linux/drivers/base/power/main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/power/main.c - Where the driver meets power management.
   4 *
   5 * Copyright (c) 2003 Patrick Mochel
   6 * Copyright (c) 2003 Open Source Development Lab
   7 *
   8 * The driver model core calls device_pm_add() when a device is registered.
   9 * This will initialize the embedded device_pm_info object in the device
  10 * and add it to the list of power-controlled devices. sysfs entries for
  11 * controlling device power management will also be added.
  12 *
  13 * A separate list is used for keeping track of power info, because the power
  14 * domain dependencies may differ from the ancestral dependencies that the
  15 * subsystem list maintains.
  16 */
  17
  18#define pr_fmt(fmt) "PM: " fmt
  19
  20#include <linux/device.h>
  21#include <linux/export.h>
  22#include <linux/mutex.h>
  23#include <linux/pm.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/pm-trace.h>
  26#include <linux/pm_wakeirq.h>
  27#include <linux/interrupt.h>
  28#include <linux/sched.h>
  29#include <linux/sched/debug.h>
  30#include <linux/async.h>
  31#include <linux/suspend.h>
  32#include <trace/events/power.h>
  33#include <linux/cpufreq.h>
  34#include <linux/cpuidle.h>
  35#include <linux/devfreq.h>
  36#include <linux/timer.h>
  37
  38#include "../base.h"
  39#include "power.h"
  40
  41typedef int (*pm_callback_t)(struct device *);
  42
  43/*
  44 * The entries in the dpm_list list are in a depth first order, simply
  45 * because children are guaranteed to be discovered after parents, and
  46 * are inserted at the back of the list on discovery.
  47 *
  48 * Since device_pm_add() may be called with a device lock held,
  49 * we must never try to acquire a device lock while holding
  50 * dpm_list_mutex.
  51 */
  52
  53LIST_HEAD(dpm_list);
  54static LIST_HEAD(dpm_prepared_list);
  55static LIST_HEAD(dpm_suspended_list);
  56static LIST_HEAD(dpm_late_early_list);
  57static LIST_HEAD(dpm_noirq_list);
  58
  59struct suspend_stats suspend_stats;
  60static DEFINE_MUTEX(dpm_list_mtx);
  61static pm_message_t pm_transition;
  62
  63static int async_error;
  64
  65static const char *pm_verb(int event)
  66{
  67        switch (event) {
  68        case PM_EVENT_SUSPEND:
  69                return "suspend";
  70        case PM_EVENT_RESUME:
  71                return "resume";
  72        case PM_EVENT_FREEZE:
  73                return "freeze";
  74        case PM_EVENT_QUIESCE:
  75                return "quiesce";
  76        case PM_EVENT_HIBERNATE:
  77                return "hibernate";
  78        case PM_EVENT_THAW:
  79                return "thaw";
  80        case PM_EVENT_RESTORE:
  81                return "restore";
  82        case PM_EVENT_RECOVER:
  83                return "recover";
  84        default:
  85                return "(unknown PM event)";
  86        }
  87}
  88
  89/**
  90 * device_pm_sleep_init - Initialize system suspend-related device fields.
  91 * @dev: Device object being initialized.
  92 */
  93void device_pm_sleep_init(struct device *dev)
  94{
  95        dev->power.is_prepared = false;
  96        dev->power.is_suspended = false;
  97        dev->power.is_noirq_suspended = false;
  98        dev->power.is_late_suspended = false;
  99        init_completion(&dev->power.completion);
 100        complete_all(&dev->power.completion);
 101        dev->power.wakeup = NULL;
 102        INIT_LIST_HEAD(&dev->power.entry);
 103}
 104
 105/**
 106 * device_pm_lock - Lock the list of active devices used by the PM core.
 107 */
 108void device_pm_lock(void)
 109{
 110        mutex_lock(&dpm_list_mtx);
 111}
 112
 113/**
 114 * device_pm_unlock - Unlock the list of active devices used by the PM core.
 115 */
 116void device_pm_unlock(void)
 117{
 118        mutex_unlock(&dpm_list_mtx);
 119}
 120
 121/**
 122 * device_pm_add - Add a device to the PM core's list of active devices.
 123 * @dev: Device to add to the list.
 124 */
 125void device_pm_add(struct device *dev)
 126{
 127        /* Skip PM setup/initialization. */
 128        if (device_pm_not_required(dev))
 129                return;
 130
 131        pr_debug("Adding info for %s:%s\n",
 132                 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 133        device_pm_check_callbacks(dev);
 134        mutex_lock(&dpm_list_mtx);
 135        if (dev->parent && dev->parent->power.is_prepared)
 136                dev_warn(dev, "parent %s should not be sleeping\n",
 137                        dev_name(dev->parent));
 138        list_add_tail(&dev->power.entry, &dpm_list);
 139        dev->power.in_dpm_list = true;
 140        mutex_unlock(&dpm_list_mtx);
 141}
 142
 143/**
 144 * device_pm_remove - Remove a device from the PM core's list of active devices.
 145 * @dev: Device to be removed from the list.
 146 */
 147void device_pm_remove(struct device *dev)
 148{
 149        if (device_pm_not_required(dev))
 150                return;
 151
 152        pr_debug("Removing info for %s:%s\n",
 153                 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 154        complete_all(&dev->power.completion);
 155        mutex_lock(&dpm_list_mtx);
 156        list_del_init(&dev->power.entry);
 157        dev->power.in_dpm_list = false;
 158        mutex_unlock(&dpm_list_mtx);
 159        device_wakeup_disable(dev);
 160        pm_runtime_remove(dev);
 161        device_pm_check_callbacks(dev);
 162}
 163
 164/**
 165 * device_pm_move_before - Move device in the PM core's list of active devices.
 166 * @deva: Device to move in dpm_list.
 167 * @devb: Device @deva should come before.
 168 */
 169void device_pm_move_before(struct device *deva, struct device *devb)
 170{
 171        pr_debug("Moving %s:%s before %s:%s\n",
 172                 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 173                 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 174        /* Delete deva from dpm_list and reinsert before devb. */
 175        list_move_tail(&deva->power.entry, &devb->power.entry);
 176}
 177
 178/**
 179 * device_pm_move_after - Move device in the PM core's list of active devices.
 180 * @deva: Device to move in dpm_list.
 181 * @devb: Device @deva should come after.
 182 */
 183void device_pm_move_after(struct device *deva, struct device *devb)
 184{
 185        pr_debug("Moving %s:%s after %s:%s\n",
 186                 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 187                 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 188        /* Delete deva from dpm_list and reinsert after devb. */
 189        list_move(&deva->power.entry, &devb->power.entry);
 190}
 191
 192/**
 193 * device_pm_move_last - Move device to end of the PM core's list of devices.
 194 * @dev: Device to move in dpm_list.
 195 */
 196void device_pm_move_last(struct device *dev)
 197{
 198        pr_debug("Moving %s:%s to end of list\n",
 199                 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 200        list_move_tail(&dev->power.entry, &dpm_list);
 201}
 202
 203static ktime_t initcall_debug_start(struct device *dev, void *cb)
 204{
 205        if (!pm_print_times_enabled)
 206                return 0;
 207
 208        dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
 209                 task_pid_nr(current),
 210                 dev->parent ? dev_name(dev->parent) : "none");
 211        return ktime_get();
 212}
 213
 214static void initcall_debug_report(struct device *dev, ktime_t calltime,
 215                                  void *cb, int error)
 216{
 217        ktime_t rettime;
 218        s64 nsecs;
 219
 220        if (!pm_print_times_enabled)
 221                return;
 222
 223        rettime = ktime_get();
 224        nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
 225
 226        dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
 227                 (unsigned long long)nsecs >> 10);
 228}
 229
 230/**
 231 * dpm_wait - Wait for a PM operation to complete.
 232 * @dev: Device to wait for.
 233 * @async: If unset, wait only if the device's power.async_suspend flag is set.
 234 */
 235static void dpm_wait(struct device *dev, bool async)
 236{
 237        if (!dev)
 238                return;
 239
 240        if (async || (pm_async_enabled && dev->power.async_suspend))
 241                wait_for_completion(&dev->power.completion);
 242}
 243
 244static int dpm_wait_fn(struct device *dev, void *async_ptr)
 245{
 246        dpm_wait(dev, *((bool *)async_ptr));
 247        return 0;
 248}
 249
 250static void dpm_wait_for_children(struct device *dev, bool async)
 251{
 252       device_for_each_child(dev, &async, dpm_wait_fn);
 253}
 254
 255static void dpm_wait_for_suppliers(struct device *dev, bool async)
 256{
 257        struct device_link *link;
 258        int idx;
 259
 260        idx = device_links_read_lock();
 261
 262        /*
 263         * If the supplier goes away right after we've checked the link to it,
 264         * we'll wait for its completion to change the state, but that's fine,
 265         * because the only things that will block as a result are the SRCU
 266         * callbacks freeing the link objects for the links in the list we're
 267         * walking.
 268         */
 269        list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
 270                if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 271                        dpm_wait(link->supplier, async);
 272
 273        device_links_read_unlock(idx);
 274}
 275
 276static void dpm_wait_for_superior(struct device *dev, bool async)
 277{
 278        dpm_wait(dev->parent, async);
 279        dpm_wait_for_suppliers(dev, async);
 280}
 281
 282static void dpm_wait_for_consumers(struct device *dev, bool async)
 283{
 284        struct device_link *link;
 285        int idx;
 286
 287        idx = device_links_read_lock();
 288
 289        /*
 290         * The status of a device link can only be changed from "dormant" by a
 291         * probe, but that cannot happen during system suspend/resume.  In
 292         * theory it can change to "dormant" at that time, but then it is
 293         * reasonable to wait for the target device anyway (eg. if it goes
 294         * away, it's better to wait for it to go away completely and then
 295         * continue instead of trying to continue in parallel with its
 296         * unregistration).
 297         */
 298        list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
 299                if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 300                        dpm_wait(link->consumer, async);
 301
 302        device_links_read_unlock(idx);
 303}
 304
 305static void dpm_wait_for_subordinate(struct device *dev, bool async)
 306{
 307        dpm_wait_for_children(dev, async);
 308        dpm_wait_for_consumers(dev, async);
 309}
 310
 311/**
 312 * pm_op - Return the PM operation appropriate for given PM event.
 313 * @ops: PM operations to choose from.
 314 * @state: PM transition of the system being carried out.
 315 */
 316static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
 317{
 318        switch (state.event) {
 319#ifdef CONFIG_SUSPEND
 320        case PM_EVENT_SUSPEND:
 321                return ops->suspend;
 322        case PM_EVENT_RESUME:
 323                return ops->resume;
 324#endif /* CONFIG_SUSPEND */
 325#ifdef CONFIG_HIBERNATE_CALLBACKS
 326        case PM_EVENT_FREEZE:
 327        case PM_EVENT_QUIESCE:
 328                return ops->freeze;
 329        case PM_EVENT_HIBERNATE:
 330                return ops->poweroff;
 331        case PM_EVENT_THAW:
 332        case PM_EVENT_RECOVER:
 333                return ops->thaw;
 334                break;
 335        case PM_EVENT_RESTORE:
 336                return ops->restore;
 337#endif /* CONFIG_HIBERNATE_CALLBACKS */
 338        }
 339
 340        return NULL;
 341}
 342
 343/**
 344 * pm_late_early_op - Return the PM operation appropriate for given PM event.
 345 * @ops: PM operations to choose from.
 346 * @state: PM transition of the system being carried out.
 347 *
 348 * Runtime PM is disabled for @dev while this function is being executed.
 349 */
 350static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
 351                                      pm_message_t state)
 352{
 353        switch (state.event) {
 354#ifdef CONFIG_SUSPEND
 355        case PM_EVENT_SUSPEND:
 356                return ops->suspend_late;
 357        case PM_EVENT_RESUME:
 358                return ops->resume_early;
 359#endif /* CONFIG_SUSPEND */
 360#ifdef CONFIG_HIBERNATE_CALLBACKS
 361        case PM_EVENT_FREEZE:
 362        case PM_EVENT_QUIESCE:
 363                return ops->freeze_late;
 364        case PM_EVENT_HIBERNATE:
 365                return ops->poweroff_late;
 366        case PM_EVENT_THAW:
 367        case PM_EVENT_RECOVER:
 368                return ops->thaw_early;
 369        case PM_EVENT_RESTORE:
 370                return ops->restore_early;
 371#endif /* CONFIG_HIBERNATE_CALLBACKS */
 372        }
 373
 374        return NULL;
 375}
 376
 377/**
 378 * pm_noirq_op - Return the PM operation appropriate for given PM event.
 379 * @ops: PM operations to choose from.
 380 * @state: PM transition of the system being carried out.
 381 *
 382 * The driver of @dev will not receive interrupts while this function is being
 383 * executed.
 384 */
 385static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
 386{
 387        switch (state.event) {
 388#ifdef CONFIG_SUSPEND
 389        case PM_EVENT_SUSPEND:
 390                return ops->suspend_noirq;
 391        case PM_EVENT_RESUME:
 392                return ops->resume_noirq;
 393#endif /* CONFIG_SUSPEND */
 394#ifdef CONFIG_HIBERNATE_CALLBACKS
 395        case PM_EVENT_FREEZE:
 396        case PM_EVENT_QUIESCE:
 397                return ops->freeze_noirq;
 398        case PM_EVENT_HIBERNATE:
 399                return ops->poweroff_noirq;
 400        case PM_EVENT_THAW:
 401        case PM_EVENT_RECOVER:
 402                return ops->thaw_noirq;
 403        case PM_EVENT_RESTORE:
 404                return ops->restore_noirq;
 405#endif /* CONFIG_HIBERNATE_CALLBACKS */
 406        }
 407
 408        return NULL;
 409}
 410
 411static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
 412{
 413        dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
 414                ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
 415                ", may wakeup" : "");
 416}
 417
 418static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
 419                        int error)
 420{
 421        pr_err("Device %s failed to %s%s: error %d\n",
 422               dev_name(dev), pm_verb(state.event), info, error);
 423}
 424
 425static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
 426                          const char *info)
 427{
 428        ktime_t calltime;
 429        u64 usecs64;
 430        int usecs;
 431
 432        calltime = ktime_get();
 433        usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
 434        do_div(usecs64, NSEC_PER_USEC);
 435        usecs = usecs64;
 436        if (usecs == 0)
 437                usecs = 1;
 438
 439        pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
 440                  info ?: "", info ? " " : "", pm_verb(state.event),
 441                  error ? "aborted" : "complete",
 442                  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
 443}
 444
 445static int dpm_run_callback(pm_callback_t cb, struct device *dev,
 446                            pm_message_t state, const char *info)
 447{
 448        ktime_t calltime;
 449        int error;
 450
 451        if (!cb)
 452                return 0;
 453
 454        calltime = initcall_debug_start(dev, cb);
 455
 456        pm_dev_dbg(dev, state, info);
 457        trace_device_pm_callback_start(dev, info, state.event);
 458        error = cb(dev);
 459        trace_device_pm_callback_end(dev, error);
 460        suspend_report_result(cb, error);
 461
 462        initcall_debug_report(dev, calltime, cb, error);
 463
 464        return error;
 465}
 466
 467#ifdef CONFIG_DPM_WATCHDOG
 468struct dpm_watchdog {
 469        struct device           *dev;
 470        struct task_struct      *tsk;
 471        struct timer_list       timer;
 472};
 473
 474#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
 475        struct dpm_watchdog wd
 476
 477/**
 478 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
 479 * @t: The timer that PM watchdog depends on.
 480 *
 481 * Called when a driver has timed out suspending or resuming.
 482 * There's not much we can do here to recover so panic() to
 483 * capture a crash-dump in pstore.
 484 */
 485static void dpm_watchdog_handler(struct timer_list *t)
 486{
 487        struct dpm_watchdog *wd = from_timer(wd, t, timer);
 488
 489        dev_emerg(wd->dev, "**** DPM device timeout ****\n");
 490        show_stack(wd->tsk, NULL);
 491        panic("%s %s: unrecoverable failure\n",
 492                dev_driver_string(wd->dev), dev_name(wd->dev));
 493}
 494
 495/**
 496 * dpm_watchdog_set - Enable pm watchdog for given device.
 497 * @wd: Watchdog. Must be allocated on the stack.
 498 * @dev: Device to handle.
 499 */
 500static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
 501{
 502        struct timer_list *timer = &wd->timer;
 503
 504        wd->dev = dev;
 505        wd->tsk = current;
 506
 507        timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
 508        /* use same timeout value for both suspend and resume */
 509        timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
 510        add_timer(timer);
 511}
 512
 513/**
 514 * dpm_watchdog_clear - Disable suspend/resume watchdog.
 515 * @wd: Watchdog to disable.
 516 */
 517static void dpm_watchdog_clear(struct dpm_watchdog *wd)
 518{
 519        struct timer_list *timer = &wd->timer;
 520
 521        del_timer_sync(timer);
 522        destroy_timer_on_stack(timer);
 523}
 524#else
 525#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
 526#define dpm_watchdog_set(x, y)
 527#define dpm_watchdog_clear(x)
 528#endif
 529
 530/*------------------------- Resume routines -------------------------*/
 531
 532/**
 533 * suspend_event - Return a "suspend" message for given "resume" one.
 534 * @resume_msg: PM message representing a system-wide resume transition.
 535 */
 536static pm_message_t suspend_event(pm_message_t resume_msg)
 537{
 538        switch (resume_msg.event) {
 539        case PM_EVENT_RESUME:
 540                return PMSG_SUSPEND;
 541        case PM_EVENT_THAW:
 542        case PM_EVENT_RESTORE:
 543                return PMSG_FREEZE;
 544        case PM_EVENT_RECOVER:
 545                return PMSG_HIBERNATE;
 546        }
 547        return PMSG_ON;
 548}
 549
 550/**
 551 * dev_pm_may_skip_resume - System-wide device resume optimization check.
 552 * @dev: Target device.
 553 *
 554 * Checks whether or not the device may be left in suspend after a system-wide
 555 * transition to the working state.
 556 */
 557bool dev_pm_may_skip_resume(struct device *dev)
 558{
 559        return !dev->power.must_resume && pm_transition.event != PM_EVENT_RESTORE;
 560}
 561
 562static pm_callback_t dpm_subsys_resume_noirq_cb(struct device *dev,
 563                                                pm_message_t state,
 564                                                const char **info_p)
 565{
 566        pm_callback_t callback;
 567        const char *info;
 568
 569        if (dev->pm_domain) {
 570                info = "noirq power domain ";
 571                callback = pm_noirq_op(&dev->pm_domain->ops, state);
 572        } else if (dev->type && dev->type->pm) {
 573                info = "noirq type ";
 574                callback = pm_noirq_op(dev->type->pm, state);
 575        } else if (dev->class && dev->class->pm) {
 576                info = "noirq class ";
 577                callback = pm_noirq_op(dev->class->pm, state);
 578        } else if (dev->bus && dev->bus->pm) {
 579                info = "noirq bus ";
 580                callback = pm_noirq_op(dev->bus->pm, state);
 581        } else {
 582                return NULL;
 583        }
 584
 585        if (info_p)
 586                *info_p = info;
 587
 588        return callback;
 589}
 590
 591static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
 592                                                 pm_message_t state,
 593                                                 const char **info_p);
 594
 595static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
 596                                                pm_message_t state,
 597                                                const char **info_p);
 598
 599/**
 600 * device_resume_noirq - Execute a "noirq resume" callback for given device.
 601 * @dev: Device to handle.
 602 * @state: PM transition of the system being carried out.
 603 * @async: If true, the device is being resumed asynchronously.
 604 *
 605 * The driver of @dev will not receive interrupts while this function is being
 606 * executed.
 607 */
 608static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
 609{
 610        pm_callback_t callback;
 611        const char *info;
 612        bool skip_resume;
 613        int error = 0;
 614
 615        TRACE_DEVICE(dev);
 616        TRACE_RESUME(0);
 617
 618        if (dev->power.syscore || dev->power.direct_complete)
 619                goto Out;
 620
 621        if (!dev->power.is_noirq_suspended)
 622                goto Out;
 623
 624        dpm_wait_for_superior(dev, async);
 625
 626        skip_resume = dev_pm_may_skip_resume(dev);
 627
 628        callback = dpm_subsys_resume_noirq_cb(dev, state, &info);
 629        if (callback)
 630                goto Run;
 631
 632        if (skip_resume)
 633                goto Skip;
 634
 635        if (dev_pm_smart_suspend_and_suspended(dev)) {
 636                pm_message_t suspend_msg = suspend_event(state);
 637
 638                /*
 639                 * If "freeze" callbacks have been skipped during a transition
 640                 * related to hibernation, the subsequent "thaw" callbacks must
 641                 * be skipped too or bad things may happen.  Otherwise, resume
 642                 * callbacks are going to be run for the device, so its runtime
 643                 * PM status must be changed to reflect the new state after the
 644                 * transition under way.
 645                 */
 646                if (!dpm_subsys_suspend_late_cb(dev, suspend_msg, NULL) &&
 647                    !dpm_subsys_suspend_noirq_cb(dev, suspend_msg, NULL)) {
 648                        if (state.event == PM_EVENT_THAW) {
 649                                skip_resume = true;
 650                                goto Skip;
 651                        } else {
 652                                pm_runtime_set_active(dev);
 653                        }
 654                }
 655        }
 656
 657        if (dev->driver && dev->driver->pm) {
 658                info = "noirq driver ";
 659                callback = pm_noirq_op(dev->driver->pm, state);
 660        }
 661
 662Run:
 663        error = dpm_run_callback(callback, dev, state, info);
 664
 665Skip:
 666        dev->power.is_noirq_suspended = false;
 667
 668        if (skip_resume) {
 669                /* Make the next phases of resume skip the device. */
 670                dev->power.is_late_suspended = false;
 671                dev->power.is_suspended = false;
 672                /*
 673                 * The device is going to be left in suspend, but it might not
 674                 * have been in runtime suspend before the system suspended, so
 675                 * its runtime PM status needs to be updated to avoid confusing
 676                 * the runtime PM framework when runtime PM is enabled for the
 677                 * device again.
 678                 */
 679                pm_runtime_set_suspended(dev);
 680        }
 681
 682Out:
 683        complete_all(&dev->power.completion);
 684        TRACE_RESUME(error);
 685        return error;
 686}
 687
 688static bool is_async(struct device *dev)
 689{
 690        return dev->power.async_suspend && pm_async_enabled
 691                && !pm_trace_is_enabled();
 692}
 693
 694static bool dpm_async_fn(struct device *dev, async_func_t func)
 695{
 696        reinit_completion(&dev->power.completion);
 697
 698        if (is_async(dev)) {
 699                get_device(dev);
 700                async_schedule(func, dev);
 701                return true;
 702        }
 703
 704        return false;
 705}
 706
 707static void async_resume_noirq(void *data, async_cookie_t cookie)
 708{
 709        struct device *dev = (struct device *)data;
 710        int error;
 711
 712        error = device_resume_noirq(dev, pm_transition, true);
 713        if (error)
 714                pm_dev_err(dev, pm_transition, " async", error);
 715
 716        put_device(dev);
 717}
 718
 719void dpm_noirq_resume_devices(pm_message_t state)
 720{
 721        struct device *dev;
 722        ktime_t starttime = ktime_get();
 723
 724        trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
 725        mutex_lock(&dpm_list_mtx);
 726        pm_transition = state;
 727
 728        /*
 729         * Advanced the async threads upfront,
 730         * in case the starting of async threads is
 731         * delayed by non-async resuming devices.
 732         */
 733        list_for_each_entry(dev, &dpm_noirq_list, power.entry)
 734                dpm_async_fn(dev, async_resume_noirq);
 735
 736        while (!list_empty(&dpm_noirq_list)) {
 737                dev = to_device(dpm_noirq_list.next);
 738                get_device(dev);
 739                list_move_tail(&dev->power.entry, &dpm_late_early_list);
 740                mutex_unlock(&dpm_list_mtx);
 741
 742                if (!is_async(dev)) {
 743                        int error;
 744
 745                        error = device_resume_noirq(dev, state, false);
 746                        if (error) {
 747                                suspend_stats.failed_resume_noirq++;
 748                                dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
 749                                dpm_save_failed_dev(dev_name(dev));
 750                                pm_dev_err(dev, state, " noirq", error);
 751                        }
 752                }
 753
 754                mutex_lock(&dpm_list_mtx);
 755                put_device(dev);
 756        }
 757        mutex_unlock(&dpm_list_mtx);
 758        async_synchronize_full();
 759        dpm_show_time(starttime, state, 0, "noirq");
 760        trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
 761}
 762
 763void dpm_noirq_end(void)
 764{
 765        resume_device_irqs();
 766        device_wakeup_disarm_wake_irqs();
 767        cpuidle_resume();
 768}
 769
 770/**
 771 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
 772 * @state: PM transition of the system being carried out.
 773 *
 774 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
 775 * allow device drivers' interrupt handlers to be called.
 776 */
 777void dpm_resume_noirq(pm_message_t state)
 778{
 779        dpm_noirq_resume_devices(state);
 780        dpm_noirq_end();
 781}
 782
 783static pm_callback_t dpm_subsys_resume_early_cb(struct device *dev,
 784                                                pm_message_t state,
 785                                                const char **info_p)
 786{
 787        pm_callback_t callback;
 788        const char *info;
 789
 790        if (dev->pm_domain) {
 791                info = "early power domain ";
 792                callback = pm_late_early_op(&dev->pm_domain->ops, state);
 793        } else if (dev->type && dev->type->pm) {
 794                info = "early type ";
 795                callback = pm_late_early_op(dev->type->pm, state);
 796        } else if (dev->class && dev->class->pm) {
 797                info = "early class ";
 798                callback = pm_late_early_op(dev->class->pm, state);
 799        } else if (dev->bus && dev->bus->pm) {
 800                info = "early bus ";
 801                callback = pm_late_early_op(dev->bus->pm, state);
 802        } else {
 803                return NULL;
 804        }
 805
 806        if (info_p)
 807                *info_p = info;
 808
 809        return callback;
 810}
 811
 812/**
 813 * device_resume_early - Execute an "early resume" callback for given device.
 814 * @dev: Device to handle.
 815 * @state: PM transition of the system being carried out.
 816 * @async: If true, the device is being resumed asynchronously.
 817 *
 818 * Runtime PM is disabled for @dev while this function is being executed.
 819 */
 820static int device_resume_early(struct device *dev, pm_message_t state, bool async)
 821{
 822        pm_callback_t callback;
 823        const char *info;
 824        int error = 0;
 825
 826        TRACE_DEVICE(dev);
 827        TRACE_RESUME(0);
 828
 829        if (dev->power.syscore || dev->power.direct_complete)
 830                goto Out;
 831
 832        if (!dev->power.is_late_suspended)
 833                goto Out;
 834
 835        dpm_wait_for_superior(dev, async);
 836
 837        callback = dpm_subsys_resume_early_cb(dev, state, &info);
 838
 839        if (!callback && dev->driver && dev->driver->pm) {
 840                info = "early driver ";
 841                callback = pm_late_early_op(dev->driver->pm, state);
 842        }
 843
 844        error = dpm_run_callback(callback, dev, state, info);
 845        dev->power.is_late_suspended = false;
 846
 847 Out:
 848        TRACE_RESUME(error);
 849
 850        pm_runtime_enable(dev);
 851        complete_all(&dev->power.completion);
 852        return error;
 853}
 854
 855static void async_resume_early(void *data, async_cookie_t cookie)
 856{
 857        struct device *dev = (struct device *)data;
 858        int error;
 859
 860        error = device_resume_early(dev, pm_transition, true);
 861        if (error)
 862                pm_dev_err(dev, pm_transition, " async", error);
 863
 864        put_device(dev);
 865}
 866
 867/**
 868 * dpm_resume_early - Execute "early resume" callbacks for all devices.
 869 * @state: PM transition of the system being carried out.
 870 */
 871void dpm_resume_early(pm_message_t state)
 872{
 873        struct device *dev;
 874        ktime_t starttime = ktime_get();
 875
 876        trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
 877        mutex_lock(&dpm_list_mtx);
 878        pm_transition = state;
 879
 880        /*
 881         * Advanced the async threads upfront,
 882         * in case the starting of async threads is
 883         * delayed by non-async resuming devices.
 884         */
 885        list_for_each_entry(dev, &dpm_late_early_list, power.entry)
 886                dpm_async_fn(dev, async_resume_early);
 887
 888        while (!list_empty(&dpm_late_early_list)) {
 889                dev = to_device(dpm_late_early_list.next);
 890                get_device(dev);
 891                list_move_tail(&dev->power.entry, &dpm_suspended_list);
 892                mutex_unlock(&dpm_list_mtx);
 893
 894                if (!is_async(dev)) {
 895                        int error;
 896
 897                        error = device_resume_early(dev, state, false);
 898                        if (error) {
 899                                suspend_stats.failed_resume_early++;
 900                                dpm_save_failed_step(SUSPEND_RESUME_EARLY);
 901                                dpm_save_failed_dev(dev_name(dev));
 902                                pm_dev_err(dev, state, " early", error);
 903                        }
 904                }
 905                mutex_lock(&dpm_list_mtx);
 906                put_device(dev);
 907        }
 908        mutex_unlock(&dpm_list_mtx);
 909        async_synchronize_full();
 910        dpm_show_time(starttime, state, 0, "early");
 911        trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
 912}
 913
 914/**
 915 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
 916 * @state: PM transition of the system being carried out.
 917 */
 918void dpm_resume_start(pm_message_t state)
 919{
 920        dpm_resume_noirq(state);
 921        dpm_resume_early(state);
 922}
 923EXPORT_SYMBOL_GPL(dpm_resume_start);
 924
 925/**
 926 * device_resume - Execute "resume" callbacks for given device.
 927 * @dev: Device to handle.
 928 * @state: PM transition of the system being carried out.
 929 * @async: If true, the device is being resumed asynchronously.
 930 */
 931static int device_resume(struct device *dev, pm_message_t state, bool async)
 932{
 933        pm_callback_t callback = NULL;
 934        const char *info = NULL;
 935        int error = 0;
 936        DECLARE_DPM_WATCHDOG_ON_STACK(wd);
 937
 938        TRACE_DEVICE(dev);
 939        TRACE_RESUME(0);
 940
 941        if (dev->power.syscore)
 942                goto Complete;
 943
 944        if (dev->power.direct_complete) {
 945                /* Match the pm_runtime_disable() in __device_suspend(). */
 946                pm_runtime_enable(dev);
 947                goto Complete;
 948        }
 949
 950        dpm_wait_for_superior(dev, async);
 951        dpm_watchdog_set(&wd, dev);
 952        device_lock(dev);
 953
 954        /*
 955         * This is a fib.  But we'll allow new children to be added below
 956         * a resumed device, even if the device hasn't been completed yet.
 957         */
 958        dev->power.is_prepared = false;
 959
 960        if (!dev->power.is_suspended)
 961                goto Unlock;
 962
 963        if (dev->pm_domain) {
 964                info = "power domain ";
 965                callback = pm_op(&dev->pm_domain->ops, state);
 966                goto Driver;
 967        }
 968
 969        if (dev->type && dev->type->pm) {
 970                info = "type ";
 971                callback = pm_op(dev->type->pm, state);
 972                goto Driver;
 973        }
 974
 975        if (dev->class && dev->class->pm) {
 976                info = "class ";
 977                callback = pm_op(dev->class->pm, state);
 978                goto Driver;
 979        }
 980
 981        if (dev->bus) {
 982                if (dev->bus->pm) {
 983                        info = "bus ";
 984                        callback = pm_op(dev->bus->pm, state);
 985                } else if (dev->bus->resume) {
 986                        info = "legacy bus ";
 987                        callback = dev->bus->resume;
 988                        goto End;
 989                }
 990        }
 991
 992 Driver:
 993        if (!callback && dev->driver && dev->driver->pm) {
 994                info = "driver ";
 995                callback = pm_op(dev->driver->pm, state);
 996        }
 997
 998 End:
 999        error = dpm_run_callback(callback, dev, state, info);
1000        dev->power.is_suspended = false;
1001
1002 Unlock:
1003        device_unlock(dev);
1004        dpm_watchdog_clear(&wd);
1005
1006 Complete:
1007        complete_all(&dev->power.completion);
1008
1009        TRACE_RESUME(error);
1010
1011        return error;
1012}
1013
1014static void async_resume(void *data, async_cookie_t cookie)
1015{
1016        struct device *dev = (struct device *)data;
1017        int error;
1018
1019        error = device_resume(dev, pm_transition, true);
1020        if (error)
1021                pm_dev_err(dev, pm_transition, " async", error);
1022        put_device(dev);
1023}
1024
1025/**
1026 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
1027 * @state: PM transition of the system being carried out.
1028 *
1029 * Execute the appropriate "resume" callback for all devices whose status
1030 * indicates that they are suspended.
1031 */
1032void dpm_resume(pm_message_t state)
1033{
1034        struct device *dev;
1035        ktime_t starttime = ktime_get();
1036
1037        trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1038        might_sleep();
1039
1040        mutex_lock(&dpm_list_mtx);
1041        pm_transition = state;
1042        async_error = 0;
1043
1044        list_for_each_entry(dev, &dpm_suspended_list, power.entry)
1045                dpm_async_fn(dev, async_resume);
1046
1047        while (!list_empty(&dpm_suspended_list)) {
1048                dev = to_device(dpm_suspended_list.next);
1049                get_device(dev);
1050                if (!is_async(dev)) {
1051                        int error;
1052
1053                        mutex_unlock(&dpm_list_mtx);
1054
1055                        error = device_resume(dev, state, false);
1056                        if (error) {
1057                                suspend_stats.failed_resume++;
1058                                dpm_save_failed_step(SUSPEND_RESUME);
1059                                dpm_save_failed_dev(dev_name(dev));
1060                                pm_dev_err(dev, state, "", error);
1061                        }
1062
1063                        mutex_lock(&dpm_list_mtx);
1064                }
1065                if (!list_empty(&dev->power.entry))
1066                        list_move_tail(&dev->power.entry, &dpm_prepared_list);
1067                put_device(dev);
1068        }
1069        mutex_unlock(&dpm_list_mtx);
1070        async_synchronize_full();
1071        dpm_show_time(starttime, state, 0, NULL);
1072
1073        cpufreq_resume();
1074        devfreq_resume();
1075        trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1076}
1077
1078/**
1079 * device_complete - Complete a PM transition for given device.
1080 * @dev: Device to handle.
1081 * @state: PM transition of the system being carried out.
1082 */
1083static void device_complete(struct device *dev, pm_message_t state)
1084{
1085        void (*callback)(struct device *) = NULL;
1086        const char *info = NULL;
1087
1088        if (dev->power.syscore)
1089                return;
1090
1091        device_lock(dev);
1092
1093        if (dev->pm_domain) {
1094                info = "completing power domain ";
1095                callback = dev->pm_domain->ops.complete;
1096        } else if (dev->type && dev->type->pm) {
1097                info = "completing type ";
1098                callback = dev->type->pm->complete;
1099        } else if (dev->class && dev->class->pm) {
1100                info = "completing class ";
1101                callback = dev->class->pm->complete;
1102        } else if (dev->bus && dev->bus->pm) {
1103                info = "completing bus ";
1104                callback = dev->bus->pm->complete;
1105        }
1106
1107        if (!callback && dev->driver && dev->driver->pm) {
1108                info = "completing driver ";
1109                callback = dev->driver->pm->complete;
1110        }
1111
1112        if (callback) {
1113                pm_dev_dbg(dev, state, info);
1114                callback(dev);
1115        }
1116
1117        device_unlock(dev);
1118
1119        pm_runtime_put(dev);
1120}
1121
1122/**
1123 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1124 * @state: PM transition of the system being carried out.
1125 *
1126 * Execute the ->complete() callbacks for all devices whose PM status is not
1127 * DPM_ON (this allows new devices to be registered).
1128 */
1129void dpm_complete(pm_message_t state)
1130{
1131        struct list_head list;
1132
1133        trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1134        might_sleep();
1135
1136        INIT_LIST_HEAD(&list);
1137        mutex_lock(&dpm_list_mtx);
1138        while (!list_empty(&dpm_prepared_list)) {
1139                struct device *dev = to_device(dpm_prepared_list.prev);
1140
1141                get_device(dev);
1142                dev->power.is_prepared = false;
1143                list_move(&dev->power.entry, &list);
1144                mutex_unlock(&dpm_list_mtx);
1145
1146                trace_device_pm_callback_start(dev, "", state.event);
1147                device_complete(dev, state);
1148                trace_device_pm_callback_end(dev, 0);
1149
1150                mutex_lock(&dpm_list_mtx);
1151                put_device(dev);
1152        }
1153        list_splice(&list, &dpm_list);
1154        mutex_unlock(&dpm_list_mtx);
1155
1156        /* Allow device probing and trigger re-probing of deferred devices */
1157        device_unblock_probing();
1158        trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1159}
1160
1161/**
1162 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1163 * @state: PM transition of the system being carried out.
1164 *
1165 * Execute "resume" callbacks for all devices and complete the PM transition of
1166 * the system.
1167 */
1168void dpm_resume_end(pm_message_t state)
1169{
1170        dpm_resume(state);
1171        dpm_complete(state);
1172}
1173EXPORT_SYMBOL_GPL(dpm_resume_end);
1174
1175
1176/*------------------------- Suspend routines -------------------------*/
1177
1178/**
1179 * resume_event - Return a "resume" message for given "suspend" sleep state.
1180 * @sleep_state: PM message representing a sleep state.
1181 *
1182 * Return a PM message representing the resume event corresponding to given
1183 * sleep state.
1184 */
1185static pm_message_t resume_event(pm_message_t sleep_state)
1186{
1187        switch (sleep_state.event) {
1188        case PM_EVENT_SUSPEND:
1189                return PMSG_RESUME;
1190        case PM_EVENT_FREEZE:
1191        case PM_EVENT_QUIESCE:
1192                return PMSG_RECOVER;
1193        case PM_EVENT_HIBERNATE:
1194                return PMSG_RESTORE;
1195        }
1196        return PMSG_ON;
1197}
1198
1199static void dpm_superior_set_must_resume(struct device *dev)
1200{
1201        struct device_link *link;
1202        int idx;
1203
1204        if (dev->parent)
1205                dev->parent->power.must_resume = true;
1206
1207        idx = device_links_read_lock();
1208
1209        list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
1210                link->supplier->power.must_resume = true;
1211
1212        device_links_read_unlock(idx);
1213}
1214
1215static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
1216                                                 pm_message_t state,
1217                                                 const char **info_p)
1218{
1219        pm_callback_t callback;
1220        const char *info;
1221
1222        if (dev->pm_domain) {
1223                info = "noirq power domain ";
1224                callback = pm_noirq_op(&dev->pm_domain->ops, state);
1225        } else if (dev->type && dev->type->pm) {
1226                info = "noirq type ";
1227                callback = pm_noirq_op(dev->type->pm, state);
1228        } else if (dev->class && dev->class->pm) {
1229                info = "noirq class ";
1230                callback = pm_noirq_op(dev->class->pm, state);
1231        } else if (dev->bus && dev->bus->pm) {
1232                info = "noirq bus ";
1233                callback = pm_noirq_op(dev->bus->pm, state);
1234        } else {
1235                return NULL;
1236        }
1237
1238        if (info_p)
1239                *info_p = info;
1240
1241        return callback;
1242}
1243
1244static bool device_must_resume(struct device *dev, pm_message_t state,
1245                               bool no_subsys_suspend_noirq)
1246{
1247        pm_message_t resume_msg = resume_event(state);
1248
1249        /*
1250         * If all of the device driver's "noirq", "late" and "early" callbacks
1251         * are invoked directly by the core, the decision to allow the device to
1252         * stay in suspend can be based on its current runtime PM status and its
1253         * wakeup settings.
1254         */
1255        if (no_subsys_suspend_noirq &&
1256            !dpm_subsys_suspend_late_cb(dev, state, NULL) &&
1257            !dpm_subsys_resume_early_cb(dev, resume_msg, NULL) &&
1258            !dpm_subsys_resume_noirq_cb(dev, resume_msg, NULL))
1259                return !pm_runtime_status_suspended(dev) &&
1260                        (resume_msg.event != PM_EVENT_RESUME ||
1261                         (device_can_wakeup(dev) && !device_may_wakeup(dev)));
1262
1263        /*
1264         * The only safe strategy here is to require that if the device may not
1265         * be left in suspend, resume callbacks must be invoked for it.
1266         */
1267        return !dev->power.may_skip_resume;
1268}
1269
1270/**
1271 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1272 * @dev: Device to handle.
1273 * @state: PM transition of the system being carried out.
1274 * @async: If true, the device is being suspended asynchronously.
1275 *
1276 * The driver of @dev will not receive interrupts while this function is being
1277 * executed.
1278 */
1279static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1280{
1281        pm_callback_t callback;
1282        const char *info;
1283        bool no_subsys_cb = false;
1284        int error = 0;
1285
1286        TRACE_DEVICE(dev);
1287        TRACE_SUSPEND(0);
1288
1289        dpm_wait_for_subordinate(dev, async);
1290
1291        if (async_error)
1292                goto Complete;
1293
1294        if (pm_wakeup_pending()) {
1295                async_error = -EBUSY;
1296                goto Complete;
1297        }
1298
1299        if (dev->power.syscore || dev->power.direct_complete)
1300                goto Complete;
1301
1302        callback = dpm_subsys_suspend_noirq_cb(dev, state, &info);
1303        if (callback)
1304                goto Run;
1305
1306        no_subsys_cb = !dpm_subsys_suspend_late_cb(dev, state, NULL);
1307
1308        if (dev_pm_smart_suspend_and_suspended(dev) && no_subsys_cb)
1309                goto Skip;
1310
1311        if (dev->driver && dev->driver->pm) {
1312                info = "noirq driver ";
1313                callback = pm_noirq_op(dev->driver->pm, state);
1314        }
1315
1316Run:
1317        error = dpm_run_callback(callback, dev, state, info);
1318        if (error) {
1319                async_error = error;
1320                goto Complete;
1321        }
1322
1323Skip:
1324        dev->power.is_noirq_suspended = true;
1325
1326        if (dev_pm_test_driver_flags(dev, DPM_FLAG_LEAVE_SUSPENDED)) {
1327                dev->power.must_resume = dev->power.must_resume ||
1328                                atomic_read(&dev->power.usage_count) > 1 ||
1329                                device_must_resume(dev, state, no_subsys_cb);
1330        } else {
1331                dev->power.must_resume = true;
1332        }
1333
1334        if (dev->power.must_resume)
1335                dpm_superior_set_must_resume(dev);
1336
1337Complete:
1338        complete_all(&dev->power.completion);
1339        TRACE_SUSPEND(error);
1340        return error;
1341}
1342
1343static void async_suspend_noirq(void *data, async_cookie_t cookie)
1344{
1345        struct device *dev = (struct device *)data;
1346        int error;
1347
1348        error = __device_suspend_noirq(dev, pm_transition, true);
1349        if (error) {
1350                dpm_save_failed_dev(dev_name(dev));
1351                pm_dev_err(dev, pm_transition, " async", error);
1352        }
1353
1354        put_device(dev);
1355}
1356
1357static int device_suspend_noirq(struct device *dev)
1358{
1359        if (dpm_async_fn(dev, async_suspend_noirq))
1360                return 0;
1361
1362        return __device_suspend_noirq(dev, pm_transition, false);
1363}
1364
1365void dpm_noirq_begin(void)
1366{
1367        cpuidle_pause();
1368        device_wakeup_arm_wake_irqs();
1369        suspend_device_irqs();
1370}
1371
1372int dpm_noirq_suspend_devices(pm_message_t state)
1373{
1374        ktime_t starttime = ktime_get();
1375        int error = 0;
1376
1377        trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1378        mutex_lock(&dpm_list_mtx);
1379        pm_transition = state;
1380        async_error = 0;
1381
1382        while (!list_empty(&dpm_late_early_list)) {
1383                struct device *dev = to_device(dpm_late_early_list.prev);
1384
1385                get_device(dev);
1386                mutex_unlock(&dpm_list_mtx);
1387
1388                error = device_suspend_noirq(dev);
1389
1390                mutex_lock(&dpm_list_mtx);
1391                if (error) {
1392                        pm_dev_err(dev, state, " noirq", error);
1393                        dpm_save_failed_dev(dev_name(dev));
1394                        put_device(dev);
1395                        break;
1396                }
1397                if (!list_empty(&dev->power.entry))
1398                        list_move(&dev->power.entry, &dpm_noirq_list);
1399                put_device(dev);
1400
1401                if (async_error)
1402                        break;
1403        }
1404        mutex_unlock(&dpm_list_mtx);
1405        async_synchronize_full();
1406        if (!error)
1407                error = async_error;
1408
1409        if (error) {
1410                suspend_stats.failed_suspend_noirq++;
1411                dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1412        }
1413        dpm_show_time(starttime, state, error, "noirq");
1414        trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1415        return error;
1416}
1417
1418/**
1419 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1420 * @state: PM transition of the system being carried out.
1421 *
1422 * Prevent device drivers' interrupt handlers from being called and invoke
1423 * "noirq" suspend callbacks for all non-sysdev devices.
1424 */
1425int dpm_suspend_noirq(pm_message_t state)
1426{
1427        int ret;
1428
1429        dpm_noirq_begin();
1430        ret = dpm_noirq_suspend_devices(state);
1431        if (ret)
1432                dpm_resume_noirq(resume_event(state));
1433
1434        return ret;
1435}
1436
1437static void dpm_propagate_wakeup_to_parent(struct device *dev)
1438{
1439        struct device *parent = dev->parent;
1440
1441        if (!parent)
1442                return;
1443
1444        spin_lock_irq(&parent->power.lock);
1445
1446        if (dev->power.wakeup_path && !parent->power.ignore_children)
1447                parent->power.wakeup_path = true;
1448
1449        spin_unlock_irq(&parent->power.lock);
1450}
1451
1452static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
1453                                                pm_message_t state,
1454                                                const char **info_p)
1455{
1456        pm_callback_t callback;
1457        const char *info;
1458
1459        if (dev->pm_domain) {
1460                info = "late power domain ";
1461                callback = pm_late_early_op(&dev->pm_domain->ops, state);
1462        } else if (dev->type && dev->type->pm) {
1463                info = "late type ";
1464                callback = pm_late_early_op(dev->type->pm, state);
1465        } else if (dev->class && dev->class->pm) {
1466                info = "late class ";
1467                callback = pm_late_early_op(dev->class->pm, state);
1468        } else if (dev->bus && dev->bus->pm) {
1469                info = "late bus ";
1470                callback = pm_late_early_op(dev->bus->pm, state);
1471        } else {
1472                return NULL;
1473        }
1474
1475        if (info_p)
1476                *info_p = info;
1477
1478        return callback;
1479}
1480
1481/**
1482 * __device_suspend_late - Execute a "late suspend" callback for given device.
1483 * @dev: Device to handle.
1484 * @state: PM transition of the system being carried out.
1485 * @async: If true, the device is being suspended asynchronously.
1486 *
1487 * Runtime PM is disabled for @dev while this function is being executed.
1488 */
1489static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1490{
1491        pm_callback_t callback;
1492        const char *info;
1493        int error = 0;
1494
1495        TRACE_DEVICE(dev);
1496        TRACE_SUSPEND(0);
1497
1498        __pm_runtime_disable(dev, false);
1499
1500        dpm_wait_for_subordinate(dev, async);
1501
1502        if (async_error)
1503                goto Complete;
1504
1505        if (pm_wakeup_pending()) {
1506                async_error = -EBUSY;
1507                goto Complete;
1508        }
1509
1510        if (dev->power.syscore || dev->power.direct_complete)
1511                goto Complete;
1512
1513        callback = dpm_subsys_suspend_late_cb(dev, state, &info);
1514        if (callback)
1515                goto Run;
1516
1517        if (dev_pm_smart_suspend_and_suspended(dev) &&
1518            !dpm_subsys_suspend_noirq_cb(dev, state, NULL))
1519                goto Skip;
1520
1521        if (dev->driver && dev->driver->pm) {
1522                info = "late driver ";
1523                callback = pm_late_early_op(dev->driver->pm, state);
1524        }
1525
1526Run:
1527        error = dpm_run_callback(callback, dev, state, info);
1528        if (error) {
1529                async_error = error;
1530                goto Complete;
1531        }
1532        dpm_propagate_wakeup_to_parent(dev);
1533
1534Skip:
1535        dev->power.is_late_suspended = true;
1536
1537Complete:
1538        TRACE_SUSPEND(error);
1539        complete_all(&dev->power.completion);
1540        return error;
1541}
1542
1543static void async_suspend_late(void *data, async_cookie_t cookie)
1544{
1545        struct device *dev = (struct device *)data;
1546        int error;
1547
1548        error = __device_suspend_late(dev, pm_transition, true);
1549        if (error) {
1550                dpm_save_failed_dev(dev_name(dev));
1551                pm_dev_err(dev, pm_transition, " async", error);
1552        }
1553        put_device(dev);
1554}
1555
1556static int device_suspend_late(struct device *dev)
1557{
1558        if (dpm_async_fn(dev, async_suspend_late))
1559                return 0;
1560
1561        return __device_suspend_late(dev, pm_transition, false);
1562}
1563
1564/**
1565 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1566 * @state: PM transition of the system being carried out.
1567 */
1568int dpm_suspend_late(pm_message_t state)
1569{
1570        ktime_t starttime = ktime_get();
1571        int error = 0;
1572
1573        trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1574        mutex_lock(&dpm_list_mtx);
1575        pm_transition = state;
1576        async_error = 0;
1577
1578        while (!list_empty(&dpm_suspended_list)) {
1579                struct device *dev = to_device(dpm_suspended_list.prev);
1580
1581                get_device(dev);
1582                mutex_unlock(&dpm_list_mtx);
1583
1584                error = device_suspend_late(dev);
1585
1586                mutex_lock(&dpm_list_mtx);
1587                if (!list_empty(&dev->power.entry))
1588                        list_move(&dev->power.entry, &dpm_late_early_list);
1589
1590                if (error) {
1591                        pm_dev_err(dev, state, " late", error);
1592                        dpm_save_failed_dev(dev_name(dev));
1593                        put_device(dev);
1594                        break;
1595                }
1596                put_device(dev);
1597
1598                if (async_error)
1599                        break;
1600        }
1601        mutex_unlock(&dpm_list_mtx);
1602        async_synchronize_full();
1603        if (!error)
1604                error = async_error;
1605        if (error) {
1606                suspend_stats.failed_suspend_late++;
1607                dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1608                dpm_resume_early(resume_event(state));
1609        }
1610        dpm_show_time(starttime, state, error, "late");
1611        trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1612        return error;
1613}
1614
1615/**
1616 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1617 * @state: PM transition of the system being carried out.
1618 */
1619int dpm_suspend_end(pm_message_t state)
1620{
1621        ktime_t starttime = ktime_get();
1622        int error;
1623
1624        error = dpm_suspend_late(state);
1625        if (error)
1626                goto out;
1627
1628        error = dpm_suspend_noirq(state);
1629        if (error)
1630                dpm_resume_early(resume_event(state));
1631
1632out:
1633        dpm_show_time(starttime, state, error, "end");
1634        return error;
1635}
1636EXPORT_SYMBOL_GPL(dpm_suspend_end);
1637
1638/**
1639 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1640 * @dev: Device to suspend.
1641 * @state: PM transition of the system being carried out.
1642 * @cb: Suspend callback to execute.
1643 * @info: string description of caller.
1644 */
1645static int legacy_suspend(struct device *dev, pm_message_t state,
1646                          int (*cb)(struct device *dev, pm_message_t state),
1647                          const char *info)
1648{
1649        int error;
1650        ktime_t calltime;
1651
1652        calltime = initcall_debug_start(dev, cb);
1653
1654        trace_device_pm_callback_start(dev, info, state.event);
1655        error = cb(dev, state);
1656        trace_device_pm_callback_end(dev, error);
1657        suspend_report_result(cb, error);
1658
1659        initcall_debug_report(dev, calltime, cb, error);
1660
1661        return error;
1662}
1663
1664static void dpm_clear_superiors_direct_complete(struct device *dev)
1665{
1666        struct device_link *link;
1667        int idx;
1668
1669        if (dev->parent) {
1670                spin_lock_irq(&dev->parent->power.lock);
1671                dev->parent->power.direct_complete = false;
1672                spin_unlock_irq(&dev->parent->power.lock);
1673        }
1674
1675        idx = device_links_read_lock();
1676
1677        list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1678                spin_lock_irq(&link->supplier->power.lock);
1679                link->supplier->power.direct_complete = false;
1680                spin_unlock_irq(&link->supplier->power.lock);
1681        }
1682
1683        device_links_read_unlock(idx);
1684}
1685
1686/**
1687 * __device_suspend - Execute "suspend" callbacks for given device.
1688 * @dev: Device to handle.
1689 * @state: PM transition of the system being carried out.
1690 * @async: If true, the device is being suspended asynchronously.
1691 */
1692static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1693{
1694        pm_callback_t callback = NULL;
1695        const char *info = NULL;
1696        int error = 0;
1697        DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1698
1699        TRACE_DEVICE(dev);
1700        TRACE_SUSPEND(0);
1701
1702        dpm_wait_for_subordinate(dev, async);
1703
1704        if (async_error) {
1705                dev->power.direct_complete = false;
1706                goto Complete;
1707        }
1708
1709        /*
1710         * If a device configured to wake up the system from sleep states
1711         * has been suspended at run time and there's a resume request pending
1712         * for it, this is equivalent to the device signaling wakeup, so the
1713         * system suspend operation should be aborted.
1714         */
1715        if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1716                pm_wakeup_event(dev, 0);
1717
1718        if (pm_wakeup_pending()) {
1719                dev->power.direct_complete = false;
1720                async_error = -EBUSY;
1721                goto Complete;
1722        }
1723
1724        if (dev->power.syscore)
1725                goto Complete;
1726
1727        /* Avoid direct_complete to let wakeup_path propagate. */
1728        if (device_may_wakeup(dev) || dev->power.wakeup_path)
1729                dev->power.direct_complete = false;
1730
1731        if (dev->power.direct_complete) {
1732                if (pm_runtime_status_suspended(dev)) {
1733                        pm_runtime_disable(dev);
1734                        if (pm_runtime_status_suspended(dev)) {
1735                                pm_dev_dbg(dev, state, "direct-complete ");
1736                                goto Complete;
1737                        }
1738
1739                        pm_runtime_enable(dev);
1740                }
1741                dev->power.direct_complete = false;
1742        }
1743
1744        dev->power.may_skip_resume = false;
1745        dev->power.must_resume = false;
1746
1747        dpm_watchdog_set(&wd, dev);
1748        device_lock(dev);
1749
1750        if (dev->pm_domain) {
1751                info = "power domain ";
1752                callback = pm_op(&dev->pm_domain->ops, state);
1753                goto Run;
1754        }
1755
1756        if (dev->type && dev->type->pm) {
1757                info = "type ";
1758                callback = pm_op(dev->type->pm, state);
1759                goto Run;
1760        }
1761
1762        if (dev->class && dev->class->pm) {
1763                info = "class ";
1764                callback = pm_op(dev->class->pm, state);
1765                goto Run;
1766        }
1767
1768        if (dev->bus) {
1769                if (dev->bus->pm) {
1770                        info = "bus ";
1771                        callback = pm_op(dev->bus->pm, state);
1772                } else if (dev->bus->suspend) {
1773                        pm_dev_dbg(dev, state, "legacy bus ");
1774                        error = legacy_suspend(dev, state, dev->bus->suspend,
1775                                                "legacy bus ");
1776                        goto End;
1777                }
1778        }
1779
1780 Run:
1781        if (!callback && dev->driver && dev->driver->pm) {
1782                info = "driver ";
1783                callback = pm_op(dev->driver->pm, state);
1784        }
1785
1786        error = dpm_run_callback(callback, dev, state, info);
1787
1788 End:
1789        if (!error) {
1790                dev->power.is_suspended = true;
1791                if (device_may_wakeup(dev))
1792                        dev->power.wakeup_path = true;
1793
1794                dpm_propagate_wakeup_to_parent(dev);
1795                dpm_clear_superiors_direct_complete(dev);
1796        }
1797
1798        device_unlock(dev);
1799        dpm_watchdog_clear(&wd);
1800
1801 Complete:
1802        if (error)
1803                async_error = error;
1804
1805        complete_all(&dev->power.completion);
1806        TRACE_SUSPEND(error);
1807        return error;
1808}
1809
1810static void async_suspend(void *data, async_cookie_t cookie)
1811{
1812        struct device *dev = (struct device *)data;
1813        int error;
1814
1815        error = __device_suspend(dev, pm_transition, true);
1816        if (error) {
1817                dpm_save_failed_dev(dev_name(dev));
1818                pm_dev_err(dev, pm_transition, " async", error);
1819        }
1820
1821        put_device(dev);
1822}
1823
1824static int device_suspend(struct device *dev)
1825{
1826        if (dpm_async_fn(dev, async_suspend))
1827                return 0;
1828
1829        return __device_suspend(dev, pm_transition, false);
1830}
1831
1832/**
1833 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1834 * @state: PM transition of the system being carried out.
1835 */
1836int dpm_suspend(pm_message_t state)
1837{
1838        ktime_t starttime = ktime_get();
1839        int error = 0;
1840
1841        trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1842        might_sleep();
1843
1844        devfreq_suspend();
1845        cpufreq_suspend();
1846
1847        mutex_lock(&dpm_list_mtx);
1848        pm_transition = state;
1849        async_error = 0;
1850        while (!list_empty(&dpm_prepared_list)) {
1851                struct device *dev = to_device(dpm_prepared_list.prev);
1852
1853                get_device(dev);
1854                mutex_unlock(&dpm_list_mtx);
1855
1856                error = device_suspend(dev);
1857
1858                mutex_lock(&dpm_list_mtx);
1859                if (error) {
1860                        pm_dev_err(dev, state, "", error);
1861                        dpm_save_failed_dev(dev_name(dev));
1862                        put_device(dev);
1863                        break;
1864                }
1865                if (!list_empty(&dev->power.entry))
1866                        list_move(&dev->power.entry, &dpm_suspended_list);
1867                put_device(dev);
1868                if (async_error)
1869                        break;
1870        }
1871        mutex_unlock(&dpm_list_mtx);
1872        async_synchronize_full();
1873        if (!error)
1874                error = async_error;
1875        if (error) {
1876                suspend_stats.failed_suspend++;
1877                dpm_save_failed_step(SUSPEND_SUSPEND);
1878        }
1879        dpm_show_time(starttime, state, error, NULL);
1880        trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1881        return error;
1882}
1883
1884/**
1885 * device_prepare - Prepare a device for system power transition.
1886 * @dev: Device to handle.
1887 * @state: PM transition of the system being carried out.
1888 *
1889 * Execute the ->prepare() callback(s) for given device.  No new children of the
1890 * device may be registered after this function has returned.
1891 */
1892static int device_prepare(struct device *dev, pm_message_t state)
1893{
1894        int (*callback)(struct device *) = NULL;
1895        int ret = 0;
1896
1897        if (dev->power.syscore)
1898                return 0;
1899
1900        WARN_ON(!pm_runtime_enabled(dev) &&
1901                dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
1902                                              DPM_FLAG_LEAVE_SUSPENDED));
1903
1904        /*
1905         * If a device's parent goes into runtime suspend at the wrong time,
1906         * it won't be possible to resume the device.  To prevent this we
1907         * block runtime suspend here, during the prepare phase, and allow
1908         * it again during the complete phase.
1909         */
1910        pm_runtime_get_noresume(dev);
1911
1912        device_lock(dev);
1913
1914        dev->power.wakeup_path = false;
1915
1916        if (dev->power.no_pm_callbacks)
1917                goto unlock;
1918
1919        if (dev->pm_domain)
1920                callback = dev->pm_domain->ops.prepare;
1921        else if (dev->type && dev->type->pm)
1922                callback = dev->type->pm->prepare;
1923        else if (dev->class && dev->class->pm)
1924                callback = dev->class->pm->prepare;
1925        else if (dev->bus && dev->bus->pm)
1926                callback = dev->bus->pm->prepare;
1927
1928        if (!callback && dev->driver && dev->driver->pm)
1929                callback = dev->driver->pm->prepare;
1930
1931        if (callback)
1932                ret = callback(dev);
1933
1934unlock:
1935        device_unlock(dev);
1936
1937        if (ret < 0) {
1938                suspend_report_result(callback, ret);
1939                pm_runtime_put(dev);
1940                return ret;
1941        }
1942        /*
1943         * A positive return value from ->prepare() means "this device appears
1944         * to be runtime-suspended and its state is fine, so if it really is
1945         * runtime-suspended, you can leave it in that state provided that you
1946         * will do the same thing with all of its descendants".  This only
1947         * applies to suspend transitions, however.
1948         */
1949        spin_lock_irq(&dev->power.lock);
1950        dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1951                ((pm_runtime_suspended(dev) && ret > 0) ||
1952                 dev->power.no_pm_callbacks) &&
1953                !dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP);
1954        spin_unlock_irq(&dev->power.lock);
1955        return 0;
1956}
1957
1958/**
1959 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1960 * @state: PM transition of the system being carried out.
1961 *
1962 * Execute the ->prepare() callback(s) for all devices.
1963 */
1964int dpm_prepare(pm_message_t state)
1965{
1966        int error = 0;
1967
1968        trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1969        might_sleep();
1970
1971        /*
1972         * Give a chance for the known devices to complete their probes, before
1973         * disable probing of devices. This sync point is important at least
1974         * at boot time + hibernation restore.
1975         */
1976        wait_for_device_probe();
1977        /*
1978         * It is unsafe if probing of devices will happen during suspend or
1979         * hibernation and system behavior will be unpredictable in this case.
1980         * So, let's prohibit device's probing here and defer their probes
1981         * instead. The normal behavior will be restored in dpm_complete().
1982         */
1983        device_block_probing();
1984
1985        mutex_lock(&dpm_list_mtx);
1986        while (!list_empty(&dpm_list)) {
1987                struct device *dev = to_device(dpm_list.next);
1988
1989                get_device(dev);
1990                mutex_unlock(&dpm_list_mtx);
1991
1992                trace_device_pm_callback_start(dev, "", state.event);
1993                error = device_prepare(dev, state);
1994                trace_device_pm_callback_end(dev, error);
1995
1996                mutex_lock(&dpm_list_mtx);
1997                if (error) {
1998                        if (error == -EAGAIN) {
1999                                put_device(dev);
2000                                error = 0;
2001                                continue;
2002                        }
2003                        pr_info("Device %s not prepared for power transition: code %d\n",
2004                                dev_name(dev), error);
2005                        put_device(dev);
2006                        break;
2007                }
2008                dev->power.is_prepared = true;
2009                if (!list_empty(&dev->power.entry))
2010                        list_move_tail(&dev->power.entry, &dpm_prepared_list);
2011                put_device(dev);
2012        }
2013        mutex_unlock(&dpm_list_mtx);
2014        trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
2015        return error;
2016}
2017
2018/**
2019 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
2020 * @state: PM transition of the system being carried out.
2021 *
2022 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
2023 * callbacks for them.
2024 */
2025int dpm_suspend_start(pm_message_t state)
2026{
2027        ktime_t starttime = ktime_get();
2028        int error;
2029
2030        error = dpm_prepare(state);
2031        if (error) {
2032                suspend_stats.failed_prepare++;
2033                dpm_save_failed_step(SUSPEND_PREPARE);
2034        } else
2035                error = dpm_suspend(state);
2036        dpm_show_time(starttime, state, error, "start");
2037        return error;
2038}
2039EXPORT_SYMBOL_GPL(dpm_suspend_start);
2040
2041void __suspend_report_result(const char *function, void *fn, int ret)
2042{
2043        if (ret)
2044                pr_err("%s(): %pS returns %d\n", function, fn, ret);
2045}
2046EXPORT_SYMBOL_GPL(__suspend_report_result);
2047
2048/**
2049 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
2050 * @subordinate: Device that needs to wait for @dev.
2051 * @dev: Device to wait for.
2052 */
2053int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
2054{
2055        dpm_wait(dev, subordinate->power.async_suspend);
2056        return async_error;
2057}
2058EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
2059
2060/**
2061 * dpm_for_each_dev - device iterator.
2062 * @data: data for the callback.
2063 * @fn: function to be called for each device.
2064 *
2065 * Iterate over devices in dpm_list, and call @fn for each device,
2066 * passing it @data.
2067 */
2068void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
2069{
2070        struct device *dev;
2071
2072        if (!fn)
2073                return;
2074
2075        device_pm_lock();
2076        list_for_each_entry(dev, &dpm_list, power.entry)
2077                fn(dev, data);
2078        device_pm_unlock();
2079}
2080EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2081
2082static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2083{
2084        if (!ops)
2085                return true;
2086
2087        return !ops->prepare &&
2088               !ops->suspend &&
2089               !ops->suspend_late &&
2090               !ops->suspend_noirq &&
2091               !ops->resume_noirq &&
2092               !ops->resume_early &&
2093               !ops->resume &&
2094               !ops->complete;
2095}
2096
2097void device_pm_check_callbacks(struct device *dev)
2098{
2099        spin_lock_irq(&dev->power.lock);
2100        dev->power.no_pm_callbacks =
2101                (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2102                 !dev->bus->suspend && !dev->bus->resume)) &&
2103                (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2104                (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2105                (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2106                (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2107                 !dev->driver->suspend && !dev->driver->resume));
2108        spin_unlock_irq(&dev->power.lock);
2109}
2110
2111bool dev_pm_smart_suspend_and_suspended(struct device *dev)
2112{
2113        return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2114                pm_runtime_status_suspended(dev);
2115}
2116