linux/drivers/auxdisplay/panel.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Front panel driver for Linux
   4 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
   5 * Copyright (C) 2016-2017 Glider bvba
   6 *
   7 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
   8 * connected to a parallel printer port.
   9 *
  10 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
  11 * serial module compatible with Samsung's KS0074. The pins may be connected in
  12 * any combination, everything is programmable.
  13 *
  14 * The keypad consists in a matrix of push buttons connecting input pins to
  15 * data output pins or to the ground. The combinations have to be hard-coded
  16 * in the driver, though several profiles exist and adding new ones is easy.
  17 *
  18 * Several profiles are provided for commonly found LCD+keypad modules on the
  19 * market, such as those found in Nexcom's appliances.
  20 *
  21 * FIXME:
  22 *      - the initialization/deinitialization process is very dirty and should
  23 *        be rewritten. It may even be buggy.
  24 *
  25 * TODO:
  26 *      - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
  27 *      - make the LCD a part of a virtual screen of Vx*Vy
  28 *      - make the inputs list smp-safe
  29 *      - change the keyboard to a double mapping : signals -> key_id -> values
  30 *        so that applications can change values without knowing signals
  31 *
  32 */
  33
  34#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  35
  36#include <linux/module.h>
  37
  38#include <linux/types.h>
  39#include <linux/errno.h>
  40#include <linux/signal.h>
  41#include <linux/sched.h>
  42#include <linux/spinlock.h>
  43#include <linux/interrupt.h>
  44#include <linux/miscdevice.h>
  45#include <linux/slab.h>
  46#include <linux/ioport.h>
  47#include <linux/fcntl.h>
  48#include <linux/init.h>
  49#include <linux/delay.h>
  50#include <linux/kernel.h>
  51#include <linux/ctype.h>
  52#include <linux/parport.h>
  53#include <linux/list.h>
  54
  55#include <linux/io.h>
  56#include <linux/uaccess.h>
  57
  58#include "charlcd.h"
  59
  60#define KEYPAD_MINOR            185
  61
  62#define LCD_MAXBYTES            256     /* max burst write */
  63
  64#define KEYPAD_BUFFER           64
  65
  66/* poll the keyboard this every second */
  67#define INPUT_POLL_TIME         (HZ / 50)
  68/* a key starts to repeat after this times INPUT_POLL_TIME */
  69#define KEYPAD_REP_START        (10)
  70/* a key repeats this times INPUT_POLL_TIME */
  71#define KEYPAD_REP_DELAY        (2)
  72
  73/* converts an r_str() input to an active high, bits string : 000BAOSE */
  74#define PNL_PINPUT(a)           ((((unsigned char)(a)) ^ 0x7F) >> 3)
  75
  76#define PNL_PBUSY               0x80    /* inverted input, active low */
  77#define PNL_PACK                0x40    /* direct input, active low */
  78#define PNL_POUTPA              0x20    /* direct input, active high */
  79#define PNL_PSELECD             0x10    /* direct input, active high */
  80#define PNL_PERRORP             0x08    /* direct input, active low */
  81
  82#define PNL_PBIDIR              0x20    /* bi-directional ports */
  83/* high to read data in or-ed with data out */
  84#define PNL_PINTEN              0x10
  85#define PNL_PSELECP             0x08    /* inverted output, active low */
  86#define PNL_PINITP              0x04    /* direct output, active low */
  87#define PNL_PAUTOLF             0x02    /* inverted output, active low */
  88#define PNL_PSTROBE             0x01    /* inverted output */
  89
  90#define PNL_PD0                 0x01
  91#define PNL_PD1                 0x02
  92#define PNL_PD2                 0x04
  93#define PNL_PD3                 0x08
  94#define PNL_PD4                 0x10
  95#define PNL_PD5                 0x20
  96#define PNL_PD6                 0x40
  97#define PNL_PD7                 0x80
  98
  99#define PIN_NONE                0
 100#define PIN_STROBE              1
 101#define PIN_D0                  2
 102#define PIN_D1                  3
 103#define PIN_D2                  4
 104#define PIN_D3                  5
 105#define PIN_D4                  6
 106#define PIN_D5                  7
 107#define PIN_D6                  8
 108#define PIN_D7                  9
 109#define PIN_AUTOLF              14
 110#define PIN_INITP               16
 111#define PIN_SELECP              17
 112#define PIN_NOT_SET             127
 113
 114#define NOT_SET                 -1
 115
 116/* macros to simplify use of the parallel port */
 117#define r_ctr(x)        (parport_read_control((x)->port))
 118#define r_dtr(x)        (parport_read_data((x)->port))
 119#define r_str(x)        (parport_read_status((x)->port))
 120#define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
 121#define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
 122
 123/* this defines which bits are to be used and which ones to be ignored */
 124/* logical or of the output bits involved in the scan matrix */
 125static __u8 scan_mask_o;
 126/* logical or of the input bits involved in the scan matrix */
 127static __u8 scan_mask_i;
 128
 129enum input_type {
 130        INPUT_TYPE_STD,
 131        INPUT_TYPE_KBD,
 132};
 133
 134enum input_state {
 135        INPUT_ST_LOW,
 136        INPUT_ST_RISING,
 137        INPUT_ST_HIGH,
 138        INPUT_ST_FALLING,
 139};
 140
 141struct logical_input {
 142        struct list_head list;
 143        __u64 mask;
 144        __u64 value;
 145        enum input_type type;
 146        enum input_state state;
 147        __u8 rise_time, fall_time;
 148        __u8 rise_timer, fall_timer, high_timer;
 149
 150        union {
 151                struct {        /* valid when type == INPUT_TYPE_STD */
 152                        void (*press_fct)(int);
 153                        void (*release_fct)(int);
 154                        int press_data;
 155                        int release_data;
 156                } std;
 157                struct {        /* valid when type == INPUT_TYPE_KBD */
 158                        char press_str[sizeof(void *) + sizeof(int)] __nonstring;
 159                        char repeat_str[sizeof(void *) + sizeof(int)] __nonstring;
 160                        char release_str[sizeof(void *) + sizeof(int)] __nonstring;
 161                } kbd;
 162        } u;
 163};
 164
 165static LIST_HEAD(logical_inputs);       /* list of all defined logical inputs */
 166
 167/* physical contacts history
 168 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
 169 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
 170 * corresponds to the ground.
 171 * Within each group, bits are stored in the same order as read on the port :
 172 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
 173 * So, each __u64 is represented like this :
 174 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
 175 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
 176 */
 177
 178/* what has just been read from the I/O ports */
 179static __u64 phys_read;
 180/* previous phys_read */
 181static __u64 phys_read_prev;
 182/* stabilized phys_read (phys_read|phys_read_prev) */
 183static __u64 phys_curr;
 184/* previous phys_curr */
 185static __u64 phys_prev;
 186/* 0 means that at least one logical signal needs be computed */
 187static char inputs_stable;
 188
 189/* these variables are specific to the keypad */
 190static struct {
 191        bool enabled;
 192} keypad;
 193
 194static char keypad_buffer[KEYPAD_BUFFER];
 195static int keypad_buflen;
 196static int keypad_start;
 197static char keypressed;
 198static wait_queue_head_t keypad_read_wait;
 199
 200/* lcd-specific variables */
 201static struct {
 202        bool enabled;
 203        bool initialized;
 204
 205        int charset;
 206        int proto;
 207
 208        /* TODO: use union here? */
 209        struct {
 210                int e;
 211                int rs;
 212                int rw;
 213                int cl;
 214                int da;
 215                int bl;
 216        } pins;
 217
 218        struct charlcd *charlcd;
 219} lcd;
 220
 221/* Needed only for init */
 222static int selected_lcd_type = NOT_SET;
 223
 224/*
 225 * Bit masks to convert LCD signals to parallel port outputs.
 226 * _d_ are values for data port, _c_ are for control port.
 227 * [0] = signal OFF, [1] = signal ON, [2] = mask
 228 */
 229#define BIT_CLR         0
 230#define BIT_SET         1
 231#define BIT_MSK         2
 232#define BIT_STATES      3
 233/*
 234 * one entry for each bit on the LCD
 235 */
 236#define LCD_BIT_E       0
 237#define LCD_BIT_RS      1
 238#define LCD_BIT_RW      2
 239#define LCD_BIT_BL      3
 240#define LCD_BIT_CL      4
 241#define LCD_BIT_DA      5
 242#define LCD_BITS        6
 243
 244/*
 245 * each bit can be either connected to a DATA or CTRL port
 246 */
 247#define LCD_PORT_C      0
 248#define LCD_PORT_D      1
 249#define LCD_PORTS       2
 250
 251static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
 252
 253/*
 254 * LCD protocols
 255 */
 256#define LCD_PROTO_PARALLEL      0
 257#define LCD_PROTO_SERIAL        1
 258#define LCD_PROTO_TI_DA8XX_LCD  2
 259
 260/*
 261 * LCD character sets
 262 */
 263#define LCD_CHARSET_NORMAL      0
 264#define LCD_CHARSET_KS0074      1
 265
 266/*
 267 * LCD types
 268 */
 269#define LCD_TYPE_NONE           0
 270#define LCD_TYPE_CUSTOM         1
 271#define LCD_TYPE_OLD            2
 272#define LCD_TYPE_KS0074         3
 273#define LCD_TYPE_HANTRONIX      4
 274#define LCD_TYPE_NEXCOM         5
 275
 276/*
 277 * keypad types
 278 */
 279#define KEYPAD_TYPE_NONE        0
 280#define KEYPAD_TYPE_OLD         1
 281#define KEYPAD_TYPE_NEW         2
 282#define KEYPAD_TYPE_NEXCOM      3
 283
 284/*
 285 * panel profiles
 286 */
 287#define PANEL_PROFILE_CUSTOM    0
 288#define PANEL_PROFILE_OLD       1
 289#define PANEL_PROFILE_NEW       2
 290#define PANEL_PROFILE_HANTRONIX 3
 291#define PANEL_PROFILE_NEXCOM    4
 292#define PANEL_PROFILE_LARGE     5
 293
 294/*
 295 * Construct custom config from the kernel's configuration
 296 */
 297#define DEFAULT_PARPORT         0
 298#define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
 299#define DEFAULT_KEYPAD_TYPE     KEYPAD_TYPE_OLD
 300#define DEFAULT_LCD_TYPE        LCD_TYPE_OLD
 301#define DEFAULT_LCD_HEIGHT      2
 302#define DEFAULT_LCD_WIDTH       40
 303#define DEFAULT_LCD_BWIDTH      40
 304#define DEFAULT_LCD_HWIDTH      64
 305#define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
 306#define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
 307
 308#define DEFAULT_LCD_PIN_E       PIN_AUTOLF
 309#define DEFAULT_LCD_PIN_RS      PIN_SELECP
 310#define DEFAULT_LCD_PIN_RW      PIN_INITP
 311#define DEFAULT_LCD_PIN_SCL     PIN_STROBE
 312#define DEFAULT_LCD_PIN_SDA     PIN_D0
 313#define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
 314
 315#ifdef CONFIG_PANEL_PARPORT
 316#undef DEFAULT_PARPORT
 317#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
 318#endif
 319
 320#ifdef CONFIG_PANEL_PROFILE
 321#undef DEFAULT_PROFILE
 322#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
 323#endif
 324
 325#if DEFAULT_PROFILE == 0        /* custom */
 326#ifdef CONFIG_PANEL_KEYPAD
 327#undef DEFAULT_KEYPAD_TYPE
 328#define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
 329#endif
 330
 331#ifdef CONFIG_PANEL_LCD
 332#undef DEFAULT_LCD_TYPE
 333#define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
 334#endif
 335
 336#ifdef CONFIG_PANEL_LCD_HEIGHT
 337#undef DEFAULT_LCD_HEIGHT
 338#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
 339#endif
 340
 341#ifdef CONFIG_PANEL_LCD_WIDTH
 342#undef DEFAULT_LCD_WIDTH
 343#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
 344#endif
 345
 346#ifdef CONFIG_PANEL_LCD_BWIDTH
 347#undef DEFAULT_LCD_BWIDTH
 348#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
 349#endif
 350
 351#ifdef CONFIG_PANEL_LCD_HWIDTH
 352#undef DEFAULT_LCD_HWIDTH
 353#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
 354#endif
 355
 356#ifdef CONFIG_PANEL_LCD_CHARSET
 357#undef DEFAULT_LCD_CHARSET
 358#define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
 359#endif
 360
 361#ifdef CONFIG_PANEL_LCD_PROTO
 362#undef DEFAULT_LCD_PROTO
 363#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
 364#endif
 365
 366#ifdef CONFIG_PANEL_LCD_PIN_E
 367#undef DEFAULT_LCD_PIN_E
 368#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
 369#endif
 370
 371#ifdef CONFIG_PANEL_LCD_PIN_RS
 372#undef DEFAULT_LCD_PIN_RS
 373#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
 374#endif
 375
 376#ifdef CONFIG_PANEL_LCD_PIN_RW
 377#undef DEFAULT_LCD_PIN_RW
 378#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
 379#endif
 380
 381#ifdef CONFIG_PANEL_LCD_PIN_SCL
 382#undef DEFAULT_LCD_PIN_SCL
 383#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
 384#endif
 385
 386#ifdef CONFIG_PANEL_LCD_PIN_SDA
 387#undef DEFAULT_LCD_PIN_SDA
 388#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
 389#endif
 390
 391#ifdef CONFIG_PANEL_LCD_PIN_BL
 392#undef DEFAULT_LCD_PIN_BL
 393#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
 394#endif
 395
 396#endif /* DEFAULT_PROFILE == 0 */
 397
 398/* global variables */
 399
 400/* Device single-open policy control */
 401static atomic_t keypad_available = ATOMIC_INIT(1);
 402
 403static struct pardevice *pprt;
 404
 405static int keypad_initialized;
 406
 407static DEFINE_SPINLOCK(pprt_lock);
 408static struct timer_list scan_timer;
 409
 410MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
 411
 412static int parport = DEFAULT_PARPORT;
 413module_param(parport, int, 0000);
 414MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
 415
 416static int profile = DEFAULT_PROFILE;
 417module_param(profile, int, 0000);
 418MODULE_PARM_DESC(profile,
 419                 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
 420                 "4=16x2 nexcom; default=40x2, old kp");
 421
 422static int keypad_type = NOT_SET;
 423module_param(keypad_type, int, 0000);
 424MODULE_PARM_DESC(keypad_type,
 425                 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
 426
 427static int lcd_type = NOT_SET;
 428module_param(lcd_type, int, 0000);
 429MODULE_PARM_DESC(lcd_type,
 430                 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
 431
 432static int lcd_height = NOT_SET;
 433module_param(lcd_height, int, 0000);
 434MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
 435
 436static int lcd_width = NOT_SET;
 437module_param(lcd_width, int, 0000);
 438MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
 439
 440static int lcd_bwidth = NOT_SET;        /* internal buffer width (usually 40) */
 441module_param(lcd_bwidth, int, 0000);
 442MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
 443
 444static int lcd_hwidth = NOT_SET;        /* hardware buffer width (usually 64) */
 445module_param(lcd_hwidth, int, 0000);
 446MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
 447
 448static int lcd_charset = NOT_SET;
 449module_param(lcd_charset, int, 0000);
 450MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
 451
 452static int lcd_proto = NOT_SET;
 453module_param(lcd_proto, int, 0000);
 454MODULE_PARM_DESC(lcd_proto,
 455                 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
 456
 457/*
 458 * These are the parallel port pins the LCD control signals are connected to.
 459 * Set this to 0 if the signal is not used. Set it to its opposite value
 460 * (negative) if the signal is negated. -MAXINT is used to indicate that the
 461 * pin has not been explicitly specified.
 462 *
 463 * WARNING! no check will be performed about collisions with keypad !
 464 */
 465
 466static int lcd_e_pin  = PIN_NOT_SET;
 467module_param(lcd_e_pin, int, 0000);
 468MODULE_PARM_DESC(lcd_e_pin,
 469                 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
 470
 471static int lcd_rs_pin = PIN_NOT_SET;
 472module_param(lcd_rs_pin, int, 0000);
 473MODULE_PARM_DESC(lcd_rs_pin,
 474                 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
 475
 476static int lcd_rw_pin = PIN_NOT_SET;
 477module_param(lcd_rw_pin, int, 0000);
 478MODULE_PARM_DESC(lcd_rw_pin,
 479                 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
 480
 481static int lcd_cl_pin = PIN_NOT_SET;
 482module_param(lcd_cl_pin, int, 0000);
 483MODULE_PARM_DESC(lcd_cl_pin,
 484                 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
 485
 486static int lcd_da_pin = PIN_NOT_SET;
 487module_param(lcd_da_pin, int, 0000);
 488MODULE_PARM_DESC(lcd_da_pin,
 489                 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
 490
 491static int lcd_bl_pin = PIN_NOT_SET;
 492module_param(lcd_bl_pin, int, 0000);
 493MODULE_PARM_DESC(lcd_bl_pin,
 494                 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
 495
 496/* Deprecated module parameters - consider not using them anymore */
 497
 498static int lcd_enabled = NOT_SET;
 499module_param(lcd_enabled, int, 0000);
 500MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
 501
 502static int keypad_enabled = NOT_SET;
 503module_param(keypad_enabled, int, 0000);
 504MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
 505
 506/* for some LCD drivers (ks0074) we need a charset conversion table. */
 507static const unsigned char lcd_char_conv_ks0074[256] = {
 508        /*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
 509        /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 510        /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 511        /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 512        /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
 513        /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
 514        /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
 515        /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
 516        /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
 517        /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
 518        /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
 519        /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
 520        /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
 521        /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
 522        /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
 523        /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
 524        /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
 525        /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
 526        /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
 527        /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
 528        /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
 529        /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
 530        /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
 531        /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
 532        /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
 533        /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
 534        /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
 535        /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
 536        /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
 537        /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
 538        /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
 539        /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
 540        /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
 541};
 542
 543static const char old_keypad_profile[][4][9] = {
 544        {"S0", "Left\n", "Left\n", ""},
 545        {"S1", "Down\n", "Down\n", ""},
 546        {"S2", "Up\n", "Up\n", ""},
 547        {"S3", "Right\n", "Right\n", ""},
 548        {"S4", "Esc\n", "Esc\n", ""},
 549        {"S5", "Ret\n", "Ret\n", ""},
 550        {"", "", "", ""}
 551};
 552
 553/* signals, press, repeat, release */
 554static const char new_keypad_profile[][4][9] = {
 555        {"S0", "Left\n", "Left\n", ""},
 556        {"S1", "Down\n", "Down\n", ""},
 557        {"S2", "Up\n", "Up\n", ""},
 558        {"S3", "Right\n", "Right\n", ""},
 559        {"S4s5", "", "Esc\n", "Esc\n"},
 560        {"s4S5", "", "Ret\n", "Ret\n"},
 561        {"S4S5", "Help\n", "", ""},
 562        /* add new signals above this line */
 563        {"", "", "", ""}
 564};
 565
 566/* signals, press, repeat, release */
 567static const char nexcom_keypad_profile[][4][9] = {
 568        {"a-p-e-", "Down\n", "Down\n", ""},
 569        {"a-p-E-", "Ret\n", "Ret\n", ""},
 570        {"a-P-E-", "Esc\n", "Esc\n", ""},
 571        {"a-P-e-", "Up\n", "Up\n", ""},
 572        /* add new signals above this line */
 573        {"", "", "", ""}
 574};
 575
 576static const char (*keypad_profile)[4][9] = old_keypad_profile;
 577
 578static DECLARE_BITMAP(bits, LCD_BITS);
 579
 580static void lcd_get_bits(unsigned int port, int *val)
 581{
 582        unsigned int bit, state;
 583
 584        for (bit = 0; bit < LCD_BITS; bit++) {
 585                state = test_bit(bit, bits) ? BIT_SET : BIT_CLR;
 586                *val &= lcd_bits[port][bit][BIT_MSK];
 587                *val |= lcd_bits[port][bit][state];
 588        }
 589}
 590
 591/* sets data port bits according to current signals values */
 592static int set_data_bits(void)
 593{
 594        int val;
 595
 596        val = r_dtr(pprt);
 597        lcd_get_bits(LCD_PORT_D, &val);
 598        w_dtr(pprt, val);
 599        return val;
 600}
 601
 602/* sets ctrl port bits according to current signals values */
 603static int set_ctrl_bits(void)
 604{
 605        int val;
 606
 607        val = r_ctr(pprt);
 608        lcd_get_bits(LCD_PORT_C, &val);
 609        w_ctr(pprt, val);
 610        return val;
 611}
 612
 613/* sets ctrl & data port bits according to current signals values */
 614static void panel_set_bits(void)
 615{
 616        set_data_bits();
 617        set_ctrl_bits();
 618}
 619
 620/*
 621 * Converts a parallel port pin (from -25 to 25) to data and control ports
 622 * masks, and data and control port bits. The signal will be considered
 623 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
 624 *
 625 * Result will be used this way :
 626 *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
 627 *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
 628 */
 629static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
 630{
 631        int d_bit, c_bit, inv;
 632
 633        d_val[0] = 0;
 634        c_val[0] = 0;
 635        d_val[1] = 0;
 636        c_val[1] = 0;
 637        d_val[2] = 0xFF;
 638        c_val[2] = 0xFF;
 639
 640        if (pin == 0)
 641                return;
 642
 643        inv = (pin < 0);
 644        if (inv)
 645                pin = -pin;
 646
 647        d_bit = 0;
 648        c_bit = 0;
 649
 650        switch (pin) {
 651        case PIN_STROBE:        /* strobe, inverted */
 652                c_bit = PNL_PSTROBE;
 653                inv = !inv;
 654                break;
 655        case PIN_D0...PIN_D7:   /* D0 - D7 = 2 - 9 */
 656                d_bit = 1 << (pin - 2);
 657                break;
 658        case PIN_AUTOLF:        /* autofeed, inverted */
 659                c_bit = PNL_PAUTOLF;
 660                inv = !inv;
 661                break;
 662        case PIN_INITP:         /* init, direct */
 663                c_bit = PNL_PINITP;
 664                break;
 665        case PIN_SELECP:        /* select_in, inverted */
 666                c_bit = PNL_PSELECP;
 667                inv = !inv;
 668                break;
 669        default:                /* unknown pin, ignore */
 670                break;
 671        }
 672
 673        if (c_bit) {
 674                c_val[2] &= ~c_bit;
 675                c_val[!inv] = c_bit;
 676        } else if (d_bit) {
 677                d_val[2] &= ~d_bit;
 678                d_val[!inv] = d_bit;
 679        }
 680}
 681
 682/*
 683 * send a serial byte to the LCD panel. The caller is responsible for locking
 684 * if needed.
 685 */
 686static void lcd_send_serial(int byte)
 687{
 688        int bit;
 689
 690        /*
 691         * the data bit is set on D0, and the clock on STROBE.
 692         * LCD reads D0 on STROBE's rising edge.
 693         */
 694        for (bit = 0; bit < 8; bit++) {
 695                clear_bit(LCD_BIT_CL, bits);    /* CLK low */
 696                panel_set_bits();
 697                if (byte & 1) {
 698                        set_bit(LCD_BIT_DA, bits);
 699                } else {
 700                        clear_bit(LCD_BIT_DA, bits);
 701                }
 702
 703                panel_set_bits();
 704                udelay(2);  /* maintain the data during 2 us before CLK up */
 705                set_bit(LCD_BIT_CL, bits);      /* CLK high */
 706                panel_set_bits();
 707                udelay(1);  /* maintain the strobe during 1 us */
 708                byte >>= 1;
 709        }
 710}
 711
 712/* turn the backlight on or off */
 713static void lcd_backlight(struct charlcd *charlcd, int on)
 714{
 715        if (lcd.pins.bl == PIN_NONE)
 716                return;
 717
 718        /* The backlight is activated by setting the AUTOFEED line to +5V  */
 719        spin_lock_irq(&pprt_lock);
 720        if (on)
 721                set_bit(LCD_BIT_BL, bits);
 722        else
 723                clear_bit(LCD_BIT_BL, bits);
 724        panel_set_bits();
 725        spin_unlock_irq(&pprt_lock);
 726}
 727
 728/* send a command to the LCD panel in serial mode */
 729static void lcd_write_cmd_s(struct charlcd *charlcd, int cmd)
 730{
 731        spin_lock_irq(&pprt_lock);
 732        lcd_send_serial(0x1F);  /* R/W=W, RS=0 */
 733        lcd_send_serial(cmd & 0x0F);
 734        lcd_send_serial((cmd >> 4) & 0x0F);
 735        udelay(40);             /* the shortest command takes at least 40 us */
 736        spin_unlock_irq(&pprt_lock);
 737}
 738
 739/* send data to the LCD panel in serial mode */
 740static void lcd_write_data_s(struct charlcd *charlcd, int data)
 741{
 742        spin_lock_irq(&pprt_lock);
 743        lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
 744        lcd_send_serial(data & 0x0F);
 745        lcd_send_serial((data >> 4) & 0x0F);
 746        udelay(40);             /* the shortest data takes at least 40 us */
 747        spin_unlock_irq(&pprt_lock);
 748}
 749
 750/* send a command to the LCD panel in 8 bits parallel mode */
 751static void lcd_write_cmd_p8(struct charlcd *charlcd, int cmd)
 752{
 753        spin_lock_irq(&pprt_lock);
 754        /* present the data to the data port */
 755        w_dtr(pprt, cmd);
 756        udelay(20);     /* maintain the data during 20 us before the strobe */
 757
 758        set_bit(LCD_BIT_E, bits);
 759        clear_bit(LCD_BIT_RS, bits);
 760        clear_bit(LCD_BIT_RW, bits);
 761        set_ctrl_bits();
 762
 763        udelay(40);     /* maintain the strobe during 40 us */
 764
 765        clear_bit(LCD_BIT_E, bits);
 766        set_ctrl_bits();
 767
 768        udelay(120);    /* the shortest command takes at least 120 us */
 769        spin_unlock_irq(&pprt_lock);
 770}
 771
 772/* send data to the LCD panel in 8 bits parallel mode */
 773static void lcd_write_data_p8(struct charlcd *charlcd, int data)
 774{
 775        spin_lock_irq(&pprt_lock);
 776        /* present the data to the data port */
 777        w_dtr(pprt, data);
 778        udelay(20);     /* maintain the data during 20 us before the strobe */
 779
 780        set_bit(LCD_BIT_E, bits);
 781        set_bit(LCD_BIT_RS, bits);
 782        clear_bit(LCD_BIT_RW, bits);
 783        set_ctrl_bits();
 784
 785        udelay(40);     /* maintain the strobe during 40 us */
 786
 787        clear_bit(LCD_BIT_E, bits);
 788        set_ctrl_bits();
 789
 790        udelay(45);     /* the shortest data takes at least 45 us */
 791        spin_unlock_irq(&pprt_lock);
 792}
 793
 794/* send a command to the TI LCD panel */
 795static void lcd_write_cmd_tilcd(struct charlcd *charlcd, int cmd)
 796{
 797        spin_lock_irq(&pprt_lock);
 798        /* present the data to the control port */
 799        w_ctr(pprt, cmd);
 800        udelay(60);
 801        spin_unlock_irq(&pprt_lock);
 802}
 803
 804/* send data to the TI LCD panel */
 805static void lcd_write_data_tilcd(struct charlcd *charlcd, int data)
 806{
 807        spin_lock_irq(&pprt_lock);
 808        /* present the data to the data port */
 809        w_dtr(pprt, data);
 810        udelay(60);
 811        spin_unlock_irq(&pprt_lock);
 812}
 813
 814/* fills the display with spaces and resets X/Y */
 815static void lcd_clear_fast_s(struct charlcd *charlcd)
 816{
 817        int pos;
 818
 819        spin_lock_irq(&pprt_lock);
 820        for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
 821                lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
 822                lcd_send_serial(' ' & 0x0F);
 823                lcd_send_serial((' ' >> 4) & 0x0F);
 824                /* the shortest data takes at least 40 us */
 825                udelay(40);
 826        }
 827        spin_unlock_irq(&pprt_lock);
 828}
 829
 830/* fills the display with spaces and resets X/Y */
 831static void lcd_clear_fast_p8(struct charlcd *charlcd)
 832{
 833        int pos;
 834
 835        spin_lock_irq(&pprt_lock);
 836        for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
 837                /* present the data to the data port */
 838                w_dtr(pprt, ' ');
 839
 840                /* maintain the data during 20 us before the strobe */
 841                udelay(20);
 842
 843                set_bit(LCD_BIT_E, bits);
 844                set_bit(LCD_BIT_RS, bits);
 845                clear_bit(LCD_BIT_RW, bits);
 846                set_ctrl_bits();
 847
 848                /* maintain the strobe during 40 us */
 849                udelay(40);
 850
 851                clear_bit(LCD_BIT_E, bits);
 852                set_ctrl_bits();
 853
 854                /* the shortest data takes at least 45 us */
 855                udelay(45);
 856        }
 857        spin_unlock_irq(&pprt_lock);
 858}
 859
 860/* fills the display with spaces and resets X/Y */
 861static void lcd_clear_fast_tilcd(struct charlcd *charlcd)
 862{
 863        int pos;
 864
 865        spin_lock_irq(&pprt_lock);
 866        for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
 867                /* present the data to the data port */
 868                w_dtr(pprt, ' ');
 869                udelay(60);
 870        }
 871
 872        spin_unlock_irq(&pprt_lock);
 873}
 874
 875static const struct charlcd_ops charlcd_serial_ops = {
 876        .write_cmd      = lcd_write_cmd_s,
 877        .write_data     = lcd_write_data_s,
 878        .clear_fast     = lcd_clear_fast_s,
 879        .backlight      = lcd_backlight,
 880};
 881
 882static const struct charlcd_ops charlcd_parallel_ops = {
 883        .write_cmd      = lcd_write_cmd_p8,
 884        .write_data     = lcd_write_data_p8,
 885        .clear_fast     = lcd_clear_fast_p8,
 886        .backlight      = lcd_backlight,
 887};
 888
 889static const struct charlcd_ops charlcd_tilcd_ops = {
 890        .write_cmd      = lcd_write_cmd_tilcd,
 891        .write_data     = lcd_write_data_tilcd,
 892        .clear_fast     = lcd_clear_fast_tilcd,
 893        .backlight      = lcd_backlight,
 894};
 895
 896/* initialize the LCD driver */
 897static void lcd_init(void)
 898{
 899        struct charlcd *charlcd;
 900
 901        charlcd = charlcd_alloc(0);
 902        if (!charlcd)
 903                return;
 904
 905        /*
 906         * Init lcd struct with load-time values to preserve exact
 907         * current functionality (at least for now).
 908         */
 909        charlcd->height = lcd_height;
 910        charlcd->width = lcd_width;
 911        charlcd->bwidth = lcd_bwidth;
 912        charlcd->hwidth = lcd_hwidth;
 913
 914        switch (selected_lcd_type) {
 915        case LCD_TYPE_OLD:
 916                /* parallel mode, 8 bits */
 917                lcd.proto = LCD_PROTO_PARALLEL;
 918                lcd.charset = LCD_CHARSET_NORMAL;
 919                lcd.pins.e = PIN_STROBE;
 920                lcd.pins.rs = PIN_AUTOLF;
 921
 922                charlcd->width = 40;
 923                charlcd->bwidth = 40;
 924                charlcd->hwidth = 64;
 925                charlcd->height = 2;
 926                break;
 927        case LCD_TYPE_KS0074:
 928                /* serial mode, ks0074 */
 929                lcd.proto = LCD_PROTO_SERIAL;
 930                lcd.charset = LCD_CHARSET_KS0074;
 931                lcd.pins.bl = PIN_AUTOLF;
 932                lcd.pins.cl = PIN_STROBE;
 933                lcd.pins.da = PIN_D0;
 934
 935                charlcd->width = 16;
 936                charlcd->bwidth = 40;
 937                charlcd->hwidth = 16;
 938                charlcd->height = 2;
 939                break;
 940        case LCD_TYPE_NEXCOM:
 941                /* parallel mode, 8 bits, generic */
 942                lcd.proto = LCD_PROTO_PARALLEL;
 943                lcd.charset = LCD_CHARSET_NORMAL;
 944                lcd.pins.e = PIN_AUTOLF;
 945                lcd.pins.rs = PIN_SELECP;
 946                lcd.pins.rw = PIN_INITP;
 947
 948                charlcd->width = 16;
 949                charlcd->bwidth = 40;
 950                charlcd->hwidth = 64;
 951                charlcd->height = 2;
 952                break;
 953        case LCD_TYPE_CUSTOM:
 954                /* customer-defined */
 955                lcd.proto = DEFAULT_LCD_PROTO;
 956                lcd.charset = DEFAULT_LCD_CHARSET;
 957                /* default geometry will be set later */
 958                break;
 959        case LCD_TYPE_HANTRONIX:
 960                /* parallel mode, 8 bits, hantronix-like */
 961        default:
 962                lcd.proto = LCD_PROTO_PARALLEL;
 963                lcd.charset = LCD_CHARSET_NORMAL;
 964                lcd.pins.e = PIN_STROBE;
 965                lcd.pins.rs = PIN_SELECP;
 966
 967                charlcd->width = 16;
 968                charlcd->bwidth = 40;
 969                charlcd->hwidth = 64;
 970                charlcd->height = 2;
 971                break;
 972        }
 973
 974        /* Overwrite with module params set on loading */
 975        if (lcd_height != NOT_SET)
 976                charlcd->height = lcd_height;
 977        if (lcd_width != NOT_SET)
 978                charlcd->width = lcd_width;
 979        if (lcd_bwidth != NOT_SET)
 980                charlcd->bwidth = lcd_bwidth;
 981        if (lcd_hwidth != NOT_SET)
 982                charlcd->hwidth = lcd_hwidth;
 983        if (lcd_charset != NOT_SET)
 984                lcd.charset = lcd_charset;
 985        if (lcd_proto != NOT_SET)
 986                lcd.proto = lcd_proto;
 987        if (lcd_e_pin != PIN_NOT_SET)
 988                lcd.pins.e = lcd_e_pin;
 989        if (lcd_rs_pin != PIN_NOT_SET)
 990                lcd.pins.rs = lcd_rs_pin;
 991        if (lcd_rw_pin != PIN_NOT_SET)
 992                lcd.pins.rw = lcd_rw_pin;
 993        if (lcd_cl_pin != PIN_NOT_SET)
 994                lcd.pins.cl = lcd_cl_pin;
 995        if (lcd_da_pin != PIN_NOT_SET)
 996                lcd.pins.da = lcd_da_pin;
 997        if (lcd_bl_pin != PIN_NOT_SET)
 998                lcd.pins.bl = lcd_bl_pin;
 999
1000        /* this is used to catch wrong and default values */
1001        if (charlcd->width <= 0)
1002                charlcd->width = DEFAULT_LCD_WIDTH;
1003        if (charlcd->bwidth <= 0)
1004                charlcd->bwidth = DEFAULT_LCD_BWIDTH;
1005        if (charlcd->hwidth <= 0)
1006                charlcd->hwidth = DEFAULT_LCD_HWIDTH;
1007        if (charlcd->height <= 0)
1008                charlcd->height = DEFAULT_LCD_HEIGHT;
1009
1010        if (lcd.proto == LCD_PROTO_SERIAL) {    /* SERIAL */
1011                charlcd->ops = &charlcd_serial_ops;
1012
1013                if (lcd.pins.cl == PIN_NOT_SET)
1014                        lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1015                if (lcd.pins.da == PIN_NOT_SET)
1016                        lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1017
1018        } else if (lcd.proto == LCD_PROTO_PARALLEL) {   /* PARALLEL */
1019                charlcd->ops = &charlcd_parallel_ops;
1020
1021                if (lcd.pins.e == PIN_NOT_SET)
1022                        lcd.pins.e = DEFAULT_LCD_PIN_E;
1023                if (lcd.pins.rs == PIN_NOT_SET)
1024                        lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1025                if (lcd.pins.rw == PIN_NOT_SET)
1026                        lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1027        } else {
1028                charlcd->ops = &charlcd_tilcd_ops;
1029        }
1030
1031        if (lcd.pins.bl == PIN_NOT_SET)
1032                lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1033
1034        if (lcd.pins.e == PIN_NOT_SET)
1035                lcd.pins.e = PIN_NONE;
1036        if (lcd.pins.rs == PIN_NOT_SET)
1037                lcd.pins.rs = PIN_NONE;
1038        if (lcd.pins.rw == PIN_NOT_SET)
1039                lcd.pins.rw = PIN_NONE;
1040        if (lcd.pins.bl == PIN_NOT_SET)
1041                lcd.pins.bl = PIN_NONE;
1042        if (lcd.pins.cl == PIN_NOT_SET)
1043                lcd.pins.cl = PIN_NONE;
1044        if (lcd.pins.da == PIN_NOT_SET)
1045                lcd.pins.da = PIN_NONE;
1046
1047        if (lcd.charset == NOT_SET)
1048                lcd.charset = DEFAULT_LCD_CHARSET;
1049
1050        if (lcd.charset == LCD_CHARSET_KS0074)
1051                charlcd->char_conv = lcd_char_conv_ks0074;
1052        else
1053                charlcd->char_conv = NULL;
1054
1055        pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1056                    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1057        pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1058                    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1059        pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1060                    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1061        pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1062                    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1063        pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1064                    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1065        pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1066                    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1067
1068        lcd.charlcd = charlcd;
1069        lcd.initialized = true;
1070}
1071
1072/*
1073 * These are the file operation function for user access to /dev/keypad
1074 */
1075
1076static ssize_t keypad_read(struct file *file,
1077                           char __user *buf, size_t count, loff_t *ppos)
1078{
1079        unsigned i = *ppos;
1080        char __user *tmp = buf;
1081
1082        if (keypad_buflen == 0) {
1083                if (file->f_flags & O_NONBLOCK)
1084                        return -EAGAIN;
1085
1086                if (wait_event_interruptible(keypad_read_wait,
1087                                             keypad_buflen != 0))
1088                        return -EINTR;
1089        }
1090
1091        for (; count-- > 0 && (keypad_buflen > 0);
1092             ++i, ++tmp, --keypad_buflen) {
1093                put_user(keypad_buffer[keypad_start], tmp);
1094                keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1095        }
1096        *ppos = i;
1097
1098        return tmp - buf;
1099}
1100
1101static int keypad_open(struct inode *inode, struct file *file)
1102{
1103        int ret;
1104
1105        ret = -EBUSY;
1106        if (!atomic_dec_and_test(&keypad_available))
1107                goto fail;      /* open only once at a time */
1108
1109        ret = -EPERM;
1110        if (file->f_mode & FMODE_WRITE) /* device is read-only */
1111                goto fail;
1112
1113        keypad_buflen = 0;      /* flush the buffer on opening */
1114        return 0;
1115 fail:
1116        atomic_inc(&keypad_available);
1117        return ret;
1118}
1119
1120static int keypad_release(struct inode *inode, struct file *file)
1121{
1122        atomic_inc(&keypad_available);
1123        return 0;
1124}
1125
1126static const struct file_operations keypad_fops = {
1127        .read    = keypad_read,         /* read */
1128        .open    = keypad_open,         /* open */
1129        .release = keypad_release,      /* close */
1130        .llseek  = default_llseek,
1131};
1132
1133static struct miscdevice keypad_dev = {
1134        .minor  = KEYPAD_MINOR,
1135        .name   = "keypad",
1136        .fops   = &keypad_fops,
1137};
1138
1139static void keypad_send_key(const char *string, int max_len)
1140{
1141        /* send the key to the device only if a process is attached to it. */
1142        if (!atomic_read(&keypad_available)) {
1143                while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1144                        keypad_buffer[(keypad_start + keypad_buflen++) %
1145                                      KEYPAD_BUFFER] = *string++;
1146                }
1147                wake_up_interruptible(&keypad_read_wait);
1148        }
1149}
1150
1151/* this function scans all the bits involving at least one logical signal,
1152 * and puts the results in the bitfield "phys_read" (one bit per established
1153 * contact), and sets "phys_read_prev" to "phys_read".
1154 *
1155 * Note: to debounce input signals, we will only consider as switched a signal
1156 * which is stable across 2 measures. Signals which are different between two
1157 * reads will be kept as they previously were in their logical form (phys_prev).
1158 * A signal which has just switched will have a 1 in
1159 * (phys_read ^ phys_read_prev).
1160 */
1161static void phys_scan_contacts(void)
1162{
1163        int bit, bitval;
1164        char oldval;
1165        char bitmask;
1166        char gndmask;
1167
1168        phys_prev = phys_curr;
1169        phys_read_prev = phys_read;
1170        phys_read = 0;          /* flush all signals */
1171
1172        /* keep track of old value, with all outputs disabled */
1173        oldval = r_dtr(pprt) | scan_mask_o;
1174        /* activate all keyboard outputs (active low) */
1175        w_dtr(pprt, oldval & ~scan_mask_o);
1176
1177        /* will have a 1 for each bit set to gnd */
1178        bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1179        /* disable all matrix signals */
1180        w_dtr(pprt, oldval);
1181
1182        /* now that all outputs are cleared, the only active input bits are
1183         * directly connected to the ground
1184         */
1185
1186        /* 1 for each grounded input */
1187        gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1188
1189        /* grounded inputs are signals 40-44 */
1190        phys_read |= (__u64)gndmask << 40;
1191
1192        if (bitmask != gndmask) {
1193                /*
1194                 * since clearing the outputs changed some inputs, we know
1195                 * that some input signals are currently tied to some outputs.
1196                 * So we'll scan them.
1197                 */
1198                for (bit = 0; bit < 8; bit++) {
1199                        bitval = BIT(bit);
1200
1201                        if (!(scan_mask_o & bitval))    /* skip unused bits */
1202                                continue;
1203
1204                        w_dtr(pprt, oldval & ~bitval);  /* enable this output */
1205                        bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1206                        phys_read |= (__u64)bitmask << (5 * bit);
1207                }
1208                w_dtr(pprt, oldval);    /* disable all outputs */
1209        }
1210        /*
1211         * this is easy: use old bits when they are flapping,
1212         * use new ones when stable
1213         */
1214        phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1215                    (phys_read & ~(phys_read ^ phys_read_prev));
1216}
1217
1218static inline int input_state_high(struct logical_input *input)
1219{
1220#if 0
1221        /* FIXME:
1222         * this is an invalid test. It tries to catch
1223         * transitions from single-key to multiple-key, but
1224         * doesn't take into account the contacts polarity.
1225         * The only solution to the problem is to parse keys
1226         * from the most complex to the simplest combinations,
1227         * and mark them as 'caught' once a combination
1228         * matches, then unmatch it for all other ones.
1229         */
1230
1231        /* try to catch dangerous transitions cases :
1232         * someone adds a bit, so this signal was a false
1233         * positive resulting from a transition. We should
1234         * invalidate the signal immediately and not call the
1235         * release function.
1236         * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1237         */
1238        if (((phys_prev & input->mask) == input->value) &&
1239            ((phys_curr & input->mask) >  input->value)) {
1240                input->state = INPUT_ST_LOW; /* invalidate */
1241                return 1;
1242        }
1243#endif
1244
1245        if ((phys_curr & input->mask) == input->value) {
1246                if ((input->type == INPUT_TYPE_STD) &&
1247                    (input->high_timer == 0)) {
1248                        input->high_timer++;
1249                        if (input->u.std.press_fct)
1250                                input->u.std.press_fct(input->u.std.press_data);
1251                } else if (input->type == INPUT_TYPE_KBD) {
1252                        /* will turn on the light */
1253                        keypressed = 1;
1254
1255                        if (input->high_timer == 0) {
1256                                char *press_str = input->u.kbd.press_str;
1257
1258                                if (press_str[0]) {
1259                                        int s = sizeof(input->u.kbd.press_str);
1260
1261                                        keypad_send_key(press_str, s);
1262                                }
1263                        }
1264
1265                        if (input->u.kbd.repeat_str[0]) {
1266                                char *repeat_str = input->u.kbd.repeat_str;
1267
1268                                if (input->high_timer >= KEYPAD_REP_START) {
1269                                        int s = sizeof(input->u.kbd.repeat_str);
1270
1271                                        input->high_timer -= KEYPAD_REP_DELAY;
1272                                        keypad_send_key(repeat_str, s);
1273                                }
1274                                /* we will need to come back here soon */
1275                                inputs_stable = 0;
1276                        }
1277
1278                        if (input->high_timer < 255)
1279                                input->high_timer++;
1280                }
1281                return 1;
1282        }
1283
1284        /* else signal falling down. Let's fall through. */
1285        input->state = INPUT_ST_FALLING;
1286        input->fall_timer = 0;
1287
1288        return 0;
1289}
1290
1291static inline void input_state_falling(struct logical_input *input)
1292{
1293#if 0
1294        /* FIXME !!! same comment as in input_state_high */
1295        if (((phys_prev & input->mask) == input->value) &&
1296            ((phys_curr & input->mask) >  input->value)) {
1297                input->state = INPUT_ST_LOW;    /* invalidate */
1298                return;
1299        }
1300#endif
1301
1302        if ((phys_curr & input->mask) == input->value) {
1303                if (input->type == INPUT_TYPE_KBD) {
1304                        /* will turn on the light */
1305                        keypressed = 1;
1306
1307                        if (input->u.kbd.repeat_str[0]) {
1308                                char *repeat_str = input->u.kbd.repeat_str;
1309
1310                                if (input->high_timer >= KEYPAD_REP_START) {
1311                                        int s = sizeof(input->u.kbd.repeat_str);
1312
1313                                        input->high_timer -= KEYPAD_REP_DELAY;
1314                                        keypad_send_key(repeat_str, s);
1315                                }
1316                                /* we will need to come back here soon */
1317                                inputs_stable = 0;
1318                        }
1319
1320                        if (input->high_timer < 255)
1321                                input->high_timer++;
1322                }
1323                input->state = INPUT_ST_HIGH;
1324        } else if (input->fall_timer >= input->fall_time) {
1325                /* call release event */
1326                if (input->type == INPUT_TYPE_STD) {
1327                        void (*release_fct)(int) = input->u.std.release_fct;
1328
1329                        if (release_fct)
1330                                release_fct(input->u.std.release_data);
1331                } else if (input->type == INPUT_TYPE_KBD) {
1332                        char *release_str = input->u.kbd.release_str;
1333
1334                        if (release_str[0]) {
1335                                int s = sizeof(input->u.kbd.release_str);
1336
1337                                keypad_send_key(release_str, s);
1338                        }
1339                }
1340
1341                input->state = INPUT_ST_LOW;
1342        } else {
1343                input->fall_timer++;
1344                inputs_stable = 0;
1345        }
1346}
1347
1348static void panel_process_inputs(void)
1349{
1350        struct logical_input *input;
1351
1352        keypressed = 0;
1353        inputs_stable = 1;
1354        list_for_each_entry(input, &logical_inputs, list) {
1355                switch (input->state) {
1356                case INPUT_ST_LOW:
1357                        if ((phys_curr & input->mask) != input->value)
1358                                break;
1359                        /* if all needed ones were already set previously,
1360                         * this means that this logical signal has been
1361                         * activated by the releasing of another combined
1362                         * signal, so we don't want to match.
1363                         * eg: AB -(release B)-> A -(release A)-> 0 :
1364                         *     don't match A.
1365                         */
1366                        if ((phys_prev & input->mask) == input->value)
1367                                break;
1368                        input->rise_timer = 0;
1369                        input->state = INPUT_ST_RISING;
1370                        /* fall through */
1371                case INPUT_ST_RISING:
1372                        if ((phys_curr & input->mask) != input->value) {
1373                                input->state = INPUT_ST_LOW;
1374                                break;
1375                        }
1376                        if (input->rise_timer < input->rise_time) {
1377                                inputs_stable = 0;
1378                                input->rise_timer++;
1379                                break;
1380                        }
1381                        input->high_timer = 0;
1382                        input->state = INPUT_ST_HIGH;
1383                        /* fall through */
1384                case INPUT_ST_HIGH:
1385                        if (input_state_high(input))
1386                                break;
1387                        /* fall through */
1388                case INPUT_ST_FALLING:
1389                        input_state_falling(input);
1390                }
1391        }
1392}
1393
1394static void panel_scan_timer(struct timer_list *unused)
1395{
1396        if (keypad.enabled && keypad_initialized) {
1397                if (spin_trylock_irq(&pprt_lock)) {
1398                        phys_scan_contacts();
1399
1400                        /* no need for the parport anymore */
1401                        spin_unlock_irq(&pprt_lock);
1402                }
1403
1404                if (!inputs_stable || phys_curr != phys_prev)
1405                        panel_process_inputs();
1406        }
1407
1408        if (keypressed && lcd.enabled && lcd.initialized)
1409                charlcd_poke(lcd.charlcd);
1410
1411        mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1412}
1413
1414static void init_scan_timer(void)
1415{
1416        if (scan_timer.function)
1417                return;         /* already started */
1418
1419        timer_setup(&scan_timer, panel_scan_timer, 0);
1420        scan_timer.expires = jiffies + INPUT_POLL_TIME;
1421        add_timer(&scan_timer);
1422}
1423
1424/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1425 * if <omask> or <imask> are non-null, they will be or'ed with the bits
1426 * corresponding to out and in bits respectively.
1427 * returns 1 if ok, 0 if error (in which case, nothing is written).
1428 */
1429static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value,
1430                          u8 *imask, u8 *omask)
1431{
1432        const char sigtab[] = "EeSsPpAaBb";
1433        u8 im, om;
1434        __u64 m, v;
1435
1436        om = 0;
1437        im = 0;
1438        m = 0ULL;
1439        v = 0ULL;
1440        while (*name) {
1441                int in, out, bit, neg;
1442                const char *idx;
1443
1444                idx = strchr(sigtab, *name);
1445                if (!idx)
1446                        return 0;       /* input name not found */
1447
1448                in = idx - sigtab;
1449                neg = (in & 1); /* odd (lower) names are negated */
1450                in >>= 1;
1451                im |= BIT(in);
1452
1453                name++;
1454                if (*name >= '0' && *name <= '7') {
1455                        out = *name - '0';
1456                        om |= BIT(out);
1457                } else if (*name == '-') {
1458                        out = 8;
1459                } else {
1460                        return 0;       /* unknown bit name */
1461                }
1462
1463                bit = (out * 5) + in;
1464
1465                m |= 1ULL << bit;
1466                if (!neg)
1467                        v |= 1ULL << bit;
1468                name++;
1469        }
1470        *mask = m;
1471        *value = v;
1472        if (imask)
1473                *imask |= im;
1474        if (omask)
1475                *omask |= om;
1476        return 1;
1477}
1478
1479/* tries to bind a key to the signal name <name>. The key will send the
1480 * strings <press>, <repeat>, <release> for these respective events.
1481 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1482 */
1483static struct logical_input *panel_bind_key(const char *name, const char *press,
1484                                            const char *repeat,
1485                                            const char *release)
1486{
1487        struct logical_input *key;
1488
1489        key = kzalloc(sizeof(*key), GFP_KERNEL);
1490        if (!key)
1491                return NULL;
1492
1493        if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1494                             &scan_mask_o)) {
1495                kfree(key);
1496                return NULL;
1497        }
1498
1499        key->type = INPUT_TYPE_KBD;
1500        key->state = INPUT_ST_LOW;
1501        key->rise_time = 1;
1502        key->fall_time = 1;
1503
1504        strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
1505        strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
1506        strncpy(key->u.kbd.release_str, release,
1507                sizeof(key->u.kbd.release_str));
1508        list_add(&key->list, &logical_inputs);
1509        return key;
1510}
1511
1512#if 0
1513/* tries to bind a callback function to the signal name <name>. The function
1514 * <press_fct> will be called with the <press_data> arg when the signal is
1515 * activated, and so on for <release_fct>/<release_data>
1516 * Returns the pointer to the new signal if ok, NULL if the signal could not
1517 * be bound.
1518 */
1519static struct logical_input *panel_bind_callback(char *name,
1520                                                 void (*press_fct)(int),
1521                                                 int press_data,
1522                                                 void (*release_fct)(int),
1523                                                 int release_data)
1524{
1525        struct logical_input *callback;
1526
1527        callback = kmalloc(sizeof(*callback), GFP_KERNEL);
1528        if (!callback)
1529                return NULL;
1530
1531        memset(callback, 0, sizeof(struct logical_input));
1532        if (!input_name2mask(name, &callback->mask, &callback->value,
1533                             &scan_mask_i, &scan_mask_o))
1534                return NULL;
1535
1536        callback->type = INPUT_TYPE_STD;
1537        callback->state = INPUT_ST_LOW;
1538        callback->rise_time = 1;
1539        callback->fall_time = 1;
1540        callback->u.std.press_fct = press_fct;
1541        callback->u.std.press_data = press_data;
1542        callback->u.std.release_fct = release_fct;
1543        callback->u.std.release_data = release_data;
1544        list_add(&callback->list, &logical_inputs);
1545        return callback;
1546}
1547#endif
1548
1549static void keypad_init(void)
1550{
1551        int keynum;
1552
1553        init_waitqueue_head(&keypad_read_wait);
1554        keypad_buflen = 0;      /* flushes any eventual noisy keystroke */
1555
1556        /* Let's create all known keys */
1557
1558        for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
1559                panel_bind_key(keypad_profile[keynum][0],
1560                               keypad_profile[keynum][1],
1561                               keypad_profile[keynum][2],
1562                               keypad_profile[keynum][3]);
1563        }
1564
1565        init_scan_timer();
1566        keypad_initialized = 1;
1567}
1568
1569/**************************************************/
1570/* device initialization                          */
1571/**************************************************/
1572
1573static void panel_attach(struct parport *port)
1574{
1575        struct pardev_cb panel_cb;
1576
1577        if (port->number != parport)
1578                return;
1579
1580        if (pprt) {
1581                pr_err("%s: port->number=%d parport=%d, already registered!\n",
1582                       __func__, port->number, parport);
1583                return;
1584        }
1585
1586        memset(&panel_cb, 0, sizeof(panel_cb));
1587        panel_cb.private = &pprt;
1588        /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
1589
1590        pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
1591        if (!pprt) {
1592                pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
1593                       __func__, port->number, parport);
1594                return;
1595        }
1596
1597        if (parport_claim(pprt)) {
1598                pr_err("could not claim access to parport%d. Aborting.\n",
1599                       parport);
1600                goto err_unreg_device;
1601        }
1602
1603        /* must init LCD first, just in case an IRQ from the keypad is
1604         * generated at keypad init
1605         */
1606        if (lcd.enabled) {
1607                lcd_init();
1608                if (!lcd.charlcd || charlcd_register(lcd.charlcd))
1609                        goto err_unreg_device;
1610        }
1611
1612        if (keypad.enabled) {
1613                keypad_init();
1614                if (misc_register(&keypad_dev))
1615                        goto err_lcd_unreg;
1616        }
1617        return;
1618
1619err_lcd_unreg:
1620        if (scan_timer.function)
1621                del_timer_sync(&scan_timer);
1622        if (lcd.enabled)
1623                charlcd_unregister(lcd.charlcd);
1624err_unreg_device:
1625        charlcd_free(lcd.charlcd);
1626        lcd.charlcd = NULL;
1627        parport_unregister_device(pprt);
1628        pprt = NULL;
1629}
1630
1631static void panel_detach(struct parport *port)
1632{
1633        if (port->number != parport)
1634                return;
1635
1636        if (!pprt) {
1637                pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
1638                       __func__, port->number, parport);
1639                return;
1640        }
1641        if (scan_timer.function)
1642                del_timer_sync(&scan_timer);
1643
1644        if (keypad.enabled) {
1645                misc_deregister(&keypad_dev);
1646                keypad_initialized = 0;
1647        }
1648
1649        if (lcd.enabled) {
1650                charlcd_unregister(lcd.charlcd);
1651                lcd.initialized = false;
1652                charlcd_free(lcd.charlcd);
1653                lcd.charlcd = NULL;
1654        }
1655
1656        /* TODO: free all input signals */
1657        parport_release(pprt);
1658        parport_unregister_device(pprt);
1659        pprt = NULL;
1660}
1661
1662static struct parport_driver panel_driver = {
1663        .name = "panel",
1664        .match_port = panel_attach,
1665        .detach = panel_detach,
1666        .devmodel = true,
1667};
1668
1669/* init function */
1670static int __init panel_init_module(void)
1671{
1672        int selected_keypad_type = NOT_SET, err;
1673
1674        /* take care of an eventual profile */
1675        switch (profile) {
1676        case PANEL_PROFILE_CUSTOM:
1677                /* custom profile */
1678                selected_keypad_type = DEFAULT_KEYPAD_TYPE;
1679                selected_lcd_type = DEFAULT_LCD_TYPE;
1680                break;
1681        case PANEL_PROFILE_OLD:
1682                /* 8 bits, 2*16, old keypad */
1683                selected_keypad_type = KEYPAD_TYPE_OLD;
1684                selected_lcd_type = LCD_TYPE_OLD;
1685
1686                /* TODO: This two are a little hacky, sort it out later */
1687                if (lcd_width == NOT_SET)
1688                        lcd_width = 16;
1689                if (lcd_hwidth == NOT_SET)
1690                        lcd_hwidth = 16;
1691                break;
1692        case PANEL_PROFILE_NEW:
1693                /* serial, 2*16, new keypad */
1694                selected_keypad_type = KEYPAD_TYPE_NEW;
1695                selected_lcd_type = LCD_TYPE_KS0074;
1696                break;
1697        case PANEL_PROFILE_HANTRONIX:
1698                /* 8 bits, 2*16 hantronix-like, no keypad */
1699                selected_keypad_type = KEYPAD_TYPE_NONE;
1700                selected_lcd_type = LCD_TYPE_HANTRONIX;
1701                break;
1702        case PANEL_PROFILE_NEXCOM:
1703                /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
1704                selected_keypad_type = KEYPAD_TYPE_NEXCOM;
1705                selected_lcd_type = LCD_TYPE_NEXCOM;
1706                break;
1707        case PANEL_PROFILE_LARGE:
1708                /* 8 bits, 2*40, old keypad */
1709                selected_keypad_type = KEYPAD_TYPE_OLD;
1710                selected_lcd_type = LCD_TYPE_OLD;
1711                break;
1712        }
1713
1714        /*
1715         * Overwrite selection with module param values (both keypad and lcd),
1716         * where the deprecated params have lower prio.
1717         */
1718        if (keypad_enabled != NOT_SET)
1719                selected_keypad_type = keypad_enabled;
1720        if (keypad_type != NOT_SET)
1721                selected_keypad_type = keypad_type;
1722
1723        keypad.enabled = (selected_keypad_type > 0);
1724
1725        if (lcd_enabled != NOT_SET)
1726                selected_lcd_type = lcd_enabled;
1727        if (lcd_type != NOT_SET)
1728                selected_lcd_type = lcd_type;
1729
1730        lcd.enabled = (selected_lcd_type > 0);
1731
1732        if (lcd.enabled) {
1733                /*
1734                 * Init lcd struct with load-time values to preserve exact
1735                 * current functionality (at least for now).
1736                 */
1737                lcd.charset = lcd_charset;
1738                lcd.proto = lcd_proto;
1739                lcd.pins.e = lcd_e_pin;
1740                lcd.pins.rs = lcd_rs_pin;
1741                lcd.pins.rw = lcd_rw_pin;
1742                lcd.pins.cl = lcd_cl_pin;
1743                lcd.pins.da = lcd_da_pin;
1744                lcd.pins.bl = lcd_bl_pin;
1745        }
1746
1747        switch (selected_keypad_type) {
1748        case KEYPAD_TYPE_OLD:
1749                keypad_profile = old_keypad_profile;
1750                break;
1751        case KEYPAD_TYPE_NEW:
1752                keypad_profile = new_keypad_profile;
1753                break;
1754        case KEYPAD_TYPE_NEXCOM:
1755                keypad_profile = nexcom_keypad_profile;
1756                break;
1757        default:
1758                keypad_profile = NULL;
1759                break;
1760        }
1761
1762        if (!lcd.enabled && !keypad.enabled) {
1763                /* no device enabled, let's exit */
1764                pr_err("panel driver disabled.\n");
1765                return -ENODEV;
1766        }
1767
1768        err = parport_register_driver(&panel_driver);
1769        if (err) {
1770                pr_err("could not register with parport. Aborting.\n");
1771                return err;
1772        }
1773
1774        if (pprt)
1775                pr_info("panel driver registered on parport%d (io=0x%lx).\n",
1776                        parport, pprt->port->base);
1777        else
1778                pr_info("panel driver not yet registered\n");
1779        return 0;
1780}
1781
1782static void __exit panel_cleanup_module(void)
1783{
1784        parport_unregister_driver(&panel_driver);
1785}
1786
1787module_init(panel_init_module);
1788module_exit(panel_cleanup_module);
1789MODULE_AUTHOR("Willy Tarreau");
1790MODULE_LICENSE("GPL");
1791
1792/*
1793 * Local variables:
1794 *  c-indent-level: 4
1795 *  tab-width: 8
1796 * End:
1797 */
1798