linux/drivers/base/regmap/regmap-irq.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// regmap based irq_chip
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   8
   9#include <linux/device.h>
  10#include <linux/export.h>
  11#include <linux/interrupt.h>
  12#include <linux/irq.h>
  13#include <linux/irqdomain.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/regmap.h>
  16#include <linux/slab.h>
  17
  18#include "internal.h"
  19
  20struct regmap_irq_chip_data {
  21        struct mutex lock;
  22        struct irq_chip irq_chip;
  23
  24        struct regmap *map;
  25        const struct regmap_irq_chip *chip;
  26
  27        int irq_base;
  28        struct irq_domain *domain;
  29
  30        int irq;
  31        int wake_count;
  32
  33        void *status_reg_buf;
  34        unsigned int *main_status_buf;
  35        unsigned int *status_buf;
  36        unsigned int *mask_buf;
  37        unsigned int *mask_buf_def;
  38        unsigned int *wake_buf;
  39        unsigned int *type_buf;
  40        unsigned int *type_buf_def;
  41
  42        unsigned int irq_reg_stride;
  43        unsigned int type_reg_stride;
  44
  45        bool clear_status:1;
  46};
  47
  48static inline const
  49struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
  50                                     int irq)
  51{
  52        return &data->chip->irqs[irq];
  53}
  54
  55static void regmap_irq_lock(struct irq_data *data)
  56{
  57        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  58
  59        mutex_lock(&d->lock);
  60}
  61
  62static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
  63                                  unsigned int reg, unsigned int mask,
  64                                  unsigned int val)
  65{
  66        if (d->chip->mask_writeonly)
  67                return regmap_write_bits(d->map, reg, mask, val);
  68        else
  69                return regmap_update_bits(d->map, reg, mask, val);
  70}
  71
  72static void regmap_irq_sync_unlock(struct irq_data *data)
  73{
  74        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  75        struct regmap *map = d->map;
  76        int i, ret;
  77        u32 reg;
  78        u32 unmask_offset;
  79        u32 val;
  80
  81        if (d->chip->runtime_pm) {
  82                ret = pm_runtime_get_sync(map->dev);
  83                if (ret < 0)
  84                        dev_err(map->dev, "IRQ sync failed to resume: %d\n",
  85                                ret);
  86        }
  87
  88        if (d->clear_status) {
  89                for (i = 0; i < d->chip->num_regs; i++) {
  90                        reg = d->chip->status_base +
  91                                (i * map->reg_stride * d->irq_reg_stride);
  92
  93                        ret = regmap_read(map, reg, &val);
  94                        if (ret)
  95                                dev_err(d->map->dev,
  96                                        "Failed to clear the interrupt status bits\n");
  97                }
  98
  99                d->clear_status = false;
 100        }
 101
 102        /*
 103         * If there's been a change in the mask write it back to the
 104         * hardware.  We rely on the use of the regmap core cache to
 105         * suppress pointless writes.
 106         */
 107        for (i = 0; i < d->chip->num_regs; i++) {
 108                if (!d->chip->mask_base)
 109                        continue;
 110
 111                reg = d->chip->mask_base +
 112                        (i * map->reg_stride * d->irq_reg_stride);
 113                if (d->chip->mask_invert) {
 114                        ret = regmap_irq_update_bits(d, reg,
 115                                         d->mask_buf_def[i], ~d->mask_buf[i]);
 116                } else if (d->chip->unmask_base) {
 117                        /* set mask with mask_base register */
 118                        ret = regmap_irq_update_bits(d, reg,
 119                                        d->mask_buf_def[i], ~d->mask_buf[i]);
 120                        if (ret < 0)
 121                                dev_err(d->map->dev,
 122                                        "Failed to sync unmasks in %x\n",
 123                                        reg);
 124                        unmask_offset = d->chip->unmask_base -
 125                                                        d->chip->mask_base;
 126                        /* clear mask with unmask_base register */
 127                        ret = regmap_irq_update_bits(d,
 128                                        reg + unmask_offset,
 129                                        d->mask_buf_def[i],
 130                                        d->mask_buf[i]);
 131                } else {
 132                        ret = regmap_irq_update_bits(d, reg,
 133                                         d->mask_buf_def[i], d->mask_buf[i]);
 134                }
 135                if (ret != 0)
 136                        dev_err(d->map->dev, "Failed to sync masks in %x\n",
 137                                reg);
 138
 139                reg = d->chip->wake_base +
 140                        (i * map->reg_stride * d->irq_reg_stride);
 141                if (d->wake_buf) {
 142                        if (d->chip->wake_invert)
 143                                ret = regmap_irq_update_bits(d, reg,
 144                                                         d->mask_buf_def[i],
 145                                                         ~d->wake_buf[i]);
 146                        else
 147                                ret = regmap_irq_update_bits(d, reg,
 148                                                         d->mask_buf_def[i],
 149                                                         d->wake_buf[i]);
 150                        if (ret != 0)
 151                                dev_err(d->map->dev,
 152                                        "Failed to sync wakes in %x: %d\n",
 153                                        reg, ret);
 154                }
 155
 156                if (!d->chip->init_ack_masked)
 157                        continue;
 158                /*
 159                 * Ack all the masked interrupts unconditionally,
 160                 * OR if there is masked interrupt which hasn't been Acked,
 161                 * it'll be ignored in irq handler, then may introduce irq storm
 162                 */
 163                if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
 164                        reg = d->chip->ack_base +
 165                                (i * map->reg_stride * d->irq_reg_stride);
 166                        /* some chips ack by write 0 */
 167                        if (d->chip->ack_invert)
 168                                ret = regmap_write(map, reg, ~d->mask_buf[i]);
 169                        else
 170                                ret = regmap_write(map, reg, d->mask_buf[i]);
 171                        if (ret != 0)
 172                                dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
 173                                        reg, ret);
 174                }
 175        }
 176
 177        /* Don't update the type bits if we're using mask bits for irq type. */
 178        if (!d->chip->type_in_mask) {
 179                for (i = 0; i < d->chip->num_type_reg; i++) {
 180                        if (!d->type_buf_def[i])
 181                                continue;
 182                        reg = d->chip->type_base +
 183                                (i * map->reg_stride * d->type_reg_stride);
 184                        if (d->chip->type_invert)
 185                                ret = regmap_irq_update_bits(d, reg,
 186                                        d->type_buf_def[i], ~d->type_buf[i]);
 187                        else
 188                                ret = regmap_irq_update_bits(d, reg,
 189                                        d->type_buf_def[i], d->type_buf[i]);
 190                        if (ret != 0)
 191                                dev_err(d->map->dev, "Failed to sync type in %x\n",
 192                                        reg);
 193                }
 194        }
 195
 196        if (d->chip->runtime_pm)
 197                pm_runtime_put(map->dev);
 198
 199        /* If we've changed our wakeup count propagate it to the parent */
 200        if (d->wake_count < 0)
 201                for (i = d->wake_count; i < 0; i++)
 202                        irq_set_irq_wake(d->irq, 0);
 203        else if (d->wake_count > 0)
 204                for (i = 0; i < d->wake_count; i++)
 205                        irq_set_irq_wake(d->irq, 1);
 206
 207        d->wake_count = 0;
 208
 209        mutex_unlock(&d->lock);
 210}
 211
 212static void regmap_irq_enable(struct irq_data *data)
 213{
 214        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 215        struct regmap *map = d->map;
 216        const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 217        unsigned int mask, type;
 218
 219        type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
 220
 221        /*
 222         * The type_in_mask flag means that the underlying hardware uses
 223         * separate mask bits for rising and falling edge interrupts, but
 224         * we want to make them into a single virtual interrupt with
 225         * configurable edge.
 226         *
 227         * If the interrupt we're enabling defines the falling or rising
 228         * masks then instead of using the regular mask bits for this
 229         * interrupt, use the value previously written to the type buffer
 230         * at the corresponding offset in regmap_irq_set_type().
 231         */
 232        if (d->chip->type_in_mask && type)
 233                mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
 234        else
 235                mask = irq_data->mask;
 236
 237        if (d->chip->clear_on_unmask)
 238                d->clear_status = true;
 239
 240        d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
 241}
 242
 243static void regmap_irq_disable(struct irq_data *data)
 244{
 245        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 246        struct regmap *map = d->map;
 247        const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 248
 249        d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
 250}
 251
 252static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
 253{
 254        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 255        struct regmap *map = d->map;
 256        const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 257        int reg;
 258        const struct regmap_irq_type *t = &irq_data->type;
 259
 260        if ((t->types_supported & type) != type)
 261                return 0;
 262
 263        reg = t->type_reg_offset / map->reg_stride;
 264
 265        if (t->type_reg_mask)
 266                d->type_buf[reg] &= ~t->type_reg_mask;
 267        else
 268                d->type_buf[reg] &= ~(t->type_falling_val |
 269                                      t->type_rising_val |
 270                                      t->type_level_low_val |
 271                                      t->type_level_high_val);
 272        switch (type) {
 273        case IRQ_TYPE_EDGE_FALLING:
 274                d->type_buf[reg] |= t->type_falling_val;
 275                break;
 276
 277        case IRQ_TYPE_EDGE_RISING:
 278                d->type_buf[reg] |= t->type_rising_val;
 279                break;
 280
 281        case IRQ_TYPE_EDGE_BOTH:
 282                d->type_buf[reg] |= (t->type_falling_val |
 283                                        t->type_rising_val);
 284                break;
 285
 286        case IRQ_TYPE_LEVEL_HIGH:
 287                d->type_buf[reg] |= t->type_level_high_val;
 288                break;
 289
 290        case IRQ_TYPE_LEVEL_LOW:
 291                d->type_buf[reg] |= t->type_level_low_val;
 292                break;
 293        default:
 294                return -EINVAL;
 295        }
 296        return 0;
 297}
 298
 299static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
 300{
 301        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 302        struct regmap *map = d->map;
 303        const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 304
 305        if (on) {
 306                if (d->wake_buf)
 307                        d->wake_buf[irq_data->reg_offset / map->reg_stride]
 308                                &= ~irq_data->mask;
 309                d->wake_count++;
 310        } else {
 311                if (d->wake_buf)
 312                        d->wake_buf[irq_data->reg_offset / map->reg_stride]
 313                                |= irq_data->mask;
 314                d->wake_count--;
 315        }
 316
 317        return 0;
 318}
 319
 320static const struct irq_chip regmap_irq_chip = {
 321        .irq_bus_lock           = regmap_irq_lock,
 322        .irq_bus_sync_unlock    = regmap_irq_sync_unlock,
 323        .irq_disable            = regmap_irq_disable,
 324        .irq_enable             = regmap_irq_enable,
 325        .irq_set_type           = regmap_irq_set_type,
 326        .irq_set_wake           = regmap_irq_set_wake,
 327};
 328
 329static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
 330                                           unsigned int b)
 331{
 332        const struct regmap_irq_chip *chip = data->chip;
 333        struct regmap *map = data->map;
 334        struct regmap_irq_sub_irq_map *subreg;
 335        int i, ret = 0;
 336
 337        if (!chip->sub_reg_offsets) {
 338                /* Assume linear mapping */
 339                ret = regmap_read(map, chip->status_base +
 340                                  (b * map->reg_stride * data->irq_reg_stride),
 341                                   &data->status_buf[b]);
 342        } else {
 343                subreg = &chip->sub_reg_offsets[b];
 344                for (i = 0; i < subreg->num_regs; i++) {
 345                        unsigned int offset = subreg->offset[i];
 346
 347                        ret = regmap_read(map, chip->status_base + offset,
 348                                          &data->status_buf[offset]);
 349                        if (ret)
 350                                break;
 351                }
 352        }
 353        return ret;
 354}
 355
 356static irqreturn_t regmap_irq_thread(int irq, void *d)
 357{
 358        struct regmap_irq_chip_data *data = d;
 359        const struct regmap_irq_chip *chip = data->chip;
 360        struct regmap *map = data->map;
 361        int ret, i;
 362        bool handled = false;
 363        u32 reg;
 364
 365        if (chip->handle_pre_irq)
 366                chip->handle_pre_irq(chip->irq_drv_data);
 367
 368        if (chip->runtime_pm) {
 369                ret = pm_runtime_get_sync(map->dev);
 370                if (ret < 0) {
 371                        dev_err(map->dev, "IRQ thread failed to resume: %d\n",
 372                                ret);
 373                        pm_runtime_put(map->dev);
 374                        goto exit;
 375                }
 376        }
 377
 378        /*
 379         * Read only registers with active IRQs if the chip has 'main status
 380         * register'. Else read in the statuses, using a single bulk read if
 381         * possible in order to reduce the I/O overheads.
 382         */
 383
 384        if (chip->num_main_regs) {
 385                unsigned int max_main_bits;
 386                unsigned long size;
 387
 388                size = chip->num_regs * sizeof(unsigned int);
 389
 390                max_main_bits = (chip->num_main_status_bits) ?
 391                                 chip->num_main_status_bits : chip->num_regs;
 392                /* Clear the status buf as we don't read all status regs */
 393                memset(data->status_buf, 0, size);
 394
 395                /* We could support bulk read for main status registers
 396                 * but I don't expect to see devices with really many main
 397                 * status registers so let's only support single reads for the
 398                 * sake of simplicity. and add bulk reads only if needed
 399                 */
 400                for (i = 0; i < chip->num_main_regs; i++) {
 401                        ret = regmap_read(map, chip->main_status +
 402                                  (i * map->reg_stride
 403                                   * data->irq_reg_stride),
 404                                  &data->main_status_buf[i]);
 405                        if (ret) {
 406                                dev_err(map->dev,
 407                                        "Failed to read IRQ status %d\n",
 408                                        ret);
 409                                goto exit;
 410                        }
 411                }
 412
 413                /* Read sub registers with active IRQs */
 414                for (i = 0; i < chip->num_main_regs; i++) {
 415                        unsigned int b;
 416                        const unsigned long mreg = data->main_status_buf[i];
 417
 418                        for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
 419                                if (i * map->format.val_bytes * 8 + b >
 420                                    max_main_bits)
 421                                        break;
 422                                ret = read_sub_irq_data(data, b);
 423
 424                                if (ret != 0) {
 425                                        dev_err(map->dev,
 426                                                "Failed to read IRQ status %d\n",
 427                                                ret);
 428                                        if (chip->runtime_pm)
 429                                                pm_runtime_put(map->dev);
 430                                        goto exit;
 431                                }
 432                        }
 433
 434                }
 435        } else if (!map->use_single_read && map->reg_stride == 1 &&
 436                   data->irq_reg_stride == 1) {
 437
 438                u8 *buf8 = data->status_reg_buf;
 439                u16 *buf16 = data->status_reg_buf;
 440                u32 *buf32 = data->status_reg_buf;
 441
 442                BUG_ON(!data->status_reg_buf);
 443
 444                ret = regmap_bulk_read(map, chip->status_base,
 445                                       data->status_reg_buf,
 446                                       chip->num_regs);
 447                if (ret != 0) {
 448                        dev_err(map->dev, "Failed to read IRQ status: %d\n",
 449                                ret);
 450                        goto exit;
 451                }
 452
 453                for (i = 0; i < data->chip->num_regs; i++) {
 454                        switch (map->format.val_bytes) {
 455                        case 1:
 456                                data->status_buf[i] = buf8[i];
 457                                break;
 458                        case 2:
 459                                data->status_buf[i] = buf16[i];
 460                                break;
 461                        case 4:
 462                                data->status_buf[i] = buf32[i];
 463                                break;
 464                        default:
 465                                BUG();
 466                                goto exit;
 467                        }
 468                }
 469
 470        } else {
 471                for (i = 0; i < data->chip->num_regs; i++) {
 472                        ret = regmap_read(map, chip->status_base +
 473                                          (i * map->reg_stride
 474                                           * data->irq_reg_stride),
 475                                          &data->status_buf[i]);
 476
 477                        if (ret != 0) {
 478                                dev_err(map->dev,
 479                                        "Failed to read IRQ status: %d\n",
 480                                        ret);
 481                                if (chip->runtime_pm)
 482                                        pm_runtime_put(map->dev);
 483                                goto exit;
 484                        }
 485                }
 486        }
 487
 488        /*
 489         * Ignore masked IRQs and ack if we need to; we ack early so
 490         * there is no race between handling and acknowleding the
 491         * interrupt.  We assume that typically few of the interrupts
 492         * will fire simultaneously so don't worry about overhead from
 493         * doing a write per register.
 494         */
 495        for (i = 0; i < data->chip->num_regs; i++) {
 496                data->status_buf[i] &= ~data->mask_buf[i];
 497
 498                if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 499                        reg = chip->ack_base +
 500                                (i * map->reg_stride * data->irq_reg_stride);
 501                        ret = regmap_write(map, reg, data->status_buf[i]);
 502                        if (ret != 0)
 503                                dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 504                                        reg, ret);
 505                }
 506        }
 507
 508        for (i = 0; i < chip->num_irqs; i++) {
 509                if (data->status_buf[chip->irqs[i].reg_offset /
 510                                     map->reg_stride] & chip->irqs[i].mask) {
 511                        handle_nested_irq(irq_find_mapping(data->domain, i));
 512                        handled = true;
 513                }
 514        }
 515
 516        if (chip->runtime_pm)
 517                pm_runtime_put(map->dev);
 518
 519exit:
 520        if (chip->handle_post_irq)
 521                chip->handle_post_irq(chip->irq_drv_data);
 522
 523        if (handled)
 524                return IRQ_HANDLED;
 525        else
 526                return IRQ_NONE;
 527}
 528
 529static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
 530                          irq_hw_number_t hw)
 531{
 532        struct regmap_irq_chip_data *data = h->host_data;
 533
 534        irq_set_chip_data(virq, data);
 535        irq_set_chip(virq, &data->irq_chip);
 536        irq_set_nested_thread(virq, 1);
 537        irq_set_parent(virq, data->irq);
 538        irq_set_noprobe(virq);
 539
 540        return 0;
 541}
 542
 543static const struct irq_domain_ops regmap_domain_ops = {
 544        .map    = regmap_irq_map,
 545        .xlate  = irq_domain_xlate_onetwocell,
 546};
 547
 548/**
 549 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
 550 *
 551 * @map: The regmap for the device.
 552 * @irq: The IRQ the device uses to signal interrupts.
 553 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 554 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 555 * @chip: Configuration for the interrupt controller.
 556 * @data: Runtime data structure for the controller, allocated on success.
 557 *
 558 * Returns 0 on success or an errno on failure.
 559 *
 560 * In order for this to be efficient the chip really should use a
 561 * register cache.  The chip driver is responsible for restoring the
 562 * register values used by the IRQ controller over suspend and resume.
 563 */
 564int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
 565                        int irq_base, const struct regmap_irq_chip *chip,
 566                        struct regmap_irq_chip_data **data)
 567{
 568        struct regmap_irq_chip_data *d;
 569        int i;
 570        int ret = -ENOMEM;
 571        int num_type_reg;
 572        u32 reg;
 573        u32 unmask_offset;
 574
 575        if (chip->num_regs <= 0)
 576                return -EINVAL;
 577
 578        if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
 579                return -EINVAL;
 580
 581        for (i = 0; i < chip->num_irqs; i++) {
 582                if (chip->irqs[i].reg_offset % map->reg_stride)
 583                        return -EINVAL;
 584                if (chip->irqs[i].reg_offset / map->reg_stride >=
 585                    chip->num_regs)
 586                        return -EINVAL;
 587        }
 588
 589        if (irq_base) {
 590                irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
 591                if (irq_base < 0) {
 592                        dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
 593                                 irq_base);
 594                        return irq_base;
 595                }
 596        }
 597
 598        d = kzalloc(sizeof(*d), GFP_KERNEL);
 599        if (!d)
 600                return -ENOMEM;
 601
 602        if (chip->num_main_regs) {
 603                d->main_status_buf = kcalloc(chip->num_main_regs,
 604                                             sizeof(unsigned int),
 605                                             GFP_KERNEL);
 606
 607                if (!d->main_status_buf)
 608                        goto err_alloc;
 609        }
 610
 611        d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
 612                                GFP_KERNEL);
 613        if (!d->status_buf)
 614                goto err_alloc;
 615
 616        d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
 617                              GFP_KERNEL);
 618        if (!d->mask_buf)
 619                goto err_alloc;
 620
 621        d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
 622                                  GFP_KERNEL);
 623        if (!d->mask_buf_def)
 624                goto err_alloc;
 625
 626        if (chip->wake_base) {
 627                d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
 628                                      GFP_KERNEL);
 629                if (!d->wake_buf)
 630                        goto err_alloc;
 631        }
 632
 633        num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
 634        if (num_type_reg) {
 635                d->type_buf_def = kcalloc(num_type_reg,
 636                                          sizeof(unsigned int), GFP_KERNEL);
 637                if (!d->type_buf_def)
 638                        goto err_alloc;
 639
 640                d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
 641                                      GFP_KERNEL);
 642                if (!d->type_buf)
 643                        goto err_alloc;
 644        }
 645
 646        d->irq_chip = regmap_irq_chip;
 647        d->irq_chip.name = chip->name;
 648        d->irq = irq;
 649        d->map = map;
 650        d->chip = chip;
 651        d->irq_base = irq_base;
 652
 653        if (chip->irq_reg_stride)
 654                d->irq_reg_stride = chip->irq_reg_stride;
 655        else
 656                d->irq_reg_stride = 1;
 657
 658        if (chip->type_reg_stride)
 659                d->type_reg_stride = chip->type_reg_stride;
 660        else
 661                d->type_reg_stride = 1;
 662
 663        if (!map->use_single_read && map->reg_stride == 1 &&
 664            d->irq_reg_stride == 1) {
 665                d->status_reg_buf = kmalloc_array(chip->num_regs,
 666                                                  map->format.val_bytes,
 667                                                  GFP_KERNEL);
 668                if (!d->status_reg_buf)
 669                        goto err_alloc;
 670        }
 671
 672        mutex_init(&d->lock);
 673
 674        for (i = 0; i < chip->num_irqs; i++)
 675                d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
 676                        |= chip->irqs[i].mask;
 677
 678        /* Mask all the interrupts by default */
 679        for (i = 0; i < chip->num_regs; i++) {
 680                d->mask_buf[i] = d->mask_buf_def[i];
 681                if (!chip->mask_base)
 682                        continue;
 683
 684                reg = chip->mask_base +
 685                        (i * map->reg_stride * d->irq_reg_stride);
 686                if (chip->mask_invert)
 687                        ret = regmap_irq_update_bits(d, reg,
 688                                         d->mask_buf[i], ~d->mask_buf[i]);
 689                else if (d->chip->unmask_base) {
 690                        unmask_offset = d->chip->unmask_base -
 691                                        d->chip->mask_base;
 692                        ret = regmap_irq_update_bits(d,
 693                                        reg + unmask_offset,
 694                                        d->mask_buf[i],
 695                                        d->mask_buf[i]);
 696                } else
 697                        ret = regmap_irq_update_bits(d, reg,
 698                                         d->mask_buf[i], d->mask_buf[i]);
 699                if (ret != 0) {
 700                        dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 701                                reg, ret);
 702                        goto err_alloc;
 703                }
 704
 705                if (!chip->init_ack_masked)
 706                        continue;
 707
 708                /* Ack masked but set interrupts */
 709                reg = chip->status_base +
 710                        (i * map->reg_stride * d->irq_reg_stride);
 711                ret = regmap_read(map, reg, &d->status_buf[i]);
 712                if (ret != 0) {
 713                        dev_err(map->dev, "Failed to read IRQ status: %d\n",
 714                                ret);
 715                        goto err_alloc;
 716                }
 717
 718                if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 719                        reg = chip->ack_base +
 720                                (i * map->reg_stride * d->irq_reg_stride);
 721                        if (chip->ack_invert)
 722                                ret = regmap_write(map, reg,
 723                                        ~(d->status_buf[i] & d->mask_buf[i]));
 724                        else
 725                                ret = regmap_write(map, reg,
 726                                        d->status_buf[i] & d->mask_buf[i]);
 727                        if (ret != 0) {
 728                                dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 729                                        reg, ret);
 730                                goto err_alloc;
 731                        }
 732                }
 733        }
 734
 735        /* Wake is disabled by default */
 736        if (d->wake_buf) {
 737                for (i = 0; i < chip->num_regs; i++) {
 738                        d->wake_buf[i] = d->mask_buf_def[i];
 739                        reg = chip->wake_base +
 740                                (i * map->reg_stride * d->irq_reg_stride);
 741
 742                        if (chip->wake_invert)
 743                                ret = regmap_irq_update_bits(d, reg,
 744                                                         d->mask_buf_def[i],
 745                                                         0);
 746                        else
 747                                ret = regmap_irq_update_bits(d, reg,
 748                                                         d->mask_buf_def[i],
 749                                                         d->wake_buf[i]);
 750                        if (ret != 0) {
 751                                dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 752                                        reg, ret);
 753                                goto err_alloc;
 754                        }
 755                }
 756        }
 757
 758        if (chip->num_type_reg && !chip->type_in_mask) {
 759                for (i = 0; i < chip->num_type_reg; ++i) {
 760                        reg = chip->type_base +
 761                                (i * map->reg_stride * d->type_reg_stride);
 762
 763                        ret = regmap_read(map, reg, &d->type_buf_def[i]);
 764
 765                        if (d->chip->type_invert)
 766                                d->type_buf_def[i] = ~d->type_buf_def[i];
 767
 768                        if (ret) {
 769                                dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
 770                                        reg, ret);
 771                                goto err_alloc;
 772                        }
 773                }
 774        }
 775
 776        if (irq_base)
 777                d->domain = irq_domain_add_legacy(map->dev->of_node,
 778                                                  chip->num_irqs, irq_base, 0,
 779                                                  &regmap_domain_ops, d);
 780        else
 781                d->domain = irq_domain_add_linear(map->dev->of_node,
 782                                                  chip->num_irqs,
 783                                                  &regmap_domain_ops, d);
 784        if (!d->domain) {
 785                dev_err(map->dev, "Failed to create IRQ domain\n");
 786                ret = -ENOMEM;
 787                goto err_alloc;
 788        }
 789
 790        ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
 791                                   irq_flags | IRQF_ONESHOT,
 792                                   chip->name, d);
 793        if (ret != 0) {
 794                dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
 795                        irq, chip->name, ret);
 796                goto err_domain;
 797        }
 798
 799        *data = d;
 800
 801        return 0;
 802
 803err_domain:
 804        /* Should really dispose of the domain but... */
 805err_alloc:
 806        kfree(d->type_buf);
 807        kfree(d->type_buf_def);
 808        kfree(d->wake_buf);
 809        kfree(d->mask_buf_def);
 810        kfree(d->mask_buf);
 811        kfree(d->status_buf);
 812        kfree(d->status_reg_buf);
 813        kfree(d);
 814        return ret;
 815}
 816EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
 817
 818/**
 819 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
 820 *
 821 * @irq: Primary IRQ for the device
 822 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
 823 *
 824 * This function also disposes of all mapped IRQs on the chip.
 825 */
 826void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
 827{
 828        unsigned int virq;
 829        int hwirq;
 830
 831        if (!d)
 832                return;
 833
 834        free_irq(irq, d);
 835
 836        /* Dispose all virtual irq from irq domain before removing it */
 837        for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
 838                /* Ignore hwirq if holes in the IRQ list */
 839                if (!d->chip->irqs[hwirq].mask)
 840                        continue;
 841
 842                /*
 843                 * Find the virtual irq of hwirq on chip and if it is
 844                 * there then dispose it
 845                 */
 846                virq = irq_find_mapping(d->domain, hwirq);
 847                if (virq)
 848                        irq_dispose_mapping(virq);
 849        }
 850
 851        irq_domain_remove(d->domain);
 852        kfree(d->type_buf);
 853        kfree(d->type_buf_def);
 854        kfree(d->wake_buf);
 855        kfree(d->mask_buf_def);
 856        kfree(d->mask_buf);
 857        kfree(d->status_reg_buf);
 858        kfree(d->status_buf);
 859        kfree(d);
 860}
 861EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
 862
 863static void devm_regmap_irq_chip_release(struct device *dev, void *res)
 864{
 865        struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
 866
 867        regmap_del_irq_chip(d->irq, d);
 868}
 869
 870static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
 871
 872{
 873        struct regmap_irq_chip_data **r = res;
 874
 875        if (!r || !*r) {
 876                WARN_ON(!r || !*r);
 877                return 0;
 878        }
 879        return *r == data;
 880}
 881
 882/**
 883 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
 884 *
 885 * @dev: The device pointer on which irq_chip belongs to.
 886 * @map: The regmap for the device.
 887 * @irq: The IRQ the device uses to signal interrupts
 888 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 889 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 890 * @chip: Configuration for the interrupt controller.
 891 * @data: Runtime data structure for the controller, allocated on success
 892 *
 893 * Returns 0 on success or an errno on failure.
 894 *
 895 * The &regmap_irq_chip_data will be automatically released when the device is
 896 * unbound.
 897 */
 898int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
 899                             int irq_flags, int irq_base,
 900                             const struct regmap_irq_chip *chip,
 901                             struct regmap_irq_chip_data **data)
 902{
 903        struct regmap_irq_chip_data **ptr, *d;
 904        int ret;
 905
 906        ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
 907                           GFP_KERNEL);
 908        if (!ptr)
 909                return -ENOMEM;
 910
 911        ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
 912                                  chip, &d);
 913        if (ret < 0) {
 914                devres_free(ptr);
 915                return ret;
 916        }
 917
 918        *ptr = d;
 919        devres_add(dev, ptr);
 920        *data = d;
 921        return 0;
 922}
 923EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
 924
 925/**
 926 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
 927 *
 928 * @dev: Device for which which resource was allocated.
 929 * @irq: Primary IRQ for the device.
 930 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
 931 *
 932 * A resource managed version of regmap_del_irq_chip().
 933 */
 934void devm_regmap_del_irq_chip(struct device *dev, int irq,
 935                              struct regmap_irq_chip_data *data)
 936{
 937        int rc;
 938
 939        WARN_ON(irq != data->irq);
 940        rc = devres_release(dev, devm_regmap_irq_chip_release,
 941                            devm_regmap_irq_chip_match, data);
 942
 943        if (rc != 0)
 944                WARN_ON(rc);
 945}
 946EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
 947
 948/**
 949 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
 950 *
 951 * @data: regmap irq controller to operate on.
 952 *
 953 * Useful for drivers to request their own IRQs.
 954 */
 955int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
 956{
 957        WARN_ON(!data->irq_base);
 958        return data->irq_base;
 959}
 960EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
 961
 962/**
 963 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
 964 *
 965 * @data: regmap irq controller to operate on.
 966 * @irq: index of the interrupt requested in the chip IRQs.
 967 *
 968 * Useful for drivers to request their own IRQs.
 969 */
 970int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
 971{
 972        /* Handle holes in the IRQ list */
 973        if (!data->chip->irqs[irq].mask)
 974                return -EINVAL;
 975
 976        return irq_create_mapping(data->domain, irq);
 977}
 978EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
 979
 980/**
 981 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
 982 *
 983 * @data: regmap_irq controller to operate on.
 984 *
 985 * Useful for drivers to request their own IRQs and for integration
 986 * with subsystems.  For ease of integration NULL is accepted as a
 987 * domain, allowing devices to just call this even if no domain is
 988 * allocated.
 989 */
 990struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
 991{
 992        if (data)
 993                return data->domain;
 994        else
 995                return NULL;
 996}
 997EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
 998