lock);
1263        ap->hsm_task_state = HSM_ST_IDLE;
1264        spin_unlock_irq(ap->lock);
1265
1266        ap->sff_pio_task_link = NULL;
1267
1268        if (ata_msg_ctl(ap))
1269                ata_port_dbg(ap, "%s: EXIT\n", __func__);
1270}
1271
1272static void ata_sff_pio_task(struct work_struct *work)
1273{
1274        struct ata_port *ap =
1275                container_of(work, struct ata_port, sff_pio_task.work);
1276        struct ata_link *link = ap->sff_pio_task_link;
1277        struct ata_queued_cmd *qc;
1278        u8 status;
1279        int poll_next;
1280
1281        spin_lock_irq(ap->lock);
1282
1283        BUG_ON(ap->sff_pio_task_link == NULL);
1284        /* qc can be NULL if timeout occurred */
1285        qc = ata_qc_from_tag(ap, link->active_tag);
1286        if (!qc) {
1287                ap->sff_pio_task_link = NULL;
1288                goto out_unlock;
1289        }
1290
1291fsm_start:
1292        WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1293
1294        /*
1295         * This is purely heuristic.  This is a fast path.
1296         * Sometimes when we enter, BSY will be cleared in
1297         * a chk-status or two.  If not, the drive is probably seeking
1298         * or something.  Snooze for a couple msecs, then
1299         * chk-status again.  If still busy, queue delayed work.
1300         */
1301        status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1302        if (status & ATA_BUSY) {
1303                spin_unlock_irq(ap->lock);
1304                ata_msleep(ap, 2);
1305                spin_lock_irq(ap->lock);
1306
1307                status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1308                if (status & ATA_BUSY) {
1309                        ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1310                        goto out_unlock;
1311                }
1312        }
1313
1314        /*
1315         * hsm_move() may trigger another command to be processed.
1316         * clean the link beforehand.
1317         */
1318        ap->sff_pio_task_link = NULL;
1319        /* move the HSM */
1320        poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1321
1322        /* another command or interrupt handler
1323         * may be running at this point.
1324         */
1325        if (poll_next)
1326                goto fsm_start;
1327out_unlock:
1328        spin_unlock_irq(ap->lock);
1329}
1330
1331/**
1332 *      ata_sff_qc_issue - issue taskfile to a SFF controller
1333 *      @qc: command to issue to device
1334 *
1335 *      This function issues a PIO or NODATA command to a SFF
1336 *      controller.
1337 *
1338 *      LOCKING:
1339 *      spin_lock_irqsave(host lock)
1340 *
1341 *      RETURNS:
1342 *      Zero on success, AC_ERR_* mask on failure
1343 */
1344unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1345{
1346        struct ata_port *ap = qc->ap;
1347        struct ata_link *link = qc->dev->link;
1348
1349        /* Use polling pio if the LLD doesn't handle
1350         * interrupt driven pio and atapi CDB interrupt.
1351         */
1352        if (ap->flags & ATA_FLAG_PIO_POLLING)
1353                qc->tf.flags |= ATA_TFLAG_POLLING;
1354
1355        /* select the device */
1356        ata_dev_select(ap, qc->dev->devno, 1, 0);
1357
1358        /* start the command */
1359        switch (qc->tf.protocol) {
1360        case ATA_PROT_NODATA:
1361                if (qc->tf.flags & ATA_TFLAG_POLLING)
1362                        ata_qc_set_polling(qc);
1363
1364                ata_tf_to_host(ap, &qc->tf);
1365                ap->hsm_task_state = HSM_ST_LAST;
1366
1367                if (qc->tf.flags & ATA_TFLAG_POLLING)
1368                        ata_sff_queue_pio_task(link, 0);
1369
1370                break;
1371
1372        case ATA_PROT_PIO:
1373                if (qc->tf.flags & ATA_TFLAG_POLLING)
1374                        ata_qc_set_polling(qc);
1375
1376                ata_tf_to_host(ap, &qc->tf);
1377
1378                if (qc->tf.flags & ATA_TFLAG_WRITE) {
1379                        /* PIO data out protocol */
1380                        ap->hsm_task_state = HSM_ST_FIRST;
1381                        ata_sff_queue_pio_task(link, 0);
1382
1383                        /* always send first data block using the
1384                         * ata_sff_pio_task() codepath.
1385                         */
1386                } else {
1387                        /* PIO data in protocol */
1388                        ap->hsm_task_state = HSM_ST;
1389
1390                        if (qc->tf.flags & ATA_TFLAG_POLLING)
1391                                ata_sff_queue_pio_task(link, 0);
1392
1393                        /* if polling, ata_sff_pio_task() handles the
1394                         * rest.  otherwise, interrupt handler takes
1395                         * over from here.
1396                         */
1397                }
1398
1399                break;
1400
1401        case ATAPI_PROT_PIO:
1402        case ATAPI_PROT_NODATA:
1403                if (qc->tf.flags & ATA_TFLAG_POLLING)
1404                        ata_qc_set_polling(qc);
1405
1406                ata_tf_to_host(ap, &qc->tf);
1407
1408                ap->hsm_task_state = HSM_ST_FIRST;
1409
1410                /* send cdb by polling if no cdb interrupt */
1411                if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1412                    (qc->tf.flags & ATA_TFLAG_POLLING))
1413                        ata_sff_queue_pio_task(link, 0);
1414                break;
1415
1416        default:
1417                return AC_ERR_SYSTEM;
1418        }
1419
1420        return 0;
1421}
1422EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1423
1424/**
1425 *      ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1426 *      @qc: qc to fill result TF for
1427 *
1428 *      @qc is finished and result TF needs to be filled.  Fill it
1429 *      using ->sff_tf_read.
1430 *
1431 *      LOCKING:
1432 *      spin_lock_irqsave(host lock)
1433 *
1434 *      RETURNS:
1435 *      true indicating that result TF is successfully filled.
1436 */
1437bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1438{
1439        qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1440        return true;
1441}
1442EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1443
1444static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1445{
1446        ap->stats.idle_irq++;
1447
1448#ifdef ATA_IRQ_TRAP
1449        if ((ap->stats.idle_irq % 1000) == 0) {
1450                ap->ops->sff_check_status(ap);
1451                if (ap->ops->sff_irq_clear)
1452                        ap->ops->sff_irq_clear(ap);
1453                ata_port_warn(ap, "irq trap\n");
1454                return 1;
1455        }
1456#endif
1457        return 0;       /* irq not handled */
1458}
1459
1460static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1461                                        struct ata_queued_cmd *qc,
1462                                        bool hsmv_on_idle)
1463{
1464        u8 status;
1465
1466        VPRINTK("ata%u: protocol %d task_state %d\n",
1467                ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1468
1469        /* Check whether we are expecting interrupt in this state */
1470        switch (ap->hsm_task_state) {
1471        case HSM_ST_FIRST:
1472                /* Some pre-ATAPI-4 devices assert INTRQ
1473                 * at this state when ready to receive CDB.
1474                 */
1475
1476                /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1477                 * The flag was turned on only for atapi devices.  No
1478                 * need to check ata_is_atapi(qc->tf.protocol) again.
1479                 */
1480                if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1481                        return ata_sff_idle_irq(ap);
1482                break;
1483        case HSM_ST_IDLE:
1484                return ata_sff_idle_irq(ap);
1485        default:
1486                break;
1487        }
1488
1489        /* check main status, clearing INTRQ if needed */
1490        status = ata_sff_irq_status(ap);
1491        if (status & ATA_BUSY) {
1492                if (hsmv_on_idle) {
1493                        /* BMDMA engine is already stopped, we're screwed */
1494                        qc->err_mask |= AC_ERR_HSM;
1495                        ap->hsm_task_state = HSM_ST_ERR;
1496                } else
1497                        return ata_sff_idle_irq(ap);
1498        }
1499
1500        /* clear irq events */
1501        if (ap->ops->sff_irq_clear)
1502                ap->ops->sff_irq_clear(ap);
1503
1504        ata_sff_hsm_move(ap, qc, status, 0);
1505
1506        return 1;       /* irq handled */
1507}
1508
1509/**
1510 *      ata_sff_port_intr - Handle SFF port interrupt
1511 *      @ap: Port on which interrupt arrived (possibly...)
1512 *      @qc: Taskfile currently active in engine
1513 *
1514 *      Handle port interrupt for given queued command.
1515 *
1516 *      LOCKING:
1517 *      spin_lock_irqsave(host lock)
1518 *
1519 *      RETURNS:
1520 *      One if interrupt was handled, zero if not (shared irq).
1521 */
1522unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1523{
1524        return __ata_sff_port_intr(ap, qc, false);
1525}
1526EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1527
1528static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1529        unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1530{
1531        struct ata_host *host = dev_instance;
1532        bool retried = false;
1533        unsigned int i;
1534        unsigned int handled, idle, polling;
1535        unsigned long flags;
1536
1537        /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1538        spin_lock_irqsave(&host->lock, flags);
1539
1540retry:
1541        handled = idle = polling = 0;
1542        for (i = 0; i < host->n_ports; i++) {
1543                struct ata_port *ap = host->ports[i];
1544                struct ata_queued_cmd *qc;
1545
1546                qc = ata_qc_from_tag(ap, ap->link.active_tag);
1547                if (qc) {
1548                        if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1549                                handled |= port_intr(ap, qc);
1550                        else
1551                                polling |= 1 << i;
1552                } else
1553                        idle |= 1 << i;
1554        }
1555
1556        /*
1557         * If no port was expecting IRQ but the controller is actually
1558         * asserting IRQ line, nobody cared will ensue.  Check IRQ
1559         * pending status if available and clear spurious IRQ.
1560         */
1561        if (!handled && !retried) {
1562                bool retry = false;
1563
1564                for (i = 0; i < host->n_ports; i++) {
1565                        struct ata_port *ap = host->ports[i];
1566
1567                        if (polling & (1 << i))
1568                                continue;
1569
1570                        if (!ap->ops->sff_irq_check ||
1571                            !ap->ops->sff_irq_check(ap))
1572                                continue;
1573
1574                        if (idle & (1 << i)) {
1575                                ap->ops->sff_check_status(ap);
1576                                if (ap->ops->sff_irq_clear)
1577                                        ap->ops->sff_irq_clear(ap);
1578                        } else {
1579                                /* clear INTRQ and check if BUSY cleared */
1580                                if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1581                                        retry |= true;
1582                                /*
1583                                 * With command in flight, we can't do
1584                                 * sff_irq_clear() w/o racing with completion.
1585                                 */
1586                        }
1587                }
1588
1589                if (retry) {
1590                        retried = true;
1591                        goto retry;
1592                }
1593        }
1594
1595        spin_unlock_irqrestore(&host->lock, flags);
1596
1597        return IRQ_RETVAL(handled);
1598}
1599
1600/**
1601 *      ata_sff_interrupt - Default SFF ATA host interrupt handler
1602 *      @irq: irq line (unused)
1603 *      @dev_instance: pointer to our ata_host information structure
1604 *
1605 *      Default interrupt handler for PCI IDE devices.  Calls
1606 *      ata_sff_port_intr() for each port that is not disabled.
1607 *
1608 *      LOCKING:
1609 *      Obtains host lock during operation.
1610 *
1611 *      RETURNS:
1612 *      IRQ_NONE or IRQ_HANDLED.
1613 */
1614irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1615{
1616        return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1617}
1618EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1619
1620/**
1621 *      ata_sff_lost_interrupt  -       Check for an apparent lost interrupt
1622 *      @ap: port that appears to have timed out
1623 *
1624 *      Called from the libata error handlers when the core code suspects
1625 *      an interrupt has been lost. If it has complete anything we can and
1626 *      then return. Interface must support altstatus for this faster
1627 *      recovery to occur.
1628 *
1629 *      Locking:
1630 *      Caller holds host lock
1631 */
1632
1633void ata_sff_lost_interrupt(struct ata_port *ap)
1634{
1635        u8 status;
1636        struct ata_queued_cmd *qc;
1637
1638        /* Only one outstanding command per SFF channel */
1639        qc = ata_qc_from_tag(ap, ap->link.active_tag);
1640        /* We cannot lose an interrupt on a non-existent or polled command */
1641        if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1642                return;
1643        /* See if the controller thinks it is still busy - if so the command
1644           isn't a lost IRQ but is still in progress */
1645        status = ata_sff_altstatus(ap);
1646        if (status & ATA_BUSY)
1647                return;
1648
1649        /* There was a command running, we are no longer busy and we have
1650           no interrupt. */
1651        ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1652                                                                status);
1653        /* Run the host interrupt logic as if the interrupt had not been
1654           lost */
1655        ata_sff_port_intr(ap, qc);
1656}
1657EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1658
1659/**
1660 *      ata_sff_freeze - Freeze SFF controller port
1661 *      @ap: port to freeze
1662 *
1663 *      Freeze SFF controller port.
1664 *
1665 *      LOCKING:
1666 *      Inherited from caller.
1667 */
1668void ata_sff_freeze(struct ata_port *ap)
1669{
1670        ap->ctl |= ATA_NIEN;
1671        ap->last_ctl = ap->ctl;
1672
1673        if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1674                ata_sff_set_devctl(ap, ap->ctl);
1675
1676        /* Under certain circumstances, some controllers raise IRQ on
1677         * ATA_NIEN manipulation.  Also, many controllers fail to mask
1678         * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1679         */
1680        ap->ops->sff_check_status(ap);
1681
1682        if (ap->ops->sff_irq_clear)
1683                ap->ops->sff_irq_clear(ap);
1684}
1685EXPORT_SYMBOL_GPL(ata_sff_freeze);
1686
1687/**
1688 *      ata_sff_thaw - Thaw SFF controller port
1689 *      @ap: port to thaw
1690 *
1691 *      Thaw SFF controller port.
1692 *
1693 *      LOCKING:
1694 *      Inherited from caller.
1695 */
1696void ata_sff_thaw(struct ata_port *ap)
1697{
1698        /* clear & re-enable interrupts */
1699        ap->ops->sff_check_status(ap);
1700        if (ap->ops->sff_irq_clear)
1701                ap->ops->sff_irq_clear(ap);
1702        ata_sff_irq_on(ap);
1703}
1704EXPORT_SYMBOL_GPL(ata_sff_thaw);
1705
1706/**
1707 *      ata_sff_prereset - prepare SFF link for reset
1708 *      @link: SFF link to be reset
1709 *      @deadline: deadline jiffies for the operation
1710 *
1711 *      SFF link @link is about to be reset.  Initialize it.  It first
1712 *      calls ata_std_prereset() and wait for !BSY if the port is
1713 *      being softreset.
1714 *
1715 *      LOCKING:
1716 *      Kernel thread context (may sleep)
1717 *
1718 *      RETURNS:
1719 *      0 on success, -errno otherwise.
1720 */
1721int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1722{
1723        struct ata_eh_context *ehc = &link->eh_context;
1724        int rc;
1725
1726        rc = ata_std_prereset(link, deadline);
1727        if (rc)
1728                return rc;
1729
1730        /* if we're about to do hardreset, nothing more to do */
1731        if (ehc->i.action & ATA_EH_HARDRESET)
1732                return 0;
1733
1734        /* wait for !BSY if we don't know that no device is attached */
1735        if (!ata_link_offline(link)) {
1736                rc = ata_sff_wait_ready(link, deadline);
1737                if (rc && rc != -ENODEV) {
1738                        ata_link_warn(link,
1739                                      "device not ready (errno=%d), forcing hardreset\n",
1740                                      rc);
1741                        ehc->i.action |= ATA_EH_HARDRESET;
1742                }
1743        }
1744
1745        return 0;
1746}
1747EXPORT_SYMBOL_GPL(ata_sff_prereset);
1748
1749/**
1750 *      ata_devchk - PATA device presence detection
1751 *      @ap: ATA channel to examine
1752 *      @device: Device to examine (starting at zero)
1753 *
1754 *      This technique was originally described in
1755 *      Hale Landis's ATADRVR (www.ata-atapi.com), and
1756 *      later found its way into the ATA/ATAPI spec.
1757 *
1758 *      Write a pattern to the ATA shadow registers,
1759 *      and if a device is present, it will respond by
1760 *      correctly storing and echoing back the
1761 *      ATA shadow register contents.
1762 *
1763 *      LOCKING:
1764 *      caller.
1765 */
1766static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1767{
1768        struct ata_ioports *ioaddr = &ap->ioaddr;
1769        u8 nsect, lbal;
1770
1771        ap->ops->sff_dev_select(ap, device);
1772
1773        iowrite8(0x55, ioaddr->nsect_addr);
1774        iowrite8(0xaa, ioaddr->lbal_addr);
1775
1776        iowrite8(0xaa, ioaddr->nsect_addr);
1777        iowrite8(0x55, ioaddr->lbal_addr);
1778
1779        iowrite8(0x55, ioaddr->nsect_addr);
1780        iowrite8(0xaa, ioaddr->lbal_addr);
1781
1782        nsect = ioread8(ioaddr->nsect_addr);
1783        lbal = ioread8(ioaddr->lbal_addr);
1784
1785        if ((nsect == 0x55) && (lbal == 0xaa))
1786                return 1;       /* we found a device */
1787
1788        return 0;               /* nothing found */
1789}
1790
1791/**
1792 *      ata_sff_dev_classify - Parse returned ATA device signature
1793 *      @dev: ATA device to classify (starting at zero)
1794 *      @present: device seems present
1795 *      @r_err: Value of error register on completion
1796 *
1797 *      After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1798 *      an ATA/ATAPI-defined set of values is placed in the ATA
1799 *      shadow registers, indicating the results of device detection
1800 *      and diagnostics.
1801 *
1802 *      Select the ATA device, and read the values from the ATA shadow
1803 *      registers.  Then parse according to the Error register value,
1804 *      and the spec-defined values examined by ata_dev_classify().
1805 *
1806 *      LOCKING:
1807 *      caller.
1808 *
1809 *      RETURNS:
1810 *      Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1811 */
1812unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1813                                  u8 *r_err)
1814{
1815        struct ata_port *ap = dev->link->ap;
1816        struct ata_taskfile tf;
1817        unsigned int class;
1818        u8 err;
1819
1820        ap->ops->sff_dev_select(ap, dev->devno);
1821
1822        memset(&tf, 0, sizeof(tf));
1823
1824        ap->ops->sff_tf_read(ap, &tf);
1825        err = tf.feature;
1826        if (r_err)
1827                *r_err = err;
1828
1829        /* see if device passed diags: continue and warn later */
1830        if (err == 0)
1831                /* diagnostic fail : do nothing _YET_ */
1832                dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1833        else if (err == 1)
1834                /* do nothing */ ;
1835        else if ((dev->devno == 0) && (err == 0x81))
1836                /* do nothing */ ;
1837        else
1838                return ATA_DEV_NONE;
1839
1840        /* determine if device is ATA or ATAPI */
1841        class = ata_dev_classify(&tf);
1842
1843        if (class == ATA_DEV_UNKNOWN) {
1844                /* If the device failed diagnostic, it's likely to
1845                 * have reported incorrect device signature too.
1846                 * Assume ATA device if the device seems present but
1847                 * device signature is invalid with diagnostic
1848                 * failure.
1849                 */
1850                if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1851                        class = ATA_DEV_ATA;
1852                else
1853                        class = ATA_DEV_NONE;
1854        } else if ((class == ATA_DEV_ATA) &&
1855                   (ap->ops->sff_check_status(ap) == 0))
1856                class = ATA_DEV_NONE;
1857
1858        return class;
1859}
1860EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1861
1862/**
1863 *      ata_sff_wait_after_reset - wait for devices to become ready after reset
1864 *      @link: SFF link which is just reset
1865 *      @devmask: mask of present devices
1866 *      @deadline: deadline jiffies for the operation
1867 *
1868 *      Wait devices attached to SFF @link to become ready after
1869 *      reset.  It contains preceding 150ms wait to avoid accessing TF
1870 *      status register too early.
1871 *
1872 *      LOCKING:
1873 *      Kernel thread context (may sleep).
1874 *
1875 *      RETURNS:
1876 *      0 on success, -ENODEV if some or all of devices in @devmask
1877 *      don't seem to exist.  -errno on other errors.
1878 */
1879int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1880                             unsigned long deadline)
1881{
1882        struct ata_port *ap = link->ap;
1883        struct ata_ioports *ioaddr = &ap->ioaddr;
1884        unsigned int dev0 = devmask & (1 << 0);
1885        unsigned int dev1 = devmask & (1 << 1);
1886        int rc, ret = 0;
1887
1888        ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1889
1890        /* always check readiness of the master device */
1891        rc = ata_sff_wait_ready(link, deadline);
1892        /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1893         * and TF status is 0xff, bail out on it too.
1894         */
1895        if (rc)
1896                return rc;
1897
1898        /* if device 1 was found in ata_devchk, wait for register
1899         * access briefly, then wait for BSY to clear.
1900         */
1901        if (dev1) {
1902                int i;
1903
1904                ap->ops->sff_dev_select(ap, 1);
1905
1906                /* Wait for register access.  Some ATAPI devices fail
1907                 * to set nsect/lbal after reset, so don't waste too
1908                 * much time on it.  We're gonna wait for !BSY anyway.
1909                 */
1910                for (i = 0; i < 2; i++) {
1911                        u8 nsect, lbal;
1912
1913                        nsect = ioread8(ioaddr->nsect_addr);
1914                        lbal = ioread8(ioaddr->lbal_addr);
1915                        if ((nsect == 1) && (lbal == 1))
1916                                break;
1917                        ata_msleep(ap, 50);     /* give drive a breather */
1918                }
1919
1920                rc = ata_sff_wait_ready(link, deadline);
1921                if (rc) {
1922                        if (rc != -ENODEV)
1923                                return rc;
1924                        ret = rc;
1925                }
1926        }
1927
1928        /* is all this really necessary? */
1929        ap->ops->sff_dev_select(ap, 0);
1930        if (dev1)
1931                ap->ops->sff_dev_select(ap, 1);
1932        if (dev0)
1933                ap->ops->sff_dev_select(ap, 0);
1934
1935        return ret;
1936}
1937EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1938
1939static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1940                             unsigned long deadline)
1941{
1942        struct ata_ioports *ioaddr = &ap->ioaddr;
1943
1944        DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1945
1946        if (ap->ioaddr.ctl_addr) {
1947                /* software reset.  causes dev0 to be selected */
1948                iowrite8(ap->ctl, ioaddr->ctl_addr);
1949                udelay(20);     /* FIXME: flush */
1950                iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1951                udelay(20);     /* FIXME: flush */
1952                iowrite8(ap->ctl, ioaddr->ctl_addr);
1953                ap->last_ctl = ap->ctl;
1954        }
1955
1956        /* wait the port to become ready */
1957        return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1958}
1959
1960/**
1961 *      ata_sff_softreset - reset host port via ATA SRST
1962 *      @link: ATA link to reset
1963 *      @classes: resulting classes of attached devices
1964 *      @deadline: deadline jiffies for the operation
1965 *
1966 *      Reset host port using ATA SRST.
1967 *
1968 *      LOCKING:
1969 *      Kernel thread context (may sleep)
1970 *
1971 *      RETURNS:
1972 *      0 on success, -errno otherwise.
1973 */
1974int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1975                      unsigned long deadline)
1976{
1977        struct ata_port *ap = link->ap;
1978        unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1979        unsigned int devmask = 0;
1980        int rc;
1981        u8 err;
1982
1983        DPRINTK("ENTER\n");
1984
1985        /* determine if device 0/1 are present */
1986        if (ata_devchk(ap, 0))
1987                devmask |= (1 << 0);
1988        if (slave_possible && ata_devchk(ap, 1))
1989                devmask |= (1 << 1);
1990
1991        /* select device 0 again */
1992        ap->ops->sff_dev_select(ap, 0);
1993
1994        /* issue bus reset */
1995        DPRINTK("about to softreset, devmask=%x\n", devmask);
1996        rc = ata_bus_softreset(ap, devmask, deadline);
1997        /* if link is occupied, -ENODEV too is an error */
1998        if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1999                ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2000                return rc;
2001        }
2002
2003        /* determine by signature whether we have ATA or ATAPI devices */
2004        classes[0] = ata_sff_dev_classify(&link->device[0],
2005                                          devmask & (1 << 0), &err);
2006        if (slave_possible && err != 0x81)
2007                classes[1] = ata_sff_dev_classify(&link->device[1],
2008                                                  devmask & (1 << 1), &err);
2009
2010        DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2011        return 0;
2012}
2013EXPORT_SYMBOL_GPL(ata_sff_softreset);
2014
2015/**
2016 *      sata_sff_hardreset - reset host port via SATA phy reset
2017 *      @link: link to reset
2018 *      @class: resulting class of attached device
2019 *      @deadline: deadline jiffies for the operation
2020 *
2021 *      SATA phy-reset host port using DET bits of SControl register,
2022 *      wait for !BSY and classify the attached device.
2023 *
2024 *      LOCKING:
2025 *      Kernel thread context (may sleep)
2026 *
2027 *      RETURNS:
2028 *      0 on success, -errno otherwise.
2029 */
2030int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2031                       unsigned long deadline)
2032{
2033        struct ata_eh_context *ehc = &link->eh_context;
2034        const unsigned long *timing = sata_ehc_deb_timing(ehc);
2035        bool online;
2036        int rc;
2037
2038        rc = sata_link_hardreset(link, timing, deadline, &online,
2039                                 ata_sff_check_ready);
2040        if (online)
2041                *class = ata_sff_dev_classify(link->device, 1, NULL);
2042
2043        DPRINTK("EXIT, class=%u\n", *class);
2044        return rc;
2045}
2046EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2047
2048/**
2049 *      ata_sff_postreset - SFF postreset callback
2050 *      @link: the target SFF ata_link
2051 *      @classes: classes of attached devices
2052 *
2053 *      This function is invoked after a successful reset.  It first
2054 *      calls ata_std_postreset() and performs SFF specific postreset
2055 *      processing.
2056 *
2057 *      LOCKING:
2058 *      Kernel thread context (may sleep)
2059 */
2060void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2061{
2062        struct ata_port *ap = link->ap;
2063
2064        ata_std_postreset(link, classes);
2065
2066        /* is double-select really necessary? */
2067        if (classes[0] != ATA_DEV_NONE)
2068                ap->ops->sff_dev_select(ap, 1);
2069        if (classes[1] != ATA_DEV_NONE)
2070                ap->ops->sff_dev_select(ap, 0);
2071
2072        /* bail out if no device is present */
2073        if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2074                DPRINTK("EXIT, no device\n");
2075                return;
2076        }
2077
2078        /* set up device control */
2079        if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2080                ata_sff_set_devctl(ap, ap->ctl);
2081                ap->last_ctl = ap->ctl;
2082        }
2083}
2084EXPORT_SYMBOL_GPL(ata_sff_postreset);
2085
2086/**
2087 *      ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2088 *      @qc: command
2089 *
2090 *      Drain the FIFO and device of any stuck data following a command
2091 *      failing to complete. In some cases this is necessary before a
2092 *      reset will recover the device.
2093 *
2094 */
2095
2096void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2097{
2098        int count;
2099        struct ata_port *ap;
2100
2101        /* We only need to flush incoming data when a command was running */
2102        if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2103                return;
2104
2105        ap = qc->ap;
2106        /* Drain up to 64K of data before we give up this recovery method */
2107        for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2108                                                && count < 65536; count += 2)
2109                ioread16(ap->ioaddr.data_addr);
2110
2111        /* Can become DEBUG later */
2112        if (count)
2113                ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2114
2115}
2116EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2117
2118/**
2119 *      ata_sff_error_handler - Stock error handler for SFF controller
2120 *      @ap: port to handle error for
2121 *
2122 *      Stock error handler for SFF controller.  It can handle both
2123 *      PATA and SATA controllers.  Many controllers should be able to
2124 *      use this EH as-is or with some added handling before and
2125 *      after.
2126 *
2127 *      LOCKING:
2128 *      Kernel thread context (may sleep)
2129 */
2130void ata_sff_error_handler(struct ata_port *ap)
2131{
2132        ata_reset_fn_t softreset = ap->ops->softreset;
2133        ata_reset_fn_t hardreset = ap->ops->hardreset;
2134        struct ata_queued_cmd *qc;
2135        unsigned long flags;
2136
2137        qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2138        if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2139                qc = NULL;
2140
2141        spin_lock_irqsave(ap->lock, flags);
2142
2143        /*
2144         * We *MUST* do FIFO draining before we issue a reset as
2145         * several devices helpfully clear their internal state and
2146         * will lock solid if we touch the data port post reset. Pass
2147         * qc in case anyone wants to do different PIO/DMA recovery or
2148         * has per command fixups
2149         */
2150        if (ap->ops->sff_drain_fifo)
2151                ap->ops->sff_drain_fifo(qc);
2152
2153        spin_unlock_irqrestore(ap->lock, flags);
2154
2155        /* ignore built-in hardresets if SCR access is not available */
2156        if ((hardreset == sata_std_hardreset ||
2157             hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2158                hardreset = NULL;
2159
2160        ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2161                  ap->ops->postreset);
2162}
2163EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2164
2165/**
2166 *      ata_sff_std_ports - initialize ioaddr with standard port offsets.
2167 *      @ioaddr: IO address structure to be initialized
2168 *
2169 *      Utility function which initializes data_addr, error_addr,
2170 *      feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2171 *      device_addr, status_addr, and command_addr to standard offsets
2172 *      relative to cmd_addr.
2173 *
2174 *      Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2175 */
2176void ata_sff_std_ports(struct ata_ioports *ioaddr)
2177{
2178        ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2179        ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2180        ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2181        ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2182        ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2183        ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2184        ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2185        ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2186        ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2187        ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2188}
2189EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2190
2191#ifdef CONFIG_PCI
2192
2193static int ata_resources_present(struct pci_dev *pdev, int port)
2194{
2195        int i;
2196
2197        /* Check the PCI resources for this channel are enabled */
2198        port = port * 2;
2199        for (i = 0; i < 2; i++) {
2200                if (pci_resource_start(pdev, port + i) == 0 ||
2201                    pci_resource_len(pdev, port + i) == 0)
2202                        return 0;
2203        }
2204        return 1;
2205}
2206
2207/**
2208 *      ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2209 *      @host: target ATA host
2210 *
2211 *      Acquire native PCI ATA resources for @host and initialize the
2212 *      first two ports of @host accordingly.  Ports marked dummy are
2213 *      skipped and allocation failure makes the port dummy.
2214 *
2215 *      Note that native PCI resources are valid even for legacy hosts
2216 *      as we fix up pdev resources array early in boot, so this
2217 *      function can be used for both native and legacy SFF hosts.
2218 *
2219 *      LOCKING:
2220 *      Inherited from calling layer (may sleep).
2221 *
2222 *      RETURNS:
2223 *      0 if at least one port is initialized, -ENODEV if no port is
2224 *      available.
2225 */
2226int ata_pci_sff_init_host(struct ata_host *host)
2227{
2228        struct device *gdev = host->dev;
2229        struct pci_dev *pdev = to_pci_dev(gdev);
2230        unsigned int mask = 0;
2231        int i, rc;
2232
2233        /* request, iomap BARs and init port addresses accordingly */
2234        for (i = 0; i < 2; i++) {
2235                struct ata_port *ap = host->ports[i];
2236                int base = i * 2;
2237                void __iomem * const *iomap;
2238
2239                if (ata_port_is_dummy(ap))
2240                        continue;
2241
2242                /* Discard disabled ports.  Some controllers show
2243                 * their unused channels this way.  Disabled ports are
2244                 * made dummy.
2245                 */
2246                if (!ata_resources_present(pdev, i)) {
2247                        ap->ops = &ata_dummy_port_ops;
2248                        continue;
2249                }
2250
2251                rc = pcim_iomap_regions(pdev, 0x3 << base,
2252                                        dev_driver_string(gdev));
2253                if (rc) {
2254                        dev_warn(gdev,
2255                                 "failed to request/iomap BARs for port %d (errno=%d)\n",
2256                                 i, rc);
2257                        if (rc == -EBUSY)
2258                                pcim_pin_device(pdev);
2259                        ap->ops = &ata_dummy_port_ops;
2260                        continue;
2261                }
2262                host->iomap = iomap = pcim_iomap_table(pdev);
2263
2264                ap->ioaddr.cmd_addr = iomap[base];
2265                ap->ioaddr.altstatus_addr =
2266                ap->ioaddr.ctl_addr = (void __iomem *)
2267                        ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2268                ata_sff_std_ports(&ap->ioaddr);
2269
2270                ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2271                        (unsigned long long)pci_resource_start(pdev, base),
2272                        (unsigned long long)pci_resource_start(pdev, base + 1));
2273
2274                mask |= 1 << i;
2275        }
2276
2277        if (!mask) {
2278                dev_err(gdev, "no available native port\n");
2279                return -ENODEV;
2280        }
2281
2282        return 0;
2283}
2284EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2285
2286/**
2287 *      ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2288 *      @pdev: target PCI device
2289 *      @ppi: array of port_info, must be enough for two ports
2290 *      @r_host: out argument for the initialized ATA host
2291 *
2292 *      Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2293 *      all PCI resources and initialize it accordingly in one go.
2294 *
2295 *      LOCKING:
2296 *      Inherited from calling layer (may sleep).
2297 *
2298 *      RETURNS:
2299 *      0 on success, -errno otherwise.
2300 */
2301int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2302                             const struct ata_port_info * const *ppi,
2303                             struct ata_host **r_host)
2304{
2305        struct ata_host *host;
2306        int rc;
2307
2308        if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2309                return -ENOMEM;
2310
2311        host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2312        if (!host) {
2313                dev_err(&pdev->dev, "failed to allocate ATA host\n");
2314                rc = -ENOMEM;
2315                goto err_out;
2316        }
2317
2318        rc = ata_pci_sff_init_host(host);
2319        if (rc)
2320                goto err_out;
2321
2322        devres_remove_group(&pdev->dev, NULL);
2323        *r_host = host;
2324        return 0;
2325
2326err_out:
2327        devres_release_group(&pdev->dev, NULL);
2328        return rc;
2329}
2330EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2331
2332/**
2333 *      ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2334 *      @host: target SFF ATA host
2335 *      @irq_handler: irq_handler used when requesting IRQ(s)
2336 *      @sht: scsi_host_template to use when registering the host
2337 *
2338 *      This is the counterpart of ata_host_activate() for SFF ATA
2339 *      hosts.  This separate helper is necessary because SFF hosts
2340 *      use two separate interrupts in legacy mode.
2341 *
2342 *      LOCKING:
2343 *      Inherited from calling layer (may sleep).
2344 *
2345 *      RETURNS:
2346 *      0 on success, -errno otherwise.
2347 */
2348int ata_pci_sff_activate_host(struct ata_host *host,
2349                              irq_handler_t irq_handler,
2350                              struct scsi_host_template *sht)
2351{
2352        struct device *dev = host->dev;
2353        struct pci_dev *pdev = to_pci_dev(dev);
2354        const char *drv_name = dev_driver_string(host->dev);
2355        int legacy_mode = 0, rc;
2356
2357        rc = ata_host_start(host);
2358        if (rc)
2359                return rc;
2360
2361        if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2362                u8 tmp8, mask = 0;
2363
2364                /*
2365                 * ATA spec says we should use legacy mode when one
2366                 * port is in legacy mode, but disabled ports on some
2367                 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2368                 * on which the secondary port is not wired, so
2369                 * ignore ports that are marked as 'dummy' during
2370                 * this check
2371                 */
2372                pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2373                if (!ata_port_is_dummy(host->ports[0]))
2374                        mask |= (1 << 0);
2375                if (!ata_port_is_dummy(host->ports[1]))
2376                        mask |= (1 << 2);
2377                if ((tmp8 & mask) != mask)
2378                        legacy_mode = 1;
2379        }
2380
2381        if (!devres_open_group(dev, NULL, GFP_KERNEL))
2382                return -ENOMEM;
2383
2384        if (!legacy_mode && pdev->irq) {
2385                int i;
2386
2387                rc = devm_request_irq(dev, pdev->irq, irq_handler,
2388                                      IRQF_SHARED, drv_name, host);
2389                if (rc)
2390                        goto out;
2391
2392                for (i = 0; i < 2; i++) {
2393                        if (ata_port_is_dummy(host->ports[i]))
2394                                continue;
2395                        ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2396                }
2397        } else if (legacy_mode) {
2398                if (!ata_port_is_dummy(host->ports[0])) {
2399                        rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2400                                              irq_handler, IRQF_SHARED,
2401                                              drv_name, host);
2402                        if (rc)
2403                                goto out;
2404
2405                        ata_port_desc(host->ports[0], "irq %d",
2406                                      ATA_PRIMARY_IRQ(pdev));
2407                }
2408
2409                if (!ata_port_is_dummy(host->ports[1])) {
2410                        rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2411                                              irq_handler, IRQF_SHARED,
2412                                              drv_name, host);
2413                        if (rc)
2414                                goto out;
2415
2416                        ata_port_desc(host->ports[1], "irq %d",
2417                                      ATA_SECONDARY_IRQ(pdev));
2418                }
2419        }
2420
2421        rc = ata_host_register(host, sht);
2422out:
2423        if (rc == 0)
2424                devres_remove_group(dev, NULL);
2425        else
2426                devres_release_group(dev, NULL);
2427
2428        return rc;
2429}
2430EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2431
2432static const struct ata_port_info *ata_sff_find_valid_pi(
2433                                        const struct ata_port_info * const *ppi)
2434{
2435        int i;
2436
2437        /* look up the first valid port_info */
2438        for (i = 0; i < 2 && ppi[i]; i++)
2439                if (ppi[i]->port_ops != &ata_dummy_port_ops)
2440                        return ppi[i];
2441
2442        return NULL;
2443}
2444
2445static int ata_pci_init_one(struct pci_dev *pdev,
2446                const struct ata_port_info * const *ppi,
2447                struct scsi_host_template *sht, void *host_priv,
2448                int hflags, bool bmdma)
2449{
2450        struct device *dev = &pdev->dev;
2451        const struct ata_port_info *pi;
2452        struct ata_host *host = NULL;
2453        int rc;
2454
2455        DPRINTK("ENTER\n");
2456
2457        pi = ata_sff_find_valid_pi(ppi);
2458        if (!pi) {
2459                dev_err(&pdev->dev, "no valid port_info specified\n");
2460                return -EINVAL;
2461        }
2462
2463        if (!devres_open_group(dev, NULL, GFP_KERNEL))
2464                return -ENOMEM;
2465
2466        rc = pcim_enable_device(pdev);
2467        if (rc)
2468                goto out;
2469
2470#ifdef CONFIG_ATA_BMDMA
2471        if (bmdma)
2472                /* prepare and activate BMDMA host */
2473                rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2474        else
2475#endif
2476                /* prepare and activate SFF host */
2477                rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2478        if (rc)
2479                goto out;
2480        host->private_data = host_priv;
2481        host->flags |= hflags;
2482
2483#ifdef CONFIG_ATA_BMDMA
2484        if (bmdma) {
2485                pci_set_master(pdev);
2486                rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2487        } else
2488#endif
2489                rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2490out:
2491        if (rc == 0)
2492                devres_remove_group(&pdev->dev, NULL);
2493        else
2494                devres_release_group(&pdev->dev, NULL);
2495
2496        return rc;
2497}
2498
2499/**
2500 *      ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2501 *      @pdev: Controller to be initialized
2502 *      @ppi: array of port_info, must be enough for two ports
2503 *      @sht: scsi_host_template to use when registering the host
2504 *      @host_priv: host private_data
2505 *      @hflag: host flags
2506 *
2507 *      This is a helper function which can be called from a driver's
2508 *      xxx_init_one() probe function if the hardware uses traditional
2509 *      IDE taskfile registers and is PIO only.
2510 *
2511 *      ASSUMPTION:
2512 *      Nobody makes a single channel controller that appears solely as
2513 *      the secondary legacy port on PCI.
2514 *
2515 *      LOCKING:
2516 *      Inherited from PCI layer (may sleep).
2517 *
2518 *      RETURNS:
2519 *      Zero on success, negative on errno-based value on error.
2520 */
2521int ata_pci_sff_init_one(struct pci_dev *pdev,
2522                 const struct ata_port_info * const *ppi,
2523                 struct scsi_host_template *sht, void *host_priv, int hflag)
2524{
2525        return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2526}
2527EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2528
2529#endif /* CONFIG_PCI */
2530
2531/*
2532 *      BMDMA support
2533 */
2534
2535#ifdef CONFIG_ATA_BMDMA
2536
2537const struct ata_port_operations ata_bmdma_port_ops = {
2538        .inherits               = &ata_sff_port_ops,
2539
2540        .error_handler          = ata_bmdma_error_handler,
2541        .post_internal_cmd      = ata_bmdma_post_internal_cmd,
2542
2543        .qc_prep                = ata_bmdma_qc_prep,
2544        .qc_issue               = ata_bmdma_qc_issue,
2545
2546        .sff_irq_clear          = ata_bmdma_irq_clear,
2547        .bmdma_setup            = ata_bmdma_setup,
2548        .bmdma_start            = ata_bmdma_start,
2549        .bmdma_stop             = ata_bmdma_stop,
2550        .bmdma_status           = ata_bmdma_status,
2551
2552        .port_start             = ata_bmdma_port_start,
2553};
2554EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2555
2556const struct ata_port_operations ata_bmdma32_port_ops = {
2557        .inherits               = &ata_bmdma_port_ops,
2558
2559        .sff_data_xfer          = ata_sff_data_xfer32,
2560        .port_start             = ata_bmdma_port_start32,
2561};
2562EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2563
2564/**
2565 *      ata_bmdma_fill_sg - Fill PCI IDE PRD table
2566 *      @qc: Metadata associated with taskfile to be transferred
2567 *
2568 *      Fill PCI IDE PRD (scatter-gather) table with segments
2569 *      associated with the current disk command.
2570 *
2571 *      LOCKING:
2572 *      spin_lock_irqsave(host lock)
2573 *
2574 */
2575static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2576{
2577        struct ata_port *ap = qc->ap;
2578        struct ata_bmdma_prd *prd = ap->bmdma_prd;
2579        struct scatterlist *sg;
2580        unsigned int si, pi;
2581
2582        pi = 0;
2583        for_each_sg(qc->sg, sg, qc->n_elem, si) {
2584                u32 addr, offset;
2585                u32 sg_len, len;
2586
2587                /* determine if physical DMA addr spans 64K boundary.
2588                 * Note h/w doesn't support 64-bit, so we unconditionally
2589                 * truncate dma_addr_t to u32.
2590                 */
2591                addr = (u32) sg_dma_address(sg);
2592                sg_len = sg_dma_len(sg);
2593
2594                while (sg_len) {
2595                        offset = addr & 0xffff;
2596                        len = sg_len;
2597                        if ((offset + sg_len) > 0x10000)
2598                                len = 0x10000 - offset;
2599
2600                        prd[pi].addr = cpu_to_le32(addr);
2601                        prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2602                        VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2603
2604                        pi++;
2605                        sg_len -= len;
2606                        addr += len;
2607                }
2608        }
2609
2610        prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2611}
2612
2613/**
2614 *      ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2615 *      @qc: Metadata associated with taskfile to be transferred
2616 *
2617 *      Fill PCI IDE PRD (scatter-gather) table with segments
2618 *      associated with the current disk command. Perform the fill
2619 *      so that we avoid writing any length 64K records for
2620 *      controllers that don't follow the spec.
2621 *
2622 *      LOCKING:
2623 *      spin_lock_irqsave(host lock)
2624 *
2625 */
2626static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2627{
2628        struct ata_port *ap = qc->ap;
2629        struct ata_bmdma_prd *prd = ap->bmdma_prd;
2630        struct scatterlist *sg;
2631        unsigned int si, pi;
2632
2633        pi = 0;
2634        for_each_sg(qc->sg, sg, qc->n_elem, si) {
2635                u32 addr, offset;
2636                u32 sg_len, len, blen;
2637
2638                /* determine if physical DMA addr spans 64K boundary.
2639                 * Note h/w doesn't support 64-bit, so we unconditionally
2640                 * truncate dma_addr_t to u32.
2641                 */
2642                addr = (u32) sg_dma_address(sg);
2643                sg_len = sg_dma_len(sg);
2644
2645                while (sg_len) {
2646                        offset = addr & 0xffff;
2647                        len = sg_len;
2648                        if ((offset + sg_len) > 0x10000)
2649                                len = 0x10000 - offset;
2650
2651                        blen = len & 0xffff;
2652                        prd[pi].addr = cpu_to_le32(addr);
2653                        if (blen == 0) {
2654                                /* Some PATA chipsets like the CS5530 can't
2655                                   cope with 0x0000 meaning 64K as the spec
2656                                   says */
2657                                prd[pi].flags_len = cpu_to_le32(0x8000);
2658                                blen = 0x8000;
2659                                prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2660                        }
2661                        prd[pi].flags_len = cpu_to_le32(blen);
2662                        VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2663
2664                        pi++;
2665                        sg_len -= len;
2666                        addr += len;
2667                }
2668        }
2669
2670        prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2671}
2672
2673/**
2674 *      ata_bmdma_qc_prep - Prepare taskfile for submission
2675 *      @qc: Metadata associated with taskfile to be prepared
2676 *
2677 *      Prepare ATA taskfile for submission.
2678 *
2679 *      LOCKING:
2680 *      spin_lock_irqsave(host lock)
2681 */
2682void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2683{
2684        if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2685                return;
2686
2687        ata_bmdma_fill_sg(qc);
2688}
2689EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2690
2691/**
2692 *      ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2693 *      @qc: Metadata associated with taskfile to be prepared
2694 *
2695 *      Prepare ATA taskfile for submission.
2696 *
2697 *      LOCKING:
2698 *      spin_lock_irqsave(host lock)
2699 */
2700void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2701{
2702        if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2703                return;
2704
2705        ata_bmdma_fill_sg_dumb(qc);
2706}
2707EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2708
2709/**
2710 *      ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2711 *      @qc: command to issue to device
2712 *
2713 *      This function issues a PIO, NODATA or DMA command to a
2714 *      SFF/BMDMA controller.  PIO and NODATA are handled by
2715 *      ata_sff_qc_issue().
2716 *
2717 *      LOCKING:
2718 *      spin_lock_irqsave(host lock)
2719 *
2720 *      RETURNS:
2721 *      Zero on success, AC_ERR_* mask on failure
2722 */
2723unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2724{
2725        struct ata_port *ap = qc->ap;
2726        struct ata_link *link = qc->dev->link;
2727
2728        /* defer PIO handling to sff_qc_issue */
2729        if (!ata_is_dma(qc->tf.protocol))
2730                return ata_sff_qc_issue(qc);
2731
2732        /* select the device */
2733        ata_dev_select(ap, qc->dev->devno, 1, 0);
2734
2735        /* start the command */
2736        switch (qc->tf.protocol) {
2737        case ATA_PROT_DMA:
2738                WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2739
2740                ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2741                ap->ops->bmdma_setup(qc);           /* set up bmdma */
2742                ap->ops->bmdma_start(qc);           /* initiate bmdma */
2743                ap->hsm_task_state = HSM_ST_LAST;
2744                break;
2745
2746        case ATAPI_PROT_DMA:
2747                WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2748
2749                ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2750                ap->ops->bmdma_setup(qc);           /* set up bmdma */
2751                ap->hsm_task_state = HSM_ST_FIRST;
2752
2753                /* send cdb by polling if no cdb interrupt */
2754                if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2755                        ata_sff_queue_pio_task(link, 0);
2756                break;
2757
2758        default:
2759                WARN_ON(1);
2760                return AC_ERR_SYSTEM;
2761        }
2762
2763        return 0;
2764}
2765EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2766
2767/**
2768 *      ata_bmdma_port_intr - Handle BMDMA port interrupt
2769 *      @ap: Port on which interrupt arrived (possibly...)
2770 *      @qc: Taskfile currently active in engine
2771 *
2772 *      Handle port interrupt for given queued command.
2773 *
2774 *      LOCKING:
2775 *      spin_lock_irqsave(host lock)
2776 *
2777 *      RETURNS:
2778 *      One if interrupt was handled, zero if not (shared irq).
2779 */
2780unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2781{
2782        struct ata_eh_info *ehi = &ap->link.eh_info;
2783        u8 host_stat = 0;
2784        bool bmdma_stopped = false;
2785        unsigned int handled;
2786
2787        if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2788                /* check status of DMA engine */
2789                host_stat = ap->ops->bmdma_status(ap);
2790                VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2791
2792                /* if it's not our irq... */
2793                if (!(host_stat & ATA_DMA_INTR))
2794                        return ata_sff_idle_irq(ap);
2795
2796                /* before we do anything else, clear DMA-Start bit */
2797                ap->ops->bmdma_stop(qc);
2798                bmdma_stopped = true;
2799
2800                if (unlikely(host_stat & ATA_DMA_ERR)) {
2801                        /* error when transferring data to/from memory */
2802                        qc->err_mask |= AC_ERR_HOST_BUS;
2803                        ap->hsm_task_state = HSM_ST_ERR;
2804                }
2805        }
2806
2807        handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2808
2809        if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2810                ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2811
2812        return handled;
2813}
2814EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2815
2816/**
2817 *      ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2818 *      @irq: irq line (unused)
2819 *      @dev_instance: pointer to our ata_host information structure
2820 *
2821 *      Default interrupt handler for PCI IDE devices.  Calls
2822 *      ata_bmdma_port_intr() for each port that is not disabled.
2823 *
2824 *      LOCKING:
2825 *      Obtains host lock during operation.
2826 *
2827 *      RETURNS:
2828 *      IRQ_NONE or IRQ_HANDLED.
2829 */
2830irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2831{
2832        return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2833}
2834EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2835
2836/**
2837 *      ata_bmdma_error_handler - Stock error handler for BMDMA controller
2838 *      @ap: port to handle error for
2839 *
2840 *      Stock error handler for BMDMA controller.  It can handle both
2841 *      PATA and SATA controllers.  Most BMDMA controllers should be
2842 *      able to use this EH as-is or with some added handling before
2843 *      and after.
2844 *
2845 *      LOCKING:
2846 *      Kernel thread context (may sleep)
2847 */
2848void ata_bmdma_error_handler(struct ata_port *ap)
2849{
2850        struct ata_queued_cmd *qc;
2851        unsigned long flags;
2852        bool thaw = false;
2853
2854        qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2855        if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2856                qc = NULL;
2857
2858        /* reset PIO HSM and stop DMA engine */
2859        spin_lock_irqsave(ap->lock, flags);
2860
2861        if (qc && ata_is_dma(qc->tf.protocol)) {
2862                u8 host_stat;
2863
2864                host_stat = ap->ops->bmdma_status(ap);
2865
2866                /* BMDMA controllers indicate host bus error by
2867                 * setting DMA_ERR bit and timing out.  As it wasn't
2868                 * really a timeout event, adjust error mask and
2869                 * cancel frozen state.
2870                 */
2871                if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2872                        qc->err_mask = AC_ERR_HOST_BUS;
2873                        thaw = true;
2874                }
2875
2876                ap->ops->bmdma_stop(qc);
2877
2878                /* if we're gonna thaw, make sure IRQ is clear */
2879                if (thaw) {
2880                        ap->ops->sff_check_status(ap);
2881                        if (ap->ops->sff_irq_clear)
2882                                ap->ops->sff_irq_clear(ap);
2883                }
2884        }
2885
2886        spin_unlock_irqrestore(ap->lock, flags);
2887
2888        if (thaw)
2889                ata_eh_thaw_port(ap);
2890
2891        ata_sff_error_handler(ap);
2892}
2893EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2894
2895/**
2896 *      ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2897 *      @qc: internal command to clean up
2898 *
2899 *      LOCKING:
2900 *      Kernel thread context (may sleep)
2901 */
2902void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2903{
2904        struct ata_port *ap = qc->ap;
2905        unsigned long flags;
2906
2907        if (ata_is_dma(qc->tf.protocol)) {
2908                spin_lock_irqsave(ap->lock, flags);
2909                ap->ops->bmdma_stop(qc);
2910                spin_unlock_irqrestore(ap->lock, flags);
2911        }
2912}
2913EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2914
2915/**
2916 *      ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2917 *      @ap: Port associated with this ATA transaction.
2918 *
2919 *      Clear interrupt and error flags in DMA status register.
2920 *
2921 *      May be used as the irq_clear() entry in ata_port_operations.
2922 *
2923 *      LOCKING:
2924 *      spin_lock_irqsave(host lock)
2925 */
2926void ata_bmdma_irq_clear(struct ata_port *ap)
2927{
2928        void __iomem *mmio = ap->ioaddr.bmdma_addr;
2929
2930        if (!mmio)
2931                return;
2932
2933        iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2934}
2935EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2936
2937/**
2938 *      ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2939 *      @qc: Info associated with this ATA transaction.
2940 *
2941 *      LOCKING:
2942 *      spin_lock_irqsave(host lock)
2943 */
2944void ata_bmdma_setup(struct ata_queued_cmd *qc)
2945{
2946        struct ata_port *ap = qc->ap;
2947        unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2948        u8 dmactl;
2949
2950        /* load PRD table addr. */
2951        mb();   /* make sure PRD table writes are visible to controller */
2952        iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2953
2954        /* specify data direction, triple-check start bit is clear */
2955        dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2956        dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2957        if (!rw)
2958                dmactl |= ATA_DMA_WR;
2959        iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2960
2961        /* issue r/w command */
2962        ap->ops->sff_exec_command(ap, &qc->tf);
2963}
2964EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2965
2966/**
2967 *      ata_bmdma_start - Start a PCI IDE BMDMA transaction
2968 *      @qc: Info associated with this ATA transaction.
2969 *
2970 *      LOCKING:
2971 *      spin_lock_irqsave(host lock)
2972 */
2973void ata_bmdma_start(struct ata_queued_cmd *qc)
2974{
2975        struct ata_port *ap = qc->ap;
2976        u8 dmactl;
2977
2978        /* start host DMA transaction */
2979        dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2980        iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2981
2982        /* Strictly, one may wish to issue an ioread8() here, to
2983         * flush the mmio write.  However, control also passes
2984         * to the hardware at this point, and it will interrupt
2985         * us when we are to resume control.  So, in effect,
2986         * we don't care when the mmio write flushes.
2987         * Further, a read of the DMA status register _immediately_
2988         * following the write may not be what certain flaky hardware
2989         * is expected, so I think it is best to not add a readb()
2990         * without first all the MMIO ATA cards/mobos.
2991         * Or maybe I'm just being paranoid.
2992         *
2993         * FIXME: The posting of this write means I/O starts are
2994         * unnecessarily delayed for MMIO
2995         */
2996}
2997EXPORT_SYMBOL_GPL(ata_bmdma_start);
2998
2999/**
3000 *      ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3001 *      @qc: Command we are ending DMA for
3002 *
3003 *      Clears the ATA_DMA_START flag in the dma control register
3004 *
3005 *      May be used as the bmdma_stop() entry in ata_port_operations.
3006 *
3007 *      LOCKING:
3008 *      spin_lock_irqsave(host lock)
3009 */
3010void ata_bmdma_stop(struct ata_queued_cmd *qc)
3011{
3012        struct ata_port *ap = qc->ap;
3013        void __iomem *mmio = ap->ioaddr.bmdma_addr;
3014
3015        /* clear start/stop bit */
3016        iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3017                 mmio + ATA_DMA_CMD);
3018
3019        /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3020        ata_sff_dma_pause(ap);
3021}
3022EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3023
3024/**
3025 *      ata_bmdma_status - Read PCI IDE BMDMA status
3026 *      @ap: Port associated with this ATA transaction.
3027 *
3028 *      Read and return BMDMA status register.
3029 *
3030 *      May be used as the bmdma_status() entry in ata_port_operations.
3031 *
3032 *      LOCKING:
3033 *      spin_lock_irqsave(host lock)
3034 */
3035u8 ata_bmdma_status(struct ata_port *ap)
3036{
3037        return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3038}
3039EXPORT_SYMBOL_GPL(ata_bmdma_status);
3040
3041
3042/**
3043 *      ata_bmdma_port_start - Set port up for bmdma.
3044 *      @ap: Port to initialize
3045 *
3046 *      Called just after data structures for each port are
3047 *      initialized.  Allocates space for PRD table.
3048 *
3049 *      May be used as the port_start() entry in ata_port_operations.
3050 *
3051 *      LOCKING:
3052 *      Inherited from caller.
3053 */
3054int ata_bmdma_port_start(struct ata_port *ap)
3055{
3056        if (ap->mwdma_mask || ap->udma_mask) {
3057                ap->bmdma_prd =
3058                        dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3059                                            &ap->bmdma_prd_dma, GFP_KERNEL);
3060                if (!ap->bmdma_prd)
3061                        return -ENOMEM;
3062        }
3063
3064        return 0;
3065}
3066EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3067
3068/**
3069 *      ata_bmdma_port_start32 - Set port up for dma.
3070 *      @ap: Port to initialize
3071 *
3072 *      Called just after data structures for each port are
3073 *      initialized.  Enables 32bit PIO and allocates space for PRD
3074 *      table.
3075 *
3076 *      May be used as the port_start() entry in ata_port_operations for
3077 *      devices that are capable of 32bit PIO.
3078 *
3079 *      LOCKING:
3080 *      Inherited from caller.
3081 */
3082int ata_bmdma_port_start32(struct ata_port *ap)
3083{
3084        ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3085        return ata_bmdma_port_start(ap);
3086}
3087EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3088
3089#ifdef CONFIG_PCI
3090
3091/**
3092 *      ata_pci_bmdma_clear_simplex -   attempt to kick device out of simplex
3093 *      @pdev: PCI device
3094 *
3095 *      Some PCI ATA devices report simplex mode but in fact can be told to
3096 *      enter non simplex mode. This implements the necessary logic to
3097 *      perform the task on such devices. Calling it on other devices will
3098 *      have -undefined- behaviour.
3099 */
3100int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3101{
3102        unsigned long bmdma = pci_resource_start(pdev, 4);
3103        u8 simplex;
3104
3105        if (bmdma == 0)
3106                return -ENOENT;
3107
3108        simplex = inb(bmdma + 0x02);
3109        outb(simplex & 0x60, bmdma + 0x02);
3110        simplex = inb(bmdma + 0x02);
3111        if (simplex & 0x80)
3112                return -EOPNOTSUPP;
3113        return 0;
3114}
3115EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3116
3117static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3118{
3119        int i;
3120
3121        dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3122
3123        for (i = 0; i < 2; i++) {
3124                host->ports[i]->mwdma_mask = 0;
3125                host->ports[i]->udma_mask = 0;
3126        }
3127}
3128
3129/**
3130 *      ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3131 *      @host: target ATA host
3132 *
3133 *      Acquire PCI BMDMA resources and initialize @host accordingly.
3134 *
3135 *      LOCKING:
3136 *      Inherited from calling layer (may sleep).
3137 */
3138void ata_pci_bmdma_init(struct ata_host *host)
3139{
3140        struct device *gdev = host->dev;
3141        struct pci_dev *pdev = to_pci_dev(gdev);
3142        int i, rc;
3143
3144        /* No BAR4 allocation: No DMA */
3145        if (pci_resource_start(pdev, 4) == 0) {
3146                ata_bmdma_nodma(host, "BAR4 is zero");
3147                return;
3148        }
3149
3150        /*
3151         * Some controllers require BMDMA region to be initialized
3152         * even if DMA is not in use to clear IRQ status via
3153         * ->sff_irq_clear method.  Try to initialize bmdma_addr
3154         * regardless of dma masks.
3155         */
3156        rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3157        if (rc)
3158                ata_bmdma_nodma(host, "failed to set dma mask");
3159        if (!rc) {
3160                rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3161                if (rc)
3162                        ata_bmdma_nodma(host,
3163                                        "failed to set consistent dma mask");
3164        }
3165
3166        /* request and iomap DMA region */
3167        rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3168        if (rc) {
3169                ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3170                return;
3171        }
3172        host->iomap = pcim_iomap_table(pdev);
3173
3174        for (i = 0; i < 2; i++) {
3175                struct ata_port *ap = host->ports[i];
3176                void __iomem *bmdma = host->iomap[4] + 8 * i;
3177
3178                if (ata_port_is_dummy(ap))
3179                        continue;
3180
3181                ap->ioaddr.bmdma_addr = bmdma;
3182                if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3183                    (ioread8(bmdma + 2) & 0x80))
3184                        host->flags |= ATA_HOST_SIMPLEX;
3185
3186                ata_port_desc(ap, "bmdma 0x%llx",
3187                    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3188        }
3189}
3190EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3191
3192/**
3193 *      ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3194 *      @pdev: target PCI device
3195 *      @ppi: array of port_info, must be enough for two ports
3196 *      @r_host: out argument for the initialized ATA host
3197 *
3198 *      Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3199 *      resources and initialize it accordingly in one go.
3200 *
3201 *      LOCKING:
3202 *      Inherited from calling layer (may sleep).
3203 *
3204 *      RETURNS:
3205 *      0 on success, -errno otherwise.
3206 */
3207int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3208                               const struct ata_port_info * const * ppi,
3209                               struct ata_host **r_host)
3210{
3211        int rc;
3212
3213        rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3214        if (rc)
3215                return rc;
3216
3217        ata_pci_bmdma_init(*r_host);
3218        return 0;
3219}
3220EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3221
3222/**
3223 *      ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3224 *      @pdev: Controller to be initialized
3225 *      @ppi: array of port_info, must be enough for two ports
3226 *      @sht: scsi_host_template to use when registering the host
3227 *      @host_priv: host private_data
3228 *      @hflags: host flags
3229 *
3230 *      This function is similar to ata_pci_sff_init_one() but also
3231 *      takes care of BMDMA initialization.
3232 *
3233 *      LOCKING:
3234 *      Inherited from PCI layer (may sleep).
3235 *
3236 *      RETURNS:
3237 *      Zero on success, negative on errno-based value on error.
3238 */
3239int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3240                           const struct ata_port_info * const * ppi,
3241                           struct scsi_host_template *sht, void *host_priv,
3242                           int hflags)
3243{
3244        return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3245}
3246EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3247
3248#endif /* CONFIG_PCI */
3249#endif /* CONFIG_ATA_BMDMA */
3250
3251/**
3252 *      ata_sff_port_init - Initialize SFF/BMDMA ATA port
3253 *      @ap: Port to initialize
3254 *
3255 *      Called on port allocation to initialize SFF/BMDMA specific
3256 *      fields.
3257 *
3258 *      LOCKING:
3259 *      None.
3260 */
3261void ata_sff_port_init(struct ata_port *ap)
3262{
3263        INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3264        ap->ctl = ATA_DEVCTL_OBS;
3265        ap->last_ctl = 0xFF;
3266}
3267
3268int __init ata_sff_init(void)
3269{
3270        ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3271        if (!ata_sff_wq)
3272                return -ENOMEM;
3273
3274        return 0;
3275}
3276
3277void ata_sff_exit(void)
3278{
3279        destroy_workqueue(ata_sff_wq);
3280}
3281