linux/drivers/block/loop.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/block/loop.c
   3 *
   4 *  Written by Theodore Ts'o, 3/29/93
   5 *
   6 * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
   7 * permitted under the GNU General Public License.
   8 *
   9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
  10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
  11 *
  12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
  13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
  14 *
  15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
  16 *
  17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
  18 *
  19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
  20 *
  21 * Loadable modules and other fixes by AK, 1998
  22 *
  23 * Make real block number available to downstream transfer functions, enables
  24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
  25 * Reed H. Petty, rhp@draper.net
  26 *
  27 * Maximum number of loop devices now dynamic via max_loop module parameter.
  28 * Russell Kroll <rkroll@exploits.org> 19990701
  29 *
  30 * Maximum number of loop devices when compiled-in now selectable by passing
  31 * max_loop=<1-255> to the kernel on boot.
  32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
  33 *
  34 * Completely rewrite request handling to be make_request_fn style and
  35 * non blocking, pushing work to a helper thread. Lots of fixes from
  36 * Al Viro too.
  37 * Jens Axboe <axboe@suse.de>, Nov 2000
  38 *
  39 * Support up to 256 loop devices
  40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
  41 *
  42 * Support for falling back on the write file operation when the address space
  43 * operations write_begin is not available on the backing filesystem.
  44 * Anton Altaparmakov, 16 Feb 2005
  45 *
  46 * Still To Fix:
  47 * - Advisory locking is ignored here.
  48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
  49 *
  50 */
  51
  52#include <linux/module.h>
  53#include <linux/moduleparam.h>
  54#include <linux/sched.h>
  55#include <linux/fs.h>
  56#include <linux/file.h>
  57#include <linux/stat.h>
  58#include <linux/errno.h>
  59#include <linux/major.h>
  60#include <linux/wait.h>
  61#include <linux/blkdev.h>
  62#include <linux/blkpg.h>
  63#include <linux/init.h>
  64#include <linux/swap.h>
  65#include <linux/slab.h>
  66#include <linux/compat.h>
  67#include <linux/suspend.h>
  68#include <linux/freezer.h>
  69#include <linux/mutex.h>
  70#include <linux/writeback.h>
  71#include <linux/completion.h>
  72#include <linux/highmem.h>
  73#include <linux/kthread.h>
  74#include <linux/splice.h>
  75#include <linux/sysfs.h>
  76#include <linux/miscdevice.h>
  77#include <linux/falloc.h>
  78#include <linux/uio.h>
  79#include <linux/ioprio.h>
  80#include <linux/blk-cgroup.h>
  81
  82#include "loop.h"
  83
  84#include <linux/uaccess.h>
  85
  86static DEFINE_IDR(loop_index_idr);
  87static DEFINE_MUTEX(loop_ctl_mutex);
  88
  89static int max_part;
  90static int part_shift;
  91
  92static int transfer_xor(struct loop_device *lo, int cmd,
  93                        struct page *raw_page, unsigned raw_off,
  94                        struct page *loop_page, unsigned loop_off,
  95                        int size, sector_t real_block)
  96{
  97        char *raw_buf = kmap_atomic(raw_page) + raw_off;
  98        char *loop_buf = kmap_atomic(loop_page) + loop_off;
  99        char *in, *out, *key;
 100        int i, keysize;
 101
 102        if (cmd == READ) {
 103                in = raw_buf;
 104                out = loop_buf;
 105        } else {
 106                in = loop_buf;
 107                out = raw_buf;
 108        }
 109
 110        key = lo->lo_encrypt_key;
 111        keysize = lo->lo_encrypt_key_size;
 112        for (i = 0; i < size; i++)
 113                *out++ = *in++ ^ key[(i & 511) % keysize];
 114
 115        kunmap_atomic(loop_buf);
 116        kunmap_atomic(raw_buf);
 117        cond_resched();
 118        return 0;
 119}
 120
 121static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
 122{
 123        if (unlikely(info->lo_encrypt_key_size <= 0))
 124                return -EINVAL;
 125        return 0;
 126}
 127
 128static struct loop_func_table none_funcs = {
 129        .number = LO_CRYPT_NONE,
 130}; 
 131
 132static struct loop_func_table xor_funcs = {
 133        .number = LO_CRYPT_XOR,
 134        .transfer = transfer_xor,
 135        .init = xor_init
 136}; 
 137
 138/* xfer_funcs[0] is special - its release function is never called */
 139static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
 140        &none_funcs,
 141        &xor_funcs
 142};
 143
 144static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
 145{
 146        loff_t loopsize;
 147
 148        /* Compute loopsize in bytes */
 149        loopsize = i_size_read(file->f_mapping->host);
 150        if (offset > 0)
 151                loopsize -= offset;
 152        /* offset is beyond i_size, weird but possible */
 153        if (loopsize < 0)
 154                return 0;
 155
 156        if (sizelimit > 0 && sizelimit < loopsize)
 157                loopsize = sizelimit;
 158        /*
 159         * Unfortunately, if we want to do I/O on the device,
 160         * the number of 512-byte sectors has to fit into a sector_t.
 161         */
 162        return loopsize >> 9;
 163}
 164
 165static loff_t get_loop_size(struct loop_device *lo, struct file *file)
 166{
 167        return get_size(lo->lo_offset, lo->lo_sizelimit, file);
 168}
 169
 170static void __loop_update_dio(struct loop_device *lo, bool dio)
 171{
 172        struct file *file = lo->lo_backing_file;
 173        struct address_space *mapping = file->f_mapping;
 174        struct inode *inode = mapping->host;
 175        unsigned short sb_bsize = 0;
 176        unsigned dio_align = 0;
 177        bool use_dio;
 178
 179        if (inode->i_sb->s_bdev) {
 180                sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
 181                dio_align = sb_bsize - 1;
 182        }
 183
 184        /*
 185         * We support direct I/O only if lo_offset is aligned with the
 186         * logical I/O size of backing device, and the logical block
 187         * size of loop is bigger than the backing device's and the loop
 188         * needn't transform transfer.
 189         *
 190         * TODO: the above condition may be loosed in the future, and
 191         * direct I/O may be switched runtime at that time because most
 192         * of requests in sane applications should be PAGE_SIZE aligned
 193         */
 194        if (dio) {
 195                if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
 196                                !(lo->lo_offset & dio_align) &&
 197                                mapping->a_ops->direct_IO &&
 198                                !lo->transfer)
 199                        use_dio = true;
 200                else
 201                        use_dio = false;
 202        } else {
 203                use_dio = false;
 204        }
 205
 206        if (lo->use_dio == use_dio)
 207                return;
 208
 209        /* flush dirty pages before changing direct IO */
 210        vfs_fsync(file, 0);
 211
 212        /*
 213         * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
 214         * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
 215         * will get updated by ioctl(LOOP_GET_STATUS)
 216         */
 217        blk_mq_freeze_queue(lo->lo_queue);
 218        lo->use_dio = use_dio;
 219        if (use_dio) {
 220                blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
 221                lo->lo_flags |= LO_FLAGS_DIRECT_IO;
 222        } else {
 223                blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
 224                lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
 225        }
 226        blk_mq_unfreeze_queue(lo->lo_queue);
 227}
 228
 229static int
 230figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
 231{
 232        loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
 233        sector_t x = (sector_t)size;
 234        struct block_device *bdev = lo->lo_device;
 235
 236        if (unlikely((loff_t)x != size))
 237                return -EFBIG;
 238        if (lo->lo_offset != offset)
 239                lo->lo_offset = offset;
 240        if (lo->lo_sizelimit != sizelimit)
 241                lo->lo_sizelimit = sizelimit;
 242        set_capacity(lo->lo_disk, x);
 243        bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
 244        /* let user-space know about the new size */
 245        kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
 246        return 0;
 247}
 248
 249static inline int
 250lo_do_transfer(struct loop_device *lo, int cmd,
 251               struct page *rpage, unsigned roffs,
 252               struct page *lpage, unsigned loffs,
 253               int size, sector_t rblock)
 254{
 255        int ret;
 256
 257        ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
 258        if (likely(!ret))
 259                return 0;
 260
 261        printk_ratelimited(KERN_ERR
 262                "loop: Transfer error at byte offset %llu, length %i.\n",
 263                (unsigned long long)rblock << 9, size);
 264        return ret;
 265}
 266
 267static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
 268{
 269        struct iov_iter i;
 270        ssize_t bw;
 271
 272        iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
 273
 274        file_start_write(file);
 275        bw = vfs_iter_write(file, &i, ppos, 0);
 276        file_end_write(file);
 277
 278        if (likely(bw ==  bvec->bv_len))
 279                return 0;
 280
 281        printk_ratelimited(KERN_ERR
 282                "loop: Write error at byte offset %llu, length %i.\n",
 283                (unsigned long long)*ppos, bvec->bv_len);
 284        if (bw >= 0)
 285                bw = -EIO;
 286        return bw;
 287}
 288
 289static int lo_write_simple(struct loop_device *lo, struct request *rq,
 290                loff_t pos)
 291{
 292        struct bio_vec bvec;
 293        struct req_iterator iter;
 294        int ret = 0;
 295
 296        rq_for_each_segment(bvec, rq, iter) {
 297                ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
 298                if (ret < 0)
 299                        break;
 300                cond_resched();
 301        }
 302
 303        return ret;
 304}
 305
 306/*
 307 * This is the slow, transforming version that needs to double buffer the
 308 * data as it cannot do the transformations in place without having direct
 309 * access to the destination pages of the backing file.
 310 */
 311static int lo_write_transfer(struct loop_device *lo, struct request *rq,
 312                loff_t pos)
 313{
 314        struct bio_vec bvec, b;
 315        struct req_iterator iter;
 316        struct page *page;
 317        int ret = 0;
 318
 319        page = alloc_page(GFP_NOIO);
 320        if (unlikely(!page))
 321                return -ENOMEM;
 322
 323        rq_for_each_segment(bvec, rq, iter) {
 324                ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
 325                        bvec.bv_offset, bvec.bv_len, pos >> 9);
 326                if (unlikely(ret))
 327                        break;
 328
 329                b.bv_page = page;
 330                b.bv_offset = 0;
 331                b.bv_len = bvec.bv_len;
 332                ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
 333                if (ret < 0)
 334                        break;
 335        }
 336
 337        __free_page(page);
 338        return ret;
 339}
 340
 341static int lo_read_simple(struct loop_device *lo, struct request *rq,
 342                loff_t pos)
 343{
 344        struct bio_vec bvec;
 345        struct req_iterator iter;
 346        struct iov_iter i;
 347        ssize_t len;
 348
 349        rq_for_each_segment(bvec, rq, iter) {
 350                iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
 351                len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
 352                if (len < 0)
 353                        return len;
 354
 355                flush_dcache_page(bvec.bv_page);
 356
 357                if (len != bvec.bv_len) {
 358                        struct bio *bio;
 359
 360                        __rq_for_each_bio(bio, rq)
 361                                zero_fill_bio(bio);
 362                        break;
 363                }
 364                cond_resched();
 365        }
 366
 367        return 0;
 368}
 369
 370static int lo_read_transfer(struct loop_device *lo, struct request *rq,
 371                loff_t pos)
 372{
 373        struct bio_vec bvec, b;
 374        struct req_iterator iter;
 375        struct iov_iter i;
 376        struct page *page;
 377        ssize_t len;
 378        int ret = 0;
 379
 380        page = alloc_page(GFP_NOIO);
 381        if (unlikely(!page))
 382                return -ENOMEM;
 383
 384        rq_for_each_segment(bvec, rq, iter) {
 385                loff_t offset = pos;
 386
 387                b.bv_page = page;
 388                b.bv_offset = 0;
 389                b.bv_len = bvec.bv_len;
 390
 391                iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
 392                len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
 393                if (len < 0) {
 394                        ret = len;
 395                        goto out_free_page;
 396                }
 397
 398                ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
 399                        bvec.bv_offset, len, offset >> 9);
 400                if (ret)
 401                        goto out_free_page;
 402
 403                flush_dcache_page(bvec.bv_page);
 404
 405                if (len != bvec.bv_len) {
 406                        struct bio *bio;
 407
 408                        __rq_for_each_bio(bio, rq)
 409                                zero_fill_bio(bio);
 410                        break;
 411                }
 412        }
 413
 414        ret = 0;
 415out_free_page:
 416        __free_page(page);
 417        return ret;
 418}
 419
 420static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
 421{
 422        /*
 423         * We use punch hole to reclaim the free space used by the
 424         * image a.k.a. discard. However we do not support discard if
 425         * encryption is enabled, because it may give an attacker
 426         * useful information.
 427         */
 428        struct file *file = lo->lo_backing_file;
 429        int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
 430        int ret;
 431
 432        if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
 433                ret = -EOPNOTSUPP;
 434                goto out;
 435        }
 436
 437        ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
 438        if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
 439                ret = -EIO;
 440 out:
 441        return ret;
 442}
 443
 444static int lo_req_flush(struct loop_device *lo, struct request *rq)
 445{
 446        struct file *file = lo->lo_backing_file;
 447        int ret = vfs_fsync(file, 0);
 448        if (unlikely(ret && ret != -EINVAL))
 449                ret = -EIO;
 450
 451        return ret;
 452}
 453
 454static void lo_complete_rq(struct request *rq)
 455{
 456        struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
 457        blk_status_t ret = BLK_STS_OK;
 458
 459        if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
 460            req_op(rq) != REQ_OP_READ) {
 461                if (cmd->ret < 0)
 462                        ret = BLK_STS_IOERR;
 463                goto end_io;
 464        }
 465
 466        /*
 467         * Short READ - if we got some data, advance our request and
 468         * retry it. If we got no data, end the rest with EIO.
 469         */
 470        if (cmd->ret) {
 471                blk_update_request(rq, BLK_STS_OK, cmd->ret);
 472                cmd->ret = 0;
 473                blk_mq_requeue_request(rq, true);
 474        } else {
 475                if (cmd->use_aio) {
 476                        struct bio *bio = rq->bio;
 477
 478                        while (bio) {
 479                                zero_fill_bio(bio);
 480                                bio = bio->bi_next;
 481                        }
 482                }
 483                ret = BLK_STS_IOERR;
 484end_io:
 485                blk_mq_end_request(rq, ret);
 486        }
 487}
 488
 489static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
 490{
 491        struct request *rq = blk_mq_rq_from_pdu(cmd);
 492
 493        if (!atomic_dec_and_test(&cmd->ref))
 494                return;
 495        kfree(cmd->bvec);
 496        cmd->bvec = NULL;
 497        blk_mq_complete_request(rq);
 498}
 499
 500static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
 501{
 502        struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
 503
 504        if (cmd->css)
 505                css_put(cmd->css);
 506        cmd->ret = ret;
 507        lo_rw_aio_do_completion(cmd);
 508}
 509
 510static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
 511                     loff_t pos, bool rw)
 512{
 513        struct iov_iter iter;
 514        struct req_iterator rq_iter;
 515        struct bio_vec *bvec;
 516        struct request *rq = blk_mq_rq_from_pdu(cmd);
 517        struct bio *bio = rq->bio;
 518        struct file *file = lo->lo_backing_file;
 519        struct bio_vec tmp;
 520        unsigned int offset;
 521        int nr_bvec = 0;
 522        int ret;
 523
 524        rq_for_each_bvec(tmp, rq, rq_iter)
 525                nr_bvec++;
 526
 527        if (rq->bio != rq->biotail) {
 528
 529                bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
 530                                     GFP_NOIO);
 531                if (!bvec)
 532                        return -EIO;
 533                cmd->bvec = bvec;
 534
 535                /*
 536                 * The bios of the request may be started from the middle of
 537                 * the 'bvec' because of bio splitting, so we can't directly
 538                 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
 539                 * API will take care of all details for us.
 540                 */
 541                rq_for_each_bvec(tmp, rq, rq_iter) {
 542                        *bvec = tmp;
 543                        bvec++;
 544                }
 545                bvec = cmd->bvec;
 546                offset = 0;
 547        } else {
 548                /*
 549                 * Same here, this bio may be started from the middle of the
 550                 * 'bvec' because of bio splitting, so offset from the bvec
 551                 * must be passed to iov iterator
 552                 */
 553                offset = bio->bi_iter.bi_bvec_done;
 554                bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
 555        }
 556        atomic_set(&cmd->ref, 2);
 557
 558        iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
 559        iter.iov_offset = offset;
 560
 561        cmd->iocb.ki_pos = pos;
 562        cmd->iocb.ki_filp = file;
 563        cmd->iocb.ki_complete = lo_rw_aio_complete;
 564        cmd->iocb.ki_flags = IOCB_DIRECT;
 565        cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
 566        if (cmd->css)
 567                kthread_associate_blkcg(cmd->css);
 568
 569        if (rw == WRITE)
 570                ret = call_write_iter(file, &cmd->iocb, &iter);
 571        else
 572                ret = call_read_iter(file, &cmd->iocb, &iter);
 573
 574        lo_rw_aio_do_completion(cmd);
 575        kthread_associate_blkcg(NULL);
 576
 577        if (ret != -EIOCBQUEUED)
 578                cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
 579        return 0;
 580}
 581
 582static int do_req_filebacked(struct loop_device *lo, struct request *rq)
 583{
 584        struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
 585        loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
 586
 587        /*
 588         * lo_write_simple and lo_read_simple should have been covered
 589         * by io submit style function like lo_rw_aio(), one blocker
 590         * is that lo_read_simple() need to call flush_dcache_page after
 591         * the page is written from kernel, and it isn't easy to handle
 592         * this in io submit style function which submits all segments
 593         * of the req at one time. And direct read IO doesn't need to
 594         * run flush_dcache_page().
 595         */
 596        switch (req_op(rq)) {
 597        case REQ_OP_FLUSH:
 598                return lo_req_flush(lo, rq);
 599        case REQ_OP_DISCARD:
 600        case REQ_OP_WRITE_ZEROES:
 601                return lo_discard(lo, rq, pos);
 602        case REQ_OP_WRITE:
 603                if (lo->transfer)
 604                        return lo_write_transfer(lo, rq, pos);
 605                else if (cmd->use_aio)
 606                        return lo_rw_aio(lo, cmd, pos, WRITE);
 607                else
 608                        return lo_write_simple(lo, rq, pos);
 609        case REQ_OP_READ:
 610                if (lo->transfer)
 611                        return lo_read_transfer(lo, rq, pos);
 612                else if (cmd->use_aio)
 613                        return lo_rw_aio(lo, cmd, pos, READ);
 614                else
 615                        return lo_read_simple(lo, rq, pos);
 616        default:
 617                WARN_ON_ONCE(1);
 618                return -EIO;
 619        }
 620}
 621
 622static inline void loop_update_dio(struct loop_device *lo)
 623{
 624        __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
 625                        lo->use_dio);
 626}
 627
 628static void loop_reread_partitions(struct loop_device *lo,
 629                                   struct block_device *bdev)
 630{
 631        int rc;
 632
 633        rc = blkdev_reread_part(bdev);
 634        if (rc)
 635                pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
 636                        __func__, lo->lo_number, lo->lo_file_name, rc);
 637}
 638
 639static inline int is_loop_device(struct file *file)
 640{
 641        struct inode *i = file->f_mapping->host;
 642
 643        return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
 644}
 645
 646static int loop_validate_file(struct file *file, struct block_device *bdev)
 647{
 648        struct inode    *inode = file->f_mapping->host;
 649        struct file     *f = file;
 650
 651        /* Avoid recursion */
 652        while (is_loop_device(f)) {
 653                struct loop_device *l;
 654
 655                if (f->f_mapping->host->i_bdev == bdev)
 656                        return -EBADF;
 657
 658                l = f->f_mapping->host->i_bdev->bd_disk->private_data;
 659                if (l->lo_state != Lo_bound) {
 660                        return -EINVAL;
 661                }
 662                f = l->lo_backing_file;
 663        }
 664        if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
 665                return -EINVAL;
 666        return 0;
 667}
 668
 669/*
 670 * loop_change_fd switched the backing store of a loopback device to
 671 * a new file. This is useful for operating system installers to free up
 672 * the original file and in High Availability environments to switch to
 673 * an alternative location for the content in case of server meltdown.
 674 * This can only work if the loop device is used read-only, and if the
 675 * new backing store is the same size and type as the old backing store.
 676 */
 677static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
 678                          unsigned int arg)
 679{
 680        struct file     *file = NULL, *old_file;
 681        int             error;
 682        bool            partscan;
 683
 684        error = mutex_lock_killable(&loop_ctl_mutex);
 685        if (error)
 686                return error;
 687        error = -ENXIO;
 688        if (lo->lo_state != Lo_bound)
 689                goto out_err;
 690
 691        /* the loop device has to be read-only */
 692        error = -EINVAL;
 693        if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
 694                goto out_err;
 695
 696        error = -EBADF;
 697        file = fget(arg);
 698        if (!file)
 699                goto out_err;
 700
 701        error = loop_validate_file(file, bdev);
 702        if (error)
 703                goto out_err;
 704
 705        old_file = lo->lo_backing_file;
 706
 707        error = -EINVAL;
 708
 709        /* size of the new backing store needs to be the same */
 710        if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
 711                goto out_err;
 712
 713        /* and ... switch */
 714        blk_mq_freeze_queue(lo->lo_queue);
 715        mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
 716        lo->lo_backing_file = file;
 717        lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
 718        mapping_set_gfp_mask(file->f_mapping,
 719                             lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
 720        loop_update_dio(lo);
 721        blk_mq_unfreeze_queue(lo->lo_queue);
 722        partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
 723        mutex_unlock(&loop_ctl_mutex);
 724        /*
 725         * We must drop file reference outside of loop_ctl_mutex as dropping
 726         * the file ref can take bd_mutex which creates circular locking
 727         * dependency.
 728         */
 729        fput(old_file);
 730        if (partscan)
 731                loop_reread_partitions(lo, bdev);
 732        return 0;
 733
 734out_err:
 735        mutex_unlock(&loop_ctl_mutex);
 736        if (file)
 737                fput(file);
 738        return error;
 739}
 740
 741/* loop sysfs attributes */
 742
 743static ssize_t loop_attr_show(struct device *dev, char *page,
 744                              ssize_t (*callback)(struct loop_device *, char *))
 745{
 746        struct gendisk *disk = dev_to_disk(dev);
 747        struct loop_device *lo = disk->private_data;
 748
 749        return callback(lo, page);
 750}
 751
 752#define LOOP_ATTR_RO(_name)                                             \
 753static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);  \
 754static ssize_t loop_attr_do_show_##_name(struct device *d,              \
 755                                struct device_attribute *attr, char *b) \
 756{                                                                       \
 757        return loop_attr_show(d, b, loop_attr_##_name##_show);          \
 758}                                                                       \
 759static struct device_attribute loop_attr_##_name =                      \
 760        __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
 761
 762static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
 763{
 764        ssize_t ret;
 765        char *p = NULL;
 766
 767        spin_lock_irq(&lo->lo_lock);
 768        if (lo->lo_backing_file)
 769                p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
 770        spin_unlock_irq(&lo->lo_lock);
 771
 772        if (IS_ERR_OR_NULL(p))
 773                ret = PTR_ERR(p);
 774        else {
 775                ret = strlen(p);
 776                memmove(buf, p, ret);
 777                buf[ret++] = '\n';
 778                buf[ret] = 0;
 779        }
 780
 781        return ret;
 782}
 783
 784static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
 785{
 786        return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
 787}
 788
 789static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
 790{
 791        return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
 792}
 793
 794static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
 795{
 796        int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
 797
 798        return sprintf(buf, "%s\n", autoclear ? "1" : "0");
 799}
 800
 801static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
 802{
 803        int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
 804
 805        return sprintf(buf, "%s\n", partscan ? "1" : "0");
 806}
 807
 808static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
 809{
 810        int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
 811
 812        return sprintf(buf, "%s\n", dio ? "1" : "0");
 813}
 814
 815LOOP_ATTR_RO(backing_file);
 816LOOP_ATTR_RO(offset);
 817LOOP_ATTR_RO(sizelimit);
 818LOOP_ATTR_RO(autoclear);
 819LOOP_ATTR_RO(partscan);
 820LOOP_ATTR_RO(dio);
 821
 822static struct attribute *loop_attrs[] = {
 823        &loop_attr_backing_file.attr,
 824        &loop_attr_offset.attr,
 825        &loop_attr_sizelimit.attr,
 826        &loop_attr_autoclear.attr,
 827        &loop_attr_partscan.attr,
 828        &loop_attr_dio.attr,
 829        NULL,
 830};
 831
 832static struct attribute_group loop_attribute_group = {
 833        .name = "loop",
 834        .attrs= loop_attrs,
 835};
 836
 837static void loop_sysfs_init(struct loop_device *lo)
 838{
 839        lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
 840                                                &loop_attribute_group);
 841}
 842
 843static void loop_sysfs_exit(struct loop_device *lo)
 844{
 845        if (lo->sysfs_inited)
 846                sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
 847                                   &loop_attribute_group);
 848}
 849
 850static void loop_config_discard(struct loop_device *lo)
 851{
 852        struct file *file = lo->lo_backing_file;
 853        struct inode *inode = file->f_mapping->host;
 854        struct request_queue *q = lo->lo_queue;
 855
 856        /*
 857         * We use punch hole to reclaim the free space used by the
 858         * image a.k.a. discard. However we do not support discard if
 859         * encryption is enabled, because it may give an attacker
 860         * useful information.
 861         */
 862        if ((!file->f_op->fallocate) ||
 863            lo->lo_encrypt_key_size) {
 864                q->limits.discard_granularity = 0;
 865                q->limits.discard_alignment = 0;
 866                blk_queue_max_discard_sectors(q, 0);
 867                blk_queue_max_write_zeroes_sectors(q, 0);
 868                blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
 869                return;
 870        }
 871
 872        q->limits.discard_granularity = inode->i_sb->s_blocksize;
 873        q->limits.discard_alignment = 0;
 874
 875        blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
 876        blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
 877        blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
 878}
 879
 880static void loop_unprepare_queue(struct loop_device *lo)
 881{
 882        kthread_flush_worker(&lo->worker);
 883        kthread_stop(lo->worker_task);
 884}
 885
 886static int loop_kthread_worker_fn(void *worker_ptr)
 887{
 888        current->flags |= PF_LESS_THROTTLE | PF_MEMALLOC_NOIO;
 889        return kthread_worker_fn(worker_ptr);
 890}
 891
 892static int loop_prepare_queue(struct loop_device *lo)
 893{
 894        kthread_init_worker(&lo->worker);
 895        lo->worker_task = kthread_run(loop_kthread_worker_fn,
 896                        &lo->worker, "loop%d", lo->lo_number);
 897        if (IS_ERR(lo->worker_task))
 898                return -ENOMEM;
 899        set_user_nice(lo->worker_task, MIN_NICE);
 900        return 0;
 901}
 902
 903static void loop_update_rotational(struct loop_device *lo)
 904{
 905        struct file *file = lo->lo_backing_file;
 906        struct inode *file_inode = file->f_mapping->host;
 907        struct block_device *file_bdev = file_inode->i_sb->s_bdev;
 908        struct request_queue *q = lo->lo_queue;
 909        bool nonrot = true;
 910
 911        /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
 912        if (file_bdev)
 913                nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
 914
 915        if (nonrot)
 916                blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
 917        else
 918                blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
 919}
 920
 921static int loop_set_fd(struct loop_device *lo, fmode_t mode,
 922                       struct block_device *bdev, unsigned int arg)
 923{
 924        struct file     *file;
 925        struct inode    *inode;
 926        struct address_space *mapping;
 927        struct block_device *claimed_bdev = NULL;
 928        int             lo_flags = 0;
 929        int             error;
 930        loff_t          size;
 931        bool            partscan;
 932
 933        /* This is safe, since we have a reference from open(). */
 934        __module_get(THIS_MODULE);
 935
 936        error = -EBADF;
 937        file = fget(arg);
 938        if (!file)
 939                goto out;
 940
 941        /*
 942         * If we don't hold exclusive handle for the device, upgrade to it
 943         * here to avoid changing device under exclusive owner.
 944         */
 945        if (!(mode & FMODE_EXCL)) {
 946                claimed_bdev = bd_start_claiming(bdev, loop_set_fd);
 947                if (IS_ERR(claimed_bdev)) {
 948                        error = PTR_ERR(claimed_bdev);
 949                        goto out_putf;
 950                }
 951        }
 952
 953        error = mutex_lock_killable(&loop_ctl_mutex);
 954        if (error)
 955                goto out_bdev;
 956
 957        error = -EBUSY;
 958        if (lo->lo_state != Lo_unbound)
 959                goto out_unlock;
 960
 961        error = loop_validate_file(file, bdev);
 962        if (error)
 963                goto out_unlock;
 964
 965        mapping = file->f_mapping;
 966        inode = mapping->host;
 967
 968        if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
 969            !file->f_op->write_iter)
 970                lo_flags |= LO_FLAGS_READ_ONLY;
 971
 972        error = -EFBIG;
 973        size = get_loop_size(lo, file);
 974        if ((loff_t)(sector_t)size != size)
 975                goto out_unlock;
 976        error = loop_prepare_queue(lo);
 977        if (error)
 978                goto out_unlock;
 979
 980        error = 0;
 981
 982        set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
 983
 984        lo->use_dio = false;
 985        lo->lo_device = bdev;
 986        lo->lo_flags = lo_flags;
 987        lo->lo_backing_file = file;
 988        lo->transfer = NULL;
 989        lo->ioctl = NULL;
 990        lo->lo_sizelimit = 0;
 991        lo->old_gfp_mask = mapping_gfp_mask(mapping);
 992        mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
 993
 994        if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
 995                blk_queue_write_cache(lo->lo_queue, true, false);
 996
 997        loop_update_rotational(lo);
 998        loop_update_dio(lo);
 999        set_capacity(lo->lo_disk, size);
1000        bd_set_size(bdev, size << 9);
1001        loop_sysfs_init(lo);
1002        /* let user-space know about the new size */
1003        kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1004
1005        set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
1006                      block_size(inode->i_bdev) : PAGE_SIZE);
1007
1008        lo->lo_state = Lo_bound;
1009        if (part_shift)
1010                lo->lo_flags |= LO_FLAGS_PARTSCAN;
1011        partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1012
1013        /* Grab the block_device to prevent its destruction after we
1014         * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1015         */
1016        bdgrab(bdev);
1017        mutex_unlock(&loop_ctl_mutex);
1018        if (partscan)
1019                loop_reread_partitions(lo, bdev);
1020        if (claimed_bdev)
1021                bd_abort_claiming(bdev, claimed_bdev, loop_set_fd);
1022        return 0;
1023
1024out_unlock:
1025        mutex_unlock(&loop_ctl_mutex);
1026out_bdev:
1027        if (claimed_bdev)
1028                bd_abort_claiming(bdev, claimed_bdev, loop_set_fd);
1029out_putf:
1030        fput(file);
1031out:
1032        /* This is safe: open() is still holding a reference. */
1033        module_put(THIS_MODULE);
1034        return error;
1035}
1036
1037static int
1038loop_release_xfer(struct loop_device *lo)
1039{
1040        int err = 0;
1041        struct loop_func_table *xfer = lo->lo_encryption;
1042
1043        if (xfer) {
1044                if (xfer->release)
1045                        err = xfer->release(lo);
1046                lo->transfer = NULL;
1047                lo->lo_encryption = NULL;
1048                module_put(xfer->owner);
1049        }
1050        return err;
1051}
1052
1053static int
1054loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1055               const struct loop_info64 *i)
1056{
1057        int err = 0;
1058
1059        if (xfer) {
1060                struct module *owner = xfer->owner;
1061
1062                if (!try_module_get(owner))
1063                        return -EINVAL;
1064                if (xfer->init)
1065                        err = xfer->init(lo, i);
1066                if (err)
1067                        module_put(owner);
1068                else
1069                        lo->lo_encryption = xfer;
1070        }
1071        return err;
1072}
1073
1074static int __loop_clr_fd(struct loop_device *lo, bool release)
1075{
1076        struct file *filp = NULL;
1077        gfp_t gfp = lo->old_gfp_mask;
1078        struct block_device *bdev = lo->lo_device;
1079        int err = 0;
1080        bool partscan = false;
1081        int lo_number;
1082
1083        mutex_lock(&loop_ctl_mutex);
1084        if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1085                err = -ENXIO;
1086                goto out_unlock;
1087        }
1088
1089        filp = lo->lo_backing_file;
1090        if (filp == NULL) {
1091                err = -EINVAL;
1092                goto out_unlock;
1093        }
1094
1095        /* freeze request queue during the transition */
1096        blk_mq_freeze_queue(lo->lo_queue);
1097
1098        spin_lock_irq(&lo->lo_lock);
1099        lo->lo_backing_file = NULL;
1100        spin_unlock_irq(&lo->lo_lock);
1101
1102        loop_release_xfer(lo);
1103        lo->transfer = NULL;
1104        lo->ioctl = NULL;
1105        lo->lo_device = NULL;
1106        lo->lo_encryption = NULL;
1107        lo->lo_offset = 0;
1108        lo->lo_sizelimit = 0;
1109        lo->lo_encrypt_key_size = 0;
1110        memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1111        memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1112        memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1113        blk_queue_logical_block_size(lo->lo_queue, 512);
1114        blk_queue_physical_block_size(lo->lo_queue, 512);
1115        blk_queue_io_min(lo->lo_queue, 512);
1116        if (bdev) {
1117                bdput(bdev);
1118                invalidate_bdev(bdev);
1119                bdev->bd_inode->i_mapping->wb_err = 0;
1120        }
1121        set_capacity(lo->lo_disk, 0);
1122        loop_sysfs_exit(lo);
1123        if (bdev) {
1124                bd_set_size(bdev, 0);
1125                /* let user-space know about this change */
1126                kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1127        }
1128        mapping_set_gfp_mask(filp->f_mapping, gfp);
1129        /* This is safe: open() is still holding a reference. */
1130        module_put(THIS_MODULE);
1131        blk_mq_unfreeze_queue(lo->lo_queue);
1132
1133        partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1134        lo_number = lo->lo_number;
1135        loop_unprepare_queue(lo);
1136out_unlock:
1137        mutex_unlock(&loop_ctl_mutex);
1138        if (partscan) {
1139                /*
1140                 * bd_mutex has been held already in release path, so don't
1141                 * acquire it if this function is called in such case.
1142                 *
1143                 * If the reread partition isn't from release path, lo_refcnt
1144                 * must be at least one and it can only become zero when the
1145                 * current holder is released.
1146                 */
1147                if (release)
1148                        err = __blkdev_reread_part(bdev);
1149                else
1150                        err = blkdev_reread_part(bdev);
1151                if (err)
1152                        pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1153                                __func__, lo_number, err);
1154                /* Device is gone, no point in returning error */
1155                err = 0;
1156        }
1157
1158        /*
1159         * lo->lo_state is set to Lo_unbound here after above partscan has
1160         * finished.
1161         *
1162         * There cannot be anybody else entering __loop_clr_fd() as
1163         * lo->lo_backing_file is already cleared and Lo_rundown state
1164         * protects us from all the other places trying to change the 'lo'
1165         * device.
1166         */
1167        mutex_lock(&loop_ctl_mutex);
1168        lo->lo_flags = 0;
1169        if (!part_shift)
1170                lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1171        lo->lo_state = Lo_unbound;
1172        mutex_unlock(&loop_ctl_mutex);
1173
1174        /*
1175         * Need not hold loop_ctl_mutex to fput backing file.
1176         * Calling fput holding loop_ctl_mutex triggers a circular
1177         * lock dependency possibility warning as fput can take
1178         * bd_mutex which is usually taken before loop_ctl_mutex.
1179         */
1180        if (filp)
1181                fput(filp);
1182        return err;
1183}
1184
1185static int loop_clr_fd(struct loop_device *lo)
1186{
1187        int err;
1188
1189        err = mutex_lock_killable(&loop_ctl_mutex);
1190        if (err)
1191                return err;
1192        if (lo->lo_state != Lo_bound) {
1193                mutex_unlock(&loop_ctl_mutex);
1194                return -ENXIO;
1195        }
1196        /*
1197         * If we've explicitly asked to tear down the loop device,
1198         * and it has an elevated reference count, set it for auto-teardown when
1199         * the last reference goes away. This stops $!~#$@ udev from
1200         * preventing teardown because it decided that it needs to run blkid on
1201         * the loopback device whenever they appear. xfstests is notorious for
1202         * failing tests because blkid via udev races with a losetup
1203         * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1204         * command to fail with EBUSY.
1205         */
1206        if (atomic_read(&lo->lo_refcnt) > 1) {
1207                lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1208                mutex_unlock(&loop_ctl_mutex);
1209                return 0;
1210        }
1211        lo->lo_state = Lo_rundown;
1212        mutex_unlock(&loop_ctl_mutex);
1213
1214        return __loop_clr_fd(lo, false);
1215}
1216
1217static int
1218loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1219{
1220        int err;
1221        struct loop_func_table *xfer;
1222        kuid_t uid = current_uid();
1223        struct block_device *bdev;
1224        bool partscan = false;
1225
1226        err = mutex_lock_killable(&loop_ctl_mutex);
1227        if (err)
1228                return err;
1229        if (lo->lo_encrypt_key_size &&
1230            !uid_eq(lo->lo_key_owner, uid) &&
1231            !capable(CAP_SYS_ADMIN)) {
1232                err = -EPERM;
1233                goto out_unlock;
1234        }
1235        if (lo->lo_state != Lo_bound) {
1236                err = -ENXIO;
1237                goto out_unlock;
1238        }
1239        if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) {
1240                err = -EINVAL;
1241                goto out_unlock;
1242        }
1243
1244        if (lo->lo_offset != info->lo_offset ||
1245            lo->lo_sizelimit != info->lo_sizelimit) {
1246                sync_blockdev(lo->lo_device);
1247                kill_bdev(lo->lo_device);
1248        }
1249
1250        /* I/O need to be drained during transfer transition */
1251        blk_mq_freeze_queue(lo->lo_queue);
1252
1253        err = loop_release_xfer(lo);
1254        if (err)
1255                goto out_unfreeze;
1256
1257        if (info->lo_encrypt_type) {
1258                unsigned int type = info->lo_encrypt_type;
1259
1260                if (type >= MAX_LO_CRYPT) {
1261                        err = -EINVAL;
1262                        goto out_unfreeze;
1263                }
1264                xfer = xfer_funcs[type];
1265                if (xfer == NULL) {
1266                        err = -EINVAL;
1267                        goto out_unfreeze;
1268                }
1269        } else
1270                xfer = NULL;
1271
1272        err = loop_init_xfer(lo, xfer, info);
1273        if (err)
1274                goto out_unfreeze;
1275
1276        if (lo->lo_offset != info->lo_offset ||
1277            lo->lo_sizelimit != info->lo_sizelimit) {
1278                /* kill_bdev should have truncated all the pages */
1279                if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1280                        err = -EAGAIN;
1281                        pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1282                                __func__, lo->lo_number, lo->lo_file_name,
1283                                lo->lo_device->bd_inode->i_mapping->nrpages);
1284                        goto out_unfreeze;
1285                }
1286                if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1287                        err = -EFBIG;
1288                        goto out_unfreeze;
1289                }
1290        }
1291
1292        loop_config_discard(lo);
1293
1294        memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1295        memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1296        lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1297        lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1298
1299        if (!xfer)
1300                xfer = &none_funcs;
1301        lo->transfer = xfer->transfer;
1302        lo->ioctl = xfer->ioctl;
1303
1304        if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1305             (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1306                lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1307
1308        lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1309        lo->lo_init[0] = info->lo_init[0];
1310        lo->lo_init[1] = info->lo_init[1];
1311        if (info->lo_encrypt_key_size) {
1312                memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1313                       info->lo_encrypt_key_size);
1314                lo->lo_key_owner = uid;
1315        }
1316
1317        /* update dio if lo_offset or transfer is changed */
1318        __loop_update_dio(lo, lo->use_dio);
1319
1320out_unfreeze:
1321        blk_mq_unfreeze_queue(lo->lo_queue);
1322
1323        if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1324             !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1325                lo->lo_flags |= LO_FLAGS_PARTSCAN;
1326                lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1327                bdev = lo->lo_device;
1328                partscan = true;
1329        }
1330out_unlock:
1331        mutex_unlock(&loop_ctl_mutex);
1332        if (partscan)
1333                loop_reread_partitions(lo, bdev);
1334
1335        return err;
1336}
1337
1338static int
1339loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1340{
1341        struct path path;
1342        struct kstat stat;
1343        int ret;
1344
1345        ret = mutex_lock_killable(&loop_ctl_mutex);
1346        if (ret)
1347                return ret;
1348        if (lo->lo_state != Lo_bound) {
1349                mutex_unlock(&loop_ctl_mutex);
1350                return -ENXIO;
1351        }
1352
1353        memset(info, 0, sizeof(*info));
1354        info->lo_number = lo->lo_number;
1355        info->lo_offset = lo->lo_offset;
1356        info->lo_sizelimit = lo->lo_sizelimit;
1357        info->lo_flags = lo->lo_flags;
1358        memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1359        memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1360        info->lo_encrypt_type =
1361                lo->lo_encryption ? lo->lo_encryption->number : 0;
1362        if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1363                info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1364                memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1365                       lo->lo_encrypt_key_size);
1366        }
1367
1368        /* Drop loop_ctl_mutex while we call into the filesystem. */
1369        path = lo->lo_backing_file->f_path;
1370        path_get(&path);
1371        mutex_unlock(&loop_ctl_mutex);
1372        ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1373        if (!ret) {
1374                info->lo_device = huge_encode_dev(stat.dev);
1375                info->lo_inode = stat.ino;
1376                info->lo_rdevice = huge_encode_dev(stat.rdev);
1377        }
1378        path_put(&path);
1379        return ret;
1380}
1381
1382static void
1383loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1384{
1385        memset(info64, 0, sizeof(*info64));
1386        info64->lo_number = info->lo_number;
1387        info64->lo_device = info->lo_device;
1388        info64->lo_inode = info->lo_inode;
1389        info64->lo_rdevice = info->lo_rdevice;
1390        info64->lo_offset = info->lo_offset;
1391        info64->lo_sizelimit = 0;
1392        info64->lo_encrypt_type = info->lo_encrypt_type;
1393        info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1394        info64->lo_flags = info->lo_flags;
1395        info64->lo_init[0] = info->lo_init[0];
1396        info64->lo_init[1] = info->lo_init[1];
1397        if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1398                memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1399        else
1400                memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1401        memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1402}
1403
1404static int
1405loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1406{
1407        memset(info, 0, sizeof(*info));
1408        info->lo_number = info64->lo_number;
1409        info->lo_device = info64->lo_device;
1410        info->lo_inode = info64->lo_inode;
1411        info->lo_rdevice = info64->lo_rdevice;
1412        info->lo_offset = info64->lo_offset;
1413        info->lo_encrypt_type = info64->lo_encrypt_type;
1414        info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1415        info->lo_flags = info64->lo_flags;
1416        info->lo_init[0] = info64->lo_init[0];
1417        info->lo_init[1] = info64->lo_init[1];
1418        if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1419                memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1420        else
1421                memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1422        memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1423
1424        /* error in case values were truncated */
1425        if (info->lo_device != info64->lo_device ||
1426            info->lo_rdevice != info64->lo_rdevice ||
1427            info->lo_inode != info64->lo_inode ||
1428            info->lo_offset != info64->lo_offset)
1429                return -EOVERFLOW;
1430
1431        return 0;
1432}
1433
1434static int
1435loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1436{
1437        struct loop_info info;
1438        struct loop_info64 info64;
1439
1440        if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1441                return -EFAULT;
1442        loop_info64_from_old(&info, &info64);
1443        return loop_set_status(lo, &info64);
1444}
1445
1446static int
1447loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1448{
1449        struct loop_info64 info64;
1450
1451        if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1452                return -EFAULT;
1453        return loop_set_status(lo, &info64);
1454}
1455
1456static int
1457loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1458        struct loop_info info;
1459        struct loop_info64 info64;
1460        int err;
1461
1462        if (!arg)
1463                return -EINVAL;
1464        err = loop_get_status(lo, &info64);
1465        if (!err)
1466                err = loop_info64_to_old(&info64, &info);
1467        if (!err && copy_to_user(arg, &info, sizeof(info)))
1468                err = -EFAULT;
1469
1470        return err;
1471}
1472
1473static int
1474loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1475        struct loop_info64 info64;
1476        int err;
1477
1478        if (!arg)
1479                return -EINVAL;
1480        err = loop_get_status(lo, &info64);
1481        if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1482                err = -EFAULT;
1483
1484        return err;
1485}
1486
1487static int loop_set_capacity(struct loop_device *lo)
1488{
1489        if (unlikely(lo->lo_state != Lo_bound))
1490                return -ENXIO;
1491
1492        return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1493}
1494
1495static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1496{
1497        int error = -ENXIO;
1498        if (lo->lo_state != Lo_bound)
1499                goto out;
1500
1501        __loop_update_dio(lo, !!arg);
1502        if (lo->use_dio == !!arg)
1503                return 0;
1504        error = -EINVAL;
1505 out:
1506        return error;
1507}
1508
1509static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1510{
1511        int err = 0;
1512
1513        if (lo->lo_state != Lo_bound)
1514                return -ENXIO;
1515
1516        if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1517                return -EINVAL;
1518
1519        if (lo->lo_queue->limits.logical_block_size != arg) {
1520                sync_blockdev(lo->lo_device);
1521                kill_bdev(lo->lo_device);
1522        }
1523
1524        blk_mq_freeze_queue(lo->lo_queue);
1525
1526        /* kill_bdev should have truncated all the pages */
1527        if (lo->lo_queue->limits.logical_block_size != arg &&
1528                        lo->lo_device->bd_inode->i_mapping->nrpages) {
1529                err = -EAGAIN;
1530                pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1531                        __func__, lo->lo_number, lo->lo_file_name,
1532                        lo->lo_device->bd_inode->i_mapping->nrpages);
1533                goto out_unfreeze;
1534        }
1535
1536        blk_queue_logical_block_size(lo->lo_queue, arg);
1537        blk_queue_physical_block_size(lo->lo_queue, arg);
1538        blk_queue_io_min(lo->lo_queue, arg);
1539        loop_update_dio(lo);
1540out_unfreeze:
1541        blk_mq_unfreeze_queue(lo->lo_queue);
1542
1543        return err;
1544}
1545
1546static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1547                           unsigned long arg)
1548{
1549        int err;
1550
1551        err = mutex_lock_killable(&loop_ctl_mutex);
1552        if (err)
1553                return err;
1554        switch (cmd) {
1555        case LOOP_SET_CAPACITY:
1556                err = loop_set_capacity(lo);
1557                break;
1558        case LOOP_SET_DIRECT_IO:
1559                err = loop_set_dio(lo, arg);
1560                break;
1561        case LOOP_SET_BLOCK_SIZE:
1562                err = loop_set_block_size(lo, arg);
1563                break;
1564        default:
1565                err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1566        }
1567        mutex_unlock(&loop_ctl_mutex);
1568        return err;
1569}
1570
1571static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1572        unsigned int cmd, unsigned long arg)
1573{
1574        struct loop_device *lo = bdev->bd_disk->private_data;
1575        int err;
1576
1577        switch (cmd) {
1578        case LOOP_SET_FD:
1579                return loop_set_fd(lo, mode, bdev, arg);
1580        case LOOP_CHANGE_FD:
1581                return loop_change_fd(lo, bdev, arg);
1582        case LOOP_CLR_FD:
1583                return loop_clr_fd(lo);
1584        case LOOP_SET_STATUS:
1585                err = -EPERM;
1586                if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1587                        err = loop_set_status_old(lo,
1588                                        (struct loop_info __user *)arg);
1589                }
1590                break;
1591        case LOOP_GET_STATUS:
1592                return loop_get_status_old(lo, (struct loop_info __user *) arg);
1593        case LOOP_SET_STATUS64:
1594                err = -EPERM;
1595                if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1596                        err = loop_set_status64(lo,
1597                                        (struct loop_info64 __user *) arg);
1598                }
1599                break;
1600        case LOOP_GET_STATUS64:
1601                return loop_get_status64(lo, (struct loop_info64 __user *) arg);
1602        case LOOP_SET_CAPACITY:
1603        case LOOP_SET_DIRECT_IO:
1604        case LOOP_SET_BLOCK_SIZE:
1605                if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1606                        return -EPERM;
1607                /* Fall through */
1608        default:
1609                err = lo_simple_ioctl(lo, cmd, arg);
1610                break;
1611        }
1612
1613        return err;
1614}
1615
1616#ifdef CONFIG_COMPAT
1617struct compat_loop_info {
1618        compat_int_t    lo_number;      /* ioctl r/o */
1619        compat_dev_t    lo_device;      /* ioctl r/o */
1620        compat_ulong_t  lo_inode;       /* ioctl r/o */
1621        compat_dev_t    lo_rdevice;     /* ioctl r/o */
1622        compat_int_t    lo_offset;
1623        compat_int_t    lo_encrypt_type;
1624        compat_int_t    lo_encrypt_key_size;    /* ioctl w/o */
1625        compat_int_t    lo_flags;       /* ioctl r/o */
1626        char            lo_name[LO_NAME_SIZE];
1627        unsigned char   lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1628        compat_ulong_t  lo_init[2];
1629        char            reserved[4];
1630};
1631
1632/*
1633 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1634 * - noinlined to reduce stack space usage in main part of driver
1635 */
1636static noinline int
1637loop_info64_from_compat(const struct compat_loop_info __user *arg,
1638                        struct loop_info64 *info64)
1639{
1640        struct compat_loop_info info;
1641
1642        if (copy_from_user(&info, arg, sizeof(info)))
1643                return -EFAULT;
1644
1645        memset(info64, 0, sizeof(*info64));
1646        info64->lo_number = info.lo_number;
1647        info64->lo_device = info.lo_device;
1648        info64->lo_inode = info.lo_inode;
1649        info64->lo_rdevice = info.lo_rdevice;
1650        info64->lo_offset = info.lo_offset;
1651        info64->lo_sizelimit = 0;
1652        info64->lo_encrypt_type = info.lo_encrypt_type;
1653        info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1654        info64->lo_flags = info.lo_flags;
1655        info64->lo_init[0] = info.lo_init[0];
1656        info64->lo_init[1] = info.lo_init[1];
1657        if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1658                memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1659        else
1660                memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1661        memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1662        return 0;
1663}
1664
1665/*
1666 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1667 * - noinlined to reduce stack space usage in main part of driver
1668 */
1669static noinline int
1670loop_info64_to_compat(const struct loop_info64 *info64,
1671                      struct compat_loop_info __user *arg)
1672{
1673        struct compat_loop_info info;
1674
1675        memset(&info, 0, sizeof(info));
1676        info.lo_number = info64->lo_number;
1677        info.lo_device = info64->lo_device;
1678        info.lo_inode = info64->lo_inode;
1679        info.lo_rdevice = info64->lo_rdevice;
1680        info.lo_offset = info64->lo_offset;
1681        info.lo_encrypt_type = info64->lo_encrypt_type;
1682        info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1683        info.lo_flags = info64->lo_flags;
1684        info.lo_init[0] = info64->lo_init[0];
1685        info.lo_init[1] = info64->lo_init[1];
1686        if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1687                memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1688        else
1689                memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1690        memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1691
1692        /* error in case values were truncated */
1693        if (info.lo_device != info64->lo_device ||
1694            info.lo_rdevice != info64->lo_rdevice ||
1695            info.lo_inode != info64->lo_inode ||
1696            info.lo_offset != info64->lo_offset ||
1697            info.lo_init[0] != info64->lo_init[0] ||
1698            info.lo_init[1] != info64->lo_init[1])
1699                return -EOVERFLOW;
1700
1701        if (copy_to_user(arg, &info, sizeof(info)))
1702                return -EFAULT;
1703        return 0;
1704}
1705
1706static int
1707loop_set_status_compat(struct loop_device *lo,
1708                       const struct compat_loop_info __user *arg)
1709{
1710        struct loop_info64 info64;
1711        int ret;
1712
1713        ret = loop_info64_from_compat(arg, &info64);
1714        if (ret < 0)
1715                return ret;
1716        return loop_set_status(lo, &info64);
1717}
1718
1719static int
1720loop_get_status_compat(struct loop_device *lo,
1721                       struct compat_loop_info __user *arg)
1722{
1723        struct loop_info64 info64;
1724        int err;
1725
1726        if (!arg)
1727                return -EINVAL;
1728        err = loop_get_status(lo, &info64);
1729        if (!err)
1730                err = loop_info64_to_compat(&info64, arg);
1731        return err;
1732}
1733
1734static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1735                           unsigned int cmd, unsigned long arg)
1736{
1737        struct loop_device *lo = bdev->bd_disk->private_data;
1738        int err;
1739
1740        switch(cmd) {
1741        case LOOP_SET_STATUS:
1742                err = loop_set_status_compat(lo,
1743                             (const struct compat_loop_info __user *)arg);
1744                break;
1745        case LOOP_GET_STATUS:
1746                err = loop_get_status_compat(lo,
1747                                     (struct compat_loop_info __user *)arg);
1748                break;
1749        case LOOP_SET_CAPACITY:
1750        case LOOP_CLR_FD:
1751        case LOOP_GET_STATUS64:
1752        case LOOP_SET_STATUS64:
1753                arg = (unsigned long) compat_ptr(arg);
1754                /* fall through */
1755        case LOOP_SET_FD:
1756        case LOOP_CHANGE_FD:
1757        case LOOP_SET_BLOCK_SIZE:
1758                err = lo_ioctl(bdev, mode, cmd, arg);
1759                break;
1760        default:
1761                err = -ENOIOCTLCMD;
1762                break;
1763        }
1764        return err;
1765}
1766#endif
1767
1768static int lo_open(struct block_device *bdev, fmode_t mode)
1769{
1770        struct loop_device *lo;
1771        int err;
1772
1773        err = mutex_lock_killable(&loop_ctl_mutex);
1774        if (err)
1775                return err;
1776        lo = bdev->bd_disk->private_data;
1777        if (!lo) {
1778                err = -ENXIO;
1779                goto out;
1780        }
1781
1782        atomic_inc(&lo->lo_refcnt);
1783out:
1784        mutex_unlock(&loop_ctl_mutex);
1785        return err;
1786}
1787
1788static void lo_release(struct gendisk *disk, fmode_t mode)
1789{
1790        struct loop_device *lo;
1791
1792        mutex_lock(&loop_ctl_mutex);
1793        lo = disk->private_data;
1794        if (atomic_dec_return(&lo->lo_refcnt))
1795                goto out_unlock;
1796
1797        if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1798                if (lo->lo_state != Lo_bound)
1799                        goto out_unlock;
1800                lo->lo_state = Lo_rundown;
1801                mutex_unlock(&loop_ctl_mutex);
1802                /*
1803                 * In autoclear mode, stop the loop thread
1804                 * and remove configuration after last close.
1805                 */
1806                __loop_clr_fd(lo, true);
1807                return;
1808        } else if (lo->lo_state == Lo_bound) {
1809                /*
1810                 * Otherwise keep thread (if running) and config,
1811                 * but flush possible ongoing bios in thread.
1812                 */
1813                blk_mq_freeze_queue(lo->lo_queue);
1814                blk_mq_unfreeze_queue(lo->lo_queue);
1815        }
1816
1817out_unlock:
1818        mutex_unlock(&loop_ctl_mutex);
1819}
1820
1821static const struct block_device_operations lo_fops = {
1822        .owner =        THIS_MODULE,
1823        .open =         lo_open,
1824        .release =      lo_release,
1825        .ioctl =        lo_ioctl,
1826#ifdef CONFIG_COMPAT
1827        .compat_ioctl = lo_compat_ioctl,
1828#endif
1829};
1830
1831/*
1832 * And now the modules code and kernel interface.
1833 */
1834static int max_loop;
1835module_param(max_loop, int, 0444);
1836MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1837module_param(max_part, int, 0444);
1838MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1839MODULE_LICENSE("GPL");
1840MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1841
1842int loop_register_transfer(struct loop_func_table *funcs)
1843{
1844        unsigned int n = funcs->number;
1845
1846        if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1847                return -EINVAL;
1848        xfer_funcs[n] = funcs;
1849        return 0;
1850}
1851
1852static int unregister_transfer_cb(int id, void *ptr, void *data)
1853{
1854        struct loop_device *lo = ptr;
1855        struct loop_func_table *xfer = data;
1856
1857        mutex_lock(&loop_ctl_mutex);
1858        if (lo->lo_encryption == xfer)
1859                loop_release_xfer(lo);
1860        mutex_unlock(&loop_ctl_mutex);
1861        return 0;
1862}
1863
1864int loop_unregister_transfer(int number)
1865{
1866        unsigned int n = number;
1867        struct loop_func_table *xfer;
1868
1869        if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1870                return -EINVAL;
1871
1872        xfer_funcs[n] = NULL;
1873        idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1874        return 0;
1875}
1876
1877EXPORT_SYMBOL(loop_register_transfer);
1878EXPORT_SYMBOL(loop_unregister_transfer);
1879
1880static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1881                const struct blk_mq_queue_data *bd)
1882{
1883        struct request *rq = bd->rq;
1884        struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1885        struct loop_device *lo = rq->q->queuedata;
1886
1887        blk_mq_start_request(rq);
1888
1889        if (lo->lo_state != Lo_bound)
1890                return BLK_STS_IOERR;
1891
1892        switch (req_op(rq)) {
1893        case REQ_OP_FLUSH:
1894        case REQ_OP_DISCARD:
1895        case REQ_OP_WRITE_ZEROES:
1896                cmd->use_aio = false;
1897                break;
1898        default:
1899                cmd->use_aio = lo->use_dio;
1900                break;
1901        }
1902
1903        /* always use the first bio's css */
1904#ifdef CONFIG_BLK_CGROUP
1905        if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
1906                cmd->css = &bio_blkcg(rq->bio)->css;
1907                css_get(cmd->css);
1908        } else
1909#endif
1910                cmd->css = NULL;
1911        kthread_queue_work(&lo->worker, &cmd->work);
1912
1913        return BLK_STS_OK;
1914}
1915
1916static void loop_handle_cmd(struct loop_cmd *cmd)
1917{
1918        struct request *rq = blk_mq_rq_from_pdu(cmd);
1919        const bool write = op_is_write(req_op(rq));
1920        struct loop_device *lo = rq->q->queuedata;
1921        int ret = 0;
1922
1923        if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1924                ret = -EIO;
1925                goto failed;
1926        }
1927
1928        ret = do_req_filebacked(lo, rq);
1929 failed:
1930        /* complete non-aio request */
1931        if (!cmd->use_aio || ret) {
1932                cmd->ret = ret ? -EIO : 0;
1933                blk_mq_complete_request(rq);
1934        }
1935}
1936
1937static void loop_queue_work(struct kthread_work *work)
1938{
1939        struct loop_cmd *cmd =
1940                container_of(work, struct loop_cmd, work);
1941
1942        loop_handle_cmd(cmd);
1943}
1944
1945static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1946                unsigned int hctx_idx, unsigned int numa_node)
1947{
1948        struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1949
1950        kthread_init_work(&cmd->work, loop_queue_work);
1951        return 0;
1952}
1953
1954static const struct blk_mq_ops loop_mq_ops = {
1955        .queue_rq       = loop_queue_rq,
1956        .init_request   = loop_init_request,
1957        .complete       = lo_complete_rq,
1958};
1959
1960static int loop_add(struct loop_device **l, int i)
1961{
1962        struct loop_device *lo;
1963        struct gendisk *disk;
1964        int err;
1965
1966        err = -ENOMEM;
1967        lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1968        if (!lo)
1969                goto out;
1970
1971        lo->lo_state = Lo_unbound;
1972
1973        /* allocate id, if @id >= 0, we're requesting that specific id */
1974        if (i >= 0) {
1975                err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1976                if (err == -ENOSPC)
1977                        err = -EEXIST;
1978        } else {
1979                err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1980        }
1981        if (err < 0)
1982                goto out_free_dev;
1983        i = err;
1984
1985        err = -ENOMEM;
1986        lo->tag_set.ops = &loop_mq_ops;
1987        lo->tag_set.nr_hw_queues = 1;
1988        lo->tag_set.queue_depth = 128;
1989        lo->tag_set.numa_node = NUMA_NO_NODE;
1990        lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1991        lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1992        lo->tag_set.driver_data = lo;
1993
1994        err = blk_mq_alloc_tag_set(&lo->tag_set);
1995        if (err)
1996                goto out_free_idr;
1997
1998        lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1999        if (IS_ERR(lo->lo_queue)) {
2000                err = PTR_ERR(lo->lo_queue);
2001                goto out_cleanup_tags;
2002        }
2003        lo->lo_queue->queuedata = lo;
2004
2005        blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2006
2007        /*
2008         * By default, we do buffer IO, so it doesn't make sense to enable
2009         * merge because the I/O submitted to backing file is handled page by
2010         * page. For directio mode, merge does help to dispatch bigger request
2011         * to underlayer disk. We will enable merge once directio is enabled.
2012         */
2013        blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2014
2015        err = -ENOMEM;
2016        disk = lo->lo_disk = alloc_disk(1 << part_shift);
2017        if (!disk)
2018                goto out_free_queue;
2019
2020        /*
2021         * Disable partition scanning by default. The in-kernel partition
2022         * scanning can be requested individually per-device during its
2023         * setup. Userspace can always add and remove partitions from all
2024         * devices. The needed partition minors are allocated from the
2025         * extended minor space, the main loop device numbers will continue
2026         * to match the loop minors, regardless of the number of partitions
2027         * used.
2028         *
2029         * If max_part is given, partition scanning is globally enabled for
2030         * all loop devices. The minors for the main loop devices will be
2031         * multiples of max_part.
2032         *
2033         * Note: Global-for-all-devices, set-only-at-init, read-only module
2034         * parameteters like 'max_loop' and 'max_part' make things needlessly
2035         * complicated, are too static, inflexible and may surprise
2036         * userspace tools. Parameters like this in general should be avoided.
2037         */
2038        if (!part_shift)
2039                disk->flags |= GENHD_FL_NO_PART_SCAN;
2040        disk->flags |= GENHD_FL_EXT_DEVT;
2041        atomic_set(&lo->lo_refcnt, 0);
2042        lo->lo_number           = i;
2043        spin_lock_init(&lo->lo_lock);
2044        disk->major             = LOOP_MAJOR;
2045        disk->first_minor       = i << part_shift;
2046        disk->fops              = &lo_fops;
2047        disk->private_data      = lo;
2048        disk->queue             = lo->lo_queue;
2049        sprintf(disk->disk_name, "loop%d", i);
2050        add_disk(disk);
2051        *l = lo;
2052        return lo->lo_number;
2053
2054out_free_queue:
2055        blk_cleanup_queue(lo->lo_queue);
2056out_cleanup_tags:
2057        blk_mq_free_tag_set(&lo->tag_set);
2058out_free_idr:
2059        idr_remove(&loop_index_idr, i);
2060out_free_dev:
2061        kfree(lo);
2062out:
2063        return err;
2064}
2065
2066static void loop_remove(struct loop_device *lo)
2067{
2068        del_gendisk(lo->lo_disk);
2069        blk_cleanup_queue(lo->lo_queue);
2070        blk_mq_free_tag_set(&lo->tag_set);
2071        put_disk(lo->lo_disk);
2072        kfree(lo);
2073}
2074
2075static int find_free_cb(int id, void *ptr, void *data)
2076{
2077        struct loop_device *lo = ptr;
2078        struct loop_device **l = data;
2079
2080        if (lo->lo_state == Lo_unbound) {
2081                *l = lo;
2082                return 1;
2083        }
2084        return 0;
2085}
2086
2087static int loop_lookup(struct loop_device **l, int i)
2088{
2089        struct loop_device *lo;
2090        int ret = -ENODEV;
2091
2092        if (i < 0) {
2093                int err;
2094
2095                err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2096                if (err == 1) {
2097                        *l = lo;
2098                        ret = lo->lo_number;
2099                }
2100                goto out;
2101        }
2102
2103        /* lookup and return a specific i */
2104        lo = idr_find(&loop_index_idr, i);
2105        if (lo) {
2106                *l = lo;
2107                ret = lo->lo_number;
2108        }
2109out:
2110        return ret;
2111}
2112
2113static struct kobject *loop_probe(dev_t dev, int *part, void *data)
2114{
2115        struct loop_device *lo;
2116        struct kobject *kobj;
2117        int err;
2118
2119        mutex_lock(&loop_ctl_mutex);
2120        err = loop_lookup(&lo, MINOR(dev) >> part_shift);
2121        if (err < 0)
2122                err = loop_add(&lo, MINOR(dev) >> part_shift);
2123        if (err < 0)
2124                kobj = NULL;
2125        else
2126                kobj = get_disk_and_module(lo->lo_disk);
2127        mutex_unlock(&loop_ctl_mutex);
2128
2129        *part = 0;
2130        return kobj;
2131}
2132
2133static long loop_control_ioctl(struct file *file, unsigned int cmd,
2134                               unsigned long parm)
2135{
2136        struct loop_device *lo;
2137        int ret;
2138
2139        ret = mutex_lock_killable(&loop_ctl_mutex);
2140        if (ret)
2141                return ret;
2142
2143        ret = -ENOSYS;
2144        switch (cmd) {
2145        case LOOP_CTL_ADD:
2146                ret = loop_lookup(&lo, parm);
2147                if (ret >= 0) {
2148                        ret = -EEXIST;
2149                        break;
2150                }
2151                ret = loop_add(&lo, parm);
2152                break;
2153        case LOOP_CTL_REMOVE:
2154                ret = loop_lookup(&lo, parm);
2155                if (ret < 0)
2156                        break;
2157                if (lo->lo_state != Lo_unbound) {
2158                        ret = -EBUSY;
2159                        break;
2160                }
2161                if (atomic_read(&lo->lo_refcnt) > 0) {
2162                        ret = -EBUSY;
2163                        break;
2164                }
2165                lo->lo_disk->private_data = NULL;
2166                idr_remove(&loop_index_idr, lo->lo_number);
2167                loop_remove(lo);
2168                break;
2169        case LOOP_CTL_GET_FREE:
2170                ret = loop_lookup(&lo, -1);
2171                if (ret >= 0)
2172                        break;
2173                ret = loop_add(&lo, -1);
2174        }
2175        mutex_unlock(&loop_ctl_mutex);
2176
2177        return ret;
2178}
2179
2180static const struct file_operations loop_ctl_fops = {
2181        .open           = nonseekable_open,
2182        .unlocked_ioctl = loop_control_ioctl,
2183        .compat_ioctl   = loop_control_ioctl,
2184        .owner          = THIS_MODULE,
2185        .llseek         = noop_llseek,
2186};
2187
2188static struct miscdevice loop_misc = {
2189        .minor          = LOOP_CTRL_MINOR,
2190        .name           = "loop-control",
2191        .fops           = &loop_ctl_fops,
2192};
2193
2194MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2195MODULE_ALIAS("devname:loop-control");
2196
2197static int __init loop_init(void)
2198{
2199        int i, nr;
2200        unsigned long range;
2201        struct loop_device *lo;
2202        int err;
2203
2204        part_shift = 0;
2205        if (max_part > 0) {
2206                part_shift = fls(max_part);
2207
2208                /*
2209                 * Adjust max_part according to part_shift as it is exported
2210                 * to user space so that user can decide correct minor number
2211                 * if [s]he want to create more devices.
2212                 *
2213                 * Note that -1 is required because partition 0 is reserved
2214                 * for the whole disk.
2215                 */
2216                max_part = (1UL << part_shift) - 1;
2217        }
2218
2219        if ((1UL << part_shift) > DISK_MAX_PARTS) {
2220                err = -EINVAL;
2221                goto err_out;
2222        }
2223
2224        if (max_loop > 1UL << (MINORBITS - part_shift)) {
2225                err = -EINVAL;
2226                goto err_out;
2227        }
2228
2229        /*
2230         * If max_loop is specified, create that many devices upfront.
2231         * This also becomes a hard limit. If max_loop is not specified,
2232         * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2233         * init time. Loop devices can be requested on-demand with the
2234         * /dev/loop-control interface, or be instantiated by accessing
2235         * a 'dead' device node.
2236         */
2237        if (max_loop) {
2238                nr = max_loop;
2239                range = max_loop << part_shift;
2240        } else {
2241                nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2242                range = 1UL << MINORBITS;
2243        }
2244
2245        err = misc_register(&loop_misc);
2246        if (err < 0)
2247                goto err_out;
2248
2249
2250        if (register_blkdev(LOOP_MAJOR, "loop")) {
2251                err = -EIO;
2252                goto misc_out;
2253        }
2254
2255        blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2256                                  THIS_MODULE, loop_probe, NULL, NULL);
2257
2258        /* pre-create number of devices given by config or max_loop */
2259        mutex_lock(&loop_ctl_mutex);
2260        for (i = 0; i < nr; i++)
2261                loop_add(&lo, i);
2262        mutex_unlock(&loop_ctl_mutex);
2263
2264        printk(KERN_INFO "loop: module loaded\n");
2265        return 0;
2266
2267misc_out:
2268        misc_deregister(&loop_misc);
2269err_out:
2270        return err;
2271}
2272
2273static int loop_exit_cb(int id, void *ptr, void *data)
2274{
2275        struct loop_device *lo = ptr;
2276
2277        loop_remove(lo);
2278        return 0;
2279}
2280
2281static void __exit loop_exit(void)
2282{
2283        unsigned long range;
2284
2285        range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2286
2287        idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2288        idr_destroy(&loop_index_idr);
2289
2290        blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2291        unregister_blkdev(LOOP_MAJOR, "loop");
2292
2293        misc_deregister(&loop_misc);
2294}
2295
2296module_init(loop_init);
2297module_exit(loop_exit);
2298
2299#ifndef MODULE
2300static int __init max_loop_setup(char *str)
2301{
2302        max_loop = simple_strtol(str, NULL, 0);
2303        return 1;
2304}
2305
2306__setup("max_loop=", max_loop_setup);
2307#endif
2308