linux/drivers/base/property.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * property.c - Unified device property interface.
   4 *
   5 * Copyright (C) 2014, Intel Corporation
   6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   7 *          Mika Westerberg <mika.westerberg@linux.intel.com>
   8 */
   9
  10#include <linux/acpi.h>
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/of.h>
  14#include <linux/of_address.h>
  15#include <linux/of_graph.h>
  16#include <linux/of_irq.h>
  17#include <linux/property.h>
  18#include <linux/etherdevice.h>
  19#include <linux/phy.h>
  20
  21struct fwnode_handle *dev_fwnode(struct device *dev)
  22{
  23        return IS_ENABLED(CONFIG_OF) && dev->of_node ?
  24                &dev->of_node->fwnode : dev->fwnode;
  25}
  26EXPORT_SYMBOL_GPL(dev_fwnode);
  27
  28/**
  29 * device_property_present - check if a property of a device is present
  30 * @dev: Device whose property is being checked
  31 * @propname: Name of the property
  32 *
  33 * Check if property @propname is present in the device firmware description.
  34 */
  35bool device_property_present(struct device *dev, const char *propname)
  36{
  37        return fwnode_property_present(dev_fwnode(dev), propname);
  38}
  39EXPORT_SYMBOL_GPL(device_property_present);
  40
  41/**
  42 * fwnode_property_present - check if a property of a firmware node is present
  43 * @fwnode: Firmware node whose property to check
  44 * @propname: Name of the property
  45 */
  46bool fwnode_property_present(const struct fwnode_handle *fwnode,
  47                             const char *propname)
  48{
  49        bool ret;
  50
  51        ret = fwnode_call_bool_op(fwnode, property_present, propname);
  52        if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
  53            !IS_ERR_OR_NULL(fwnode->secondary))
  54                ret = fwnode_call_bool_op(fwnode->secondary, property_present,
  55                                         propname);
  56        return ret;
  57}
  58EXPORT_SYMBOL_GPL(fwnode_property_present);
  59
  60/**
  61 * device_property_read_u8_array - return a u8 array property of a device
  62 * @dev: Device to get the property of
  63 * @propname: Name of the property
  64 * @val: The values are stored here or %NULL to return the number of values
  65 * @nval: Size of the @val array
  66 *
  67 * Function reads an array of u8 properties with @propname from the device
  68 * firmware description and stores them to @val if found.
  69 *
  70 * Return: number of values if @val was %NULL,
  71 *         %0 if the property was found (success),
  72 *         %-EINVAL if given arguments are not valid,
  73 *         %-ENODATA if the property does not have a value,
  74 *         %-EPROTO if the property is not an array of numbers,
  75 *         %-EOVERFLOW if the size of the property is not as expected.
  76 *         %-ENXIO if no suitable firmware interface is present.
  77 */
  78int device_property_read_u8_array(struct device *dev, const char *propname,
  79                                  u8 *val, size_t nval)
  80{
  81        return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
  82}
  83EXPORT_SYMBOL_GPL(device_property_read_u8_array);
  84
  85/**
  86 * device_property_read_u16_array - return a u16 array property of a device
  87 * @dev: Device to get the property of
  88 * @propname: Name of the property
  89 * @val: The values are stored here or %NULL to return the number of values
  90 * @nval: Size of the @val array
  91 *
  92 * Function reads an array of u16 properties with @propname from the device
  93 * firmware description and stores them to @val if found.
  94 *
  95 * Return: number of values if @val was %NULL,
  96 *         %0 if the property was found (success),
  97 *         %-EINVAL if given arguments are not valid,
  98 *         %-ENODATA if the property does not have a value,
  99 *         %-EPROTO if the property is not an array of numbers,
 100 *         %-EOVERFLOW if the size of the property is not as expected.
 101 *         %-ENXIO if no suitable firmware interface is present.
 102 */
 103int device_property_read_u16_array(struct device *dev, const char *propname,
 104                                   u16 *val, size_t nval)
 105{
 106        return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
 107}
 108EXPORT_SYMBOL_GPL(device_property_read_u16_array);
 109
 110/**
 111 * device_property_read_u32_array - return a u32 array property of a device
 112 * @dev: Device to get the property of
 113 * @propname: Name of the property
 114 * @val: The values are stored here or %NULL to return the number of values
 115 * @nval: Size of the @val array
 116 *
 117 * Function reads an array of u32 properties with @propname from the device
 118 * firmware description and stores them to @val if found.
 119 *
 120 * Return: number of values if @val was %NULL,
 121 *         %0 if the property was found (success),
 122 *         %-EINVAL if given arguments are not valid,
 123 *         %-ENODATA if the property does not have a value,
 124 *         %-EPROTO if the property is not an array of numbers,
 125 *         %-EOVERFLOW if the size of the property is not as expected.
 126 *         %-ENXIO if no suitable firmware interface is present.
 127 */
 128int device_property_read_u32_array(struct device *dev, const char *propname,
 129                                   u32 *val, size_t nval)
 130{
 131        return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
 132}
 133EXPORT_SYMBOL_GPL(device_property_read_u32_array);
 134
 135/**
 136 * device_property_read_u64_array - return a u64 array property of a device
 137 * @dev: Device to get the property of
 138 * @propname: Name of the property
 139 * @val: The values are stored here or %NULL to return the number of values
 140 * @nval: Size of the @val array
 141 *
 142 * Function reads an array of u64 properties with @propname from the device
 143 * firmware description and stores them to @val if found.
 144 *
 145 * Return: number of values if @val was %NULL,
 146 *         %0 if the property was found (success),
 147 *         %-EINVAL if given arguments are not valid,
 148 *         %-ENODATA if the property does not have a value,
 149 *         %-EPROTO if the property is not an array of numbers,
 150 *         %-EOVERFLOW if the size of the property is not as expected.
 151 *         %-ENXIO if no suitable firmware interface is present.
 152 */
 153int device_property_read_u64_array(struct device *dev, const char *propname,
 154                                   u64 *val, size_t nval)
 155{
 156        return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
 157}
 158EXPORT_SYMBOL_GPL(device_property_read_u64_array);
 159
 160/**
 161 * device_property_read_string_array - return a string array property of device
 162 * @dev: Device to get the property of
 163 * @propname: Name of the property
 164 * @val: The values are stored here or %NULL to return the number of values
 165 * @nval: Size of the @val array
 166 *
 167 * Function reads an array of string properties with @propname from the device
 168 * firmware description and stores them to @val if found.
 169 *
 170 * Return: number of values read on success if @val is non-NULL,
 171 *         number of values available on success if @val is NULL,
 172 *         %-EINVAL if given arguments are not valid,
 173 *         %-ENODATA if the property does not have a value,
 174 *         %-EPROTO or %-EILSEQ if the property is not an array of strings,
 175 *         %-EOVERFLOW if the size of the property is not as expected.
 176 *         %-ENXIO if no suitable firmware interface is present.
 177 */
 178int device_property_read_string_array(struct device *dev, const char *propname,
 179                                      const char **val, size_t nval)
 180{
 181        return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
 182}
 183EXPORT_SYMBOL_GPL(device_property_read_string_array);
 184
 185/**
 186 * device_property_read_string - return a string property of a device
 187 * @dev: Device to get the property of
 188 * @propname: Name of the property
 189 * @val: The value is stored here
 190 *
 191 * Function reads property @propname from the device firmware description and
 192 * stores the value into @val if found. The value is checked to be a string.
 193 *
 194 * Return: %0 if the property was found (success),
 195 *         %-EINVAL if given arguments are not valid,
 196 *         %-ENODATA if the property does not have a value,
 197 *         %-EPROTO or %-EILSEQ if the property type is not a string.
 198 *         %-ENXIO if no suitable firmware interface is present.
 199 */
 200int device_property_read_string(struct device *dev, const char *propname,
 201                                const char **val)
 202{
 203        return fwnode_property_read_string(dev_fwnode(dev), propname, val);
 204}
 205EXPORT_SYMBOL_GPL(device_property_read_string);
 206
 207/**
 208 * device_property_match_string - find a string in an array and return index
 209 * @dev: Device to get the property of
 210 * @propname: Name of the property holding the array
 211 * @string: String to look for
 212 *
 213 * Find a given string in a string array and if it is found return the
 214 * index back.
 215 *
 216 * Return: %0 if the property was found (success),
 217 *         %-EINVAL if given arguments are not valid,
 218 *         %-ENODATA if the property does not have a value,
 219 *         %-EPROTO if the property is not an array of strings,
 220 *         %-ENXIO if no suitable firmware interface is present.
 221 */
 222int device_property_match_string(struct device *dev, const char *propname,
 223                                 const char *string)
 224{
 225        return fwnode_property_match_string(dev_fwnode(dev), propname, string);
 226}
 227EXPORT_SYMBOL_GPL(device_property_match_string);
 228
 229static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
 230                                          const char *propname,
 231                                          unsigned int elem_size, void *val,
 232                                          size_t nval)
 233{
 234        int ret;
 235
 236        ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
 237                                 elem_size, val, nval);
 238        if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 239            !IS_ERR_OR_NULL(fwnode->secondary))
 240                ret = fwnode_call_int_op(
 241                        fwnode->secondary, property_read_int_array, propname,
 242                        elem_size, val, nval);
 243
 244        return ret;
 245}
 246
 247/**
 248 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 249 * @fwnode: Firmware node to get the property of
 250 * @propname: Name of the property
 251 * @val: The values are stored here or %NULL to return the number of values
 252 * @nval: Size of the @val array
 253 *
 254 * Read an array of u8 properties with @propname from @fwnode and stores them to
 255 * @val if found.
 256 *
 257 * Return: number of values if @val was %NULL,
 258 *         %0 if the property was found (success),
 259 *         %-EINVAL if given arguments are not valid,
 260 *         %-ENODATA if the property does not have a value,
 261 *         %-EPROTO if the property is not an array of numbers,
 262 *         %-EOVERFLOW if the size of the property is not as expected,
 263 *         %-ENXIO if no suitable firmware interface is present.
 264 */
 265int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
 266                                  const char *propname, u8 *val, size_t nval)
 267{
 268        return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
 269                                              val, nval);
 270}
 271EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
 272
 273/**
 274 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 275 * @fwnode: Firmware node to get the property of
 276 * @propname: Name of the property
 277 * @val: The values are stored here or %NULL to return the number of values
 278 * @nval: Size of the @val array
 279 *
 280 * Read an array of u16 properties with @propname from @fwnode and store them to
 281 * @val if found.
 282 *
 283 * Return: number of values if @val was %NULL,
 284 *         %0 if the property was found (success),
 285 *         %-EINVAL if given arguments are not valid,
 286 *         %-ENODATA if the property does not have a value,
 287 *         %-EPROTO if the property is not an array of numbers,
 288 *         %-EOVERFLOW if the size of the property is not as expected,
 289 *         %-ENXIO if no suitable firmware interface is present.
 290 */
 291int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
 292                                   const char *propname, u16 *val, size_t nval)
 293{
 294        return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
 295                                              val, nval);
 296}
 297EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
 298
 299/**
 300 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 301 * @fwnode: Firmware node to get the property of
 302 * @propname: Name of the property
 303 * @val: The values are stored here or %NULL to return the number of values
 304 * @nval: Size of the @val array
 305 *
 306 * Read an array of u32 properties with @propname from @fwnode store them to
 307 * @val if found.
 308 *
 309 * Return: number of values if @val was %NULL,
 310 *         %0 if the property was found (success),
 311 *         %-EINVAL if given arguments are not valid,
 312 *         %-ENODATA if the property does not have a value,
 313 *         %-EPROTO if the property is not an array of numbers,
 314 *         %-EOVERFLOW if the size of the property is not as expected,
 315 *         %-ENXIO if no suitable firmware interface is present.
 316 */
 317int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
 318                                   const char *propname, u32 *val, size_t nval)
 319{
 320        return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
 321                                              val, nval);
 322}
 323EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
 324
 325/**
 326 * fwnode_property_read_u64_array - return a u64 array property firmware node
 327 * @fwnode: Firmware node to get the property of
 328 * @propname: Name of the property
 329 * @val: The values are stored here or %NULL to return the number of values
 330 * @nval: Size of the @val array
 331 *
 332 * Read an array of u64 properties with @propname from @fwnode and store them to
 333 * @val if found.
 334 *
 335 * Return: number of values if @val was %NULL,
 336 *         %0 if the property was found (success),
 337 *         %-EINVAL if given arguments are not valid,
 338 *         %-ENODATA if the property does not have a value,
 339 *         %-EPROTO if the property is not an array of numbers,
 340 *         %-EOVERFLOW if the size of the property is not as expected,
 341 *         %-ENXIO if no suitable firmware interface is present.
 342 */
 343int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
 344                                   const char *propname, u64 *val, size_t nval)
 345{
 346        return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
 347                                              val, nval);
 348}
 349EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
 350
 351/**
 352 * fwnode_property_read_string_array - return string array property of a node
 353 * @fwnode: Firmware node to get the property of
 354 * @propname: Name of the property
 355 * @val: The values are stored here or %NULL to return the number of values
 356 * @nval: Size of the @val array
 357 *
 358 * Read an string list property @propname from the given firmware node and store
 359 * them to @val if found.
 360 *
 361 * Return: number of values read on success if @val is non-NULL,
 362 *         number of values available on success if @val is NULL,
 363 *         %-EINVAL if given arguments are not valid,
 364 *         %-ENODATA if the property does not have a value,
 365 *         %-EPROTO or %-EILSEQ if the property is not an array of strings,
 366 *         %-EOVERFLOW if the size of the property is not as expected,
 367 *         %-ENXIO if no suitable firmware interface is present.
 368 */
 369int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 370                                      const char *propname, const char **val,
 371                                      size_t nval)
 372{
 373        int ret;
 374
 375        ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
 376                                 val, nval);
 377        if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 378            !IS_ERR_OR_NULL(fwnode->secondary))
 379                ret = fwnode_call_int_op(fwnode->secondary,
 380                                         property_read_string_array, propname,
 381                                         val, nval);
 382        return ret;
 383}
 384EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
 385
 386/**
 387 * fwnode_property_read_string - return a string property of a firmware node
 388 * @fwnode: Firmware node to get the property of
 389 * @propname: Name of the property
 390 * @val: The value is stored here
 391 *
 392 * Read property @propname from the given firmware node and store the value into
 393 * @val if found.  The value is checked to be a string.
 394 *
 395 * Return: %0 if the property was found (success),
 396 *         %-EINVAL if given arguments are not valid,
 397 *         %-ENODATA if the property does not have a value,
 398 *         %-EPROTO or %-EILSEQ if the property is not a string,
 399 *         %-ENXIO if no suitable firmware interface is present.
 400 */
 401int fwnode_property_read_string(const struct fwnode_handle *fwnode,
 402                                const char *propname, const char **val)
 403{
 404        int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
 405
 406        return ret < 0 ? ret : 0;
 407}
 408EXPORT_SYMBOL_GPL(fwnode_property_read_string);
 409
 410/**
 411 * fwnode_property_match_string - find a string in an array and return index
 412 * @fwnode: Firmware node to get the property of
 413 * @propname: Name of the property holding the array
 414 * @string: String to look for
 415 *
 416 * Find a given string in a string array and if it is found return the
 417 * index back.
 418 *
 419 * Return: %0 if the property was found (success),
 420 *         %-EINVAL if given arguments are not valid,
 421 *         %-ENODATA if the property does not have a value,
 422 *         %-EPROTO if the property is not an array of strings,
 423 *         %-ENXIO if no suitable firmware interface is present.
 424 */
 425int fwnode_property_match_string(const struct fwnode_handle *fwnode,
 426        const char *propname, const char *string)
 427{
 428        const char **values;
 429        int nval, ret;
 430
 431        nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
 432        if (nval < 0)
 433                return nval;
 434
 435        if (nval == 0)
 436                return -ENODATA;
 437
 438        values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
 439        if (!values)
 440                return -ENOMEM;
 441
 442        ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
 443        if (ret < 0)
 444                goto out;
 445
 446        ret = match_string(values, nval, string);
 447        if (ret < 0)
 448                ret = -ENODATA;
 449out:
 450        kfree(values);
 451        return ret;
 452}
 453EXPORT_SYMBOL_GPL(fwnode_property_match_string);
 454
 455/**
 456 * fwnode_property_get_reference_args() - Find a reference with arguments
 457 * @fwnode:     Firmware node where to look for the reference
 458 * @prop:       The name of the property
 459 * @nargs_prop: The name of the property telling the number of
 460 *              arguments in the referred node. NULL if @nargs is known,
 461 *              otherwise @nargs is ignored. Only relevant on OF.
 462 * @nargs:      Number of arguments. Ignored if @nargs_prop is non-NULL.
 463 * @index:      Index of the reference, from zero onwards.
 464 * @args:       Result structure with reference and integer arguments.
 465 *
 466 * Obtain a reference based on a named property in an fwnode, with
 467 * integer arguments.
 468 *
 469 * Caller is responsible to call fwnode_handle_put() on the returned
 470 * args->fwnode pointer.
 471 *
 472 * Returns: %0 on success
 473 *          %-ENOENT when the index is out of bounds, the index has an empty
 474 *                   reference or the property was not found
 475 *          %-EINVAL on parse error
 476 */
 477int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
 478                                       const char *prop, const char *nargs_prop,
 479                                       unsigned int nargs, unsigned int index,
 480                                       struct fwnode_reference_args *args)
 481{
 482        return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
 483                                  nargs, index, args);
 484}
 485EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
 486
 487/**
 488 * fwnode_find_reference - Find named reference to a fwnode_handle
 489 * @fwnode: Firmware node where to look for the reference
 490 * @name: The name of the reference
 491 * @index: Index of the reference
 492 *
 493 * @index can be used when the named reference holds a table of references.
 494 *
 495 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
 496 * call fwnode_handle_put() on the returned fwnode pointer.
 497 */
 498struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
 499                                            const char *name,
 500                                            unsigned int index)
 501{
 502        struct fwnode_reference_args args;
 503        int ret;
 504
 505        ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
 506                                                 &args);
 507        return ret ? ERR_PTR(ret) : args.fwnode;
 508}
 509EXPORT_SYMBOL_GPL(fwnode_find_reference);
 510
 511/**
 512 * device_remove_properties - Remove properties from a device object.
 513 * @dev: Device whose properties to remove.
 514 *
 515 * The function removes properties previously associated to the device
 516 * firmware node with device_add_properties(). Memory allocated to the
 517 * properties will also be released.
 518 */
 519void device_remove_properties(struct device *dev)
 520{
 521        struct fwnode_handle *fwnode = dev_fwnode(dev);
 522
 523        if (!fwnode)
 524                return;
 525
 526        if (is_software_node(fwnode->secondary)) {
 527                fwnode_remove_software_node(fwnode->secondary);
 528                set_secondary_fwnode(dev, NULL);
 529        }
 530}
 531EXPORT_SYMBOL_GPL(device_remove_properties);
 532
 533/**
 534 * device_add_properties - Add a collection of properties to a device object.
 535 * @dev: Device to add properties to.
 536 * @properties: Collection of properties to add.
 537 *
 538 * Associate a collection of device properties represented by @properties with
 539 * @dev. The function takes a copy of @properties.
 540 *
 541 * WARNING: The callers should not use this function if it is known that there
 542 * is no real firmware node associated with @dev! In that case the callers
 543 * should create a software node and assign it to @dev directly.
 544 */
 545int device_add_properties(struct device *dev,
 546                          const struct property_entry *properties)
 547{
 548        struct fwnode_handle *fwnode;
 549
 550        fwnode = fwnode_create_software_node(properties, NULL);
 551        if (IS_ERR(fwnode))
 552                return PTR_ERR(fwnode);
 553
 554        set_secondary_fwnode(dev, fwnode);
 555        return 0;
 556}
 557EXPORT_SYMBOL_GPL(device_add_properties);
 558
 559/**
 560 * fwnode_get_next_parent - Iterate to the node's parent
 561 * @fwnode: Firmware whose parent is retrieved
 562 *
 563 * This is like fwnode_get_parent() except that it drops the refcount
 564 * on the passed node, making it suitable for iterating through a
 565 * node's parents.
 566 *
 567 * Returns a node pointer with refcount incremented, use
 568 * fwnode_handle_node() on it when done.
 569 */
 570struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
 571{
 572        struct fwnode_handle *parent = fwnode_get_parent(fwnode);
 573
 574        fwnode_handle_put(fwnode);
 575
 576        return parent;
 577}
 578EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
 579
 580/**
 581 * fwnode_get_parent - Return parent firwmare node
 582 * @fwnode: Firmware whose parent is retrieved
 583 *
 584 * Return parent firmware node of the given node if possible or %NULL if no
 585 * parent was available.
 586 */
 587struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
 588{
 589        return fwnode_call_ptr_op(fwnode, get_parent);
 590}
 591EXPORT_SYMBOL_GPL(fwnode_get_parent);
 592
 593/**
 594 * fwnode_get_next_child_node - Return the next child node handle for a node
 595 * @fwnode: Firmware node to find the next child node for.
 596 * @child: Handle to one of the node's child nodes or a %NULL handle.
 597 */
 598struct fwnode_handle *
 599fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
 600                           struct fwnode_handle *child)
 601{
 602        return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
 603}
 604EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
 605
 606/**
 607 * fwnode_get_next_available_child_node - Return the next
 608 * available child node handle for a node
 609 * @fwnode: Firmware node to find the next child node for.
 610 * @child: Handle to one of the node's child nodes or a %NULL handle.
 611 */
 612struct fwnode_handle *
 613fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
 614                                     struct fwnode_handle *child)
 615{
 616        struct fwnode_handle *next_child = child;
 617
 618        if (!fwnode)
 619                return NULL;
 620
 621        do {
 622                next_child = fwnode_get_next_child_node(fwnode, next_child);
 623
 624                if (!next_child || fwnode_device_is_available(next_child))
 625                        break;
 626        } while (next_child);
 627
 628        return next_child;
 629}
 630EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
 631
 632/**
 633 * device_get_next_child_node - Return the next child node handle for a device
 634 * @dev: Device to find the next child node for.
 635 * @child: Handle to one of the device's child nodes or a null handle.
 636 */
 637struct fwnode_handle *device_get_next_child_node(struct device *dev,
 638                                                 struct fwnode_handle *child)
 639{
 640        struct acpi_device *adev = ACPI_COMPANION(dev);
 641        struct fwnode_handle *fwnode = NULL;
 642
 643        if (dev->of_node)
 644                fwnode = &dev->of_node->fwnode;
 645        else if (adev)
 646                fwnode = acpi_fwnode_handle(adev);
 647
 648        return fwnode_get_next_child_node(fwnode, child);
 649}
 650EXPORT_SYMBOL_GPL(device_get_next_child_node);
 651
 652/**
 653 * fwnode_get_named_child_node - Return first matching named child node handle
 654 * @fwnode: Firmware node to find the named child node for.
 655 * @childname: String to match child node name against.
 656 */
 657struct fwnode_handle *
 658fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
 659                            const char *childname)
 660{
 661        return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
 662}
 663EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
 664
 665/**
 666 * device_get_named_child_node - Return first matching named child node handle
 667 * @dev: Device to find the named child node for.
 668 * @childname: String to match child node name against.
 669 */
 670struct fwnode_handle *device_get_named_child_node(struct device *dev,
 671                                                  const char *childname)
 672{
 673        return fwnode_get_named_child_node(dev_fwnode(dev), childname);
 674}
 675EXPORT_SYMBOL_GPL(device_get_named_child_node);
 676
 677/**
 678 * fwnode_handle_get - Obtain a reference to a device node
 679 * @fwnode: Pointer to the device node to obtain the reference to.
 680 *
 681 * Returns the fwnode handle.
 682 */
 683struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
 684{
 685        if (!fwnode_has_op(fwnode, get))
 686                return fwnode;
 687
 688        return fwnode_call_ptr_op(fwnode, get);
 689}
 690EXPORT_SYMBOL_GPL(fwnode_handle_get);
 691
 692/**
 693 * fwnode_handle_put - Drop reference to a device node
 694 * @fwnode: Pointer to the device node to drop the reference to.
 695 *
 696 * This has to be used when terminating device_for_each_child_node() iteration
 697 * with break or return to prevent stale device node references from being left
 698 * behind.
 699 */
 700void fwnode_handle_put(struct fwnode_handle *fwnode)
 701{
 702        fwnode_call_void_op(fwnode, put);
 703}
 704EXPORT_SYMBOL_GPL(fwnode_handle_put);
 705
 706/**
 707 * fwnode_device_is_available - check if a device is available for use
 708 * @fwnode: Pointer to the fwnode of the device.
 709 */
 710bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
 711{
 712        return fwnode_call_bool_op(fwnode, device_is_available);
 713}
 714EXPORT_SYMBOL_GPL(fwnode_device_is_available);
 715
 716/**
 717 * device_get_child_node_count - return the number of child nodes for device
 718 * @dev: Device to cound the child nodes for
 719 */
 720unsigned int device_get_child_node_count(struct device *dev)
 721{
 722        struct fwnode_handle *child;
 723        unsigned int count = 0;
 724
 725        device_for_each_child_node(dev, child)
 726                count++;
 727
 728        return count;
 729}
 730EXPORT_SYMBOL_GPL(device_get_child_node_count);
 731
 732bool device_dma_supported(struct device *dev)
 733{
 734        /* For DT, this is always supported.
 735         * For ACPI, this depends on CCA, which
 736         * is determined by the acpi_dma_supported().
 737         */
 738        if (IS_ENABLED(CONFIG_OF) && dev->of_node)
 739                return true;
 740
 741        return acpi_dma_supported(ACPI_COMPANION(dev));
 742}
 743EXPORT_SYMBOL_GPL(device_dma_supported);
 744
 745enum dev_dma_attr device_get_dma_attr(struct device *dev)
 746{
 747        enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
 748
 749        if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
 750                if (of_dma_is_coherent(dev->of_node))
 751                        attr = DEV_DMA_COHERENT;
 752                else
 753                        attr = DEV_DMA_NON_COHERENT;
 754        } else
 755                attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
 756
 757        return attr;
 758}
 759EXPORT_SYMBOL_GPL(device_get_dma_attr);
 760
 761/**
 762 * fwnode_get_phy_mode - Get phy mode for given firmware node
 763 * @fwnode:     Pointer to the given node
 764 *
 765 * The function gets phy interface string from property 'phy-mode' or
 766 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 767 * error case.
 768 */
 769int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
 770{
 771        const char *pm;
 772        int err, i;
 773
 774        err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
 775        if (err < 0)
 776                err = fwnode_property_read_string(fwnode,
 777                                                  "phy-connection-type", &pm);
 778        if (err < 0)
 779                return err;
 780
 781        for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
 782                if (!strcasecmp(pm, phy_modes(i)))
 783                        return i;
 784
 785        return -ENODEV;
 786}
 787EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
 788
 789/**
 790 * device_get_phy_mode - Get phy mode for given device
 791 * @dev:        Pointer to the given device
 792 *
 793 * The function gets phy interface string from property 'phy-mode' or
 794 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 795 * error case.
 796 */
 797int device_get_phy_mode(struct device *dev)
 798{
 799        return fwnode_get_phy_mode(dev_fwnode(dev));
 800}
 801EXPORT_SYMBOL_GPL(device_get_phy_mode);
 802
 803static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
 804                                 const char *name, char *addr,
 805                                 int alen)
 806{
 807        int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
 808
 809        if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
 810                return addr;
 811        return NULL;
 812}
 813
 814/**
 815 * fwnode_get_mac_address - Get the MAC from the firmware node
 816 * @fwnode:     Pointer to the firmware node
 817 * @addr:       Address of buffer to store the MAC in
 818 * @alen:       Length of the buffer pointed to by addr, should be ETH_ALEN
 819 *
 820 * Search the firmware node for the best MAC address to use.  'mac-address' is
 821 * checked first, because that is supposed to contain to "most recent" MAC
 822 * address. If that isn't set, then 'local-mac-address' is checked next,
 823 * because that is the default address.  If that isn't set, then the obsolete
 824 * 'address' is checked, just in case we're using an old device tree.
 825 *
 826 * Note that the 'address' property is supposed to contain a virtual address of
 827 * the register set, but some DTS files have redefined that property to be the
 828 * MAC address.
 829 *
 830 * All-zero MAC addresses are rejected, because those could be properties that
 831 * exist in the firmware tables, but were not updated by the firmware.  For
 832 * example, the DTS could define 'mac-address' and 'local-mac-address', with
 833 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
 834 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
 835 * exists but is all zeros.
 836*/
 837void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
 838{
 839        char *res;
 840
 841        res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
 842        if (res)
 843                return res;
 844
 845        res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
 846        if (res)
 847                return res;
 848
 849        return fwnode_get_mac_addr(fwnode, "address", addr, alen);
 850}
 851EXPORT_SYMBOL(fwnode_get_mac_address);
 852
 853/**
 854 * device_get_mac_address - Get the MAC for a given device
 855 * @dev:        Pointer to the device
 856 * @addr:       Address of buffer to store the MAC in
 857 * @alen:       Length of the buffer pointed to by addr, should be ETH_ALEN
 858 */
 859void *device_get_mac_address(struct device *dev, char *addr, int alen)
 860{
 861        return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
 862}
 863EXPORT_SYMBOL(device_get_mac_address);
 864
 865/**
 866 * fwnode_irq_get - Get IRQ directly from a fwnode
 867 * @fwnode:     Pointer to the firmware node
 868 * @index:      Zero-based index of the IRQ
 869 *
 870 * Returns Linux IRQ number on success. Other values are determined
 871 * accordingly to acpi_/of_ irq_get() operation.
 872 */
 873int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
 874{
 875        struct device_node *of_node = to_of_node(fwnode);
 876        struct resource res;
 877        int ret;
 878
 879        if (IS_ENABLED(CONFIG_OF) && of_node)
 880                return of_irq_get(of_node, index);
 881
 882        ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
 883        if (ret)
 884                return ret;
 885
 886        return res.start;
 887}
 888EXPORT_SYMBOL(fwnode_irq_get);
 889
 890/**
 891 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
 892 * @fwnode: Pointer to the parent firmware node
 893 * @prev: Previous endpoint node or %NULL to get the first
 894 *
 895 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
 896 * are available.
 897 */
 898struct fwnode_handle *
 899fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
 900                               struct fwnode_handle *prev)
 901{
 902        return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
 903}
 904EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
 905
 906/**
 907 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
 908 * @endpoint: Endpoint firmware node of the port
 909 *
 910 * Return: the firmware node of the device the @endpoint belongs to.
 911 */
 912struct fwnode_handle *
 913fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
 914{
 915        struct fwnode_handle *port, *parent;
 916
 917        port = fwnode_get_parent(endpoint);
 918        parent = fwnode_call_ptr_op(port, graph_get_port_parent);
 919
 920        fwnode_handle_put(port);
 921
 922        return parent;
 923}
 924EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
 925
 926/**
 927 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
 928 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 929 *
 930 * Extracts firmware node of a remote device the @fwnode points to.
 931 */
 932struct fwnode_handle *
 933fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
 934{
 935        struct fwnode_handle *endpoint, *parent;
 936
 937        endpoint = fwnode_graph_get_remote_endpoint(fwnode);
 938        parent = fwnode_graph_get_port_parent(endpoint);
 939
 940        fwnode_handle_put(endpoint);
 941
 942        return parent;
 943}
 944EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
 945
 946/**
 947 * fwnode_graph_get_remote_port - Return fwnode of a remote port
 948 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 949 *
 950 * Extracts firmware node of a remote port the @fwnode points to.
 951 */
 952struct fwnode_handle *
 953fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
 954{
 955        return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
 956}
 957EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
 958
 959/**
 960 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
 961 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 962 *
 963 * Extracts firmware node of a remote endpoint the @fwnode points to.
 964 */
 965struct fwnode_handle *
 966fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
 967{
 968        return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
 969}
 970EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
 971
 972/**
 973 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
 974 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
 975 * @port_id: identifier of the parent port node
 976 * @endpoint_id: identifier of the endpoint node
 977 *
 978 * Return: Remote fwnode handle associated with remote endpoint node linked
 979 *         to @node. Use fwnode_node_put() on it when done.
 980 */
 981struct fwnode_handle *
 982fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
 983                             u32 endpoint_id)
 984{
 985        struct fwnode_handle *endpoint = NULL;
 986
 987        while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
 988                struct fwnode_endpoint fwnode_ep;
 989                struct fwnode_handle *remote;
 990                int ret;
 991
 992                ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
 993                if (ret < 0)
 994                        continue;
 995
 996                if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
 997                        continue;
 998
 999                remote = fwnode_graph_get_remote_port_parent(endpoint);
1000                if (!remote)
1001                        return NULL;
1002
1003                return fwnode_device_is_available(remote) ? remote : NULL;
1004        }
1005
1006        return NULL;
1007}
1008EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1009
1010/**
1011 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1012 * @fwnode: parent fwnode_handle containing the graph
1013 * @port: identifier of the port node
1014 * @endpoint: identifier of the endpoint node under the port node
1015 * @flags: fwnode lookup flags
1016 *
1017 * Return the fwnode handle of the local endpoint corresponding the port and
1018 * endpoint IDs or NULL if not found.
1019 *
1020 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1021 * has not been found, look for the closest endpoint ID greater than the
1022 * specified one and return the endpoint that corresponds to it, if present.
1023 *
1024 * Do not return endpoints that belong to disabled devices, unless
1025 * FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1026 *
1027 * The returned endpoint needs to be released by calling fwnode_handle_put() on
1028 * it when it is not needed any more.
1029 */
1030struct fwnode_handle *
1031fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1032                                u32 port, u32 endpoint, unsigned long flags)
1033{
1034        struct fwnode_handle *ep = NULL, *best_ep = NULL;
1035        unsigned int best_ep_id = 0;
1036        bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1037        bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1038
1039        while ((ep = fwnode_graph_get_next_endpoint(fwnode, ep))) {
1040                struct fwnode_endpoint fwnode_ep = { 0 };
1041                int ret;
1042
1043                if (enabled_only) {
1044                        struct fwnode_handle *dev_node;
1045                        bool available;
1046
1047                        dev_node = fwnode_graph_get_remote_port_parent(ep);
1048                        available = fwnode_device_is_available(dev_node);
1049                        fwnode_handle_put(dev_node);
1050                        if (!available)
1051                                continue;
1052                }
1053
1054                ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1055                if (ret < 0)
1056                        continue;
1057
1058                if (fwnode_ep.port != port)
1059                        continue;
1060
1061                if (fwnode_ep.id == endpoint)
1062                        return ep;
1063
1064                if (!endpoint_next)
1065                        continue;
1066
1067                /*
1068                 * If the endpoint that has just been found is not the first
1069                 * matching one and the ID of the one found previously is closer
1070                 * to the requested endpoint ID, skip it.
1071                 */
1072                if (fwnode_ep.id < endpoint ||
1073                    (best_ep && best_ep_id < fwnode_ep.id))
1074                        continue;
1075
1076                fwnode_handle_put(best_ep);
1077                best_ep = fwnode_handle_get(ep);
1078                best_ep_id = fwnode_ep.id;
1079        }
1080
1081        return best_ep;
1082}
1083EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1084
1085/**
1086 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1087 * @fwnode: pointer to endpoint fwnode_handle
1088 * @endpoint: pointer to the fwnode endpoint data structure
1089 *
1090 * Parse @fwnode representing a graph endpoint node and store the
1091 * information in @endpoint. The caller must hold a reference to
1092 * @fwnode.
1093 */
1094int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1095                                struct fwnode_endpoint *endpoint)
1096{
1097        memset(endpoint, 0, sizeof(*endpoint));
1098
1099        return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1100}
1101EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1102
1103const void *device_get_match_data(struct device *dev)
1104{
1105        return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1106}
1107EXPORT_SYMBOL_GPL(device_get_match_data);
1108