linux/drivers/clk/clk-cdce925.c
<<
>>
Prefs
   1/*
   2 * Driver for TI Multi PLL CDCE913/925/937/949 clock synthesizer
   3 *
   4 * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1,
   5 * Y4/Y5 to PLL2, and so on. PLL frequency is set on a first-come-first-serve
   6 * basis. Clients can directly request any frequency that the chip can
   7 * deliver using the standard clk framework. In addition, the device can
   8 * be configured and activated via the devicetree.
   9 *
  10 * Copyright (C) 2014, Topic Embedded Products
  11 * Licenced under GPL
  12 */
  13#include <linux/clk.h>
  14#include <linux/clk-provider.h>
  15#include <linux/delay.h>
  16#include <linux/module.h>
  17#include <linux/i2c.h>
  18#include <linux/regmap.h>
  19#include <linux/slab.h>
  20#include <linux/gcd.h>
  21
  22/* Each chip has different number of PLLs and outputs, for example:
  23 * The CECE925 has 2 PLLs which can be routed through dividers to 5 outputs.
  24 * Model this as 2 PLL clocks which are parents to the outputs.
  25 */
  26
  27enum {
  28        CDCE913,
  29        CDCE925,
  30        CDCE937,
  31        CDCE949,
  32};
  33
  34struct clk_cdce925_chip_info {
  35        int num_plls;
  36        int num_outputs;
  37};
  38
  39static const struct clk_cdce925_chip_info clk_cdce925_chip_info_tbl[] = {
  40        [CDCE913] = { .num_plls = 1, .num_outputs = 3 },
  41        [CDCE925] = { .num_plls = 2, .num_outputs = 5 },
  42        [CDCE937] = { .num_plls = 3, .num_outputs = 7 },
  43        [CDCE949] = { .num_plls = 4, .num_outputs = 9 },
  44};
  45
  46#define MAX_NUMBER_OF_PLLS      4
  47#define MAX_NUMBER_OF_OUTPUTS   9
  48
  49#define CDCE925_REG_GLOBAL1     0x01
  50#define CDCE925_REG_Y1SPIPDIVH  0x02
  51#define CDCE925_REG_PDIVL       0x03
  52#define CDCE925_REG_XCSEL       0x05
  53/* PLL parameters start at 0x10, steps of 0x10 */
  54#define CDCE925_OFFSET_PLL      0x10
  55/* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
  56#define CDCE925_PLL_MUX_OUTPUTS 0x14
  57#define CDCE925_PLL_MULDIV      0x18
  58
  59#define CDCE925_PLL_FREQUENCY_MIN        80000000ul
  60#define CDCE925_PLL_FREQUENCY_MAX       230000000ul
  61struct clk_cdce925_chip;
  62
  63struct clk_cdce925_output {
  64        struct clk_hw hw;
  65        struct clk_cdce925_chip *chip;
  66        u8 index;
  67        u16 pdiv; /* 1..127 for Y2-Y9; 1..1023 for Y1 */
  68};
  69#define to_clk_cdce925_output(_hw) \
  70        container_of(_hw, struct clk_cdce925_output, hw)
  71
  72struct clk_cdce925_pll {
  73        struct clk_hw hw;
  74        struct clk_cdce925_chip *chip;
  75        u8 index;
  76        u16 m;   /* 1..511 */
  77        u16 n;   /* 1..4095 */
  78};
  79#define to_clk_cdce925_pll(_hw) container_of(_hw, struct clk_cdce925_pll, hw)
  80
  81struct clk_cdce925_chip {
  82        struct regmap *regmap;
  83        struct i2c_client *i2c_client;
  84        const struct clk_cdce925_chip_info *chip_info;
  85        struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS];
  86        struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS];
  87};
  88
  89/* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
  90
  91static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
  92        u16 n, u16 m)
  93{
  94        if ((!m || !n) || (m == n))
  95                return parent_rate; /* In bypass mode runs at same frequency */
  96        return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
  97}
  98
  99static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
 100                unsigned long parent_rate)
 101{
 102        /* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
 103        struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
 104
 105        return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
 106}
 107
 108static void cdce925_pll_find_rate(unsigned long rate,
 109                unsigned long parent_rate, u16 *n, u16 *m)
 110{
 111        unsigned long un;
 112        unsigned long um;
 113        unsigned long g;
 114
 115        if (rate <= parent_rate) {
 116                /* Can always deliver parent_rate in bypass mode */
 117                rate = parent_rate;
 118                *n = 0;
 119                *m = 0;
 120        } else {
 121                /* In PLL mode, need to apply min/max range */
 122                if (rate < CDCE925_PLL_FREQUENCY_MIN)
 123                        rate = CDCE925_PLL_FREQUENCY_MIN;
 124                else if (rate > CDCE925_PLL_FREQUENCY_MAX)
 125                        rate = CDCE925_PLL_FREQUENCY_MAX;
 126
 127                g = gcd(rate, parent_rate);
 128                um = parent_rate / g;
 129                un = rate / g;
 130                /* When outside hw range, reduce to fit (rounding errors) */
 131                while ((un > 4095) || (um > 511)) {
 132                        un >>= 1;
 133                        um >>= 1;
 134                }
 135                if (un == 0)
 136                        un = 1;
 137                if (um == 0)
 138                        um = 1;
 139
 140                *n = un;
 141                *m = um;
 142        }
 143}
 144
 145static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
 146                unsigned long *parent_rate)
 147{
 148        u16 n, m;
 149
 150        cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
 151        return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
 152}
 153
 154static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
 155                unsigned long parent_rate)
 156{
 157        struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
 158
 159        if (!rate || (rate == parent_rate)) {
 160                data->m = 0; /* Bypass mode */
 161                data->n = 0;
 162                return 0;
 163        }
 164
 165        if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
 166                (rate > CDCE925_PLL_FREQUENCY_MAX)) {
 167                pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
 168                return -EINVAL;
 169        }
 170
 171        if (rate < parent_rate) {
 172                pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
 173                        rate, parent_rate);
 174                return -EINVAL;
 175        }
 176
 177        cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
 178        return 0;
 179}
 180
 181
 182/* calculate p = max(0, 4 - int(log2 (n/m))) */
 183static u8 cdce925_pll_calc_p(u16 n, u16 m)
 184{
 185        u8 p;
 186        u16 r = n / m;
 187
 188        if (r >= 16)
 189                return 0;
 190        p = 4;
 191        while (r > 1) {
 192                r >>= 1;
 193                --p;
 194        }
 195        return p;
 196}
 197
 198/* Returns VCO range bits for VCO1_0_RANGE */
 199static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
 200{
 201        struct clk *parent = clk_get_parent(hw->clk);
 202        unsigned long rate = clk_get_rate(parent);
 203
 204        rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
 205        if (rate >= 175000000)
 206                return 0x3;
 207        if (rate >= 150000000)
 208                return 0x02;
 209        if (rate >= 125000000)
 210                return 0x01;
 211        return 0x00;
 212}
 213
 214/* I2C clock, hence everything must happen in (un)prepare because this
 215 * may sleep */
 216static int cdce925_pll_prepare(struct clk_hw *hw)
 217{
 218        struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
 219        u16 n = data->n;
 220        u16 m = data->m;
 221        u16 r;
 222        u8 q;
 223        u8 p;
 224        u16 nn;
 225        u8 pll[4]; /* Bits are spread out over 4 byte registers */
 226        u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
 227        unsigned i;
 228
 229        if ((!m || !n) || (m == n)) {
 230                /* Set PLL mux to bypass mode, leave the rest as is */
 231                regmap_update_bits(data->chip->regmap,
 232                        reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
 233        } else {
 234                /* According to data sheet: */
 235                /* p = max(0, 4 - int(log2 (n/m))) */
 236                p = cdce925_pll_calc_p(n, m);
 237                /* nn = n * 2^p */
 238                nn = n * BIT(p);
 239                /* q = int(nn/m) */
 240                q = nn / m;
 241                if ((q < 16) || (q > 63)) {
 242                        pr_debug("%s invalid q=%d\n", __func__, q);
 243                        return -EINVAL;
 244                }
 245                r = nn - (m*q);
 246                if (r > 511) {
 247                        pr_debug("%s invalid r=%d\n", __func__, r);
 248                        return -EINVAL;
 249                }
 250                pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
 251                        n, m, p, q, r);
 252                /* encode into register bits */
 253                pll[0] = n >> 4;
 254                pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
 255                pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
 256                pll[3] = ((q & 0x07) << 5) | (p << 2) |
 257                                cdce925_pll_calc_range_bits(hw, n, m);
 258                /* Write to registers */
 259                for (i = 0; i < ARRAY_SIZE(pll); ++i)
 260                        regmap_write(data->chip->regmap,
 261                                reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
 262                /* Enable PLL */
 263                regmap_update_bits(data->chip->regmap,
 264                        reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
 265        }
 266
 267        return 0;
 268}
 269
 270static void cdce925_pll_unprepare(struct clk_hw *hw)
 271{
 272        struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
 273        u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
 274
 275        regmap_update_bits(data->chip->regmap,
 276                        reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
 277}
 278
 279static const struct clk_ops cdce925_pll_ops = {
 280        .prepare = cdce925_pll_prepare,
 281        .unprepare = cdce925_pll_unprepare,
 282        .recalc_rate = cdce925_pll_recalc_rate,
 283        .round_rate = cdce925_pll_round_rate,
 284        .set_rate = cdce925_pll_set_rate,
 285};
 286
 287
 288static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
 289{
 290        switch (data->index) {
 291        case 0:
 292                regmap_update_bits(data->chip->regmap,
 293                        CDCE925_REG_Y1SPIPDIVH,
 294                        0x03, (pdiv >> 8) & 0x03);
 295                regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
 296                break;
 297        case 1:
 298                regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
 299                break;
 300        case 2:
 301                regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
 302                break;
 303        case 3:
 304                regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
 305                break;
 306        case 4:
 307                regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
 308                break;
 309        case 5:
 310                regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv);
 311                break;
 312        case 6:
 313                regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv);
 314                break;
 315        case 7:
 316                regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv);
 317                break;
 318        case 8:
 319                regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv);
 320                break;
 321        }
 322}
 323
 324static void cdce925_clk_activate(struct clk_cdce925_output *data)
 325{
 326        switch (data->index) {
 327        case 0:
 328                regmap_update_bits(data->chip->regmap,
 329                        CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
 330                break;
 331        case 1:
 332        case 2:
 333                regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
 334                break;
 335        case 3:
 336        case 4:
 337                regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
 338                break;
 339        case 5:
 340        case 6:
 341                regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03);
 342                break;
 343        case 7:
 344        case 8:
 345                regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03);
 346                break;
 347        }
 348}
 349
 350static int cdce925_clk_prepare(struct clk_hw *hw)
 351{
 352        struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
 353
 354        cdce925_clk_set_pdiv(data, data->pdiv);
 355        cdce925_clk_activate(data);
 356        return 0;
 357}
 358
 359static void cdce925_clk_unprepare(struct clk_hw *hw)
 360{
 361        struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
 362
 363        /* Disable clock by setting divider to "0" */
 364        cdce925_clk_set_pdiv(data, 0);
 365}
 366
 367static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
 368                unsigned long parent_rate)
 369{
 370        struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
 371
 372        if (data->pdiv)
 373                return parent_rate / data->pdiv;
 374        return 0;
 375}
 376
 377static u16 cdce925_calc_divider(unsigned long rate,
 378                unsigned long parent_rate)
 379{
 380        unsigned long divider;
 381
 382        if (!rate)
 383                return 0;
 384        if (rate >= parent_rate)
 385                return 1;
 386
 387        divider = DIV_ROUND_CLOSEST(parent_rate, rate);
 388        if (divider > 0x7F)
 389                divider = 0x7F;
 390
 391        return (u16)divider;
 392}
 393
 394static unsigned long cdce925_clk_best_parent_rate(
 395        struct clk_hw *hw, unsigned long rate)
 396{
 397        struct clk *pll = clk_get_parent(hw->clk);
 398        struct clk *root = clk_get_parent(pll);
 399        unsigned long root_rate = clk_get_rate(root);
 400        unsigned long best_rate_error = rate;
 401        u16 pdiv_min;
 402        u16 pdiv_max;
 403        u16 pdiv_best;
 404        u16 pdiv_now;
 405
 406        if (root_rate % rate == 0)
 407                return root_rate; /* Don't need the PLL, use bypass */
 408
 409        pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
 410        pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
 411
 412        if (pdiv_min > pdiv_max)
 413                return 0; /* No can do? */
 414
 415        pdiv_best = pdiv_min;
 416        for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
 417                unsigned long target_rate = rate * pdiv_now;
 418                long pll_rate = clk_round_rate(pll, target_rate);
 419                unsigned long actual_rate;
 420                unsigned long rate_error;
 421
 422                if (pll_rate <= 0)
 423                        continue;
 424                actual_rate = pll_rate / pdiv_now;
 425                rate_error = abs((long)actual_rate - (long)rate);
 426                if (rate_error < best_rate_error) {
 427                        pdiv_best = pdiv_now;
 428                        best_rate_error = rate_error;
 429                }
 430                /* TODO: Consider PLL frequency based on smaller n/m values
 431                 * and pick the better one if the error is equal */
 432        }
 433
 434        return rate * pdiv_best;
 435}
 436
 437static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
 438                unsigned long *parent_rate)
 439{
 440        unsigned long l_parent_rate = *parent_rate;
 441        u16 divider = cdce925_calc_divider(rate, l_parent_rate);
 442
 443        if (l_parent_rate / divider != rate) {
 444                l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
 445                divider = cdce925_calc_divider(rate, l_parent_rate);
 446                *parent_rate = l_parent_rate;
 447        }
 448
 449        if (divider)
 450                return (long)(l_parent_rate / divider);
 451        return 0;
 452}
 453
 454static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 455                unsigned long parent_rate)
 456{
 457        struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
 458
 459        data->pdiv = cdce925_calc_divider(rate, parent_rate);
 460
 461        return 0;
 462}
 463
 464static const struct clk_ops cdce925_clk_ops = {
 465        .prepare = cdce925_clk_prepare,
 466        .unprepare = cdce925_clk_unprepare,
 467        .recalc_rate = cdce925_clk_recalc_rate,
 468        .round_rate = cdce925_clk_round_rate,
 469        .set_rate = cdce925_clk_set_rate,
 470};
 471
 472
 473static u16 cdce925_y1_calc_divider(unsigned long rate,
 474                unsigned long parent_rate)
 475{
 476        unsigned long divider;
 477
 478        if (!rate)
 479                return 0;
 480        if (rate >= parent_rate)
 481                return 1;
 482
 483        divider = DIV_ROUND_CLOSEST(parent_rate, rate);
 484        if (divider > 0x3FF) /* Y1 has 10-bit divider */
 485                divider = 0x3FF;
 486
 487        return (u16)divider;
 488}
 489
 490static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
 491                unsigned long *parent_rate)
 492{
 493        unsigned long l_parent_rate = *parent_rate;
 494        u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
 495
 496        if (divider)
 497                return (long)(l_parent_rate / divider);
 498        return 0;
 499}
 500
 501static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
 502                unsigned long parent_rate)
 503{
 504        struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
 505
 506        data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
 507
 508        return 0;
 509}
 510
 511static const struct clk_ops cdce925_clk_y1_ops = {
 512        .prepare = cdce925_clk_prepare,
 513        .unprepare = cdce925_clk_unprepare,
 514        .recalc_rate = cdce925_clk_recalc_rate,
 515        .round_rate = cdce925_clk_y1_round_rate,
 516        .set_rate = cdce925_clk_y1_set_rate,
 517};
 518
 519#define CDCE925_I2C_COMMAND_BLOCK_TRANSFER      0x00
 520#define CDCE925_I2C_COMMAND_BYTE_TRANSFER       0x80
 521
 522static int cdce925_regmap_i2c_write(
 523        void *context, const void *data, size_t count)
 524{
 525        struct device *dev = context;
 526        struct i2c_client *i2c = to_i2c_client(dev);
 527        int ret;
 528        u8 reg_data[2];
 529
 530        if (count != 2)
 531                return -ENOTSUPP;
 532
 533        /* First byte is command code */
 534        reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
 535        reg_data[1] = ((u8 *)data)[1];
 536
 537        dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
 538                        reg_data[0], reg_data[1]);
 539
 540        ret = i2c_master_send(i2c, reg_data, count);
 541        if (likely(ret == count))
 542                return 0;
 543        else if (ret < 0)
 544                return ret;
 545        else
 546                return -EIO;
 547}
 548
 549static int cdce925_regmap_i2c_read(void *context,
 550           const void *reg, size_t reg_size, void *val, size_t val_size)
 551{
 552        struct device *dev = context;
 553        struct i2c_client *i2c = to_i2c_client(dev);
 554        struct i2c_msg xfer[2];
 555        int ret;
 556        u8 reg_data[2];
 557
 558        if (reg_size != 1)
 559                return -ENOTSUPP;
 560
 561        xfer[0].addr = i2c->addr;
 562        xfer[0].flags = 0;
 563        xfer[0].buf = reg_data;
 564        if (val_size == 1) {
 565                reg_data[0] =
 566                        CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
 567                xfer[0].len = 1;
 568        } else {
 569                reg_data[0] =
 570                        CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
 571                reg_data[1] = val_size;
 572                xfer[0].len = 2;
 573        }
 574
 575        xfer[1].addr = i2c->addr;
 576        xfer[1].flags = I2C_M_RD;
 577        xfer[1].len = val_size;
 578        xfer[1].buf = val;
 579
 580        ret = i2c_transfer(i2c->adapter, xfer, 2);
 581        if (likely(ret == 2)) {
 582                dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
 583                                reg_size, val_size, reg_data[0], *((u8 *)val));
 584                return 0;
 585        } else if (ret < 0)
 586                return ret;
 587        else
 588                return -EIO;
 589}
 590
 591static struct clk_hw *
 592of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
 593{
 594        struct clk_cdce925_chip *data = _data;
 595        unsigned int idx = clkspec->args[0];
 596
 597        if (idx >= ARRAY_SIZE(data->clk)) {
 598                pr_err("%s: invalid index %u\n", __func__, idx);
 599                return ERR_PTR(-EINVAL);
 600        }
 601
 602        return &data->clk[idx].hw;
 603}
 604
 605/* The CDCE925 uses a funky way to read/write registers. Bulk mode is
 606 * just weird, so just use the single byte mode exclusively. */
 607static struct regmap_bus regmap_cdce925_bus = {
 608        .write = cdce925_regmap_i2c_write,
 609        .read = cdce925_regmap_i2c_read,
 610};
 611
 612static int cdce925_probe(struct i2c_client *client,
 613                const struct i2c_device_id *id)
 614{
 615        struct clk_cdce925_chip *data;
 616        struct device_node *node = client->dev.of_node;
 617        const char *parent_name;
 618        const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,};
 619        struct clk_init_data init;
 620        u32 value;
 621        int i;
 622        int err;
 623        struct device_node *np_output;
 624        char child_name[6];
 625        struct regmap_config config = {
 626                .name = "configuration0",
 627                .reg_bits = 8,
 628                .val_bits = 8,
 629                .cache_type = REGCACHE_RBTREE,
 630        };
 631
 632        dev_dbg(&client->dev, "%s\n", __func__);
 633        data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
 634        if (!data)
 635                return -ENOMEM;
 636
 637        data->i2c_client = client;
 638        data->chip_info = &clk_cdce925_chip_info_tbl[id->driver_data];
 639        config.max_register = CDCE925_OFFSET_PLL +
 640                data->chip_info->num_plls * 0x10 - 1;
 641        data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
 642                        &client->dev, &config);
 643        if (IS_ERR(data->regmap)) {
 644                dev_err(&client->dev, "failed to allocate register map\n");
 645                return PTR_ERR(data->regmap);
 646        }
 647        i2c_set_clientdata(client, data);
 648
 649        parent_name = of_clk_get_parent_name(node, 0);
 650        if (!parent_name) {
 651                dev_err(&client->dev, "missing parent clock\n");
 652                return -ENODEV;
 653        }
 654        dev_dbg(&client->dev, "parent is: %s\n", parent_name);
 655
 656        if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
 657                regmap_write(data->regmap,
 658                        CDCE925_REG_XCSEL, (value << 3) & 0xF8);
 659        /* PWDN bit */
 660        regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
 661
 662        /* Set input source for Y1 to be the XTAL */
 663        regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
 664
 665        init.ops = &cdce925_pll_ops;
 666        init.flags = 0;
 667        init.parent_names = &parent_name;
 668        init.num_parents = 1;
 669
 670        /* Register PLL clocks */
 671        for (i = 0; i < data->chip_info->num_plls; ++i) {
 672                pll_clk_name[i] = kasprintf(GFP_KERNEL, "%pOFn.pll%d",
 673                        client->dev.of_node, i);
 674                init.name = pll_clk_name[i];
 675                data->pll[i].chip = data;
 676                data->pll[i].hw.init = &init;
 677                data->pll[i].index = i;
 678                err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
 679                if (err) {
 680                        dev_err(&client->dev, "Failed register PLL %d\n", i);
 681                        goto error;
 682                }
 683                sprintf(child_name, "PLL%d", i+1);
 684                np_output = of_get_child_by_name(node, child_name);
 685                if (!np_output)
 686                        continue;
 687                if (!of_property_read_u32(np_output,
 688                        "clock-frequency", &value)) {
 689                        err = clk_set_rate(data->pll[i].hw.clk, value);
 690                        if (err)
 691                                dev_err(&client->dev,
 692                                        "unable to set PLL frequency %ud\n",
 693                                        value);
 694                }
 695                if (!of_property_read_u32(np_output,
 696                        "spread-spectrum", &value)) {
 697                        u8 flag = of_property_read_bool(np_output,
 698                                "spread-spectrum-center") ? 0x80 : 0x00;
 699                        regmap_update_bits(data->regmap,
 700                                0x16 + (i*CDCE925_OFFSET_PLL),
 701                                0x80, flag);
 702                        regmap_update_bits(data->regmap,
 703                                0x12 + (i*CDCE925_OFFSET_PLL),
 704                                0x07, value & 0x07);
 705                }
 706                of_node_put(np_output);
 707        }
 708
 709        /* Register output clock Y1 */
 710        init.ops = &cdce925_clk_y1_ops;
 711        init.flags = 0;
 712        init.num_parents = 1;
 713        init.parent_names = &parent_name; /* Mux Y1 to input */
 714        init.name = kasprintf(GFP_KERNEL, "%pOFn.Y1", client->dev.of_node);
 715        data->clk[0].chip = data;
 716        data->clk[0].hw.init = &init;
 717        data->clk[0].index = 0;
 718        data->clk[0].pdiv = 1;
 719        err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
 720        kfree(init.name); /* clock framework made a copy of the name */
 721        if (err) {
 722                dev_err(&client->dev, "clock registration Y1 failed\n");
 723                goto error;
 724        }
 725
 726        /* Register output clocks Y2 .. Y5*/
 727        init.ops = &cdce925_clk_ops;
 728        init.flags = CLK_SET_RATE_PARENT;
 729        init.num_parents = 1;
 730        for (i = 1; i < data->chip_info->num_outputs; ++i) {
 731                init.name = kasprintf(GFP_KERNEL, "%pOFn.Y%d",
 732                        client->dev.of_node, i+1);
 733                data->clk[i].chip = data;
 734                data->clk[i].hw.init = &init;
 735                data->clk[i].index = i;
 736                data->clk[i].pdiv = 1;
 737                switch (i) {
 738                case 1:
 739                case 2:
 740                        /* Mux Y2/3 to PLL1 */
 741                        init.parent_names = &pll_clk_name[0];
 742                        break;
 743                case 3:
 744                case 4:
 745                        /* Mux Y4/5 to PLL2 */
 746                        init.parent_names = &pll_clk_name[1];
 747                        break;
 748                case 5:
 749                case 6:
 750                        /* Mux Y6/7 to PLL3 */
 751                        init.parent_names = &pll_clk_name[2];
 752                        break;
 753                case 7:
 754                case 8:
 755                        /* Mux Y8/9 to PLL4 */
 756                        init.parent_names = &pll_clk_name[3];
 757                        break;
 758                }
 759                err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
 760                kfree(init.name); /* clock framework made a copy of the name */
 761                if (err) {
 762                        dev_err(&client->dev, "clock registration failed\n");
 763                        goto error;
 764                }
 765        }
 766
 767        /* Register the output clocks */
 768        err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
 769                                  data);
 770        if (err)
 771                dev_err(&client->dev, "unable to add OF clock provider\n");
 772
 773        err = 0;
 774
 775error:
 776        for (i = 0; i < data->chip_info->num_plls; ++i)
 777                /* clock framework made a copy of the name */
 778                kfree(pll_clk_name[i]);
 779
 780        return err;
 781}
 782
 783static const struct i2c_device_id cdce925_id[] = {
 784        { "cdce913", CDCE913 },
 785        { "cdce925", CDCE925 },
 786        { "cdce937", CDCE937 },
 787        { "cdce949", CDCE949 },
 788        { }
 789};
 790MODULE_DEVICE_TABLE(i2c, cdce925_id);
 791
 792static const struct of_device_id clk_cdce925_of_match[] = {
 793        { .compatible = "ti,cdce913" },
 794        { .compatible = "ti,cdce925" },
 795        { .compatible = "ti,cdce937" },
 796        { .compatible = "ti,cdce949" },
 797        { },
 798};
 799MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
 800
 801static struct i2c_driver cdce925_driver = {
 802        .driver = {
 803                .name = "cdce925",
 804                .of_match_table = of_match_ptr(clk_cdce925_of_match),
 805        },
 806        .probe          = cdce925_probe,
 807        .id_table       = cdce925_id,
 808};
 809module_i2c_driver(cdce925_driver);
 810
 811MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
 812MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver");
 813MODULE_LICENSE("GPL");
 814