linux/drivers/block/null_blk_main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
   4 * Shaohua Li <shli@fb.com>
   5 */
   6#include <linux/module.h>
   7
   8#include <linux/moduleparam.h>
   9#include <linux/sched.h>
  10#include <linux/fs.h>
  11#include <linux/init.h>
  12#include "null_blk.h"
  13
  14#define PAGE_SECTORS_SHIFT      (PAGE_SHIFT - SECTOR_SHIFT)
  15#define PAGE_SECTORS            (1 << PAGE_SECTORS_SHIFT)
  16#define SECTOR_MASK             (PAGE_SECTORS - 1)
  17
  18#define FREE_BATCH              16
  19
  20#define TICKS_PER_SEC           50ULL
  21#define TIMER_INTERVAL          (NSEC_PER_SEC / TICKS_PER_SEC)
  22
  23#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  24static DECLARE_FAULT_ATTR(null_timeout_attr);
  25static DECLARE_FAULT_ATTR(null_requeue_attr);
  26#endif
  27
  28static inline u64 mb_per_tick(int mbps)
  29{
  30        return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
  31}
  32
  33/*
  34 * Status flags for nullb_device.
  35 *
  36 * CONFIGURED:  Device has been configured and turned on. Cannot reconfigure.
  37 * UP:          Device is currently on and visible in userspace.
  38 * THROTTLED:   Device is being throttled.
  39 * CACHE:       Device is using a write-back cache.
  40 */
  41enum nullb_device_flags {
  42        NULLB_DEV_FL_CONFIGURED = 0,
  43        NULLB_DEV_FL_UP         = 1,
  44        NULLB_DEV_FL_THROTTLED  = 2,
  45        NULLB_DEV_FL_CACHE      = 3,
  46};
  47
  48#define MAP_SZ          ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
  49/*
  50 * nullb_page is a page in memory for nullb devices.
  51 *
  52 * @page:       The page holding the data.
  53 * @bitmap:     The bitmap represents which sector in the page has data.
  54 *              Each bit represents one block size. For example, sector 8
  55 *              will use the 7th bit
  56 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
  57 * page is being flushing to storage. FREE means the cache page is freed and
  58 * should be skipped from flushing to storage. Please see
  59 * null_make_cache_space
  60 */
  61struct nullb_page {
  62        struct page *page;
  63        DECLARE_BITMAP(bitmap, MAP_SZ);
  64};
  65#define NULLB_PAGE_LOCK (MAP_SZ - 1)
  66#define NULLB_PAGE_FREE (MAP_SZ - 2)
  67
  68static LIST_HEAD(nullb_list);
  69static struct mutex lock;
  70static int null_major;
  71static DEFINE_IDA(nullb_indexes);
  72static struct blk_mq_tag_set tag_set;
  73
  74enum {
  75        NULL_IRQ_NONE           = 0,
  76        NULL_IRQ_SOFTIRQ        = 1,
  77        NULL_IRQ_TIMER          = 2,
  78};
  79
  80enum {
  81        NULL_Q_BIO              = 0,
  82        NULL_Q_RQ               = 1,
  83        NULL_Q_MQ               = 2,
  84};
  85
  86static int g_no_sched;
  87module_param_named(no_sched, g_no_sched, int, 0444);
  88MODULE_PARM_DESC(no_sched, "No io scheduler");
  89
  90static int g_submit_queues = 1;
  91module_param_named(submit_queues, g_submit_queues, int, 0444);
  92MODULE_PARM_DESC(submit_queues, "Number of submission queues");
  93
  94static int g_home_node = NUMA_NO_NODE;
  95module_param_named(home_node, g_home_node, int, 0444);
  96MODULE_PARM_DESC(home_node, "Home node for the device");
  97
  98#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  99static char g_timeout_str[80];
 100module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
 101
 102static char g_requeue_str[80];
 103module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
 104#endif
 105
 106static int g_queue_mode = NULL_Q_MQ;
 107
 108static int null_param_store_val(const char *str, int *val, int min, int max)
 109{
 110        int ret, new_val;
 111
 112        ret = kstrtoint(str, 10, &new_val);
 113        if (ret)
 114                return -EINVAL;
 115
 116        if (new_val < min || new_val > max)
 117                return -EINVAL;
 118
 119        *val = new_val;
 120        return 0;
 121}
 122
 123static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
 124{
 125        return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
 126}
 127
 128static const struct kernel_param_ops null_queue_mode_param_ops = {
 129        .set    = null_set_queue_mode,
 130        .get    = param_get_int,
 131};
 132
 133device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
 134MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
 135
 136static int g_gb = 250;
 137module_param_named(gb, g_gb, int, 0444);
 138MODULE_PARM_DESC(gb, "Size in GB");
 139
 140static int g_bs = 512;
 141module_param_named(bs, g_bs, int, 0444);
 142MODULE_PARM_DESC(bs, "Block size (in bytes)");
 143
 144static int nr_devices = 1;
 145module_param(nr_devices, int, 0444);
 146MODULE_PARM_DESC(nr_devices, "Number of devices to register");
 147
 148static bool g_blocking;
 149module_param_named(blocking, g_blocking, bool, 0444);
 150MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
 151
 152static bool shared_tags;
 153module_param(shared_tags, bool, 0444);
 154MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
 155
 156static int g_irqmode = NULL_IRQ_SOFTIRQ;
 157
 158static int null_set_irqmode(const char *str, const struct kernel_param *kp)
 159{
 160        return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
 161                                        NULL_IRQ_TIMER);
 162}
 163
 164static const struct kernel_param_ops null_irqmode_param_ops = {
 165        .set    = null_set_irqmode,
 166        .get    = param_get_int,
 167};
 168
 169device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
 170MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
 171
 172static unsigned long g_completion_nsec = 10000;
 173module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
 174MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
 175
 176static int g_hw_queue_depth = 64;
 177module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
 178MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
 179
 180static bool g_use_per_node_hctx;
 181module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
 182MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
 183
 184static bool g_zoned;
 185module_param_named(zoned, g_zoned, bool, S_IRUGO);
 186MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
 187
 188static unsigned long g_zone_size = 256;
 189module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
 190MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
 191
 192static unsigned int g_zone_nr_conv;
 193module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
 194MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
 195
 196static struct nullb_device *null_alloc_dev(void);
 197static void null_free_dev(struct nullb_device *dev);
 198static void null_del_dev(struct nullb *nullb);
 199static int null_add_dev(struct nullb_device *dev);
 200static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
 201
 202static inline struct nullb_device *to_nullb_device(struct config_item *item)
 203{
 204        return item ? container_of(item, struct nullb_device, item) : NULL;
 205}
 206
 207static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
 208{
 209        return snprintf(page, PAGE_SIZE, "%u\n", val);
 210}
 211
 212static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
 213        char *page)
 214{
 215        return snprintf(page, PAGE_SIZE, "%lu\n", val);
 216}
 217
 218static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
 219{
 220        return snprintf(page, PAGE_SIZE, "%u\n", val);
 221}
 222
 223static ssize_t nullb_device_uint_attr_store(unsigned int *val,
 224        const char *page, size_t count)
 225{
 226        unsigned int tmp;
 227        int result;
 228
 229        result = kstrtouint(page, 0, &tmp);
 230        if (result)
 231                return result;
 232
 233        *val = tmp;
 234        return count;
 235}
 236
 237static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
 238        const char *page, size_t count)
 239{
 240        int result;
 241        unsigned long tmp;
 242
 243        result = kstrtoul(page, 0, &tmp);
 244        if (result)
 245                return result;
 246
 247        *val = tmp;
 248        return count;
 249}
 250
 251static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
 252        size_t count)
 253{
 254        bool tmp;
 255        int result;
 256
 257        result = kstrtobool(page,  &tmp);
 258        if (result)
 259                return result;
 260
 261        *val = tmp;
 262        return count;
 263}
 264
 265/* The following macro should only be used with TYPE = {uint, ulong, bool}. */
 266#define NULLB_DEVICE_ATTR(NAME, TYPE)                                           \
 267static ssize_t                                                                  \
 268nullb_device_##NAME##_show(struct config_item *item, char *page)                \
 269{                                                                               \
 270        return nullb_device_##TYPE##_attr_show(                                 \
 271                                to_nullb_device(item)->NAME, page);             \
 272}                                                                               \
 273static ssize_t                                                                  \
 274nullb_device_##NAME##_store(struct config_item *item, const char *page,         \
 275                            size_t count)                                       \
 276{                                                                               \
 277        if (test_bit(NULLB_DEV_FL_CONFIGURED, &to_nullb_device(item)->flags))   \
 278                return -EBUSY;                                                  \
 279        return nullb_device_##TYPE##_attr_store(                                \
 280                        &to_nullb_device(item)->NAME, page, count);             \
 281}                                                                               \
 282CONFIGFS_ATTR(nullb_device_, NAME);
 283
 284NULLB_DEVICE_ATTR(size, ulong);
 285NULLB_DEVICE_ATTR(completion_nsec, ulong);
 286NULLB_DEVICE_ATTR(submit_queues, uint);
 287NULLB_DEVICE_ATTR(home_node, uint);
 288NULLB_DEVICE_ATTR(queue_mode, uint);
 289NULLB_DEVICE_ATTR(blocksize, uint);
 290NULLB_DEVICE_ATTR(irqmode, uint);
 291NULLB_DEVICE_ATTR(hw_queue_depth, uint);
 292NULLB_DEVICE_ATTR(index, uint);
 293NULLB_DEVICE_ATTR(blocking, bool);
 294NULLB_DEVICE_ATTR(use_per_node_hctx, bool);
 295NULLB_DEVICE_ATTR(memory_backed, bool);
 296NULLB_DEVICE_ATTR(discard, bool);
 297NULLB_DEVICE_ATTR(mbps, uint);
 298NULLB_DEVICE_ATTR(cache_size, ulong);
 299NULLB_DEVICE_ATTR(zoned, bool);
 300NULLB_DEVICE_ATTR(zone_size, ulong);
 301NULLB_DEVICE_ATTR(zone_nr_conv, uint);
 302
 303static ssize_t nullb_device_power_show(struct config_item *item, char *page)
 304{
 305        return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
 306}
 307
 308static ssize_t nullb_device_power_store(struct config_item *item,
 309                                     const char *page, size_t count)
 310{
 311        struct nullb_device *dev = to_nullb_device(item);
 312        bool newp = false;
 313        ssize_t ret;
 314
 315        ret = nullb_device_bool_attr_store(&newp, page, count);
 316        if (ret < 0)
 317                return ret;
 318
 319        if (!dev->power && newp) {
 320                if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
 321                        return count;
 322                if (null_add_dev(dev)) {
 323                        clear_bit(NULLB_DEV_FL_UP, &dev->flags);
 324                        return -ENOMEM;
 325                }
 326
 327                set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
 328                dev->power = newp;
 329        } else if (dev->power && !newp) {
 330                if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
 331                        mutex_lock(&lock);
 332                        dev->power = newp;
 333                        null_del_dev(dev->nullb);
 334                        mutex_unlock(&lock);
 335                }
 336                clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
 337        }
 338
 339        return count;
 340}
 341
 342CONFIGFS_ATTR(nullb_device_, power);
 343
 344static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
 345{
 346        struct nullb_device *t_dev = to_nullb_device(item);
 347
 348        return badblocks_show(&t_dev->badblocks, page, 0);
 349}
 350
 351static ssize_t nullb_device_badblocks_store(struct config_item *item,
 352                                     const char *page, size_t count)
 353{
 354        struct nullb_device *t_dev = to_nullb_device(item);
 355        char *orig, *buf, *tmp;
 356        u64 start, end;
 357        int ret;
 358
 359        orig = kstrndup(page, count, GFP_KERNEL);
 360        if (!orig)
 361                return -ENOMEM;
 362
 363        buf = strstrip(orig);
 364
 365        ret = -EINVAL;
 366        if (buf[0] != '+' && buf[0] != '-')
 367                goto out;
 368        tmp = strchr(&buf[1], '-');
 369        if (!tmp)
 370                goto out;
 371        *tmp = '\0';
 372        ret = kstrtoull(buf + 1, 0, &start);
 373        if (ret)
 374                goto out;
 375        ret = kstrtoull(tmp + 1, 0, &end);
 376        if (ret)
 377                goto out;
 378        ret = -EINVAL;
 379        if (start > end)
 380                goto out;
 381        /* enable badblocks */
 382        cmpxchg(&t_dev->badblocks.shift, -1, 0);
 383        if (buf[0] == '+')
 384                ret = badblocks_set(&t_dev->badblocks, start,
 385                        end - start + 1, 1);
 386        else
 387                ret = badblocks_clear(&t_dev->badblocks, start,
 388                        end - start + 1);
 389        if (ret == 0)
 390                ret = count;
 391out:
 392        kfree(orig);
 393        return ret;
 394}
 395CONFIGFS_ATTR(nullb_device_, badblocks);
 396
 397static struct configfs_attribute *nullb_device_attrs[] = {
 398        &nullb_device_attr_size,
 399        &nullb_device_attr_completion_nsec,
 400        &nullb_device_attr_submit_queues,
 401        &nullb_device_attr_home_node,
 402        &nullb_device_attr_queue_mode,
 403        &nullb_device_attr_blocksize,
 404        &nullb_device_attr_irqmode,
 405        &nullb_device_attr_hw_queue_depth,
 406        &nullb_device_attr_index,
 407        &nullb_device_attr_blocking,
 408        &nullb_device_attr_use_per_node_hctx,
 409        &nullb_device_attr_power,
 410        &nullb_device_attr_memory_backed,
 411        &nullb_device_attr_discard,
 412        &nullb_device_attr_mbps,
 413        &nullb_device_attr_cache_size,
 414        &nullb_device_attr_badblocks,
 415        &nullb_device_attr_zoned,
 416        &nullb_device_attr_zone_size,
 417        &nullb_device_attr_zone_nr_conv,
 418        NULL,
 419};
 420
 421static void nullb_device_release(struct config_item *item)
 422{
 423        struct nullb_device *dev = to_nullb_device(item);
 424
 425        null_free_device_storage(dev, false);
 426        null_free_dev(dev);
 427}
 428
 429static struct configfs_item_operations nullb_device_ops = {
 430        .release        = nullb_device_release,
 431};
 432
 433static const struct config_item_type nullb_device_type = {
 434        .ct_item_ops    = &nullb_device_ops,
 435        .ct_attrs       = nullb_device_attrs,
 436        .ct_owner       = THIS_MODULE,
 437};
 438
 439static struct
 440config_item *nullb_group_make_item(struct config_group *group, const char *name)
 441{
 442        struct nullb_device *dev;
 443
 444        dev = null_alloc_dev();
 445        if (!dev)
 446                return ERR_PTR(-ENOMEM);
 447
 448        config_item_init_type_name(&dev->item, name, &nullb_device_type);
 449
 450        return &dev->item;
 451}
 452
 453static void
 454nullb_group_drop_item(struct config_group *group, struct config_item *item)
 455{
 456        struct nullb_device *dev = to_nullb_device(item);
 457
 458        if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
 459                mutex_lock(&lock);
 460                dev->power = false;
 461                null_del_dev(dev->nullb);
 462                mutex_unlock(&lock);
 463        }
 464
 465        config_item_put(item);
 466}
 467
 468static ssize_t memb_group_features_show(struct config_item *item, char *page)
 469{
 470        return snprintf(page, PAGE_SIZE, "memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size\n");
 471}
 472
 473CONFIGFS_ATTR_RO(memb_group_, features);
 474
 475static struct configfs_attribute *nullb_group_attrs[] = {
 476        &memb_group_attr_features,
 477        NULL,
 478};
 479
 480static struct configfs_group_operations nullb_group_ops = {
 481        .make_item      = nullb_group_make_item,
 482        .drop_item      = nullb_group_drop_item,
 483};
 484
 485static const struct config_item_type nullb_group_type = {
 486        .ct_group_ops   = &nullb_group_ops,
 487        .ct_attrs       = nullb_group_attrs,
 488        .ct_owner       = THIS_MODULE,
 489};
 490
 491static struct configfs_subsystem nullb_subsys = {
 492        .su_group = {
 493                .cg_item = {
 494                        .ci_namebuf = "nullb",
 495                        .ci_type = &nullb_group_type,
 496                },
 497        },
 498};
 499
 500static inline int null_cache_active(struct nullb *nullb)
 501{
 502        return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
 503}
 504
 505static struct nullb_device *null_alloc_dev(void)
 506{
 507        struct nullb_device *dev;
 508
 509        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 510        if (!dev)
 511                return NULL;
 512        INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
 513        INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
 514        if (badblocks_init(&dev->badblocks, 0)) {
 515                kfree(dev);
 516                return NULL;
 517        }
 518
 519        dev->size = g_gb * 1024;
 520        dev->completion_nsec = g_completion_nsec;
 521        dev->submit_queues = g_submit_queues;
 522        dev->home_node = g_home_node;
 523        dev->queue_mode = g_queue_mode;
 524        dev->blocksize = g_bs;
 525        dev->irqmode = g_irqmode;
 526        dev->hw_queue_depth = g_hw_queue_depth;
 527        dev->blocking = g_blocking;
 528        dev->use_per_node_hctx = g_use_per_node_hctx;
 529        dev->zoned = g_zoned;
 530        dev->zone_size = g_zone_size;
 531        dev->zone_nr_conv = g_zone_nr_conv;
 532        return dev;
 533}
 534
 535static void null_free_dev(struct nullb_device *dev)
 536{
 537        if (!dev)
 538                return;
 539
 540        null_zone_exit(dev);
 541        badblocks_exit(&dev->badblocks);
 542        kfree(dev);
 543}
 544
 545static void put_tag(struct nullb_queue *nq, unsigned int tag)
 546{
 547        clear_bit_unlock(tag, nq->tag_map);
 548
 549        if (waitqueue_active(&nq->wait))
 550                wake_up(&nq->wait);
 551}
 552
 553static unsigned int get_tag(struct nullb_queue *nq)
 554{
 555        unsigned int tag;
 556
 557        do {
 558                tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
 559                if (tag >= nq->queue_depth)
 560                        return -1U;
 561        } while (test_and_set_bit_lock(tag, nq->tag_map));
 562
 563        return tag;
 564}
 565
 566static void free_cmd(struct nullb_cmd *cmd)
 567{
 568        put_tag(cmd->nq, cmd->tag);
 569}
 570
 571static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
 572
 573static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
 574{
 575        struct nullb_cmd *cmd;
 576        unsigned int tag;
 577
 578        tag = get_tag(nq);
 579        if (tag != -1U) {
 580                cmd = &nq->cmds[tag];
 581                cmd->tag = tag;
 582                cmd->nq = nq;
 583                if (nq->dev->irqmode == NULL_IRQ_TIMER) {
 584                        hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
 585                                     HRTIMER_MODE_REL);
 586                        cmd->timer.function = null_cmd_timer_expired;
 587                }
 588                return cmd;
 589        }
 590
 591        return NULL;
 592}
 593
 594static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, int can_wait)
 595{
 596        struct nullb_cmd *cmd;
 597        DEFINE_WAIT(wait);
 598
 599        cmd = __alloc_cmd(nq);
 600        if (cmd || !can_wait)
 601                return cmd;
 602
 603        do {
 604                prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
 605                cmd = __alloc_cmd(nq);
 606                if (cmd)
 607                        break;
 608
 609                io_schedule();
 610        } while (1);
 611
 612        finish_wait(&nq->wait, &wait);
 613        return cmd;
 614}
 615
 616static void end_cmd(struct nullb_cmd *cmd)
 617{
 618        int queue_mode = cmd->nq->dev->queue_mode;
 619
 620        switch (queue_mode)  {
 621        case NULL_Q_MQ:
 622                blk_mq_end_request(cmd->rq, cmd->error);
 623                return;
 624        case NULL_Q_BIO:
 625                cmd->bio->bi_status = cmd->error;
 626                bio_endio(cmd->bio);
 627                break;
 628        }
 629
 630        free_cmd(cmd);
 631}
 632
 633static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
 634{
 635        end_cmd(container_of(timer, struct nullb_cmd, timer));
 636
 637        return HRTIMER_NORESTART;
 638}
 639
 640static void null_cmd_end_timer(struct nullb_cmd *cmd)
 641{
 642        ktime_t kt = cmd->nq->dev->completion_nsec;
 643
 644        hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
 645}
 646
 647static void null_complete_rq(struct request *rq)
 648{
 649        end_cmd(blk_mq_rq_to_pdu(rq));
 650}
 651
 652static struct nullb_page *null_alloc_page(gfp_t gfp_flags)
 653{
 654        struct nullb_page *t_page;
 655
 656        t_page = kmalloc(sizeof(struct nullb_page), gfp_flags);
 657        if (!t_page)
 658                goto out;
 659
 660        t_page->page = alloc_pages(gfp_flags, 0);
 661        if (!t_page->page)
 662                goto out_freepage;
 663
 664        memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
 665        return t_page;
 666out_freepage:
 667        kfree(t_page);
 668out:
 669        return NULL;
 670}
 671
 672static void null_free_page(struct nullb_page *t_page)
 673{
 674        __set_bit(NULLB_PAGE_FREE, t_page->bitmap);
 675        if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
 676                return;
 677        __free_page(t_page->page);
 678        kfree(t_page);
 679}
 680
 681static bool null_page_empty(struct nullb_page *page)
 682{
 683        int size = MAP_SZ - 2;
 684
 685        return find_first_bit(page->bitmap, size) == size;
 686}
 687
 688static void null_free_sector(struct nullb *nullb, sector_t sector,
 689        bool is_cache)
 690{
 691        unsigned int sector_bit;
 692        u64 idx;
 693        struct nullb_page *t_page, *ret;
 694        struct radix_tree_root *root;
 695
 696        root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
 697        idx = sector >> PAGE_SECTORS_SHIFT;
 698        sector_bit = (sector & SECTOR_MASK);
 699
 700        t_page = radix_tree_lookup(root, idx);
 701        if (t_page) {
 702                __clear_bit(sector_bit, t_page->bitmap);
 703
 704                if (null_page_empty(t_page)) {
 705                        ret = radix_tree_delete_item(root, idx, t_page);
 706                        WARN_ON(ret != t_page);
 707                        null_free_page(ret);
 708                        if (is_cache)
 709                                nullb->dev->curr_cache -= PAGE_SIZE;
 710                }
 711        }
 712}
 713
 714static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
 715        struct nullb_page *t_page, bool is_cache)
 716{
 717        struct radix_tree_root *root;
 718
 719        root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
 720
 721        if (radix_tree_insert(root, idx, t_page)) {
 722                null_free_page(t_page);
 723                t_page = radix_tree_lookup(root, idx);
 724                WARN_ON(!t_page || t_page->page->index != idx);
 725        } else if (is_cache)
 726                nullb->dev->curr_cache += PAGE_SIZE;
 727
 728        return t_page;
 729}
 730
 731static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
 732{
 733        unsigned long pos = 0;
 734        int nr_pages;
 735        struct nullb_page *ret, *t_pages[FREE_BATCH];
 736        struct radix_tree_root *root;
 737
 738        root = is_cache ? &dev->cache : &dev->data;
 739
 740        do {
 741                int i;
 742
 743                nr_pages = radix_tree_gang_lookup(root,
 744                                (void **)t_pages, pos, FREE_BATCH);
 745
 746                for (i = 0; i < nr_pages; i++) {
 747                        pos = t_pages[i]->page->index;
 748                        ret = radix_tree_delete_item(root, pos, t_pages[i]);
 749                        WARN_ON(ret != t_pages[i]);
 750                        null_free_page(ret);
 751                }
 752
 753                pos++;
 754        } while (nr_pages == FREE_BATCH);
 755
 756        if (is_cache)
 757                dev->curr_cache = 0;
 758}
 759
 760static struct nullb_page *__null_lookup_page(struct nullb *nullb,
 761        sector_t sector, bool for_write, bool is_cache)
 762{
 763        unsigned int sector_bit;
 764        u64 idx;
 765        struct nullb_page *t_page;
 766        struct radix_tree_root *root;
 767
 768        idx = sector >> PAGE_SECTORS_SHIFT;
 769        sector_bit = (sector & SECTOR_MASK);
 770
 771        root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
 772        t_page = radix_tree_lookup(root, idx);
 773        WARN_ON(t_page && t_page->page->index != idx);
 774
 775        if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
 776                return t_page;
 777
 778        return NULL;
 779}
 780
 781static struct nullb_page *null_lookup_page(struct nullb *nullb,
 782        sector_t sector, bool for_write, bool ignore_cache)
 783{
 784        struct nullb_page *page = NULL;
 785
 786        if (!ignore_cache)
 787                page = __null_lookup_page(nullb, sector, for_write, true);
 788        if (page)
 789                return page;
 790        return __null_lookup_page(nullb, sector, for_write, false);
 791}
 792
 793static struct nullb_page *null_insert_page(struct nullb *nullb,
 794                                           sector_t sector, bool ignore_cache)
 795        __releases(&nullb->lock)
 796        __acquires(&nullb->lock)
 797{
 798        u64 idx;
 799        struct nullb_page *t_page;
 800
 801        t_page = null_lookup_page(nullb, sector, true, ignore_cache);
 802        if (t_page)
 803                return t_page;
 804
 805        spin_unlock_irq(&nullb->lock);
 806
 807        t_page = null_alloc_page(GFP_NOIO);
 808        if (!t_page)
 809                goto out_lock;
 810
 811        if (radix_tree_preload(GFP_NOIO))
 812                goto out_freepage;
 813
 814        spin_lock_irq(&nullb->lock);
 815        idx = sector >> PAGE_SECTORS_SHIFT;
 816        t_page->page->index = idx;
 817        t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
 818        radix_tree_preload_end();
 819
 820        return t_page;
 821out_freepage:
 822        null_free_page(t_page);
 823out_lock:
 824        spin_lock_irq(&nullb->lock);
 825        return null_lookup_page(nullb, sector, true, ignore_cache);
 826}
 827
 828static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
 829{
 830        int i;
 831        unsigned int offset;
 832        u64 idx;
 833        struct nullb_page *t_page, *ret;
 834        void *dst, *src;
 835
 836        idx = c_page->page->index;
 837
 838        t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
 839
 840        __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
 841        if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
 842                null_free_page(c_page);
 843                if (t_page && null_page_empty(t_page)) {
 844                        ret = radix_tree_delete_item(&nullb->dev->data,
 845                                idx, t_page);
 846                        null_free_page(t_page);
 847                }
 848                return 0;
 849        }
 850
 851        if (!t_page)
 852                return -ENOMEM;
 853
 854        src = kmap_atomic(c_page->page);
 855        dst = kmap_atomic(t_page->page);
 856
 857        for (i = 0; i < PAGE_SECTORS;
 858                        i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
 859                if (test_bit(i, c_page->bitmap)) {
 860                        offset = (i << SECTOR_SHIFT);
 861                        memcpy(dst + offset, src + offset,
 862                                nullb->dev->blocksize);
 863                        __set_bit(i, t_page->bitmap);
 864                }
 865        }
 866
 867        kunmap_atomic(dst);
 868        kunmap_atomic(src);
 869
 870        ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
 871        null_free_page(ret);
 872        nullb->dev->curr_cache -= PAGE_SIZE;
 873
 874        return 0;
 875}
 876
 877static int null_make_cache_space(struct nullb *nullb, unsigned long n)
 878{
 879        int i, err, nr_pages;
 880        struct nullb_page *c_pages[FREE_BATCH];
 881        unsigned long flushed = 0, one_round;
 882
 883again:
 884        if ((nullb->dev->cache_size * 1024 * 1024) >
 885             nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
 886                return 0;
 887
 888        nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
 889                        (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
 890        /*
 891         * nullb_flush_cache_page could unlock before using the c_pages. To
 892         * avoid race, we don't allow page free
 893         */
 894        for (i = 0; i < nr_pages; i++) {
 895                nullb->cache_flush_pos = c_pages[i]->page->index;
 896                /*
 897                 * We found the page which is being flushed to disk by other
 898                 * threads
 899                 */
 900                if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
 901                        c_pages[i] = NULL;
 902                else
 903                        __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
 904        }
 905
 906        one_round = 0;
 907        for (i = 0; i < nr_pages; i++) {
 908                if (c_pages[i] == NULL)
 909                        continue;
 910                err = null_flush_cache_page(nullb, c_pages[i]);
 911                if (err)
 912                        return err;
 913                one_round++;
 914        }
 915        flushed += one_round << PAGE_SHIFT;
 916
 917        if (n > flushed) {
 918                if (nr_pages == 0)
 919                        nullb->cache_flush_pos = 0;
 920                if (one_round == 0) {
 921                        /* give other threads a chance */
 922                        spin_unlock_irq(&nullb->lock);
 923                        spin_lock_irq(&nullb->lock);
 924                }
 925                goto again;
 926        }
 927        return 0;
 928}
 929
 930static int copy_to_nullb(struct nullb *nullb, struct page *source,
 931        unsigned int off, sector_t sector, size_t n, bool is_fua)
 932{
 933        size_t temp, count = 0;
 934        unsigned int offset;
 935        struct nullb_page *t_page;
 936        void *dst, *src;
 937
 938        while (count < n) {
 939                temp = min_t(size_t, nullb->dev->blocksize, n - count);
 940
 941                if (null_cache_active(nullb) && !is_fua)
 942                        null_make_cache_space(nullb, PAGE_SIZE);
 943
 944                offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
 945                t_page = null_insert_page(nullb, sector,
 946                        !null_cache_active(nullb) || is_fua);
 947                if (!t_page)
 948                        return -ENOSPC;
 949
 950                src = kmap_atomic(source);
 951                dst = kmap_atomic(t_page->page);
 952                memcpy(dst + offset, src + off + count, temp);
 953                kunmap_atomic(dst);
 954                kunmap_atomic(src);
 955
 956                __set_bit(sector & SECTOR_MASK, t_page->bitmap);
 957
 958                if (is_fua)
 959                        null_free_sector(nullb, sector, true);
 960
 961                count += temp;
 962                sector += temp >> SECTOR_SHIFT;
 963        }
 964        return 0;
 965}
 966
 967static int copy_from_nullb(struct nullb *nullb, struct page *dest,
 968        unsigned int off, sector_t sector, size_t n)
 969{
 970        size_t temp, count = 0;
 971        unsigned int offset;
 972        struct nullb_page *t_page;
 973        void *dst, *src;
 974
 975        while (count < n) {
 976                temp = min_t(size_t, nullb->dev->blocksize, n - count);
 977
 978                offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
 979                t_page = null_lookup_page(nullb, sector, false,
 980                        !null_cache_active(nullb));
 981
 982                dst = kmap_atomic(dest);
 983                if (!t_page) {
 984                        memset(dst + off + count, 0, temp);
 985                        goto next;
 986                }
 987                src = kmap_atomic(t_page->page);
 988                memcpy(dst + off + count, src + offset, temp);
 989                kunmap_atomic(src);
 990next:
 991                kunmap_atomic(dst);
 992
 993                count += temp;
 994                sector += temp >> SECTOR_SHIFT;
 995        }
 996        return 0;
 997}
 998
 999static void null_handle_discard(struct nullb *nullb, sector_t sector, size_t n)
1000{
1001        size_t temp;
1002
1003        spin_lock_irq(&nullb->lock);
1004        while (n > 0) {
1005                temp = min_t(size_t, n, nullb->dev->blocksize);
1006                null_free_sector(nullb, sector, false);
1007                if (null_cache_active(nullb))
1008                        null_free_sector(nullb, sector, true);
1009                sector += temp >> SECTOR_SHIFT;
1010                n -= temp;
1011        }
1012        spin_unlock_irq(&nullb->lock);
1013}
1014
1015static int null_handle_flush(struct nullb *nullb)
1016{
1017        int err;
1018
1019        if (!null_cache_active(nullb))
1020                return 0;
1021
1022        spin_lock_irq(&nullb->lock);
1023        while (true) {
1024                err = null_make_cache_space(nullb,
1025                        nullb->dev->cache_size * 1024 * 1024);
1026                if (err || nullb->dev->curr_cache == 0)
1027                        break;
1028        }
1029
1030        WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1031        spin_unlock_irq(&nullb->lock);
1032        return err;
1033}
1034
1035static int null_transfer(struct nullb *nullb, struct page *page,
1036        unsigned int len, unsigned int off, bool is_write, sector_t sector,
1037        bool is_fua)
1038{
1039        int err = 0;
1040
1041        if (!is_write) {
1042                err = copy_from_nullb(nullb, page, off, sector, len);
1043                flush_dcache_page(page);
1044        } else {
1045                flush_dcache_page(page);
1046                err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1047        }
1048
1049        return err;
1050}
1051
1052static int null_handle_rq(struct nullb_cmd *cmd)
1053{
1054        struct request *rq = cmd->rq;
1055        struct nullb *nullb = cmd->nq->dev->nullb;
1056        int err;
1057        unsigned int len;
1058        sector_t sector;
1059        struct req_iterator iter;
1060        struct bio_vec bvec;
1061
1062        sector = blk_rq_pos(rq);
1063
1064        if (req_op(rq) == REQ_OP_DISCARD) {
1065                null_handle_discard(nullb, sector, blk_rq_bytes(rq));
1066                return 0;
1067        }
1068
1069        spin_lock_irq(&nullb->lock);
1070        rq_for_each_segment(bvec, rq, iter) {
1071                len = bvec.bv_len;
1072                err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1073                                     op_is_write(req_op(rq)), sector,
1074                                     req_op(rq) & REQ_FUA);
1075                if (err) {
1076                        spin_unlock_irq(&nullb->lock);
1077                        return err;
1078                }
1079                sector += len >> SECTOR_SHIFT;
1080        }
1081        spin_unlock_irq(&nullb->lock);
1082
1083        return 0;
1084}
1085
1086static int null_handle_bio(struct nullb_cmd *cmd)
1087{
1088        struct bio *bio = cmd->bio;
1089        struct nullb *nullb = cmd->nq->dev->nullb;
1090        int err;
1091        unsigned int len;
1092        sector_t sector;
1093        struct bio_vec bvec;
1094        struct bvec_iter iter;
1095
1096        sector = bio->bi_iter.bi_sector;
1097
1098        if (bio_op(bio) == REQ_OP_DISCARD) {
1099                null_handle_discard(nullb, sector,
1100                        bio_sectors(bio) << SECTOR_SHIFT);
1101                return 0;
1102        }
1103
1104        spin_lock_irq(&nullb->lock);
1105        bio_for_each_segment(bvec, bio, iter) {
1106                len = bvec.bv_len;
1107                err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1108                                     op_is_write(bio_op(bio)), sector,
1109                                     bio->bi_opf & REQ_FUA);
1110                if (err) {
1111                        spin_unlock_irq(&nullb->lock);
1112                        return err;
1113                }
1114                sector += len >> SECTOR_SHIFT;
1115        }
1116        spin_unlock_irq(&nullb->lock);
1117        return 0;
1118}
1119
1120static void null_stop_queue(struct nullb *nullb)
1121{
1122        struct request_queue *q = nullb->q;
1123
1124        if (nullb->dev->queue_mode == NULL_Q_MQ)
1125                blk_mq_stop_hw_queues(q);
1126}
1127
1128static void null_restart_queue_async(struct nullb *nullb)
1129{
1130        struct request_queue *q = nullb->q;
1131
1132        if (nullb->dev->queue_mode == NULL_Q_MQ)
1133                blk_mq_start_stopped_hw_queues(q, true);
1134}
1135
1136static blk_status_t null_handle_cmd(struct nullb_cmd *cmd)
1137{
1138        struct nullb_device *dev = cmd->nq->dev;
1139        struct nullb *nullb = dev->nullb;
1140        int err = 0;
1141
1142        if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1143                struct request *rq = cmd->rq;
1144
1145                if (!hrtimer_active(&nullb->bw_timer))
1146                        hrtimer_restart(&nullb->bw_timer);
1147
1148                if (atomic_long_sub_return(blk_rq_bytes(rq),
1149                                &nullb->cur_bytes) < 0) {
1150                        null_stop_queue(nullb);
1151                        /* race with timer */
1152                        if (atomic_long_read(&nullb->cur_bytes) > 0)
1153                                null_restart_queue_async(nullb);
1154                        /* requeue request */
1155                        return BLK_STS_DEV_RESOURCE;
1156                }
1157        }
1158
1159        if (nullb->dev->badblocks.shift != -1) {
1160                int bad_sectors;
1161                sector_t sector, size, first_bad;
1162                bool is_flush = true;
1163
1164                if (dev->queue_mode == NULL_Q_BIO &&
1165                                bio_op(cmd->bio) != REQ_OP_FLUSH) {
1166                        is_flush = false;
1167                        sector = cmd->bio->bi_iter.bi_sector;
1168                        size = bio_sectors(cmd->bio);
1169                }
1170                if (dev->queue_mode != NULL_Q_BIO &&
1171                                req_op(cmd->rq) != REQ_OP_FLUSH) {
1172                        is_flush = false;
1173                        sector = blk_rq_pos(cmd->rq);
1174                        size = blk_rq_sectors(cmd->rq);
1175                }
1176                if (!is_flush && badblocks_check(&nullb->dev->badblocks, sector,
1177                                size, &first_bad, &bad_sectors)) {
1178                        cmd->error = BLK_STS_IOERR;
1179                        goto out;
1180                }
1181        }
1182
1183        if (dev->memory_backed) {
1184                if (dev->queue_mode == NULL_Q_BIO) {
1185                        if (bio_op(cmd->bio) == REQ_OP_FLUSH)
1186                                err = null_handle_flush(nullb);
1187                        else
1188                                err = null_handle_bio(cmd);
1189                } else {
1190                        if (req_op(cmd->rq) == REQ_OP_FLUSH)
1191                                err = null_handle_flush(nullb);
1192                        else
1193                                err = null_handle_rq(cmd);
1194                }
1195        }
1196        cmd->error = errno_to_blk_status(err);
1197
1198        if (!cmd->error && dev->zoned) {
1199                sector_t sector;
1200                unsigned int nr_sectors;
1201                enum req_opf op;
1202
1203                if (dev->queue_mode == NULL_Q_BIO) {
1204                        op = bio_op(cmd->bio);
1205                        sector = cmd->bio->bi_iter.bi_sector;
1206                        nr_sectors = cmd->bio->bi_iter.bi_size >> 9;
1207                } else {
1208                        op = req_op(cmd->rq);
1209                        sector = blk_rq_pos(cmd->rq);
1210                        nr_sectors = blk_rq_sectors(cmd->rq);
1211                }
1212
1213                if (op == REQ_OP_WRITE)
1214                        null_zone_write(cmd, sector, nr_sectors);
1215                else if (op == REQ_OP_ZONE_RESET)
1216                        null_zone_reset(cmd, sector);
1217        }
1218out:
1219        /* Complete IO by inline, softirq or timer */
1220        switch (dev->irqmode) {
1221        case NULL_IRQ_SOFTIRQ:
1222                switch (dev->queue_mode)  {
1223                case NULL_Q_MQ:
1224                        blk_mq_complete_request(cmd->rq);
1225                        break;
1226                case NULL_Q_BIO:
1227                        /*
1228                         * XXX: no proper submitting cpu information available.
1229                         */
1230                        end_cmd(cmd);
1231                        break;
1232                }
1233                break;
1234        case NULL_IRQ_NONE:
1235                end_cmd(cmd);
1236                break;
1237        case NULL_IRQ_TIMER:
1238                null_cmd_end_timer(cmd);
1239                break;
1240        }
1241        return BLK_STS_OK;
1242}
1243
1244static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1245{
1246        struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1247        ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1248        unsigned int mbps = nullb->dev->mbps;
1249
1250        if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1251                return HRTIMER_NORESTART;
1252
1253        atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1254        null_restart_queue_async(nullb);
1255
1256        hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1257
1258        return HRTIMER_RESTART;
1259}
1260
1261static void nullb_setup_bwtimer(struct nullb *nullb)
1262{
1263        ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1264
1265        hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1266        nullb->bw_timer.function = nullb_bwtimer_fn;
1267        atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1268        hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1269}
1270
1271static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1272{
1273        int index = 0;
1274
1275        if (nullb->nr_queues != 1)
1276                index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1277
1278        return &nullb->queues[index];
1279}
1280
1281static blk_qc_t null_queue_bio(struct request_queue *q, struct bio *bio)
1282{
1283        struct nullb *nullb = q->queuedata;
1284        struct nullb_queue *nq = nullb_to_queue(nullb);
1285        struct nullb_cmd *cmd;
1286
1287        cmd = alloc_cmd(nq, 1);
1288        cmd->bio = bio;
1289
1290        null_handle_cmd(cmd);
1291        return BLK_QC_T_NONE;
1292}
1293
1294static bool should_timeout_request(struct request *rq)
1295{
1296#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1297        if (g_timeout_str[0])
1298                return should_fail(&null_timeout_attr, 1);
1299#endif
1300        return false;
1301}
1302
1303static bool should_requeue_request(struct request *rq)
1304{
1305#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1306        if (g_requeue_str[0])
1307                return should_fail(&null_requeue_attr, 1);
1308#endif
1309        return false;
1310}
1311
1312static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res)
1313{
1314        pr_info("null: rq %p timed out\n", rq);
1315        blk_mq_complete_request(rq);
1316        return BLK_EH_DONE;
1317}
1318
1319static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1320                         const struct blk_mq_queue_data *bd)
1321{
1322        struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1323        struct nullb_queue *nq = hctx->driver_data;
1324
1325        might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1326
1327        if (nq->dev->irqmode == NULL_IRQ_TIMER) {
1328                hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1329                cmd->timer.function = null_cmd_timer_expired;
1330        }
1331        cmd->rq = bd->rq;
1332        cmd->nq = nq;
1333
1334        blk_mq_start_request(bd->rq);
1335
1336        if (should_requeue_request(bd->rq)) {
1337                /*
1338                 * Alternate between hitting the core BUSY path, and the
1339                 * driver driven requeue path
1340                 */
1341                nq->requeue_selection++;
1342                if (nq->requeue_selection & 1)
1343                        return BLK_STS_RESOURCE;
1344                else {
1345                        blk_mq_requeue_request(bd->rq, true);
1346                        return BLK_STS_OK;
1347                }
1348        }
1349        if (should_timeout_request(bd->rq))
1350                return BLK_STS_OK;
1351
1352        return null_handle_cmd(cmd);
1353}
1354
1355static const struct blk_mq_ops null_mq_ops = {
1356        .queue_rq       = null_queue_rq,
1357        .complete       = null_complete_rq,
1358        .timeout        = null_timeout_rq,
1359};
1360
1361static void cleanup_queue(struct nullb_queue *nq)
1362{
1363        kfree(nq->tag_map);
1364        kfree(nq->cmds);
1365}
1366
1367static void cleanup_queues(struct nullb *nullb)
1368{
1369        int i;
1370
1371        for (i = 0; i < nullb->nr_queues; i++)
1372                cleanup_queue(&nullb->queues[i]);
1373
1374        kfree(nullb->queues);
1375}
1376
1377static void null_del_dev(struct nullb *nullb)
1378{
1379        struct nullb_device *dev = nullb->dev;
1380
1381        ida_simple_remove(&nullb_indexes, nullb->index);
1382
1383        list_del_init(&nullb->list);
1384
1385        del_gendisk(nullb->disk);
1386
1387        if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1388                hrtimer_cancel(&nullb->bw_timer);
1389                atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1390                null_restart_queue_async(nullb);
1391        }
1392
1393        blk_cleanup_queue(nullb->q);
1394        if (dev->queue_mode == NULL_Q_MQ &&
1395            nullb->tag_set == &nullb->__tag_set)
1396                blk_mq_free_tag_set(nullb->tag_set);
1397        put_disk(nullb->disk);
1398        cleanup_queues(nullb);
1399        if (null_cache_active(nullb))
1400                null_free_device_storage(nullb->dev, true);
1401        kfree(nullb);
1402        dev->nullb = NULL;
1403}
1404
1405static void null_config_discard(struct nullb *nullb)
1406{
1407        if (nullb->dev->discard == false)
1408                return;
1409        nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1410        nullb->q->limits.discard_alignment = nullb->dev->blocksize;
1411        blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1412        blk_queue_flag_set(QUEUE_FLAG_DISCARD, nullb->q);
1413}
1414
1415static int null_open(struct block_device *bdev, fmode_t mode)
1416{
1417        return 0;
1418}
1419
1420static void null_release(struct gendisk *disk, fmode_t mode)
1421{
1422}
1423
1424static const struct block_device_operations null_fops = {
1425        .owner =        THIS_MODULE,
1426        .open =         null_open,
1427        .release =      null_release,
1428        .report_zones = null_zone_report,
1429};
1430
1431static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1432{
1433        BUG_ON(!nullb);
1434        BUG_ON(!nq);
1435
1436        init_waitqueue_head(&nq->wait);
1437        nq->queue_depth = nullb->queue_depth;
1438        nq->dev = nullb->dev;
1439}
1440
1441static void null_init_queues(struct nullb *nullb)
1442{
1443        struct request_queue *q = nullb->q;
1444        struct blk_mq_hw_ctx *hctx;
1445        struct nullb_queue *nq;
1446        int i;
1447
1448        queue_for_each_hw_ctx(q, hctx, i) {
1449                if (!hctx->nr_ctx || !hctx->tags)
1450                        continue;
1451                nq = &nullb->queues[i];
1452                hctx->driver_data = nq;
1453                null_init_queue(nullb, nq);
1454                nullb->nr_queues++;
1455        }
1456}
1457
1458static int setup_commands(struct nullb_queue *nq)
1459{
1460        struct nullb_cmd *cmd;
1461        int i, tag_size;
1462
1463        nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
1464        if (!nq->cmds)
1465                return -ENOMEM;
1466
1467        tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG;
1468        nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL);
1469        if (!nq->tag_map) {
1470                kfree(nq->cmds);
1471                return -ENOMEM;
1472        }
1473
1474        for (i = 0; i < nq->queue_depth; i++) {
1475                cmd = &nq->cmds[i];
1476                INIT_LIST_HEAD(&cmd->list);
1477                cmd->ll_list.next = NULL;
1478                cmd->tag = -1U;
1479        }
1480
1481        return 0;
1482}
1483
1484static int setup_queues(struct nullb *nullb)
1485{
1486        nullb->queues = kcalloc(nullb->dev->submit_queues,
1487                                sizeof(struct nullb_queue),
1488                                GFP_KERNEL);
1489        if (!nullb->queues)
1490                return -ENOMEM;
1491
1492        nullb->queue_depth = nullb->dev->hw_queue_depth;
1493
1494        return 0;
1495}
1496
1497static int init_driver_queues(struct nullb *nullb)
1498{
1499        struct nullb_queue *nq;
1500        int i, ret = 0;
1501
1502        for (i = 0; i < nullb->dev->submit_queues; i++) {
1503                nq = &nullb->queues[i];
1504
1505                null_init_queue(nullb, nq);
1506
1507                ret = setup_commands(nq);
1508                if (ret)
1509                        return ret;
1510                nullb->nr_queues++;
1511        }
1512        return 0;
1513}
1514
1515static int null_gendisk_register(struct nullb *nullb)
1516{
1517        struct gendisk *disk;
1518        sector_t size;
1519
1520        disk = nullb->disk = alloc_disk_node(1, nullb->dev->home_node);
1521        if (!disk)
1522                return -ENOMEM;
1523        size = (sector_t)nullb->dev->size * 1024 * 1024ULL;
1524        set_capacity(disk, size >> 9);
1525
1526        disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO;
1527        disk->major             = null_major;
1528        disk->first_minor       = nullb->index;
1529        disk->fops              = &null_fops;
1530        disk->private_data      = nullb;
1531        disk->queue             = nullb->q;
1532        strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1533
1534        if (nullb->dev->zoned) {
1535                int ret = blk_revalidate_disk_zones(disk);
1536
1537                if (ret != 0)
1538                        return ret;
1539        }
1540
1541        add_disk(disk);
1542        return 0;
1543}
1544
1545static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1546{
1547        set->ops = &null_mq_ops;
1548        set->nr_hw_queues = nullb ? nullb->dev->submit_queues :
1549                                                g_submit_queues;
1550        set->queue_depth = nullb ? nullb->dev->hw_queue_depth :
1551                                                g_hw_queue_depth;
1552        set->numa_node = nullb ? nullb->dev->home_node : g_home_node;
1553        set->cmd_size   = sizeof(struct nullb_cmd);
1554        set->flags = BLK_MQ_F_SHOULD_MERGE;
1555        if (g_no_sched)
1556                set->flags |= BLK_MQ_F_NO_SCHED;
1557        set->driver_data = NULL;
1558
1559        if ((nullb && nullb->dev->blocking) || g_blocking)
1560                set->flags |= BLK_MQ_F_BLOCKING;
1561
1562        return blk_mq_alloc_tag_set(set);
1563}
1564
1565static void null_validate_conf(struct nullb_device *dev)
1566{
1567        dev->blocksize = round_down(dev->blocksize, 512);
1568        dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
1569
1570        if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
1571                if (dev->submit_queues != nr_online_nodes)
1572                        dev->submit_queues = nr_online_nodes;
1573        } else if (dev->submit_queues > nr_cpu_ids)
1574                dev->submit_queues = nr_cpu_ids;
1575        else if (dev->submit_queues == 0)
1576                dev->submit_queues = 1;
1577
1578        dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
1579        dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1580
1581        /* Do memory allocation, so set blocking */
1582        if (dev->memory_backed)
1583                dev->blocking = true;
1584        else /* cache is meaningless */
1585                dev->cache_size = 0;
1586        dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1587                                                dev->cache_size);
1588        dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1589        /* can not stop a queue */
1590        if (dev->queue_mode == NULL_Q_BIO)
1591                dev->mbps = 0;
1592}
1593
1594#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1595static bool __null_setup_fault(struct fault_attr *attr, char *str)
1596{
1597        if (!str[0])
1598                return true;
1599
1600        if (!setup_fault_attr(attr, str))
1601                return false;
1602
1603        attr->verbose = 0;
1604        return true;
1605}
1606#endif
1607
1608static bool null_setup_fault(void)
1609{
1610#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1611        if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1612                return false;
1613        if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1614                return false;
1615#endif
1616        return true;
1617}
1618
1619static int null_add_dev(struct nullb_device *dev)
1620{
1621        struct nullb *nullb;
1622        int rv;
1623
1624        null_validate_conf(dev);
1625
1626        nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1627        if (!nullb) {
1628                rv = -ENOMEM;
1629                goto out;
1630        }
1631        nullb->dev = dev;
1632        dev->nullb = nullb;
1633
1634        spin_lock_init(&nullb->lock);
1635
1636        rv = setup_queues(nullb);
1637        if (rv)
1638                goto out_free_nullb;
1639
1640        if (dev->queue_mode == NULL_Q_MQ) {
1641                if (shared_tags) {
1642                        nullb->tag_set = &tag_set;
1643                        rv = 0;
1644                } else {
1645                        nullb->tag_set = &nullb->__tag_set;
1646                        rv = null_init_tag_set(nullb, nullb->tag_set);
1647                }
1648
1649                if (rv)
1650                        goto out_cleanup_queues;
1651
1652                if (!null_setup_fault())
1653                        goto out_cleanup_queues;
1654
1655                nullb->tag_set->timeout = 5 * HZ;
1656                nullb->q = blk_mq_init_queue(nullb->tag_set);
1657                if (IS_ERR(nullb->q)) {
1658                        rv = -ENOMEM;
1659                        goto out_cleanup_tags;
1660                }
1661                null_init_queues(nullb);
1662        } else if (dev->queue_mode == NULL_Q_BIO) {
1663                nullb->q = blk_alloc_queue_node(GFP_KERNEL, dev->home_node);
1664                if (!nullb->q) {
1665                        rv = -ENOMEM;
1666                        goto out_cleanup_queues;
1667                }
1668                blk_queue_make_request(nullb->q, null_queue_bio);
1669                rv = init_driver_queues(nullb);
1670                if (rv)
1671                        goto out_cleanup_blk_queue;
1672        }
1673
1674        if (dev->mbps) {
1675                set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
1676                nullb_setup_bwtimer(nullb);
1677        }
1678
1679        if (dev->cache_size > 0) {
1680                set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
1681                blk_queue_write_cache(nullb->q, true, true);
1682        }
1683
1684        if (dev->zoned) {
1685                rv = null_zone_init(dev);
1686                if (rv)
1687                        goto out_cleanup_blk_queue;
1688
1689                blk_queue_chunk_sectors(nullb->q, dev->zone_size_sects);
1690                nullb->q->limits.zoned = BLK_ZONED_HM;
1691        }
1692
1693        nullb->q->queuedata = nullb;
1694        blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
1695        blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
1696
1697        mutex_lock(&lock);
1698        nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
1699        dev->index = nullb->index;
1700        mutex_unlock(&lock);
1701
1702        blk_queue_logical_block_size(nullb->q, dev->blocksize);
1703        blk_queue_physical_block_size(nullb->q, dev->blocksize);
1704
1705        null_config_discard(nullb);
1706
1707        sprintf(nullb->disk_name, "nullb%d", nullb->index);
1708
1709        rv = null_gendisk_register(nullb);
1710        if (rv)
1711                goto out_cleanup_zone;
1712
1713        mutex_lock(&lock);
1714        list_add_tail(&nullb->list, &nullb_list);
1715        mutex_unlock(&lock);
1716
1717        return 0;
1718out_cleanup_zone:
1719        if (dev->zoned)
1720                null_zone_exit(dev);
1721out_cleanup_blk_queue:
1722        blk_cleanup_queue(nullb->q);
1723out_cleanup_tags:
1724        if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
1725                blk_mq_free_tag_set(nullb->tag_set);
1726out_cleanup_queues:
1727        cleanup_queues(nullb);
1728out_free_nullb:
1729        kfree(nullb);
1730out:
1731        return rv;
1732}
1733
1734static int __init null_init(void)
1735{
1736        int ret = 0;
1737        unsigned int i;
1738        struct nullb *nullb;
1739        struct nullb_device *dev;
1740
1741        if (g_bs > PAGE_SIZE) {
1742                pr_warn("null_blk: invalid block size\n");
1743                pr_warn("null_blk: defaults block size to %lu\n", PAGE_SIZE);
1744                g_bs = PAGE_SIZE;
1745        }
1746
1747        if (!is_power_of_2(g_zone_size)) {
1748                pr_err("null_blk: zone_size must be power-of-two\n");
1749                return -EINVAL;
1750        }
1751
1752        if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
1753                pr_err("null_blk: invalid home_node value\n");
1754                g_home_node = NUMA_NO_NODE;
1755        }
1756
1757        if (g_queue_mode == NULL_Q_RQ) {
1758                pr_err("null_blk: legacy IO path no longer available\n");
1759                return -EINVAL;
1760        }
1761        if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
1762                if (g_submit_queues != nr_online_nodes) {
1763                        pr_warn("null_blk: submit_queues param is set to %u.\n",
1764                                                        nr_online_nodes);
1765                        g_submit_queues = nr_online_nodes;
1766                }
1767        } else if (g_submit_queues > nr_cpu_ids)
1768                g_submit_queues = nr_cpu_ids;
1769        else if (g_submit_queues <= 0)
1770                g_submit_queues = 1;
1771
1772        if (g_queue_mode == NULL_Q_MQ && shared_tags) {
1773                ret = null_init_tag_set(NULL, &tag_set);
1774                if (ret)
1775                        return ret;
1776        }
1777
1778        config_group_init(&nullb_subsys.su_group);
1779        mutex_init(&nullb_subsys.su_mutex);
1780
1781        ret = configfs_register_subsystem(&nullb_subsys);
1782        if (ret)
1783                goto err_tagset;
1784
1785        mutex_init(&lock);
1786
1787        null_major = register_blkdev(0, "nullb");
1788        if (null_major < 0) {
1789                ret = null_major;
1790                goto err_conf;
1791        }
1792
1793        for (i = 0; i < nr_devices; i++) {
1794                dev = null_alloc_dev();
1795                if (!dev) {
1796                        ret = -ENOMEM;
1797                        goto err_dev;
1798                }
1799                ret = null_add_dev(dev);
1800                if (ret) {
1801                        null_free_dev(dev);
1802                        goto err_dev;
1803                }
1804        }
1805
1806        pr_info("null: module loaded\n");
1807        return 0;
1808
1809err_dev:
1810        while (!list_empty(&nullb_list)) {
1811                nullb = list_entry(nullb_list.next, struct nullb, list);
1812                dev = nullb->dev;
1813                null_del_dev(nullb);
1814                null_free_dev(dev);
1815        }
1816        unregister_blkdev(null_major, "nullb");
1817err_conf:
1818        configfs_unregister_subsystem(&nullb_subsys);
1819err_tagset:
1820        if (g_queue_mode == NULL_Q_MQ && shared_tags)
1821                blk_mq_free_tag_set(&tag_set);
1822        return ret;
1823}
1824
1825static void __exit null_exit(void)
1826{
1827        struct nullb *nullb;
1828
1829        configfs_unregister_subsystem(&nullb_subsys);
1830
1831        unregister_blkdev(null_major, "nullb");
1832
1833        mutex_lock(&lock);
1834        while (!list_empty(&nullb_list)) {
1835                struct nullb_device *dev;
1836
1837                nullb = list_entry(nullb_list.next, struct nullb, list);
1838                dev = nullb->dev;
1839                null_del_dev(nullb);
1840                null_free_dev(dev);
1841        }
1842        mutex_unlock(&lock);
1843
1844        if (g_queue_mode == NULL_Q_MQ && shared_tags)
1845                blk_mq_free_tag_set(&tag_set);
1846}
1847
1848module_init(null_init);
1849module_exit(null_exit);
1850
1851MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
1852MODULE_LICENSE("GPL");
1853