linux/drivers/ata/pata_octeon_cf.c
<<
>>
Prefs
   1/*
   2 * Driver for the Octeon bootbus compact flash.
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 2005 - 2012 Cavium Inc.
   9 * Copyright (C) 2008 Wind River Systems
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/module.h>
  14#include <linux/libata.h>
  15#include <linux/hrtimer.h>
  16#include <linux/slab.h>
  17#include <linux/irq.h>
  18#include <linux/of.h>
  19#include <linux/of_platform.h>
  20#include <linux/platform_device.h>
  21#include <scsi/scsi_host.h>
  22
  23#include <asm/byteorder.h>
  24#include <asm/octeon/octeon.h>
  25
  26/*
  27 * The Octeon bootbus compact flash interface is connected in at least
  28 * 3 different configurations on various evaluation boards:
  29 *
  30 * -- 8  bits no irq, no DMA
  31 * -- 16 bits no irq, no DMA
  32 * -- 16 bits True IDE mode with DMA, but no irq.
  33 *
  34 * In the last case the DMA engine can generate an interrupt when the
  35 * transfer is complete.  For the first two cases only PIO is supported.
  36 *
  37 */
  38
  39#define DRV_NAME        "pata_octeon_cf"
  40#define DRV_VERSION     "2.2"
  41
  42/* Poll interval in nS. */
  43#define OCTEON_CF_BUSY_POLL_INTERVAL 500000
  44
  45#define DMA_CFG 0
  46#define DMA_TIM 0x20
  47#define DMA_INT 0x38
  48#define DMA_INT_EN 0x50
  49
  50struct octeon_cf_port {
  51        struct hrtimer delayed_finish;
  52        struct ata_port *ap;
  53        int dma_finished;
  54        void            *c0;
  55        unsigned int cs0;
  56        unsigned int cs1;
  57        bool is_true_ide;
  58        u64 dma_base;
  59};
  60
  61static struct scsi_host_template octeon_cf_sht = {
  62        ATA_PIO_SHT(DRV_NAME),
  63};
  64
  65static int enable_dma;
  66module_param(enable_dma, int, 0444);
  67MODULE_PARM_DESC(enable_dma,
  68                 "Enable use of DMA on interfaces that support it (0=no dma [default], 1=use dma)");
  69
  70/**
  71 * Convert nanosecond based time to setting used in the
  72 * boot bus timing register, based on timing multiple
  73 */
  74static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
  75{
  76        unsigned int val;
  77
  78        /*
  79         * Compute # of eclock periods to get desired duration in
  80         * nanoseconds.
  81         */
  82        val = DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000),
  83                          1000 * tim_mult);
  84
  85        return val;
  86}
  87
  88static void octeon_cf_set_boot_reg_cfg(int cs, unsigned int multiplier)
  89{
  90        union cvmx_mio_boot_reg_cfgx reg_cfg;
  91        unsigned int tim_mult;
  92
  93        switch (multiplier) {
  94        case 8:
  95                tim_mult = 3;
  96                break;
  97        case 4:
  98                tim_mult = 0;
  99                break;
 100        case 2:
 101                tim_mult = 2;
 102                break;
 103        default:
 104                tim_mult = 1;
 105                break;
 106        }
 107
 108        reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
 109        reg_cfg.s.dmack = 0;    /* Don't assert DMACK on access */
 110        reg_cfg.s.tim_mult = tim_mult;  /* Timing mutiplier */
 111        reg_cfg.s.rd_dly = 0;   /* Sample on falling edge of BOOT_OE */
 112        reg_cfg.s.sam = 0;      /* Don't combine write and output enable */
 113        reg_cfg.s.we_ext = 0;   /* No write enable extension */
 114        reg_cfg.s.oe_ext = 0;   /* No read enable extension */
 115        reg_cfg.s.en = 1;       /* Enable this region */
 116        reg_cfg.s.orbit = 0;    /* Don't combine with previous region */
 117        reg_cfg.s.ale = 0;      /* Don't do address multiplexing */
 118        cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
 119}
 120
 121/**
 122 * Called after libata determines the needed PIO mode. This
 123 * function programs the Octeon bootbus regions to support the
 124 * timing requirements of the PIO mode.
 125 *
 126 * @ap:     ATA port information
 127 * @dev:    ATA device
 128 */
 129static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
 130{
 131        struct octeon_cf_port *cf_port = ap->private_data;
 132        union cvmx_mio_boot_reg_timx reg_tim;
 133        int T;
 134        struct ata_timing timing;
 135
 136        unsigned int div;
 137        int use_iordy;
 138        int trh;
 139        int pause;
 140        /* These names are timing parameters from the ATA spec */
 141        int t2;
 142
 143        /*
 144         * A divisor value of four will overflow the timing fields at
 145         * clock rates greater than 800MHz
 146         */
 147        if (octeon_get_io_clock_rate() <= 800000000)
 148                div = 4;
 149        else
 150                div = 8;
 151        T = (int)((1000000000000LL * div) / octeon_get_io_clock_rate());
 152
 153        BUG_ON(ata_timing_compute(dev, dev->pio_mode, &timing, T, T));
 154
 155        t2 = timing.active;
 156        if (t2)
 157                t2--;
 158
 159        trh = ns_to_tim_reg(div, 20);
 160        if (trh)
 161                trh--;
 162
 163        pause = (int)timing.cycle - (int)timing.active -
 164                (int)timing.setup - trh;
 165        if (pause < 0)
 166                pause = 0;
 167        if (pause)
 168                pause--;
 169
 170        octeon_cf_set_boot_reg_cfg(cf_port->cs0, div);
 171        if (cf_port->is_true_ide)
 172                /* True IDE mode, program both chip selects.  */
 173                octeon_cf_set_boot_reg_cfg(cf_port->cs1, div);
 174
 175
 176        use_iordy = ata_pio_need_iordy(dev);
 177
 178        reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0));
 179        /* Disable page mode */
 180        reg_tim.s.pagem = 0;
 181        /* Enable dynamic timing */
 182        reg_tim.s.waitm = use_iordy;
 183        /* Pages are disabled */
 184        reg_tim.s.pages = 0;
 185        /* We don't use multiplexed address mode */
 186        reg_tim.s.ale = 0;
 187        /* Not used */
 188        reg_tim.s.page = 0;
 189        /* Time after IORDY to coninue to assert the data */
 190        reg_tim.s.wait = 0;
 191        /* Time to wait to complete the cycle. */
 192        reg_tim.s.pause = pause;
 193        /* How long to hold after a write to de-assert CE. */
 194        reg_tim.s.wr_hld = trh;
 195        /* How long to wait after a read to de-assert CE. */
 196        reg_tim.s.rd_hld = trh;
 197        /* How long write enable is asserted */
 198        reg_tim.s.we = t2;
 199        /* How long read enable is asserted */
 200        reg_tim.s.oe = t2;
 201        /* Time after CE that read/write starts */
 202        reg_tim.s.ce = ns_to_tim_reg(div, 5);
 203        /* Time before CE that address is valid */
 204        reg_tim.s.adr = 0;
 205
 206        /* Program the bootbus region timing for the data port chip select. */
 207        cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0), reg_tim.u64);
 208        if (cf_port->is_true_ide)
 209                /* True IDE mode, program both chip selects.  */
 210                cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs1),
 211                               reg_tim.u64);
 212}
 213
 214static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
 215{
 216        struct octeon_cf_port *cf_port = ap->private_data;
 217        union cvmx_mio_boot_pin_defs pin_defs;
 218        union cvmx_mio_boot_dma_timx dma_tim;
 219        unsigned int oe_a;
 220        unsigned int oe_n;
 221        unsigned int dma_ackh;
 222        unsigned int dma_arq;
 223        unsigned int pause;
 224        unsigned int T0, Tkr, Td;
 225        unsigned int tim_mult;
 226        int c;
 227
 228        const struct ata_timing *timing;
 229
 230        timing = ata_timing_find_mode(dev->dma_mode);
 231        T0      = timing->cycle;
 232        Td      = timing->active;
 233        Tkr     = timing->recover;
 234        dma_ackh = timing->dmack_hold;
 235
 236        dma_tim.u64 = 0;
 237        /* dma_tim.s.tim_mult = 0 --> 4x */
 238        tim_mult = 4;
 239
 240        /* not spec'ed, value in eclocks, not affected by tim_mult */
 241        dma_arq = 8;
 242        pause = 25 - dma_arq * 1000 /
 243                (octeon_get_io_clock_rate() / 1000000); /* Tz */
 244
 245        oe_a = Td;
 246        /* Tkr from cf spec, lengthened to meet T0 */
 247        oe_n = max(T0 - oe_a, Tkr);
 248
 249        pin_defs.u64 = cvmx_read_csr(CVMX_MIO_BOOT_PIN_DEFS);
 250
 251        /* DMA channel number. */
 252        c = (cf_port->dma_base & 8) >> 3;
 253
 254        /* Invert the polarity if the default is 0*/
 255        dma_tim.s.dmack_pi = (pin_defs.u64 & (1ull << (11 + c))) ? 0 : 1;
 256
 257        dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
 258        dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
 259
 260        /*
 261         * This is tI, C.F. spec. says 0, but Sony CF card requires
 262         * more, we use 20 nS.
 263         */
 264        dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
 265        dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
 266
 267        dma_tim.s.dmarq = dma_arq;
 268        dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
 269
 270        dma_tim.s.rd_dly = 0;   /* Sample right on edge */
 271
 272        /*  writes only */
 273        dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
 274        dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
 275
 276        pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
 277                 ns_to_tim_reg(tim_mult, 60));
 278        pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n",
 279                 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
 280                 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
 281
 282        cvmx_write_csr(cf_port->dma_base + DMA_TIM, dma_tim.u64);
 283}
 284
 285/**
 286 * Handle an 8 bit I/O request.
 287 *
 288 * @qc:         Queued command
 289 * @buffer:     Data buffer
 290 * @buflen:     Length of the buffer.
 291 * @rw:         True to write.
 292 */
 293static unsigned int octeon_cf_data_xfer8(struct ata_queued_cmd *qc,
 294                                         unsigned char *buffer,
 295                                         unsigned int buflen,
 296                                         int rw)
 297{
 298        struct ata_port *ap             = qc->dev->link->ap;
 299        void __iomem *data_addr         = ap->ioaddr.data_addr;
 300        unsigned long words;
 301        int count;
 302
 303        words = buflen;
 304        if (rw) {
 305                count = 16;
 306                while (words--) {
 307                        iowrite8(*buffer, data_addr);
 308                        buffer++;
 309                        /*
 310                         * Every 16 writes do a read so the bootbus
 311                         * FIFO doesn't fill up.
 312                         */
 313                        if (--count == 0) {
 314                                ioread8(ap->ioaddr.altstatus_addr);
 315                                count = 16;
 316                        }
 317                }
 318        } else {
 319                ioread8_rep(data_addr, buffer, words);
 320        }
 321        return buflen;
 322}
 323
 324/**
 325 * Handle a 16 bit I/O request.
 326 *
 327 * @qc:         Queued command
 328 * @buffer:     Data buffer
 329 * @buflen:     Length of the buffer.
 330 * @rw:         True to write.
 331 */
 332static unsigned int octeon_cf_data_xfer16(struct ata_queued_cmd *qc,
 333                                          unsigned char *buffer,
 334                                          unsigned int buflen,
 335                                          int rw)
 336{
 337        struct ata_port *ap             = qc->dev->link->ap;
 338        void __iomem *data_addr         = ap->ioaddr.data_addr;
 339        unsigned long words;
 340        int count;
 341
 342        words = buflen / 2;
 343        if (rw) {
 344                count = 16;
 345                while (words--) {
 346                        iowrite16(*(uint16_t *)buffer, data_addr);
 347                        buffer += sizeof(uint16_t);
 348                        /*
 349                         * Every 16 writes do a read so the bootbus
 350                         * FIFO doesn't fill up.
 351                         */
 352                        if (--count == 0) {
 353                                ioread8(ap->ioaddr.altstatus_addr);
 354                                count = 16;
 355                        }
 356                }
 357        } else {
 358                while (words--) {
 359                        *(uint16_t *)buffer = ioread16(data_addr);
 360                        buffer += sizeof(uint16_t);
 361                }
 362        }
 363        /* Transfer trailing 1 byte, if any. */
 364        if (unlikely(buflen & 0x01)) {
 365                __le16 align_buf[1] = { 0 };
 366
 367                if (rw == READ) {
 368                        align_buf[0] = cpu_to_le16(ioread16(data_addr));
 369                        memcpy(buffer, align_buf, 1);
 370                } else {
 371                        memcpy(align_buf, buffer, 1);
 372                        iowrite16(le16_to_cpu(align_buf[0]), data_addr);
 373                }
 374                words++;
 375        }
 376        return buflen;
 377}
 378
 379/**
 380 * Read the taskfile for 16bit non-True IDE only.
 381 */
 382static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
 383{
 384        u16 blob;
 385        /* The base of the registers is at ioaddr.data_addr. */
 386        void __iomem *base = ap->ioaddr.data_addr;
 387
 388        blob = __raw_readw(base + 0xc);
 389        tf->feature = blob >> 8;
 390
 391        blob = __raw_readw(base + 2);
 392        tf->nsect = blob & 0xff;
 393        tf->lbal = blob >> 8;
 394
 395        blob = __raw_readw(base + 4);
 396        tf->lbam = blob & 0xff;
 397        tf->lbah = blob >> 8;
 398
 399        blob = __raw_readw(base + 6);
 400        tf->device = blob & 0xff;
 401        tf->command = blob >> 8;
 402
 403        if (tf->flags & ATA_TFLAG_LBA48) {
 404                if (likely(ap->ioaddr.ctl_addr)) {
 405                        iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
 406
 407                        blob = __raw_readw(base + 0xc);
 408                        tf->hob_feature = blob >> 8;
 409
 410                        blob = __raw_readw(base + 2);
 411                        tf->hob_nsect = blob & 0xff;
 412                        tf->hob_lbal = blob >> 8;
 413
 414                        blob = __raw_readw(base + 4);
 415                        tf->hob_lbam = blob & 0xff;
 416                        tf->hob_lbah = blob >> 8;
 417
 418                        iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
 419                        ap->last_ctl = tf->ctl;
 420                } else {
 421                        WARN_ON(1);
 422                }
 423        }
 424}
 425
 426static u8 octeon_cf_check_status16(struct ata_port *ap)
 427{
 428        u16 blob;
 429        void __iomem *base = ap->ioaddr.data_addr;
 430
 431        blob = __raw_readw(base + 6);
 432        return blob >> 8;
 433}
 434
 435static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
 436                                 unsigned long deadline)
 437{
 438        struct ata_port *ap = link->ap;
 439        void __iomem *base = ap->ioaddr.data_addr;
 440        int rc;
 441        u8 err;
 442
 443        DPRINTK("about to softreset\n");
 444        __raw_writew(ap->ctl, base + 0xe);
 445        udelay(20);
 446        __raw_writew(ap->ctl | ATA_SRST, base + 0xe);
 447        udelay(20);
 448        __raw_writew(ap->ctl, base + 0xe);
 449
 450        rc = ata_sff_wait_after_reset(link, 1, deadline);
 451        if (rc) {
 452                ata_link_err(link, "SRST failed (errno=%d)\n", rc);
 453                return rc;
 454        }
 455
 456        /* determine by signature whether we have ATA or ATAPI devices */
 457        classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
 458        DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
 459        return 0;
 460}
 461
 462/**
 463 * Load the taskfile for 16bit non-True IDE only.  The device_addr is
 464 * not loaded, we do this as part of octeon_cf_exec_command16.
 465 */
 466static void octeon_cf_tf_load16(struct ata_port *ap,
 467                                const struct ata_taskfile *tf)
 468{
 469        unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
 470        /* The base of the registers is at ioaddr.data_addr. */
 471        void __iomem *base = ap->ioaddr.data_addr;
 472
 473        if (tf->ctl != ap->last_ctl) {
 474                iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
 475                ap->last_ctl = tf->ctl;
 476                ata_wait_idle(ap);
 477        }
 478        if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
 479                __raw_writew(tf->hob_feature << 8, base + 0xc);
 480                __raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
 481                __raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
 482                VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
 483                        tf->hob_feature,
 484                        tf->hob_nsect,
 485                        tf->hob_lbal,
 486                        tf->hob_lbam,
 487                        tf->hob_lbah);
 488        }
 489        if (is_addr) {
 490                __raw_writew(tf->feature << 8, base + 0xc);
 491                __raw_writew(tf->nsect | tf->lbal << 8, base + 2);
 492                __raw_writew(tf->lbam | tf->lbah << 8, base + 4);
 493                VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
 494                        tf->feature,
 495                        tf->nsect,
 496                        tf->lbal,
 497                        tf->lbam,
 498                        tf->lbah);
 499        }
 500        ata_wait_idle(ap);
 501}
 502
 503
 504static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
 505{
 506/*  There is only one device, do nothing. */
 507        return;
 508}
 509
 510/*
 511 * Issue ATA command to host controller.  The device_addr is also sent
 512 * as it must be written in a combined write with the command.
 513 */
 514static void octeon_cf_exec_command16(struct ata_port *ap,
 515                                const struct ata_taskfile *tf)
 516{
 517        /* The base of the registers is at ioaddr.data_addr. */
 518        void __iomem *base = ap->ioaddr.data_addr;
 519        u16 blob;
 520
 521        if (tf->flags & ATA_TFLAG_DEVICE) {
 522                VPRINTK("device 0x%X\n", tf->device);
 523                blob = tf->device;
 524        } else {
 525                blob = 0;
 526        }
 527
 528        DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
 529        blob |= (tf->command << 8);
 530        __raw_writew(blob, base + 6);
 531
 532
 533        ata_wait_idle(ap);
 534}
 535
 536static void octeon_cf_ata_port_noaction(struct ata_port *ap)
 537{
 538}
 539
 540static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
 541{
 542        struct ata_port *ap = qc->ap;
 543        struct octeon_cf_port *cf_port;
 544
 545        cf_port = ap->private_data;
 546        DPRINTK("ENTER\n");
 547        /* issue r/w command */
 548        qc->cursg = qc->sg;
 549        cf_port->dma_finished = 0;
 550        ap->ops->sff_exec_command(ap, &qc->tf);
 551        DPRINTK("EXIT\n");
 552}
 553
 554/**
 555 * Start a DMA transfer that was already setup
 556 *
 557 * @qc:     Information about the DMA
 558 */
 559static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
 560{
 561        struct octeon_cf_port *cf_port = qc->ap->private_data;
 562        union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
 563        union cvmx_mio_boot_dma_intx mio_boot_dma_int;
 564        struct scatterlist *sg;
 565
 566        VPRINTK("%d scatterlists\n", qc->n_elem);
 567
 568        /* Get the scatter list entry we need to DMA into */
 569        sg = qc->cursg;
 570        BUG_ON(!sg);
 571
 572        /*
 573         * Clear the DMA complete status.
 574         */
 575        mio_boot_dma_int.u64 = 0;
 576        mio_boot_dma_int.s.done = 1;
 577        cvmx_write_csr(cf_port->dma_base + DMA_INT, mio_boot_dma_int.u64);
 578
 579        /* Enable the interrupt.  */
 580        cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, mio_boot_dma_int.u64);
 581
 582        /* Set the direction of the DMA */
 583        mio_boot_dma_cfg.u64 = 0;
 584#ifdef __LITTLE_ENDIAN
 585        mio_boot_dma_cfg.s.endian = 1;
 586#endif
 587        mio_boot_dma_cfg.s.en = 1;
 588        mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
 589
 590        /*
 591         * Don't stop the DMA if the device deasserts DMARQ. Many
 592         * compact flashes deassert DMARQ for a short time between
 593         * sectors. Instead of stopping and restarting the DMA, we'll
 594         * let the hardware do it. If the DMA is really stopped early
 595         * due to an error condition, a later timeout will force us to
 596         * stop.
 597         */
 598        mio_boot_dma_cfg.s.clr = 0;
 599
 600        /* Size is specified in 16bit words and minus one notation */
 601        mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
 602
 603        /* We need to swap the high and low bytes of every 16 bits */
 604        mio_boot_dma_cfg.s.swap8 = 1;
 605
 606        mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
 607
 608        VPRINTK("%s %d bytes address=%p\n",
 609                (mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length,
 610                (void *)(unsigned long)mio_boot_dma_cfg.s.adr);
 611
 612        cvmx_write_csr(cf_port->dma_base + DMA_CFG, mio_boot_dma_cfg.u64);
 613}
 614
 615/**
 616 *
 617 *      LOCKING:
 618 *      spin_lock_irqsave(host lock)
 619 *
 620 */
 621static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
 622                                        struct ata_queued_cmd *qc)
 623{
 624        struct ata_eh_info *ehi = &ap->link.eh_info;
 625        struct octeon_cf_port *cf_port = ap->private_data;
 626        union cvmx_mio_boot_dma_cfgx dma_cfg;
 627        union cvmx_mio_boot_dma_intx dma_int;
 628        u8 status;
 629
 630        VPRINTK("ata%u: protocol %d task_state %d\n",
 631                ap->print_id, qc->tf.protocol, ap->hsm_task_state);
 632
 633
 634        if (ap->hsm_task_state != HSM_ST_LAST)
 635                return 0;
 636
 637        dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
 638        if (dma_cfg.s.size != 0xfffff) {
 639                /* Error, the transfer was not complete.  */
 640                qc->err_mask |= AC_ERR_HOST_BUS;
 641                ap->hsm_task_state = HSM_ST_ERR;
 642        }
 643
 644        /* Stop and clear the dma engine.  */
 645        dma_cfg.u64 = 0;
 646        dma_cfg.s.size = -1;
 647        cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
 648
 649        /* Disable the interrupt.  */
 650        dma_int.u64 = 0;
 651        cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
 652
 653        /* Clear the DMA complete status */
 654        dma_int.s.done = 1;
 655        cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
 656
 657        status = ap->ops->sff_check_status(ap);
 658
 659        ata_sff_hsm_move(ap, qc, status, 0);
 660
 661        if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
 662                ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
 663
 664        return 1;
 665}
 666
 667/*
 668 * Check if any queued commands have more DMAs, if so start the next
 669 * transfer, else do end of transfer handling.
 670 */
 671static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
 672{
 673        struct ata_host *host = dev_instance;
 674        struct octeon_cf_port *cf_port;
 675        int i;
 676        unsigned int handled = 0;
 677        unsigned long flags;
 678
 679        spin_lock_irqsave(&host->lock, flags);
 680
 681        DPRINTK("ENTER\n");
 682        for (i = 0; i < host->n_ports; i++) {
 683                u8 status;
 684                struct ata_port *ap;
 685                struct ata_queued_cmd *qc;
 686                union cvmx_mio_boot_dma_intx dma_int;
 687                union cvmx_mio_boot_dma_cfgx dma_cfg;
 688
 689                ap = host->ports[i];
 690                cf_port = ap->private_data;
 691
 692                dma_int.u64 = cvmx_read_csr(cf_port->dma_base + DMA_INT);
 693                dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
 694
 695                qc = ata_qc_from_tag(ap, ap->link.active_tag);
 696
 697                if (!qc || (qc->tf.flags & ATA_TFLAG_POLLING))
 698                        continue;
 699
 700                if (dma_int.s.done && !dma_cfg.s.en) {
 701                        if (!sg_is_last(qc->cursg)) {
 702                                qc->cursg = sg_next(qc->cursg);
 703                                handled = 1;
 704                                octeon_cf_dma_start(qc);
 705                                continue;
 706                        } else {
 707                                cf_port->dma_finished = 1;
 708                        }
 709                }
 710                if (!cf_port->dma_finished)
 711                        continue;
 712                status = ioread8(ap->ioaddr.altstatus_addr);
 713                if (status & (ATA_BUSY | ATA_DRQ)) {
 714                        /*
 715                         * We are busy, try to handle it later.  This
 716                         * is the DMA finished interrupt, and it could
 717                         * take a little while for the card to be
 718                         * ready for more commands.
 719                         */
 720                        /* Clear DMA irq. */
 721                        dma_int.u64 = 0;
 722                        dma_int.s.done = 1;
 723                        cvmx_write_csr(cf_port->dma_base + DMA_INT,
 724                                       dma_int.u64);
 725                        hrtimer_start_range_ns(&cf_port->delayed_finish,
 726                                               ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL),
 727                                               OCTEON_CF_BUSY_POLL_INTERVAL / 5,
 728                                               HRTIMER_MODE_REL);
 729                        handled = 1;
 730                } else {
 731                        handled |= octeon_cf_dma_finished(ap, qc);
 732                }
 733        }
 734        spin_unlock_irqrestore(&host->lock, flags);
 735        DPRINTK("EXIT\n");
 736        return IRQ_RETVAL(handled);
 737}
 738
 739static enum hrtimer_restart octeon_cf_delayed_finish(struct hrtimer *hrt)
 740{
 741        struct octeon_cf_port *cf_port = container_of(hrt,
 742                                                      struct octeon_cf_port,
 743                                                      delayed_finish);
 744        struct ata_port *ap = cf_port->ap;
 745        struct ata_host *host = ap->host;
 746        struct ata_queued_cmd *qc;
 747        unsigned long flags;
 748        u8 status;
 749        enum hrtimer_restart rv = HRTIMER_NORESTART;
 750
 751        spin_lock_irqsave(&host->lock, flags);
 752
 753        /*
 754         * If the port is not waiting for completion, it must have
 755         * handled it previously.  The hsm_task_state is
 756         * protected by host->lock.
 757         */
 758        if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
 759                goto out;
 760
 761        status = ioread8(ap->ioaddr.altstatus_addr);
 762        if (status & (ATA_BUSY | ATA_DRQ)) {
 763                /* Still busy, try again. */
 764                hrtimer_forward_now(hrt,
 765                                    ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL));
 766                rv = HRTIMER_RESTART;
 767                goto out;
 768        }
 769        qc = ata_qc_from_tag(ap, ap->link.active_tag);
 770        if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
 771                octeon_cf_dma_finished(ap, qc);
 772out:
 773        spin_unlock_irqrestore(&host->lock, flags);
 774        return rv;
 775}
 776
 777static void octeon_cf_dev_config(struct ata_device *dev)
 778{
 779        /*
 780         * A maximum of 2^20 - 1 16 bit transfers are possible with
 781         * the bootbus DMA.  So we need to throttle max_sectors to
 782         * (2^12 - 1 == 4095) to assure that this can never happen.
 783         */
 784        dev->max_sectors = min(dev->max_sectors, 4095U);
 785}
 786
 787/*
 788 * We don't do ATAPI DMA so return 0.
 789 */
 790static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
 791{
 792        return 0;
 793}
 794
 795static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
 796{
 797        struct ata_port *ap = qc->ap;
 798
 799        switch (qc->tf.protocol) {
 800        case ATA_PROT_DMA:
 801                WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
 802
 803                ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
 804                octeon_cf_dma_setup(qc);            /* set up dma */
 805                octeon_cf_dma_start(qc);            /* initiate dma */
 806                ap->hsm_task_state = HSM_ST_LAST;
 807                break;
 808
 809        case ATAPI_PROT_DMA:
 810                dev_err(ap->dev, "Error, ATAPI not supported\n");
 811                BUG();
 812
 813        default:
 814                return ata_sff_qc_issue(qc);
 815        }
 816
 817        return 0;
 818}
 819
 820static struct ata_port_operations octeon_cf_ops = {
 821        .inherits               = &ata_sff_port_ops,
 822        .check_atapi_dma        = octeon_cf_check_atapi_dma,
 823        .qc_prep                = ata_noop_qc_prep,
 824        .qc_issue               = octeon_cf_qc_issue,
 825        .sff_dev_select         = octeon_cf_dev_select,
 826        .sff_irq_on             = octeon_cf_ata_port_noaction,
 827        .sff_irq_clear          = octeon_cf_ata_port_noaction,
 828        .cable_detect           = ata_cable_40wire,
 829        .set_piomode            = octeon_cf_set_piomode,
 830        .set_dmamode            = octeon_cf_set_dmamode,
 831        .dev_config             = octeon_cf_dev_config,
 832};
 833
 834static int octeon_cf_probe(struct platform_device *pdev)
 835{
 836        struct resource *res_cs0, *res_cs1;
 837
 838        bool is_16bit;
 839        const __be32 *cs_num;
 840        struct property *reg_prop;
 841        int n_addr, n_size, reg_len;
 842        struct device_node *node;
 843        void __iomem *cs0;
 844        void __iomem *cs1 = NULL;
 845        struct ata_host *host;
 846        struct ata_port *ap;
 847        int irq = 0;
 848        irq_handler_t irq_handler = NULL;
 849        void __iomem *base;
 850        struct octeon_cf_port *cf_port;
 851        int rv = -ENOMEM;
 852        u32 bus_width;
 853
 854        node = pdev->dev.of_node;
 855        if (node == NULL)
 856                return -EINVAL;
 857
 858        cf_port = devm_kzalloc(&pdev->dev, sizeof(*cf_port), GFP_KERNEL);
 859        if (!cf_port)
 860                return -ENOMEM;
 861
 862        cf_port->is_true_ide = of_property_read_bool(node, "cavium,true-ide");
 863
 864        if (of_property_read_u32(node, "cavium,bus-width", &bus_width) == 0)
 865                is_16bit = (bus_width == 16);
 866        else
 867                is_16bit = false;
 868
 869        n_addr = of_n_addr_cells(node);
 870        n_size = of_n_size_cells(node);
 871
 872        reg_prop = of_find_property(node, "reg", &reg_len);
 873        if (!reg_prop || reg_len < sizeof(__be32))
 874                return -EINVAL;
 875
 876        cs_num = reg_prop->value;
 877        cf_port->cs0 = be32_to_cpup(cs_num);
 878
 879        if (cf_port->is_true_ide) {
 880                struct device_node *dma_node;
 881                dma_node = of_parse_phandle(node,
 882                                            "cavium,dma-engine-handle", 0);
 883                if (dma_node) {
 884                        struct platform_device *dma_dev;
 885                        dma_dev = of_find_device_by_node(dma_node);
 886                        if (dma_dev) {
 887                                struct resource *res_dma;
 888                                int i;
 889                                res_dma = platform_get_resource(dma_dev, IORESOURCE_MEM, 0);
 890                                if (!res_dma) {
 891                                        of_node_put(dma_node);
 892                                        return -EINVAL;
 893                                }
 894                                cf_port->dma_base = (u64)devm_ioremap_nocache(&pdev->dev, res_dma->start,
 895                                                                         resource_size(res_dma));
 896                                if (!cf_port->dma_base) {
 897                                        of_node_put(dma_node);
 898                                        return -EINVAL;
 899                                }
 900
 901                                irq_handler = octeon_cf_interrupt;
 902                                i = platform_get_irq(dma_dev, 0);
 903                                if (i > 0)
 904                                        irq = i;
 905                        }
 906                        of_node_put(dma_node);
 907                }
 908                res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
 909                if (!res_cs1)
 910                        return -EINVAL;
 911
 912                cs1 = devm_ioremap_nocache(&pdev->dev, res_cs1->start,
 913                                           resource_size(res_cs1));
 914                if (!cs1)
 915                        return rv;
 916
 917                if (reg_len < (n_addr + n_size + 1) * sizeof(__be32))
 918                        return -EINVAL;
 919
 920                cs_num += n_addr + n_size;
 921                cf_port->cs1 = be32_to_cpup(cs_num);
 922        }
 923
 924        res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 925        if (!res_cs0)
 926                return -EINVAL;
 927
 928        cs0 = devm_ioremap_nocache(&pdev->dev, res_cs0->start,
 929                                   resource_size(res_cs0));
 930        if (!cs0)
 931                return rv;
 932
 933        /* allocate host */
 934        host = ata_host_alloc(&pdev->dev, 1);
 935        if (!host)
 936                return rv;
 937
 938        ap = host->ports[0];
 939        ap->private_data = cf_port;
 940        pdev->dev.platform_data = cf_port;
 941        cf_port->ap = ap;
 942        ap->ops = &octeon_cf_ops;
 943        ap->pio_mask = ATA_PIO6;
 944        ap->flags |= ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
 945
 946        if (!is_16bit) {
 947                base = cs0 + 0x800;
 948                ap->ioaddr.cmd_addr     = base;
 949                ata_sff_std_ports(&ap->ioaddr);
 950
 951                ap->ioaddr.altstatus_addr = base + 0xe;
 952                ap->ioaddr.ctl_addr     = base + 0xe;
 953                octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
 954        } else if (cf_port->is_true_ide) {
 955                base = cs0;
 956                ap->ioaddr.cmd_addr     = base + (ATA_REG_CMD << 1) + 1;
 957                ap->ioaddr.data_addr    = base + (ATA_REG_DATA << 1);
 958                ap->ioaddr.error_addr   = base + (ATA_REG_ERR << 1) + 1;
 959                ap->ioaddr.feature_addr = base + (ATA_REG_FEATURE << 1) + 1;
 960                ap->ioaddr.nsect_addr   = base + (ATA_REG_NSECT << 1) + 1;
 961                ap->ioaddr.lbal_addr    = base + (ATA_REG_LBAL << 1) + 1;
 962                ap->ioaddr.lbam_addr    = base + (ATA_REG_LBAM << 1) + 1;
 963                ap->ioaddr.lbah_addr    = base + (ATA_REG_LBAH << 1) + 1;
 964                ap->ioaddr.device_addr  = base + (ATA_REG_DEVICE << 1) + 1;
 965                ap->ioaddr.status_addr  = base + (ATA_REG_STATUS << 1) + 1;
 966                ap->ioaddr.command_addr = base + (ATA_REG_CMD << 1) + 1;
 967                ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
 968                ap->ioaddr.ctl_addr     = cs1 + (6 << 1) + 1;
 969                octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
 970
 971                ap->mwdma_mask  = enable_dma ? ATA_MWDMA4 : 0;
 972
 973                /* True IDE mode needs a timer to poll for not-busy.  */
 974                hrtimer_init(&cf_port->delayed_finish, CLOCK_MONOTONIC,
 975                             HRTIMER_MODE_REL);
 976                cf_port->delayed_finish.function = octeon_cf_delayed_finish;
 977        } else {
 978                /* 16 bit but not True IDE */
 979                base = cs0 + 0x800;
 980                octeon_cf_ops.sff_data_xfer     = octeon_cf_data_xfer16;
 981                octeon_cf_ops.softreset         = octeon_cf_softreset16;
 982                octeon_cf_ops.sff_check_status  = octeon_cf_check_status16;
 983                octeon_cf_ops.sff_tf_read       = octeon_cf_tf_read16;
 984                octeon_cf_ops.sff_tf_load       = octeon_cf_tf_load16;
 985                octeon_cf_ops.sff_exec_command  = octeon_cf_exec_command16;
 986
 987                ap->ioaddr.data_addr    = base + ATA_REG_DATA;
 988                ap->ioaddr.nsect_addr   = base + ATA_REG_NSECT;
 989                ap->ioaddr.lbal_addr    = base + ATA_REG_LBAL;
 990                ap->ioaddr.ctl_addr     = base + 0xe;
 991                ap->ioaddr.altstatus_addr = base + 0xe;
 992        }
 993        cf_port->c0 = ap->ioaddr.ctl_addr;
 994
 995        rv = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
 996        if (rv)
 997                return rv;
 998
 999        ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
1000
1001        dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
1002                 is_16bit ? 16 : 8,
1003                 cf_port->is_true_ide ? ", True IDE" : "");
1004
1005        return ata_host_activate(host, irq, irq_handler,
1006                                 IRQF_SHARED, &octeon_cf_sht);
1007}
1008
1009static void octeon_cf_shutdown(struct device *dev)
1010{
1011        union cvmx_mio_boot_dma_cfgx dma_cfg;
1012        union cvmx_mio_boot_dma_intx dma_int;
1013
1014        struct octeon_cf_port *cf_port = dev_get_platdata(dev);
1015
1016        if (cf_port->dma_base) {
1017                /* Stop and clear the dma engine.  */
1018                dma_cfg.u64 = 0;
1019                dma_cfg.s.size = -1;
1020                cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
1021
1022                /* Disable the interrupt.  */
1023                dma_int.u64 = 0;
1024                cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
1025
1026                /* Clear the DMA complete status */
1027                dma_int.s.done = 1;
1028                cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
1029
1030                __raw_writeb(0, cf_port->c0);
1031                udelay(20);
1032                __raw_writeb(ATA_SRST, cf_port->c0);
1033                udelay(20);
1034                __raw_writeb(0, cf_port->c0);
1035                mdelay(100);
1036        }
1037}
1038
1039static const struct of_device_id octeon_cf_match[] = {
1040        {
1041                .compatible = "cavium,ebt3000-compact-flash",
1042        },
1043        {},
1044};
1045MODULE_DEVICE_TABLE(of, octeon_cf_match);
1046
1047static struct platform_driver octeon_cf_driver = {
1048        .probe          = octeon_cf_probe,
1049        .driver         = {
1050                .name   = DRV_NAME,
1051                .of_match_table = octeon_cf_match,
1052                .shutdown = octeon_cf_shutdown
1053        },
1054};
1055
1056static int __init octeon_cf_init(void)
1057{
1058        return platform_driver_register(&octeon_cf_driver);
1059}
1060
1061
1062MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
1063MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
1064MODULE_LICENSE("GPL");
1065MODULE_VERSION(DRV_VERSION);
1066MODULE_ALIAS("platform:" DRV_NAME);
1067
1068module_init(octeon_cf_init);
1069