linux/drivers/atm/horizon.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3  Madge Horizon ATM Adapter driver.
   4  Copyright (C) 1995-1999  Madge Networks Ltd.
   5  
   6*/
   7
   8/*
   9  IMPORTANT NOTE: Madge Networks no longer makes the adapters
  10  supported by this driver and makes no commitment to maintain it.
  11*/
  12
  13#include <linux/module.h>
  14#include <linux/kernel.h>
  15#include <linux/sched/signal.h>
  16#include <linux/mm.h>
  17#include <linux/pci.h>
  18#include <linux/errno.h>
  19#include <linux/atm.h>
  20#include <linux/atmdev.h>
  21#include <linux/sonet.h>
  22#include <linux/skbuff.h>
  23#include <linux/time.h>
  24#include <linux/delay.h>
  25#include <linux/uio.h>
  26#include <linux/init.h>
  27#include <linux/interrupt.h>
  28#include <linux/ioport.h>
  29#include <linux/wait.h>
  30#include <linux/slab.h>
  31
  32#include <asm/io.h>
  33#include <linux/atomic.h>
  34#include <linux/uaccess.h>
  35#include <asm/string.h>
  36#include <asm/byteorder.h>
  37
  38#include "horizon.h"
  39
  40#define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
  41#define description_string "Madge ATM Horizon [Ultra] driver"
  42#define version_string "1.2.1"
  43
  44static inline void __init show_version (void) {
  45  printk ("%s version %s\n", description_string, version_string);
  46}
  47
  48/*
  49  
  50  CREDITS
  51  
  52  Driver and documentation by:
  53  
  54  Chris Aston        Madge Networks
  55  Giuliano Procida   Madge Networks
  56  Simon Benham       Madge Networks
  57  Simon Johnson      Madge Networks
  58  Various Others     Madge Networks
  59  
  60  Some inspiration taken from other drivers by:
  61  
  62  Alexandru Cucos    UTBv
  63  Kari Mettinen      University of Helsinki
  64  Werner Almesberger EPFL LRC
  65  
  66  Theory of Operation
  67  
  68  I Hardware, detection, initialisation and shutdown.
  69  
  70  1. Supported Hardware
  71  
  72  This driver should handle all variants of the PCI Madge ATM adapters
  73  with the Horizon chipset. These are all PCI cards supporting PIO, BM
  74  DMA and a form of MMIO (registers only, not internal RAM).
  75  
  76  The driver is only known to work with SONET and UTP Horizon Ultra
  77  cards at 155Mb/s. However, code is in place to deal with both the
  78  original Horizon and 25Mb/s operation.
  79  
  80  There are two revisions of the Horizon ASIC: the original and the
  81  Ultra. Details of hardware bugs are in section III.
  82  
  83  The ASIC version can be distinguished by chip markings but is NOT
  84  indicated by the PCI revision (all adapters seem to have PCI rev 1).
  85  
  86  I believe that:
  87  
  88  Horizon       => Collage  25 PCI Adapter (UTP and STP)
  89  Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
  90  Ambassador x  => Collage 155 PCI Server (completely different)
  91  
  92  Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
  93  have a Madge B154 plus glue logic serializer. I have also found a
  94  really ancient version of this with slightly different glue. It
  95  comes with the revision 0 (140-025-01) ASIC.
  96  
  97  Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
  98  output (UTP) or an HP HFBR 5205 output (SONET). It has either
  99  Madge's SAMBA framer or a SUNI-lite device (early versions). It
 100  comes with the revision 1 (140-027-01) ASIC.
 101  
 102  2. Detection
 103  
 104  All Horizon-based cards present with the same PCI Vendor and Device
 105  IDs. The standard Linux 2.2 PCI API is used to locate any cards and
 106  to enable bus-mastering (with appropriate latency).
 107  
 108  ATM_LAYER_STATUS in the control register distinguishes between the
 109  two possible physical layers (25 and 155). It is not clear whether
 110  the 155 cards can also operate at 25Mbps. We rely on the fact that a
 111  card operates at 155 if and only if it has the newer Horizon Ultra
 112  ASIC.
 113  
 114  For 155 cards the two possible framers are probed for and then set
 115  up for loop-timing.
 116  
 117  3. Initialisation
 118  
 119  The card is reset and then put into a known state. The physical
 120  layer is configured for normal operation at the appropriate speed;
 121  in the case of the 155 cards, the framer is initialised with
 122  line-based timing; the internal RAM is zeroed and the allocation of
 123  buffers for RX and TX is made; the Burnt In Address is read and
 124  copied to the ATM ESI; various policy settings for RX (VPI bits,
 125  unknown VCs, oam cells) are made. Ideally all policy items should be
 126  configurable at module load (if not actually on-demand), however,
 127  only the vpi vs vci bit allocation can be specified at insmod.
 128  
 129  4. Shutdown
 130  
 131  This is in response to module_cleaup. No VCs are in use and the card
 132  should be idle; it is reset.
 133  
 134  II Driver software (as it should be)
 135  
 136  0. Traffic Parameters
 137  
 138  The traffic classes (not an enumeration) are currently: ATM_NONE (no
 139  traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
 140  (compatible with everything). Together with (perhaps only some of)
 141  the following items they make up the traffic specification.
 142  
 143  struct atm_trafprm {
 144    unsigned char traffic_class; traffic class (ATM_UBR, ...)
 145    int           max_pcr;       maximum PCR in cells per second
 146    int           pcr;           desired PCR in cells per second
 147    int           min_pcr;       minimum PCR in cells per second
 148    int           max_cdv;       maximum CDV in microseconds
 149    int           max_sdu;       maximum SDU in bytes
 150  };
 151  
 152  Note that these denote bandwidth available not bandwidth used; the
 153  possibilities according to ATMF are:
 154  
 155  Real Time (cdv and max CDT given)
 156  
 157  CBR(pcr)             pcr bandwidth always available
 158  rtVBR(pcr,scr,mbs)   scr bandwidth always available, up to pcr at mbs too
 159  
 160  Non Real Time
 161  
 162  nrtVBR(pcr,scr,mbs)  scr bandwidth always available, up to pcr at mbs too
 163  UBR()
 164  ABR(mcr,pcr)         mcr bandwidth always available, up to pcr (depending) too
 165  
 166  mbs is max burst size (bucket)
 167  pcr and scr have associated cdvt values
 168  mcr is like scr but has no cdtv
 169  cdtv may differ at each hop
 170  
 171  Some of the above items are qos items (as opposed to traffic
 172  parameters). We have nothing to do with qos. All except ABR can have
 173  their traffic parameters converted to GCRA parameters. The GCRA may
 174  be implemented as a (real-number) leaky bucket. The GCRA can be used
 175  in complicated ways by switches and in simpler ways by end-stations.
 176  It can be used both to filter incoming cells and shape out-going
 177  cells.
 178  
 179  ATM Linux actually supports:
 180  
 181  ATM_NONE() (no traffic in this direction)
 182  ATM_UBR(max_frame_size)
 183  ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
 184  
 185  0 or ATM_MAX_PCR are used to indicate maximum available PCR
 186  
 187  A traffic specification consists of the AAL type and separate
 188  traffic specifications for either direction. In ATM Linux it is:
 189  
 190  struct atm_qos {
 191  struct atm_trafprm txtp;
 192  struct atm_trafprm rxtp;
 193  unsigned char aal;
 194  };
 195  
 196  AAL types are:
 197  
 198  ATM_NO_AAL    AAL not specified
 199  ATM_AAL0      "raw" ATM cells
 200  ATM_AAL1      AAL1 (CBR)
 201  ATM_AAL2      AAL2 (VBR)
 202  ATM_AAL34     AAL3/4 (data)
 203  ATM_AAL5      AAL5 (data)
 204  ATM_SAAL      signaling AAL
 205  
 206  The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
 207  it does not implement AAL 3/4 SAR and it has a different notion of
 208  "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
 209  supported by this driver.
 210  
 211  The Horizon has limited support for ABR (including UBR), VBR and
 212  CBR. Each TX channel has a bucket (containing up to 31 cell units)
 213  and two timers (PCR and SCR) associated with it that can be used to
 214  govern cell emissions and host notification (in the case of ABR this
 215  is presumably so that RM cells may be emitted at appropriate times).
 216  The timers may either be disabled or may be set to any of 240 values
 217  (determined by the clock crystal, a fixed (?) per-device divider, a
 218  configurable divider and a configurable timer preload value).
 219  
 220  At the moment only UBR and CBR are supported by the driver. VBR will
 221  be supported as soon as ATM for Linux supports it. ABR support is
 222  very unlikely as RM cell handling is completely up to the driver.
 223  
 224  1. TX (TX channel setup and TX transfer)
 225  
 226  The TX half of the driver owns the TX Horizon registers. The TX
 227  component in the IRQ handler is the BM completion handler. This can
 228  only be entered when tx_busy is true (enforced by hardware). The
 229  other TX component can only be entered when tx_busy is false
 230  (enforced by driver). So TX is single-threaded.
 231  
 232  Apart from a minor optimisation to not re-select the last channel,
 233  the TX send component works as follows:
 234  
 235  Atomic test and set tx_busy until we succeed; we should implement
 236  some sort of timeout so that tx_busy will never be stuck at true.
 237  
 238  If no TX channel is set up for this VC we wait for an idle one (if
 239  necessary) and set it up.
 240  
 241  At this point we have a TX channel ready for use. We wait for enough
 242  buffers to become available then start a TX transmit (set the TX
 243  descriptor, schedule transfer, exit).
 244  
 245  The IRQ component handles TX completion (stats, free buffer, tx_busy
 246  unset, exit). We also re-schedule further transfers for the same
 247  frame if needed.
 248  
 249  TX setup in more detail:
 250  
 251  TX open is a nop, the relevant information is held in the hrz_vcc
 252  (vcc->dev_data) structure and is "cached" on the card.
 253  
 254  TX close gets the TX lock and clears the channel from the "cache".
 255  
 256  2. RX (Data Available and RX transfer)
 257  
 258  The RX half of the driver owns the RX registers. There are two RX
 259  components in the IRQ handler: the data available handler deals with
 260  fresh data that has arrived on the card, the BM completion handler
 261  is very similar to the TX completion handler. The data available
 262  handler grabs the rx_lock and it is only released once the data has
 263  been discarded or completely transferred to the host. The BM
 264  completion handler only runs when the lock is held; the data
 265  available handler is locked out over the same period.
 266  
 267  Data available on the card triggers an interrupt. If the data is not
 268  suitable for our existing RX channels or we cannot allocate a buffer
 269  it is flushed. Otherwise an RX receive is scheduled. Multiple RX
 270  transfers may be scheduled for the same frame.
 271  
 272  RX setup in more detail:
 273  
 274  RX open...
 275  RX close...
 276  
 277  III Hardware Bugs
 278  
 279  0. Byte vs Word addressing of adapter RAM.
 280  
 281  A design feature; see the .h file (especially the memory map).
 282  
 283  1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
 284  
 285  The host must not start a transmit direction transfer at a
 286  non-four-byte boundary in host memory. Instead the host should
 287  perform a byte, or a two byte, or one byte followed by two byte
 288  transfer in order to start the rest of the transfer on a four byte
 289  boundary. RX is OK.
 290  
 291  Simultaneous transmit and receive direction bus master transfers are
 292  not allowed.
 293  
 294  The simplest solution to these two is to always do PIO (never DMA)
 295  in the TX direction on the original Horizon. More complicated
 296  solutions are likely to hurt my brain.
 297  
 298  2. Loss of buffer on close VC
 299  
 300  When a VC is being closed, the buffer associated with it is not
 301  returned to the pool. The host must store the reference to this
 302  buffer and when opening a new VC then give it to that new VC.
 303  
 304  The host intervention currently consists of stacking such a buffer
 305  pointer at VC close and checking the stack at VC open.
 306  
 307  3. Failure to close a VC
 308  
 309  If a VC is currently receiving a frame then closing the VC may fail
 310  and the frame continues to be received.
 311  
 312  The solution is to make sure any received frames are flushed when
 313  ready. This is currently done just before the solution to 2.
 314  
 315  4. PCI bus (original Horizon only, fixed in Ultra)
 316  
 317  Reading from the data port prior to initialisation will hang the PCI
 318  bus. Just don't do that then! We don't.
 319  
 320  IV To Do List
 321  
 322  . Timer code may be broken.
 323  
 324  . Allow users to specify buffer allocation split for TX and RX.
 325  
 326  . Deal once and for all with buggy VC close.
 327  
 328  . Handle interrupted and/or non-blocking operations.
 329  
 330  . Change some macros to functions and move from .h to .c.
 331  
 332  . Try to limit the number of TX frames each VC may have queued, in
 333    order to reduce the chances of TX buffer exhaustion.
 334  
 335  . Implement VBR (bucket and timers not understood) and ABR (need to
 336    do RM cells manually); also no Linux support for either.
 337  
 338  . Implement QoS changes on open VCs (involves extracting parts of VC open
 339    and close into separate functions and using them to make changes).
 340  
 341*/
 342
 343/********** globals **********/
 344
 345static void do_housekeeping (struct timer_list *t);
 346
 347static unsigned short debug = 0;
 348static unsigned short vpi_bits = 0;
 349static int max_tx_size = 9000;
 350static int max_rx_size = 9000;
 351static unsigned char pci_lat = 0;
 352
 353/********** access functions **********/
 354
 355/* Read / Write Horizon registers */
 356static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
 357  outl (cpu_to_le32 (data), dev->iobase + reg);
 358}
 359
 360static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
 361  return le32_to_cpu (inl (dev->iobase + reg));
 362}
 363
 364static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
 365  outw (cpu_to_le16 (data), dev->iobase + reg);
 366}
 367
 368static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
 369  return le16_to_cpu (inw (dev->iobase + reg));
 370}
 371
 372static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
 373  outsb (dev->iobase + reg, addr, len);
 374}
 375
 376static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
 377  insb (dev->iobase + reg, addr, len);
 378}
 379
 380/* Read / Write to a given address in Horizon buffer memory.
 381   Interrupts must be disabled between the address register and data
 382   port accesses as these must form an atomic operation. */
 383static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
 384  // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
 385  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
 386  wr_regl (dev, MEMORY_PORT_OFF, data);
 387}
 388
 389static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
 390  // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
 391  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
 392  return rd_regl (dev, MEMORY_PORT_OFF);
 393}
 394
 395static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
 396  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
 397  wr_regl (dev, MEMORY_PORT_OFF, data);
 398}
 399
 400static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
 401  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
 402  return rd_regl (dev, MEMORY_PORT_OFF);
 403}
 404
 405/********** specialised access functions **********/
 406
 407/* RX */
 408
 409static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
 410  wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
 411  return;
 412}
 413
 414static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
 415  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
 416    ;
 417  return;
 418}
 419
 420static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
 421  wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
 422  return;
 423}
 424
 425static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
 426  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
 427    ;
 428  return;
 429}
 430
 431/* TX */
 432
 433static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
 434  wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
 435  return;
 436}
 437
 438/* Update or query one configuration parameter of a particular channel. */
 439
 440static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
 441  wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
 442           chan * TX_CHANNEL_CONFIG_MULT | mode);
 443    wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
 444    return;
 445}
 446
 447/********** dump functions **********/
 448
 449static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
 450#ifdef DEBUG_HORIZON
 451  unsigned int i;
 452  unsigned char * data = skb->data;
 453  PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
 454  for (i=0; i<skb->len && i < 256;i++)
 455    PRINTDM (DBG_DATA, "%02x ", data[i]);
 456  PRINTDE (DBG_DATA,"");
 457#else
 458  (void) prefix;
 459  (void) vc;
 460  (void) skb;
 461#endif
 462  return;
 463}
 464
 465static inline void dump_regs (hrz_dev * dev) {
 466#ifdef DEBUG_HORIZON
 467  PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
 468  PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
 469  PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
 470  PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
 471  PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
 472  PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
 473#else
 474  (void) dev;
 475#endif
 476  return;
 477}
 478
 479static inline void dump_framer (hrz_dev * dev) {
 480#ifdef DEBUG_HORIZON
 481  unsigned int i;
 482  PRINTDB (DBG_REGS, "framer registers:");
 483  for (i = 0; i < 0x10; ++i)
 484    PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
 485  PRINTDE (DBG_REGS,"");
 486#else
 487  (void) dev;
 488#endif
 489  return;
 490}
 491
 492/********** VPI/VCI <-> (RX) channel conversions **********/
 493
 494/* RX channels are 10 bit integers, these fns are quite paranoid */
 495
 496static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
 497  unsigned short vci_bits = 10 - vpi_bits;
 498  if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
 499    *channel = vpi<<vci_bits | vci;
 500    return *channel ? 0 : -EINVAL;
 501  }
 502  return -EINVAL;
 503}
 504
 505/********** decode RX queue entries **********/
 506
 507static inline u16 rx_q_entry_to_length (u32 x) {
 508  return x & RX_Q_ENTRY_LENGTH_MASK;
 509}
 510
 511static inline u16 rx_q_entry_to_rx_channel (u32 x) {
 512  return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
 513}
 514
 515/* Cell Transmit Rate Values
 516 *
 517 * the cell transmit rate (cells per sec) can be set to a variety of
 518 * different values by specifying two parameters: a timer preload from
 519 * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
 520 * an exponent from 0 to 14; the special value 15 disables the timer).
 521 *
 522 * cellrate = baserate / (preload * 2^divider)
 523 *
 524 * The maximum cell rate that can be specified is therefore just the
 525 * base rate. Halving the preload is equivalent to adding 1 to the
 526 * divider and so values 1 to 8 of the preload are redundant except
 527 * in the case of a maximal divider (14).
 528 *
 529 * Given a desired cell rate, an algorithm to determine the preload
 530 * and divider is:
 531 * 
 532 * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
 533 * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
 534 *    if x <= 16 then set p = x, d = 0 (high rates), done
 535 * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
 536 *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
 537 *    we find the range (n will be between 1 and 14), set d = n
 538 * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
 539 *
 540 * The algorithm used below is a minor variant of the above.
 541 *
 542 * The base rate is derived from the oscillator frequency (Hz) using a
 543 * fixed divider:
 544 *
 545 * baserate = freq / 32 in the case of some Unknown Card
 546 * baserate = freq / 8  in the case of the Horizon        25
 547 * baserate = freq / 8  in the case of the Horizon Ultra 155
 548 *
 549 * The Horizon cards have oscillators and base rates as follows:
 550 *
 551 * Card               Oscillator  Base Rate
 552 * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq)
 553 * Horizon        25  32 MHz      4       MHz
 554 * Horizon Ultra 155  40 MHz      5       MHz
 555 *
 556 * The following defines give the base rates in Hz. These were
 557 * previously a factor of 100 larger, no doubt someone was using
 558 * cps*100.
 559 */
 560
 561#define BR_UKN 1031250l
 562#define BR_HRZ 4000000l
 563#define BR_ULT 5000000l
 564
 565// d is an exponent
 566#define CR_MIND 0
 567#define CR_MAXD 14
 568
 569// p ranges from 1 to a power of 2
 570#define CR_MAXPEXP 4
 571 
 572static int make_rate (const hrz_dev * dev, u32 c, rounding r,
 573                      u16 * bits, unsigned int * actual)
 574{
 575        // note: rounding the rate down means rounding 'p' up
 576        const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
 577  
 578        u32 div = CR_MIND;
 579        u32 pre;
 580  
 581        // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
 582        // the tests below. We could think harder about exact possibilities
 583        // of failure...
 584  
 585        unsigned long br_man = br;
 586        unsigned int br_exp = 0;
 587  
 588        PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
 589                r == round_up ? "up" : r == round_down ? "down" : "nearest");
 590  
 591        // avoid div by zero
 592        if (!c) {
 593                PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
 594                return -EINVAL;
 595        }
 596  
 597        while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
 598                br_man = br_man >> 1;
 599                ++br_exp;
 600        }
 601        // (br >>br_exp) <<br_exp == br and
 602        // br_exp <= CR_MAXPEXP+CR_MIND
 603  
 604        if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
 605                // Equivalent to: B <= (c << (MAXPEXP+MIND))
 606                // take care of rounding
 607                switch (r) {
 608                        case round_down:
 609                                pre = DIV_ROUND_UP(br, c<<div);
 610                                // but p must be non-zero
 611                                if (!pre)
 612                                        pre = 1;
 613                                break;
 614                        case round_nearest:
 615                                pre = DIV_ROUND_CLOSEST(br, c<<div);
 616                                // but p must be non-zero
 617                                if (!pre)
 618                                        pre = 1;
 619                                break;
 620                        default:        /* round_up */
 621                                pre = br/(c<<div);
 622                                // but p must be non-zero
 623                                if (!pre)
 624                                        return -EINVAL;
 625                }
 626                PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
 627                goto got_it;
 628        }
 629  
 630        // at this point we have
 631        // d == MIND and (c << (MAXPEXP+MIND)) < B
 632        while (div < CR_MAXD) {
 633                div++;
 634                if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
 635                        // Equivalent to: B <= (c << (MAXPEXP+d))
 636                        // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
 637                        // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
 638                        // MAXP/2 < B/c2^d <= MAXP
 639                        // take care of rounding
 640                        switch (r) {
 641                                case round_down:
 642                                        pre = DIV_ROUND_UP(br, c<<div);
 643                                        break;
 644                                case round_nearest:
 645                                        pre = DIV_ROUND_CLOSEST(br, c<<div);
 646                                        break;
 647                                default: /* round_up */
 648                                        pre = br/(c<<div);
 649                        }
 650                        PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
 651                        goto got_it;
 652                }
 653        }
 654        // at this point we have
 655        // d == MAXD and (c << (MAXPEXP+MAXD)) < B
 656        // but we cannot go any higher
 657        // take care of rounding
 658        if (r == round_down)
 659                return -EINVAL;
 660        pre = 1 << CR_MAXPEXP;
 661        PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
 662got_it:
 663        // paranoia
 664        if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
 665                PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
 666                        div, pre);
 667                return -EINVAL;
 668        } else {
 669                if (bits)
 670                        *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
 671                if (actual) {
 672                        *actual = DIV_ROUND_UP(br, pre<<div);
 673                        PRINTD (DBG_QOS, "actual rate: %u", *actual);
 674                }
 675                return 0;
 676        }
 677}
 678
 679static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
 680                                     u16 * bit_pattern, unsigned int * actual) {
 681  unsigned int my_actual;
 682  
 683  PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
 684          c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
 685  
 686  if (!actual)
 687    // actual rate is not returned
 688    actual = &my_actual;
 689  
 690  if (make_rate (dev, c, round_nearest, bit_pattern, actual))
 691    // should never happen as round_nearest always succeeds
 692    return -1;
 693  
 694  if (c - tol <= *actual && *actual <= c + tol)
 695    // within tolerance
 696    return 0;
 697  else
 698    // intolerant, try rounding instead
 699    return make_rate (dev, c, r, bit_pattern, actual);
 700}
 701
 702/********** Listen on a VC **********/
 703
 704static int hrz_open_rx (hrz_dev * dev, u16 channel) {
 705  // is there any guarantee that we don't get two simulataneous
 706  // identical calls of this function from different processes? yes
 707  // rate_lock
 708  unsigned long flags;
 709  u32 channel_type; // u16?
 710  
 711  u16 buf_ptr = RX_CHANNEL_IDLE;
 712  
 713  rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
 714  
 715  PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
 716  
 717  spin_lock_irqsave (&dev->mem_lock, flags);
 718  channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
 719  spin_unlock_irqrestore (&dev->mem_lock, flags);
 720  
 721  // very serious error, should never occur
 722  if (channel_type != RX_CHANNEL_DISABLED) {
 723    PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
 724    return -EBUSY; // clean up?
 725  }
 726  
 727  // Give back spare buffer
 728  if (dev->noof_spare_buffers) {
 729    buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
 730    PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
 731    // should never occur
 732    if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
 733      // but easy to recover from
 734      PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
 735      buf_ptr = RX_CHANNEL_IDLE;
 736    }
 737  } else {
 738    PRINTD (DBG_VCC, "using IDLE buffer pointer");
 739  }
 740  
 741  // Channel is currently disabled so change its status to idle
 742  
 743  // do we really need to save the flags again?
 744  spin_lock_irqsave (&dev->mem_lock, flags);
 745  
 746  wr_mem (dev, &rx_desc->wr_buf_type,
 747          buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
 748  if (buf_ptr != RX_CHANNEL_IDLE)
 749    wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
 750  
 751  spin_unlock_irqrestore (&dev->mem_lock, flags);
 752  
 753  // rxer->rate = make_rate (qos->peak_cells);
 754  
 755  PRINTD (DBG_FLOW, "hrz_open_rx ok");
 756  
 757  return 0;
 758}
 759
 760#if 0
 761/********** change vc rate for a given vc **********/
 762
 763static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
 764  rxer->rate = make_rate (qos->peak_cells);
 765}
 766#endif
 767
 768/********** free an skb (as per ATM device driver documentation) **********/
 769
 770static void hrz_kfree_skb (struct sk_buff * skb) {
 771  if (ATM_SKB(skb)->vcc->pop) {
 772    ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
 773  } else {
 774    dev_kfree_skb_any (skb);
 775  }
 776}
 777
 778/********** cancel listen on a VC **********/
 779
 780static void hrz_close_rx (hrz_dev * dev, u16 vc) {
 781  unsigned long flags;
 782  
 783  u32 value;
 784  
 785  u32 r1, r2;
 786  
 787  rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
 788  
 789  int was_idle = 0;
 790  
 791  spin_lock_irqsave (&dev->mem_lock, flags);
 792  value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
 793  spin_unlock_irqrestore (&dev->mem_lock, flags);
 794  
 795  if (value == RX_CHANNEL_DISABLED) {
 796    // I suppose this could happen once we deal with _NONE traffic properly
 797    PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
 798    return;
 799  }
 800  if (value == RX_CHANNEL_IDLE)
 801    was_idle = 1;
 802  
 803  spin_lock_irqsave (&dev->mem_lock, flags);
 804  
 805  for (;;) {
 806    wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
 807    
 808    if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
 809      break;
 810    
 811    was_idle = 0;
 812  }
 813  
 814  if (was_idle) {
 815    spin_unlock_irqrestore (&dev->mem_lock, flags);
 816    return;
 817  }
 818  
 819  WAIT_FLUSH_RX_COMPLETE(dev);
 820  
 821  // XXX Is this all really necessary? We can rely on the rx_data_av
 822  // handler to discard frames that remain queued for delivery. If the
 823  // worry is that immediately reopening the channel (perhaps by a
 824  // different process) may cause some data to be mis-delivered then
 825  // there may still be a simpler solution (such as busy-waiting on
 826  // rx_busy once the channel is disabled or before a new one is
 827  // opened - does this leave any holes?). Arguably setting up and
 828  // tearing down the TX and RX halves of each virtual circuit could
 829  // most safely be done within ?x_busy protected regions.
 830  
 831  // OK, current changes are that Simon's marker is disabled and we DO
 832  // look for NULL rxer elsewhere. The code here seems flush frames
 833  // and then remember the last dead cell belonging to the channel
 834  // just disabled - the cell gets relinked at the next vc_open.
 835  // However, when all VCs are closed or only a few opened there are a
 836  // handful of buffers that are unusable.
 837  
 838  // Does anyone feel like documenting spare_buffers properly?
 839  // Does anyone feel like fixing this in a nicer way?
 840  
 841  // Flush any data which is left in the channel
 842  for (;;) {
 843    // Change the rx channel port to something different to the RX
 844    // channel we are trying to close to force Horizon to flush the rx
 845    // channel read and write pointers.
 846    
 847    u16 other = vc^(RX_CHANS/2);
 848    
 849    SELECT_RX_CHANNEL (dev, other);
 850    WAIT_UPDATE_COMPLETE (dev);
 851    
 852    r1 = rd_mem (dev, &rx_desc->rd_buf_type);
 853    
 854    // Select this RX channel. Flush doesn't seem to work unless we
 855    // select an RX channel before hand
 856    
 857    SELECT_RX_CHANNEL (dev, vc);
 858    WAIT_UPDATE_COMPLETE (dev);
 859    
 860    // Attempt to flush a frame on this RX channel
 861    
 862    FLUSH_RX_CHANNEL (dev, vc);
 863    WAIT_FLUSH_RX_COMPLETE (dev);
 864    
 865    // Force Horizon to flush rx channel read and write pointers as before
 866    
 867    SELECT_RX_CHANNEL (dev, other);
 868    WAIT_UPDATE_COMPLETE (dev);
 869    
 870    r2 = rd_mem (dev, &rx_desc->rd_buf_type);
 871    
 872    PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
 873    
 874    if (r1 == r2) {
 875      dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
 876      break;
 877    }
 878  }
 879  
 880#if 0
 881  {
 882    rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
 883    rx_q_entry * rd_ptr = dev->rx_q_entry;
 884    
 885    PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
 886    
 887    while (rd_ptr != wr_ptr) {
 888      u32 x = rd_mem (dev, (HDW *) rd_ptr);
 889      
 890      if (vc == rx_q_entry_to_rx_channel (x)) {
 891        x |= SIMONS_DODGEY_MARKER;
 892        
 893        PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
 894        
 895        wr_mem (dev, (HDW *) rd_ptr, x);
 896      }
 897      
 898      if (rd_ptr == dev->rx_q_wrap)
 899        rd_ptr = dev->rx_q_reset;
 900      else
 901        rd_ptr++;
 902    }
 903  }
 904#endif
 905  
 906  spin_unlock_irqrestore (&dev->mem_lock, flags);
 907  
 908  return;
 909}
 910
 911/********** schedule RX transfers **********/
 912
 913// Note on tail recursion: a GCC developer said that it is not likely
 914// to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
 915// are sure it does as you may otherwise overflow the kernel stack.
 916
 917// giving this fn a return value would help GCC, allegedly
 918
 919static void rx_schedule (hrz_dev * dev, int irq) {
 920  unsigned int rx_bytes;
 921  
 922  int pio_instead = 0;
 923#ifndef TAILRECURSIONWORKS
 924  pio_instead = 1;
 925  while (pio_instead) {
 926#endif
 927    // bytes waiting for RX transfer
 928    rx_bytes = dev->rx_bytes;
 929    
 930#if 0
 931    spin_count = 0;
 932    while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
 933      PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
 934      if (++spin_count > 10) {
 935        PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
 936        wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
 937        clear_bit (rx_busy, &dev->flags);
 938        hrz_kfree_skb (dev->rx_skb);
 939        return;
 940      }
 941    }
 942#endif
 943    
 944    // this code follows the TX code but (at the moment) there is only
 945    // one region - the skb itself. I don't know if this will change,
 946    // but it doesn't hurt to have the code here, disabled.
 947    
 948    if (rx_bytes) {
 949      // start next transfer within same region
 950      if (rx_bytes <= MAX_PIO_COUNT) {
 951        PRINTD (DBG_RX|DBG_BUS, "(pio)");
 952        pio_instead = 1;
 953      }
 954      if (rx_bytes <= MAX_TRANSFER_COUNT) {
 955        PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
 956        dev->rx_bytes = 0;
 957      } else {
 958        PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
 959        dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
 960        rx_bytes = MAX_TRANSFER_COUNT;
 961      }
 962    } else {
 963      // rx_bytes == 0 -- we're between regions
 964      // regions remaining to transfer
 965#if 0
 966      unsigned int rx_regions = dev->rx_regions;
 967#else
 968      unsigned int rx_regions = 0;
 969#endif
 970      
 971      if (rx_regions) {
 972#if 0
 973        // start a new region
 974        dev->rx_addr = dev->rx_iovec->iov_base;
 975        rx_bytes = dev->rx_iovec->iov_len;
 976        ++dev->rx_iovec;
 977        dev->rx_regions = rx_regions - 1;
 978        
 979        if (rx_bytes <= MAX_PIO_COUNT) {
 980          PRINTD (DBG_RX|DBG_BUS, "(pio)");
 981          pio_instead = 1;
 982        }
 983        if (rx_bytes <= MAX_TRANSFER_COUNT) {
 984          PRINTD (DBG_RX|DBG_BUS, "(full region)");
 985          dev->rx_bytes = 0;
 986        } else {
 987          PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
 988          dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
 989          rx_bytes = MAX_TRANSFER_COUNT;
 990        }
 991#endif
 992      } else {
 993        // rx_regions == 0
 994        // that's all folks - end of frame
 995        struct sk_buff * skb = dev->rx_skb;
 996        // dev->rx_iovec = 0;
 997        
 998        FLUSH_RX_CHANNEL (dev, dev->rx_channel);
 999        
1000        dump_skb ("<<<", dev->rx_channel, skb);
1001        
1002        PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1003        
1004        {
1005          struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1006          // VC layer stats
1007          atomic_inc(&vcc->stats->rx);
1008          __net_timestamp(skb);
1009          // end of our responsibility
1010          vcc->push (vcc, skb);
1011        }
1012      }
1013    }
1014    
1015    // note: writing RX_COUNT clears any interrupt condition
1016    if (rx_bytes) {
1017      if (pio_instead) {
1018        if (irq)
1019          wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1020        rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1021      } else {
1022        wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1023        wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1024      }
1025      dev->rx_addr += rx_bytes;
1026    } else {
1027      if (irq)
1028        wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1029      // allow another RX thread to start
1030      YELLOW_LED_ON(dev);
1031      clear_bit (rx_busy, &dev->flags);
1032      PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1033    }
1034    
1035#ifdef TAILRECURSIONWORKS
1036    // and we all bless optimised tail calls
1037    if (pio_instead)
1038      return rx_schedule (dev, 0);
1039    return;
1040#else
1041    // grrrrrrr!
1042    irq = 0;
1043  }
1044  return;
1045#endif
1046}
1047
1048/********** handle RX bus master complete events **********/
1049
1050static void rx_bus_master_complete_handler (hrz_dev * dev) {
1051  if (test_bit (rx_busy, &dev->flags)) {
1052    rx_schedule (dev, 1);
1053  } else {
1054    PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1055    // clear interrupt condition on adapter
1056    wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1057  }
1058  return;
1059}
1060
1061/********** (queue to) become the next TX thread **********/
1062
1063static int tx_hold (hrz_dev * dev) {
1064  PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1065  wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1066  PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1067  if (signal_pending (current))
1068    return -1;
1069  PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1070  return 0;
1071}
1072
1073/********** allow another TX thread to start **********/
1074
1075static inline void tx_release (hrz_dev * dev) {
1076  clear_bit (tx_busy, &dev->flags);
1077  PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1078  wake_up_interruptible (&dev->tx_queue);
1079}
1080
1081/********** schedule TX transfers **********/
1082
1083static void tx_schedule (hrz_dev * const dev, int irq) {
1084  unsigned int tx_bytes;
1085  
1086  int append_desc = 0;
1087  
1088  int pio_instead = 0;
1089#ifndef TAILRECURSIONWORKS
1090  pio_instead = 1;
1091  while (pio_instead) {
1092#endif
1093    // bytes in current region waiting for TX transfer
1094    tx_bytes = dev->tx_bytes;
1095    
1096#if 0
1097    spin_count = 0;
1098    while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1099      PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1100      if (++spin_count > 10) {
1101        PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1102        wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1103        tx_release (dev);
1104        hrz_kfree_skb (dev->tx_skb);
1105        return;
1106      }
1107    }
1108#endif
1109    
1110    if (tx_bytes) {
1111      // start next transfer within same region
1112      if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1113        PRINTD (DBG_TX|DBG_BUS, "(pio)");
1114        pio_instead = 1;
1115      }
1116      if (tx_bytes <= MAX_TRANSFER_COUNT) {
1117        PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1118        if (!dev->tx_iovec) {
1119          // end of last region
1120          append_desc = 1;
1121        }
1122        dev->tx_bytes = 0;
1123      } else {
1124        PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1125        dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1126        tx_bytes = MAX_TRANSFER_COUNT;
1127      }
1128    } else {
1129      // tx_bytes == 0 -- we're between regions
1130      // regions remaining to transfer
1131      unsigned int tx_regions = dev->tx_regions;
1132      
1133      if (tx_regions) {
1134        // start a new region
1135        dev->tx_addr = dev->tx_iovec->iov_base;
1136        tx_bytes = dev->tx_iovec->iov_len;
1137        ++dev->tx_iovec;
1138        dev->tx_regions = tx_regions - 1;
1139        
1140        if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1141          PRINTD (DBG_TX|DBG_BUS, "(pio)");
1142          pio_instead = 1;
1143        }
1144        if (tx_bytes <= MAX_TRANSFER_COUNT) {
1145          PRINTD (DBG_TX|DBG_BUS, "(full region)");
1146          dev->tx_bytes = 0;
1147        } else {
1148          PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1149          dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1150          tx_bytes = MAX_TRANSFER_COUNT;
1151        }
1152      } else {
1153        // tx_regions == 0
1154        // that's all folks - end of frame
1155        struct sk_buff * skb = dev->tx_skb;
1156        dev->tx_iovec = NULL;
1157        
1158        // VC layer stats
1159        atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1160        
1161        // free the skb
1162        hrz_kfree_skb (skb);
1163      }
1164    }
1165    
1166    // note: writing TX_COUNT clears any interrupt condition
1167    if (tx_bytes) {
1168      if (pio_instead) {
1169        if (irq)
1170          wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1171        wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1172        if (append_desc)
1173          wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1174      } else {
1175        wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1176        if (append_desc)
1177          wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1178        wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1179                 append_desc
1180                 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1181                 : tx_bytes);
1182      }
1183      dev->tx_addr += tx_bytes;
1184    } else {
1185      if (irq)
1186        wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1187      YELLOW_LED_ON(dev);
1188      tx_release (dev);
1189    }
1190    
1191#ifdef TAILRECURSIONWORKS
1192    // and we all bless optimised tail calls
1193    if (pio_instead)
1194      return tx_schedule (dev, 0);
1195    return;
1196#else
1197    // grrrrrrr!
1198    irq = 0;
1199  }
1200  return;
1201#endif
1202}
1203
1204/********** handle TX bus master complete events **********/
1205
1206static void tx_bus_master_complete_handler (hrz_dev * dev) {
1207  if (test_bit (tx_busy, &dev->flags)) {
1208    tx_schedule (dev, 1);
1209  } else {
1210    PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1211    // clear interrupt condition on adapter
1212    wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1213  }
1214  return;
1215}
1216
1217/********** move RX Q pointer to next item in circular buffer **********/
1218
1219// called only from IRQ sub-handler
1220static u32 rx_queue_entry_next (hrz_dev * dev) {
1221  u32 rx_queue_entry;
1222  spin_lock (&dev->mem_lock);
1223  rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1224  if (dev->rx_q_entry == dev->rx_q_wrap)
1225    dev->rx_q_entry = dev->rx_q_reset;
1226  else
1227    dev->rx_q_entry++;
1228  wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1229  spin_unlock (&dev->mem_lock);
1230  return rx_queue_entry;
1231}
1232
1233/********** handle RX data received by device **********/
1234
1235// called from IRQ handler
1236static void rx_data_av_handler (hrz_dev * dev) {
1237  u32 rx_queue_entry;
1238  u32 rx_queue_entry_flags;
1239  u16 rx_len;
1240  u16 rx_channel;
1241  
1242  PRINTD (DBG_FLOW, "hrz_data_av_handler");
1243  
1244  // try to grab rx lock (not possible during RX bus mastering)
1245  if (test_and_set_bit (rx_busy, &dev->flags)) {
1246    PRINTD (DBG_RX, "locked out of rx lock");
1247    return;
1248  }
1249  PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1250  // lock is cleared if we fail now, o/w after bus master completion
1251  
1252  YELLOW_LED_OFF(dev);
1253  
1254  rx_queue_entry = rx_queue_entry_next (dev);
1255  
1256  rx_len = rx_q_entry_to_length (rx_queue_entry);
1257  rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1258  
1259  WAIT_FLUSH_RX_COMPLETE (dev);
1260  
1261  SELECT_RX_CHANNEL (dev, rx_channel);
1262  
1263  PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1264  rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1265  
1266  if (!rx_len) {
1267    // (at least) bus-mastering breaks if we try to handle a
1268    // zero-length frame, besides AAL5 does not support them
1269    PRINTK (KERN_ERR, "zero-length frame!");
1270    rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1271  }
1272  
1273  if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1274    PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1275  }
1276  if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1277    struct atm_vcc * atm_vcc;
1278    
1279    PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1280    
1281    atm_vcc = dev->rxer[rx_channel];
1282    // if no vcc is assigned to this channel, we should drop the frame
1283    // (is this what SIMONS etc. was trying to achieve?)
1284    
1285    if (atm_vcc) {
1286      
1287      if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1288        
1289        if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1290            
1291          struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1292          if (skb) {
1293            // remember this so we can push it later
1294            dev->rx_skb = skb;
1295            // remember this so we can flush it later
1296            dev->rx_channel = rx_channel;
1297            
1298            // prepare socket buffer
1299            skb_put (skb, rx_len);
1300            ATM_SKB(skb)->vcc = atm_vcc;
1301            
1302            // simple transfer
1303            // dev->rx_regions = 0;
1304            // dev->rx_iovec = 0;
1305            dev->rx_bytes = rx_len;
1306            dev->rx_addr = skb->data;
1307            PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1308                    skb->data, rx_len);
1309            
1310            // do the business
1311            rx_schedule (dev, 0);
1312            return;
1313            
1314          } else {
1315            PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1316          }
1317          
1318        } else {
1319          PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1320          // do we count this?
1321        }
1322        
1323      } else {
1324        PRINTK (KERN_WARNING, "dropped over-size frame");
1325        // do we count this?
1326      }
1327      
1328    } else {
1329      PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1330      // do we count this?
1331    }
1332    
1333  } else {
1334    // Wait update complete ? SPONG
1335  }
1336  
1337  // RX was aborted
1338  YELLOW_LED_ON(dev);
1339  
1340  FLUSH_RX_CHANNEL (dev,rx_channel);
1341  clear_bit (rx_busy, &dev->flags);
1342  
1343  return;
1344}
1345
1346/********** interrupt handler **********/
1347
1348static irqreturn_t interrupt_handler(int irq, void *dev_id)
1349{
1350  hrz_dev *dev = dev_id;
1351  u32 int_source;
1352  unsigned int irq_ok;
1353  
1354  PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1355  
1356  // definitely for us
1357  irq_ok = 0;
1358  while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1359          & INTERESTING_INTERRUPTS)) {
1360    // In the interests of fairness, the handlers below are
1361    // called in sequence and without immediate return to the head of
1362    // the while loop. This is only of issue for slow hosts (or when
1363    // debugging messages are on). Really slow hosts may find a fast
1364    // sender keeps them permanently in the IRQ handler. :(
1365    
1366    // (only an issue for slow hosts) RX completion goes before
1367    // rx_data_av as the former implies rx_busy and so the latter
1368    // would just abort. If it reschedules another transfer
1369    // (continuing the same frame) then it will not clear rx_busy.
1370    
1371    // (only an issue for slow hosts) TX completion goes before RX
1372    // data available as it is a much shorter routine - there is the
1373    // chance that any further transfers it schedules will be complete
1374    // by the time of the return to the head of the while loop
1375    
1376    if (int_source & RX_BUS_MASTER_COMPLETE) {
1377      ++irq_ok;
1378      PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1379      rx_bus_master_complete_handler (dev);
1380    }
1381    if (int_source & TX_BUS_MASTER_COMPLETE) {
1382      ++irq_ok;
1383      PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1384      tx_bus_master_complete_handler (dev);
1385    }
1386    if (int_source & RX_DATA_AV) {
1387      ++irq_ok;
1388      PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1389      rx_data_av_handler (dev);
1390    }
1391  }
1392  if (irq_ok) {
1393    PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1394  } else {
1395    PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1396  }
1397  
1398  PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1399  if (irq_ok)
1400        return IRQ_HANDLED;
1401  return IRQ_NONE;
1402}
1403
1404/********** housekeeping **********/
1405
1406static void do_housekeeping (struct timer_list *t) {
1407  // just stats at the moment
1408  hrz_dev * dev = from_timer(dev, t, housekeeping);
1409
1410  // collect device-specific (not driver/atm-linux) stats here
1411  dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1412  dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1413  dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1414  dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1415
1416  mod_timer (&dev->housekeeping, jiffies + HZ/10);
1417
1418  return;
1419}
1420
1421/********** find an idle channel for TX and set it up **********/
1422
1423// called with tx_busy set
1424static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1425  unsigned short idle_channels;
1426  short tx_channel = -1;
1427  unsigned int spin_count;
1428  PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1429  
1430  // better would be to fail immediately, the caller can then decide whether
1431  // to wait or drop (depending on whether this is UBR etc.)
1432  spin_count = 0;
1433  while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1434    PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1435    // delay a bit here
1436    if (++spin_count > 100) {
1437      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1438      return -EBUSY;
1439    }
1440  }
1441  
1442  // got an idle channel
1443  {
1444    // tx_idle ensures we look for idle channels in RR order
1445    int chan = dev->tx_idle;
1446    
1447    int keep_going = 1;
1448    while (keep_going) {
1449      if (idle_channels & (1<<chan)) {
1450        tx_channel = chan;
1451        keep_going = 0;
1452      }
1453      ++chan;
1454      if (chan == TX_CHANS)
1455        chan = 0;
1456    }
1457    
1458    dev->tx_idle = chan;
1459  }
1460  
1461  // set up the channel we found
1462  {
1463    // Initialise the cell header in the transmit channel descriptor
1464    // a.k.a. prepare the channel and remember that we have done so.
1465    
1466    tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1467    u32 rd_ptr;
1468    u32 wr_ptr;
1469    u16 channel = vcc->channel;
1470    
1471    unsigned long flags;
1472    spin_lock_irqsave (&dev->mem_lock, flags);
1473    
1474    // Update the transmit channel record.
1475    dev->tx_channel_record[tx_channel] = channel;
1476    
1477    // xBR channel
1478    update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1479                              vcc->tx_xbr_bits);
1480    
1481    // Update the PCR counter preload value etc.
1482    update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1483                              vcc->tx_pcr_bits);
1484
1485#if 0
1486    if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1487      // SCR timer
1488      update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1489                                vcc->tx_scr_bits);
1490      
1491      // Bucket size...
1492      update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1493                                vcc->tx_bucket_bits);
1494      
1495      // ... and fullness
1496      update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1497                                vcc->tx_bucket_bits);
1498    }
1499#endif
1500
1501    // Initialise the read and write buffer pointers
1502    rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1503    wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1504    
1505    // idle TX channels should have identical pointers
1506    if (rd_ptr != wr_ptr) {
1507      PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1508      // spin_unlock... return -E...
1509      // I wonder if gcc would get rid of one of the pointer aliases
1510    }
1511    PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1512            rd_ptr, wr_ptr);
1513    
1514    switch (vcc->aal) {
1515      case aal0:
1516        PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1517        rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1518        wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1519        break;
1520      case aal34:
1521        PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1522        rd_ptr |= CHANNEL_TYPE_AAL3_4;
1523        wr_ptr |= CHANNEL_TYPE_AAL3_4;
1524        break;
1525      case aal5:
1526        rd_ptr |= CHANNEL_TYPE_AAL5;
1527        wr_ptr |= CHANNEL_TYPE_AAL5;
1528        // Initialise the CRC
1529        wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1530        break;
1531    }
1532    
1533    wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1534    wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1535    
1536    // Write the Cell Header
1537    // Payload Type, CLP and GFC would go here if non-zero
1538    wr_mem (dev, &tx_desc->cell_header, channel);
1539    
1540    spin_unlock_irqrestore (&dev->mem_lock, flags);
1541  }
1542  
1543  return tx_channel;
1544}
1545
1546/********** send a frame **********/
1547
1548static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1549  unsigned int spin_count;
1550  int free_buffers;
1551  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1552  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1553  u16 channel = vcc->channel;
1554  
1555  u32 buffers_required;
1556  
1557  /* signed for error return */
1558  short tx_channel;
1559  
1560  PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1561          channel, skb->data, skb->len);
1562  
1563  dump_skb (">>>", channel, skb);
1564  
1565  if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1566    PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1567    hrz_kfree_skb (skb);
1568    return -EIO;
1569  }
1570  
1571  // don't understand this
1572  ATM_SKB(skb)->vcc = atm_vcc;
1573  
1574  if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1575    PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1576    hrz_kfree_skb (skb);
1577    return -EIO;
1578  }
1579  
1580  if (!channel) {
1581    PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1582    hrz_kfree_skb (skb);
1583    return -EIO;
1584  }
1585  
1586#if 0
1587  {
1588    // where would be a better place for this? housekeeping?
1589    u16 status;
1590    pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1591    if (status & PCI_STATUS_REC_MASTER_ABORT) {
1592      PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1593      status &= ~PCI_STATUS_REC_MASTER_ABORT;
1594      pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1595      if (test_bit (tx_busy, &dev->flags)) {
1596        hrz_kfree_skb (dev->tx_skb);
1597        tx_release (dev);
1598      }
1599    }
1600  }
1601#endif
1602  
1603#ifdef DEBUG_HORIZON
1604  /* wey-hey! */
1605  if (channel == 1023) {
1606    unsigned int i;
1607    unsigned short d = 0;
1608    char * s = skb->data;
1609    if (*s++ == 'D') {
1610        for (i = 0; i < 4; ++i)
1611                d = (d << 4) | hex_to_bin(*s++);
1612      PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1613    }
1614  }
1615#endif
1616  
1617  // wait until TX is free and grab lock
1618  if (tx_hold (dev)) {
1619    hrz_kfree_skb (skb);
1620    return -ERESTARTSYS;
1621  }
1622 
1623  // Wait for enough space to be available in transmit buffer memory.
1624  
1625  // should be number of cells needed + 2 (according to hardware docs)
1626  // = ((framelen+8)+47) / 48 + 2
1627  // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1628  buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1629  
1630  // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1631  spin_count = 0;
1632  while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1633    PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1634            free_buffers, buffers_required);
1635    // what is the appropriate delay? implement a timeout? (depending on line speed?)
1636    // mdelay (1);
1637    // what happens if we kill (current_pid, SIGKILL) ?
1638    schedule();
1639    if (++spin_count > 1000) {
1640      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1641              free_buffers, buffers_required);
1642      tx_release (dev);
1643      hrz_kfree_skb (skb);
1644      return -ERESTARTSYS;
1645    }
1646  }
1647  
1648  // Select a channel to transmit the frame on.
1649  if (channel == dev->last_vc) {
1650    PRINTD (DBG_TX, "last vc hack: hit");
1651    tx_channel = dev->tx_last;
1652  } else {
1653    PRINTD (DBG_TX, "last vc hack: miss");
1654    // Are we currently transmitting this VC on one of the channels?
1655    for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1656      if (dev->tx_channel_record[tx_channel] == channel) {
1657        PRINTD (DBG_TX, "vc already on channel: hit");
1658        break;
1659      }
1660    if (tx_channel == TX_CHANS) { 
1661      PRINTD (DBG_TX, "vc already on channel: miss");
1662      // Find and set up an idle channel.
1663      tx_channel = setup_idle_tx_channel (dev, vcc);
1664      if (tx_channel < 0) {
1665        PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1666        tx_release (dev);
1667        return tx_channel;
1668      }
1669    }
1670    
1671    PRINTD (DBG_TX, "got channel");
1672    SELECT_TX_CHANNEL(dev, tx_channel);
1673    
1674    dev->last_vc = channel;
1675    dev->tx_last = tx_channel;
1676  }
1677  
1678  PRINTD (DBG_TX, "using channel %u", tx_channel);
1679  
1680  YELLOW_LED_OFF(dev);
1681  
1682  // TX start transfer
1683  
1684  {
1685    unsigned int tx_len = skb->len;
1686    unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1687    // remember this so we can free it later
1688    dev->tx_skb = skb;
1689    
1690    if (tx_iovcnt) {
1691      // scatter gather transfer
1692      dev->tx_regions = tx_iovcnt;
1693      dev->tx_iovec = NULL;             /* @@@ needs rewritten */
1694      dev->tx_bytes = 0;
1695      PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1696              skb->data, tx_len);
1697      tx_release (dev);
1698      hrz_kfree_skb (skb);
1699      return -EIO;
1700    } else {
1701      // simple transfer
1702      dev->tx_regions = 0;
1703      dev->tx_iovec = NULL;
1704      dev->tx_bytes = tx_len;
1705      dev->tx_addr = skb->data;
1706      PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1707              skb->data, tx_len);
1708    }
1709    
1710    // and do the business
1711    tx_schedule (dev, 0);
1712    
1713  }
1714  
1715  return 0;
1716}
1717
1718/********** reset a card **********/
1719
1720static void hrz_reset (const hrz_dev * dev) {
1721  u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1722  
1723  // why not set RESET_HORIZON to one and wait for the card to
1724  // reassert that bit as zero? Like so:
1725  control_0_reg = control_0_reg & RESET_HORIZON;
1726  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1727  while (control_0_reg & RESET_HORIZON)
1728    control_0_reg = rd_regl (dev, CONTROL_0_REG);
1729  
1730  // old reset code retained:
1731  wr_regl (dev, CONTROL_0_REG, control_0_reg |
1732           RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1733  // just guessing here
1734  udelay (1000);
1735  
1736  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1737}
1738
1739/********** read the burnt in address **********/
1740
1741static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1742{
1743        wr_regl (dev, CONTROL_0_REG, ctrl);
1744        udelay (5);
1745}
1746  
1747static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1748{
1749        // DI must be valid around rising SK edge
1750        WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1751        WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1752}
1753
1754static u16 read_bia(const hrz_dev *dev, u16 addr)
1755{
1756  u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1757  
1758  const unsigned int addr_bits = 6;
1759  const unsigned int data_bits = 16;
1760  
1761  unsigned int i;
1762  
1763  u16 res;
1764  
1765  ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1766  WRITE_IT_WAIT(dev, ctrl);
1767  
1768  // wake Serial EEPROM and send 110 (READ) command
1769  ctrl |=  (SEEPROM_CS | SEEPROM_DI);
1770  CLOCK_IT(dev, ctrl);
1771  
1772  ctrl |= SEEPROM_DI;
1773  CLOCK_IT(dev, ctrl);
1774  
1775  ctrl &= ~SEEPROM_DI;
1776  CLOCK_IT(dev, ctrl);
1777  
1778  for (i=0; i<addr_bits; i++) {
1779    if (addr & (1 << (addr_bits-1)))
1780      ctrl |= SEEPROM_DI;
1781    else
1782      ctrl &= ~SEEPROM_DI;
1783    
1784    CLOCK_IT(dev, ctrl);
1785    
1786    addr = addr << 1;
1787  }
1788  
1789  // we could check that we have DO = 0 here
1790  ctrl &= ~SEEPROM_DI;
1791  
1792  res = 0;
1793  for (i=0;i<data_bits;i++) {
1794    res = res >> 1;
1795    
1796    CLOCK_IT(dev, ctrl);
1797    
1798    if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1799      res |= (1 << (data_bits-1));
1800  }
1801  
1802  ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1803  WRITE_IT_WAIT(dev, ctrl);
1804  
1805  return res;
1806}
1807
1808/********** initialise a card **********/
1809
1810static int hrz_init(hrz_dev *dev)
1811{
1812  int onefivefive;
1813  
1814  u16 chan;
1815  
1816  int buff_count;
1817  
1818  HDW * mem;
1819  
1820  cell_buf * tx_desc;
1821  cell_buf * rx_desc;
1822  
1823  u32 ctrl;
1824  
1825  ctrl = rd_regl (dev, CONTROL_0_REG);
1826  PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1827  onefivefive = ctrl & ATM_LAYER_STATUS;
1828  
1829  if (onefivefive)
1830    printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1831  else
1832    printk (DEV_LABEL ": Horizon (at 25 MBps)");
1833  
1834  printk (":");
1835  // Reset the card to get everything in a known state
1836  
1837  printk (" reset");
1838  hrz_reset (dev);
1839  
1840  // Clear all the buffer memory
1841  
1842  printk (" clearing memory");
1843  
1844  for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1845    wr_mem (dev, mem, 0);
1846  
1847  printk (" tx channels");
1848  
1849  // All transmit eight channels are set up as AAL5 ABR channels with
1850  // a 16us cell spacing. Why?
1851  
1852  // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1853  // buffer at 110h etc.
1854  
1855  for (chan = 0; chan < TX_CHANS; ++chan) {
1856    tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1857    cell_buf * buf = &memmap->inittxbufs[chan];
1858    
1859    // initialise the read and write buffer pointers
1860    wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1861    wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1862    
1863    // set the status of the initial buffers to empty
1864    wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1865  }
1866  
1867  // Use space bufn3 at the moment for tx buffers
1868  
1869  printk (" tx buffers");
1870  
1871  tx_desc = memmap->bufn3;
1872  
1873  wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1874  
1875  for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1876    wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1877    tx_desc++;
1878  }
1879  
1880  wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1881  
1882  // Initialise the transmit free buffer count
1883  wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1884  
1885  printk (" rx channels");
1886  
1887  // Initialise all of the receive channels to be AAL5 disabled with
1888  // an interrupt threshold of 0
1889  
1890  for (chan = 0; chan < RX_CHANS; ++chan) {
1891    rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1892    
1893    wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1894  }
1895  
1896  printk (" rx buffers");
1897  
1898  // Use space bufn4 at the moment for rx buffers
1899  
1900  rx_desc = memmap->bufn4;
1901  
1902  wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1903  
1904  for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1905    wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1906    
1907    rx_desc++;
1908  }
1909  
1910  wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1911  
1912  // Initialise the receive free buffer count
1913  wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1914  
1915  // Initialize Horizons registers
1916  
1917  // TX config
1918  wr_regw (dev, TX_CONFIG_OFF,
1919           ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1920  
1921  // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1922  wr_regw (dev, RX_CONFIG_OFF,
1923           DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1924  
1925  // RX line config
1926  wr_regw (dev, RX_LINE_CONFIG_OFF,
1927           LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1928  
1929  // Set the max AAL5 cell count to be just enough to contain the
1930  // largest AAL5 frame that the user wants to receive
1931  wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1932           DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1933  
1934  // Enable receive
1935  wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1936  
1937  printk (" control");
1938  
1939  // Drive the OE of the LEDs then turn the green LED on
1940  ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1941  wr_regl (dev, CONTROL_0_REG, ctrl);
1942  
1943  // Test for a 155-capable card
1944  
1945  if (onefivefive) {
1946    // Select 155 mode... make this a choice (or: how do we detect
1947    // external line speed and switch?)
1948    ctrl |= ATM_LAYER_SELECT;
1949    wr_regl (dev, CONTROL_0_REG, ctrl);
1950    
1951    // test SUNI-lite vs SAMBA
1952    
1953    // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1954    // they will always be zero for the SAMBA.  Ha!  Bloody hardware
1955    // engineers.  It'll never work.
1956    
1957    if (rd_framer (dev, 0) & 0x00f0) {
1958      // SUNI
1959      printk (" SUNI");
1960      
1961      // Reset, just in case
1962      wr_framer (dev, 0x00, 0x0080);
1963      wr_framer (dev, 0x00, 0x0000);
1964      
1965      // Configure transmit FIFO
1966      wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
1967      
1968      // Set line timed mode
1969      wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
1970    } else {
1971      // SAMBA
1972      printk (" SAMBA");
1973      
1974      // Reset, just in case
1975      wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
1976      wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
1977      
1978      // Turn off diagnostic loopback and enable line-timed mode
1979      wr_framer (dev, 0, 0x0002);
1980      
1981      // Turn on transmit outputs
1982      wr_framer (dev, 2, 0x0B80);
1983    }
1984  } else {
1985    // Select 25 mode
1986    ctrl &= ~ATM_LAYER_SELECT;
1987    
1988    // Madge B154 setup
1989    // none required?
1990  }
1991  
1992  printk (" LEDs");
1993  
1994  GREEN_LED_ON(dev);
1995  YELLOW_LED_ON(dev);
1996  
1997  printk (" ESI=");
1998  
1999  {
2000    u16 b = 0;
2001    int i;
2002    u8 * esi = dev->atm_dev->esi;
2003    
2004    // in the card I have, EEPROM
2005    // addresses 0, 1, 2 contain 0
2006    // addresess 5, 6 etc. contain ffff
2007    // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2008    // the read_bia routine gets the BIA in Ethernet bit order
2009    
2010    for (i=0; i < ESI_LEN; ++i) {
2011      if (i % 2 == 0)
2012        b = read_bia (dev, i/2 + 2);
2013      else
2014        b = b >> 8;
2015      esi[i] = b & 0xFF;
2016      printk ("%02x", esi[i]);
2017    }
2018  }
2019  
2020  // Enable RX_Q and ?X_COMPLETE interrupts only
2021  wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2022  printk (" IRQ on");
2023  
2024  printk (".\n");
2025  
2026  return onefivefive;
2027}
2028
2029/********** check max_sdu **********/
2030
2031static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2032  PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2033  
2034  switch (aal) {
2035    case aal0:
2036      if (!(tp->max_sdu)) {
2037        PRINTD (DBG_QOS, "defaulting max_sdu");
2038        tp->max_sdu = ATM_AAL0_SDU;
2039      } else if (tp->max_sdu != ATM_AAL0_SDU) {
2040        PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2041        return -EINVAL;
2042      }
2043      break;
2044    case aal34:
2045      if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2046        PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2047        tp->max_sdu = ATM_MAX_AAL34_PDU;
2048      }
2049      break;
2050    case aal5:
2051      if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2052        PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2053        tp->max_sdu = max_frame_size;
2054      }
2055      break;
2056  }
2057  return 0;
2058}
2059
2060/********** check pcr **********/
2061
2062// something like this should be part of ATM Linux
2063static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2064  // we are assuming non-UBR, and non-special values of pcr
2065  if (tp->min_pcr == ATM_MAX_PCR)
2066    PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2067  else if (tp->min_pcr < 0)
2068    PRINTD (DBG_QOS, "luser gave negative min_pcr");
2069  else if (tp->min_pcr && tp->min_pcr > pcr)
2070    PRINTD (DBG_QOS, "pcr less than min_pcr");
2071  else
2072    // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2073    // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2074    // [this would get rid of next two conditionals]
2075    if ((0) && tp->max_pcr == ATM_MAX_PCR)
2076      PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2077    else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2078      PRINTD (DBG_QOS, "luser gave negative max_pcr");
2079    else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2080      PRINTD (DBG_QOS, "pcr greater than max_pcr");
2081    else {
2082      // each limit unspecified or not violated
2083      PRINTD (DBG_QOS, "xBR(pcr) OK");
2084      return 0;
2085    }
2086  PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2087          pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2088  return -EINVAL;
2089}
2090
2091/********** open VC **********/
2092
2093static int hrz_open (struct atm_vcc *atm_vcc)
2094{
2095  int error;
2096  u16 channel;
2097  
2098  struct atm_qos * qos;
2099  struct atm_trafprm * txtp;
2100  struct atm_trafprm * rxtp;
2101  
2102  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2103  hrz_vcc vcc;
2104  hrz_vcc * vccp; // allocated late
2105  short vpi = atm_vcc->vpi;
2106  int vci = atm_vcc->vci;
2107  PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2108  
2109#ifdef ATM_VPI_UNSPEC
2110  // UNSPEC is deprecated, remove this code eventually
2111  if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2112    PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2113    return -EINVAL;
2114  }
2115#endif
2116  
2117  error = vpivci_to_channel (&channel, vpi, vci);
2118  if (error) {
2119    PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2120    return error;
2121  }
2122  
2123  vcc.channel = channel;
2124  // max speed for the moment
2125  vcc.tx_rate = 0x0;
2126  
2127  qos = &atm_vcc->qos;
2128  
2129  // check AAL and remember it
2130  switch (qos->aal) {
2131    case ATM_AAL0:
2132      // we would if it were 48 bytes and not 52!
2133      PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2134      vcc.aal = aal0;
2135      break;
2136    case ATM_AAL34:
2137      // we would if I knew how do the SAR!
2138      PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2139      vcc.aal = aal34;
2140      break;
2141    case ATM_AAL5:
2142      PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2143      vcc.aal = aal5;
2144      break;
2145    default:
2146      PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2147      return -EINVAL;
2148  }
2149  
2150  // TX traffic parameters
2151  
2152  // there are two, interrelated problems here: 1. the reservation of
2153  // PCR is not a binary choice, we are given bounds and/or a
2154  // desirable value; 2. the device is only capable of certain values,
2155  // most of which are not integers. It is almost certainly acceptable
2156  // to be off by a maximum of 1 to 10 cps.
2157  
2158  // Pragmatic choice: always store an integral PCR as that which has
2159  // been allocated, even if we allocate a little (or a lot) less,
2160  // after rounding. The actual allocation depends on what we can
2161  // manage with our rate selection algorithm. The rate selection
2162  // algorithm is given an integral PCR and a tolerance and told
2163  // whether it should round the value up or down if the tolerance is
2164  // exceeded; it returns: a) the actual rate selected (rounded up to
2165  // the nearest integer), b) a bit pattern to feed to the timer
2166  // register, and c) a failure value if no applicable rate exists.
2167  
2168  // Part of the job is done by atm_pcr_goal which gives us a PCR
2169  // specification which says: EITHER grab the maximum available PCR
2170  // (and perhaps a lower bound which we musn't pass), OR grab this
2171  // amount, rounding down if you have to (and perhaps a lower bound
2172  // which we musn't pass) OR grab this amount, rounding up if you
2173  // have to (and perhaps an upper bound which we musn't pass). If any
2174  // bounds ARE passed we fail. Note that rounding is only rounding to
2175  // match device limitations, we do not round down to satisfy
2176  // bandwidth availability even if this would not violate any given
2177  // lower bound.
2178  
2179  // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2180  // (say) so this is not even a binary fixpoint cell rate (but this
2181  // device can do it). To avoid this sort of hassle we use a
2182  // tolerance parameter (currently fixed at 10 cps).
2183  
2184  PRINTD (DBG_QOS, "TX:");
2185  
2186  txtp = &qos->txtp;
2187  
2188  // set up defaults for no traffic
2189  vcc.tx_rate = 0;
2190  // who knows what would actually happen if you try and send on this?
2191  vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2192  vcc.tx_pcr_bits = CLOCK_DISABLE;
2193#if 0
2194  vcc.tx_scr_bits = CLOCK_DISABLE;
2195  vcc.tx_bucket_bits = 0;
2196#endif
2197  
2198  if (txtp->traffic_class != ATM_NONE) {
2199    error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2200    if (error) {
2201      PRINTD (DBG_QOS, "TX max_sdu check failed");
2202      return error;
2203    }
2204    
2205    switch (txtp->traffic_class) {
2206      case ATM_UBR: {
2207        // we take "the PCR" as a rate-cap
2208        // not reserved
2209        vcc.tx_rate = 0;
2210        make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2211        vcc.tx_xbr_bits = ABR_RATE_TYPE;
2212        break;
2213      }
2214#if 0
2215      case ATM_ABR: {
2216        // reserve min, allow up to max
2217        vcc.tx_rate = 0; // ?
2218        make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2219        vcc.tx_xbr_bits = ABR_RATE_TYPE;
2220        break;
2221      }
2222#endif
2223      case ATM_CBR: {
2224        int pcr = atm_pcr_goal (txtp);
2225        rounding r;
2226        if (!pcr) {
2227          // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2228          // should really have: once someone gets unlimited bandwidth
2229          // that no more non-UBR channels can be opened until the
2230          // unlimited one closes?? For the moment, round_down means
2231          // greedy people actually get something and not nothing
2232          r = round_down;
2233          // slight race (no locking) here so we may get -EAGAIN
2234          // later; the greedy bastards would deserve it :)
2235          PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2236          pcr = dev->tx_avail;
2237        } else if (pcr < 0) {
2238          r = round_down;
2239          pcr = -pcr;
2240        } else {
2241          r = round_up;
2242        }
2243        error = make_rate_with_tolerance (dev, pcr, r, 10,
2244                                          &vcc.tx_pcr_bits, &vcc.tx_rate);
2245        if (error) {
2246          PRINTD (DBG_QOS, "could not make rate from TX PCR");
2247          return error;
2248        }
2249        // not really clear what further checking is needed
2250        error = atm_pcr_check (txtp, vcc.tx_rate);
2251        if (error) {
2252          PRINTD (DBG_QOS, "TX PCR failed consistency check");
2253          return error;
2254        }
2255        vcc.tx_xbr_bits = CBR_RATE_TYPE;
2256        break;
2257      }
2258#if 0
2259      case ATM_VBR: {
2260        int pcr = atm_pcr_goal (txtp);
2261        // int scr = atm_scr_goal (txtp);
2262        int scr = pcr/2; // just for fun
2263        unsigned int mbs = 60; // just for fun
2264        rounding pr;
2265        rounding sr;
2266        unsigned int bucket;
2267        if (!pcr) {
2268          pr = round_nearest;
2269          pcr = 1<<30;
2270        } else if (pcr < 0) {
2271          pr = round_down;
2272          pcr = -pcr;
2273        } else {
2274          pr = round_up;
2275        }
2276        error = make_rate_with_tolerance (dev, pcr, pr, 10,
2277                                          &vcc.tx_pcr_bits, 0);
2278        if (!scr) {
2279          // see comments for PCR with CBR above
2280          sr = round_down;
2281          // slight race (no locking) here so we may get -EAGAIN
2282          // later; the greedy bastards would deserve it :)
2283          PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2284          scr = dev->tx_avail;
2285        } else if (scr < 0) {
2286          sr = round_down;
2287          scr = -scr;
2288        } else {
2289          sr = round_up;
2290        }
2291        error = make_rate_with_tolerance (dev, scr, sr, 10,
2292                                          &vcc.tx_scr_bits, &vcc.tx_rate);
2293        if (error) {
2294          PRINTD (DBG_QOS, "could not make rate from TX SCR");
2295          return error;
2296        }
2297        // not really clear what further checking is needed
2298        // error = atm_scr_check (txtp, vcc.tx_rate);
2299        if (error) {
2300          PRINTD (DBG_QOS, "TX SCR failed consistency check");
2301          return error;
2302        }
2303        // bucket calculations (from a piece of paper...) cell bucket
2304        // capacity must be largest integer smaller than m(p-s)/p + 1
2305        // where m = max burst size, p = pcr, s = scr
2306        bucket = mbs*(pcr-scr)/pcr;
2307        if (bucket*pcr != mbs*(pcr-scr))
2308          bucket += 1;
2309        if (bucket > BUCKET_MAX_SIZE) {
2310          PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2311                  bucket, BUCKET_MAX_SIZE);
2312          bucket = BUCKET_MAX_SIZE;
2313        }
2314        vcc.tx_xbr_bits = VBR_RATE_TYPE;
2315        vcc.tx_bucket_bits = bucket;
2316        break;
2317      }
2318#endif
2319      default: {
2320        PRINTD (DBG_QOS, "unsupported TX traffic class");
2321        return -EINVAL;
2322      }
2323    }
2324  }
2325  
2326  // RX traffic parameters
2327  
2328  PRINTD (DBG_QOS, "RX:");
2329  
2330  rxtp = &qos->rxtp;
2331  
2332  // set up defaults for no traffic
2333  vcc.rx_rate = 0;
2334  
2335  if (rxtp->traffic_class != ATM_NONE) {
2336    error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2337    if (error) {
2338      PRINTD (DBG_QOS, "RX max_sdu check failed");
2339      return error;
2340    }
2341    switch (rxtp->traffic_class) {
2342      case ATM_UBR: {
2343        // not reserved
2344        break;
2345      }
2346#if 0
2347      case ATM_ABR: {
2348        // reserve min
2349        vcc.rx_rate = 0; // ?
2350        break;
2351      }
2352#endif
2353      case ATM_CBR: {
2354        int pcr = atm_pcr_goal (rxtp);
2355        if (!pcr) {
2356          // slight race (no locking) here so we may get -EAGAIN
2357          // later; the greedy bastards would deserve it :)
2358          PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2359          pcr = dev->rx_avail;
2360        } else if (pcr < 0) {
2361          pcr = -pcr;
2362        }
2363        vcc.rx_rate = pcr;
2364        // not really clear what further checking is needed
2365        error = atm_pcr_check (rxtp, vcc.rx_rate);
2366        if (error) {
2367          PRINTD (DBG_QOS, "RX PCR failed consistency check");
2368          return error;
2369        }
2370        break;
2371      }
2372#if 0
2373      case ATM_VBR: {
2374        // int scr = atm_scr_goal (rxtp);
2375        int scr = 1<<16; // just for fun
2376        if (!scr) {
2377          // slight race (no locking) here so we may get -EAGAIN
2378          // later; the greedy bastards would deserve it :)
2379          PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2380          scr = dev->rx_avail;
2381        } else if (scr < 0) {
2382          scr = -scr;
2383        }
2384        vcc.rx_rate = scr;
2385        // not really clear what further checking is needed
2386        // error = atm_scr_check (rxtp, vcc.rx_rate);
2387        if (error) {
2388          PRINTD (DBG_QOS, "RX SCR failed consistency check");
2389          return error;
2390        }
2391        break;
2392      }
2393#endif
2394      default: {
2395        PRINTD (DBG_QOS, "unsupported RX traffic class");
2396        return -EINVAL;
2397      }
2398    }
2399  }
2400  
2401  
2402  // late abort useful for diagnostics
2403  if (vcc.aal != aal5) {
2404    PRINTD (DBG_QOS, "AAL not supported");
2405    return -EINVAL;
2406  }
2407  
2408  // get space for our vcc stuff and copy parameters into it
2409  vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2410  if (!vccp) {
2411    PRINTK (KERN_ERR, "out of memory!");
2412    return -ENOMEM;
2413  }
2414  *vccp = vcc;
2415  
2416  // clear error and grab cell rate resource lock
2417  error = 0;
2418  spin_lock (&dev->rate_lock);
2419  
2420  if (vcc.tx_rate > dev->tx_avail) {
2421    PRINTD (DBG_QOS, "not enough TX PCR left");
2422    error = -EAGAIN;
2423  }
2424  
2425  if (vcc.rx_rate > dev->rx_avail) {
2426    PRINTD (DBG_QOS, "not enough RX PCR left");
2427    error = -EAGAIN;
2428  }
2429  
2430  if (!error) {
2431    // really consume cell rates
2432    dev->tx_avail -= vcc.tx_rate;
2433    dev->rx_avail -= vcc.rx_rate;
2434    PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2435            vcc.tx_rate, vcc.rx_rate);
2436  }
2437  
2438  // release lock and exit on error
2439  spin_unlock (&dev->rate_lock);
2440  if (error) {
2441    PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2442    kfree (vccp);
2443    return error;
2444  }
2445  
2446  // this is "immediately before allocating the connection identifier
2447  // in hardware" - so long as the next call does not fail :)
2448  set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2449  
2450  // any errors here are very serious and should never occur
2451  
2452  if (rxtp->traffic_class != ATM_NONE) {
2453    if (dev->rxer[channel]) {
2454      PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2455      error = -EBUSY;
2456    }
2457    if (!error)
2458      error = hrz_open_rx (dev, channel);
2459    if (error) {
2460      kfree (vccp);
2461      return error;
2462    }
2463    // this link allows RX frames through
2464    dev->rxer[channel] = atm_vcc;
2465  }
2466  
2467  // success, set elements of atm_vcc
2468  atm_vcc->dev_data = (void *) vccp;
2469  
2470  // indicate readiness
2471  set_bit(ATM_VF_READY,&atm_vcc->flags);
2472  
2473  return 0;
2474}
2475
2476/********** close VC **********/
2477
2478static void hrz_close (struct atm_vcc * atm_vcc) {
2479  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2480  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2481  u16 channel = vcc->channel;
2482  PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2483  
2484  // indicate unreadiness
2485  clear_bit(ATM_VF_READY,&atm_vcc->flags);
2486
2487  if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2488    unsigned int i;
2489    
2490    // let any TX on this channel that has started complete
2491    // no restart, just keep trying
2492    while (tx_hold (dev))
2493      ;
2494    // remove record of any tx_channel having been setup for this channel
2495    for (i = 0; i < TX_CHANS; ++i)
2496      if (dev->tx_channel_record[i] == channel) {
2497        dev->tx_channel_record[i] = -1;
2498        break;
2499      }
2500    if (dev->last_vc == channel)
2501      dev->tx_last = -1;
2502    tx_release (dev);
2503  }
2504
2505  if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2506    // disable RXing - it tries quite hard
2507    hrz_close_rx (dev, channel);
2508    // forget the vcc - no more skbs will be pushed
2509    if (atm_vcc != dev->rxer[channel])
2510      PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2511              "arghhh! we're going to die!",
2512              atm_vcc, dev->rxer[channel]);
2513    dev->rxer[channel] = NULL;
2514  }
2515  
2516  // atomically release our rate reservation
2517  spin_lock (&dev->rate_lock);
2518  PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2519          vcc->tx_rate, vcc->rx_rate);
2520  dev->tx_avail += vcc->tx_rate;
2521  dev->rx_avail += vcc->rx_rate;
2522  spin_unlock (&dev->rate_lock);
2523  
2524  // free our structure
2525  kfree (vcc);
2526  // say the VPI/VCI is free again
2527  clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2528}
2529
2530#if 0
2531static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2532                           void *optval, int optlen) {
2533  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2534  PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2535  switch (level) {
2536    case SOL_SOCKET:
2537      switch (optname) {
2538//      case SO_BCTXOPT:
2539//        break;
2540//      case SO_BCRXOPT:
2541//        break;
2542        default:
2543          return -ENOPROTOOPT;
2544      };
2545      break;
2546  }
2547  return -EINVAL;
2548}
2549
2550static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2551                           void *optval, unsigned int optlen) {
2552  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2553  PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2554  switch (level) {
2555    case SOL_SOCKET:
2556      switch (optname) {
2557//      case SO_BCTXOPT:
2558//        break;
2559//      case SO_BCRXOPT:
2560//        break;
2561        default:
2562          return -ENOPROTOOPT;
2563      };
2564      break;
2565  }
2566  return -EINVAL;
2567}
2568#endif
2569
2570#if 0
2571static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2572  hrz_dev * dev = HRZ_DEV(atm_dev);
2573  PRINTD (DBG_FLOW, "hrz_ioctl");
2574  return -1;
2575}
2576
2577unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2578  hrz_dev * dev = HRZ_DEV(atm_dev);
2579  PRINTD (DBG_FLOW, "hrz_phy_get");
2580  return 0;
2581}
2582
2583static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2584                         unsigned long addr) {
2585  hrz_dev * dev = HRZ_DEV(atm_dev);
2586  PRINTD (DBG_FLOW, "hrz_phy_put");
2587}
2588
2589static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2590  hrz_dev * dev = HRZ_DEV(vcc->dev);
2591  PRINTD (DBG_FLOW, "hrz_change_qos");
2592  return -1;
2593}
2594#endif
2595
2596/********** proc file contents **********/
2597
2598static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2599  hrz_dev * dev = HRZ_DEV(atm_dev);
2600  int left = *pos;
2601  PRINTD (DBG_FLOW, "hrz_proc_read");
2602  
2603  /* more diagnostics here? */
2604  
2605#if 0
2606  if (!left--) {
2607    unsigned int count = sprintf (page, "vbr buckets:");
2608    unsigned int i;
2609    for (i = 0; i < TX_CHANS; ++i)
2610      count += sprintf (page, " %u/%u",
2611                        query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2612                        query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2613    count += sprintf (page+count, ".\n");
2614    return count;
2615  }
2616#endif
2617  
2618  if (!left--)
2619    return sprintf (page,
2620                    "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2621                    dev->tx_cell_count, dev->rx_cell_count,
2622                    dev->hec_error_count, dev->unassigned_cell_count);
2623  
2624  if (!left--)
2625    return sprintf (page,
2626                    "free cell buffers: TX %hu, RX %hu+%hu.\n",
2627                    rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2628                    rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2629                    dev->noof_spare_buffers);
2630  
2631  if (!left--)
2632    return sprintf (page,
2633                    "cps remaining: TX %u, RX %u\n",
2634                    dev->tx_avail, dev->rx_avail);
2635  
2636  return 0;
2637}
2638
2639static const struct atmdev_ops hrz_ops = {
2640  .open = hrz_open,
2641  .close        = hrz_close,
2642  .send = hrz_send,
2643  .proc_read    = hrz_proc_read,
2644  .owner        = THIS_MODULE,
2645};
2646
2647static int hrz_probe(struct pci_dev *pci_dev,
2648                     const struct pci_device_id *pci_ent)
2649{
2650        hrz_dev * dev;
2651        int err = 0;
2652
2653        // adapter slot free, read resources from PCI configuration space
2654        u32 iobase = pci_resource_start (pci_dev, 0);
2655        u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2656        unsigned int irq;
2657        unsigned char lat;
2658
2659        PRINTD (DBG_FLOW, "hrz_probe");
2660
2661        if (pci_enable_device(pci_dev))
2662                return -EINVAL;
2663
2664        /* XXX DEV_LABEL is a guess */
2665        if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2666                err = -EINVAL;
2667                goto out_disable;
2668        }
2669
2670        dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2671        if (!dev) {
2672                // perhaps we should be nice: deregister all adapters and abort?
2673                PRINTD(DBG_ERR, "out of memory");
2674                err = -ENOMEM;
2675                goto out_release;
2676        }
2677
2678        pci_set_drvdata(pci_dev, dev);
2679
2680        // grab IRQ and install handler - move this someplace more sensible
2681        irq = pci_dev->irq;
2682        if (request_irq(irq,
2683                        interrupt_handler,
2684                        IRQF_SHARED, /* irqflags guess */
2685                        DEV_LABEL, /* name guess */
2686                        dev)) {
2687                PRINTD(DBG_WARN, "request IRQ failed!");
2688                err = -EINVAL;
2689                goto out_free;
2690        }
2691
2692        PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2693               iobase, irq, membase);
2694
2695        dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2696                                        NULL);
2697        if (!(dev->atm_dev)) {
2698                PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2699                err = -EINVAL;
2700                goto out_free_irq;
2701        }
2702
2703        PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2704               dev->atm_dev->number, dev, dev->atm_dev);
2705        dev->atm_dev->dev_data = (void *) dev;
2706        dev->pci_dev = pci_dev; 
2707
2708        // enable bus master accesses
2709        pci_set_master(pci_dev);
2710
2711        // frobnicate latency (upwards, usually)
2712        pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2713        if (pci_lat) {
2714                PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2715                       "changing", lat, pci_lat);
2716                pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2717        } else if (lat < MIN_PCI_LATENCY) {
2718                PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2719                       "increasing", lat, MIN_PCI_LATENCY);
2720                pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2721        }
2722
2723        dev->iobase = iobase;
2724        dev->irq = irq; 
2725        dev->membase = membase; 
2726
2727        dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2728        dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1];
2729
2730        // these next three are performance hacks
2731        dev->last_vc = -1;
2732        dev->tx_last = -1;
2733        dev->tx_idle = 0;
2734
2735        dev->tx_regions = 0;
2736        dev->tx_bytes = 0;
2737        dev->tx_skb = NULL;
2738        dev->tx_iovec = NULL;
2739
2740        dev->tx_cell_count = 0;
2741        dev->rx_cell_count = 0;
2742        dev->hec_error_count = 0;
2743        dev->unassigned_cell_count = 0;
2744
2745        dev->noof_spare_buffers = 0;
2746
2747        {
2748                unsigned int i;
2749                for (i = 0; i < TX_CHANS; ++i)
2750                        dev->tx_channel_record[i] = -1;
2751        }
2752
2753        dev->flags = 0;
2754
2755        // Allocate cell rates and remember ASIC version
2756        // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2757        // Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2758        // Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2759
2760        if (hrz_init(dev)) {
2761                // to be really pedantic, this should be ATM_OC3c_PCR
2762                dev->tx_avail = ATM_OC3_PCR;
2763                dev->rx_avail = ATM_OC3_PCR;
2764                set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2765        } else {
2766                dev->tx_avail = ((25600000/8)*26)/(27*53);
2767                dev->rx_avail = ((25600000/8)*26)/(27*53);
2768                PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2769        }
2770
2771        // rate changes spinlock
2772        spin_lock_init(&dev->rate_lock);
2773
2774        // on-board memory access spinlock; we want atomic reads and
2775        // writes to adapter memory (handles IRQ and SMP)
2776        spin_lock_init(&dev->mem_lock);
2777
2778        init_waitqueue_head(&dev->tx_queue);
2779
2780        // vpi in 0..4, vci in 6..10
2781        dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2782        dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2783
2784        timer_setup(&dev->housekeeping, do_housekeeping, 0);
2785        mod_timer(&dev->housekeeping, jiffies);
2786
2787out:
2788        return err;
2789
2790out_free_irq:
2791        free_irq(irq, dev);
2792out_free:
2793        kfree(dev);
2794out_release:
2795        release_region(iobase, HRZ_IO_EXTENT);
2796out_disable:
2797        pci_disable_device(pci_dev);
2798        goto out;
2799}
2800
2801static void hrz_remove_one(struct pci_dev *pci_dev)
2802{
2803        hrz_dev *dev;
2804
2805        dev = pci_get_drvdata(pci_dev);
2806
2807        PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2808        del_timer_sync(&dev->housekeeping);
2809        hrz_reset(dev);
2810        atm_dev_deregister(dev->atm_dev);
2811        free_irq(dev->irq, dev);
2812        release_region(dev->iobase, HRZ_IO_EXTENT);
2813        kfree(dev);
2814
2815        pci_disable_device(pci_dev);
2816}
2817
2818static void __init hrz_check_args (void) {
2819#ifdef DEBUG_HORIZON
2820  PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2821#else
2822  if (debug)
2823    PRINTK (KERN_NOTICE, "no debug support in this image");
2824#endif
2825  
2826  if (vpi_bits > HRZ_MAX_VPI)
2827    PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2828            vpi_bits = HRZ_MAX_VPI);
2829  
2830  if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2831    PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2832            max_tx_size = TX_AAL5_LIMIT);
2833  
2834  if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2835    PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2836            max_rx_size = RX_AAL5_LIMIT);
2837  
2838  return;
2839}
2840
2841MODULE_AUTHOR(maintainer_string);
2842MODULE_DESCRIPTION(description_string);
2843MODULE_LICENSE("GPL");
2844module_param(debug, ushort, 0644);
2845module_param(vpi_bits, ushort, 0);
2846module_param(max_tx_size, int, 0);
2847module_param(max_rx_size, int, 0);
2848module_param(pci_lat, byte, 0);
2849MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2850MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2851MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2852MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2853MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2854
2855static const struct pci_device_id hrz_pci_tbl[] = {
2856        { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2857          0, 0, 0 },
2858        { 0, }
2859};
2860
2861MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2862
2863static struct pci_driver hrz_driver = {
2864        .name =         "horizon",
2865        .probe =        hrz_probe,
2866        .remove =       hrz_remove_one,
2867        .id_table =     hrz_pci_tbl,
2868};
2869
2870/********** module entry **********/
2871
2872static int __init hrz_module_init (void) {
2873  BUILD_BUG_ON(sizeof(struct MEMMAP) != 128*1024/4);
2874  
2875  show_version();
2876  
2877  // check arguments
2878  hrz_check_args();
2879  
2880  // get the juice
2881  return pci_register_driver(&hrz_driver);
2882}
2883
2884/********** module exit **********/
2885
2886static void __exit hrz_module_exit (void) {
2887  PRINTD (DBG_FLOW, "cleanup_module");
2888
2889  pci_unregister_driver(&hrz_driver);
2890}
2891
2892module_init(hrz_module_init);
2893module_exit(hrz_module_exit);
2894