linux/drivers/clk/clk-si5341.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Driver for Silicon Labs Si5341/Si5340 Clock generator
   4 * Copyright (C) 2019 Topic Embedded Products
   5 * Author: Mike Looijmans <mike.looijmans@topic.nl>
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clk-provider.h>
  10#include <linux/delay.h>
  11#include <linux/gcd.h>
  12#include <linux/math64.h>
  13#include <linux/i2c.h>
  14#include <linux/module.h>
  15#include <linux/regmap.h>
  16#include <linux/slab.h>
  17#include <asm/unaligned.h>
  18
  19#define SI5341_MAX_NUM_OUTPUTS 10
  20#define SI5340_MAX_NUM_OUTPUTS 4
  21
  22#define SI5341_NUM_SYNTH 5
  23#define SI5340_NUM_SYNTH 4
  24
  25/* Range of the synthesizer fractional divider */
  26#define SI5341_SYNTH_N_MIN      10
  27#define SI5341_SYNTH_N_MAX      4095
  28
  29/* The chip can get its input clock from 3 input pins or an XTAL */
  30
  31/* There is one PLL running at 13500–14256 MHz */
  32#define SI5341_PLL_VCO_MIN 13500000000ull
  33#define SI5341_PLL_VCO_MAX 14256000000ull
  34
  35/* The 5 frequency synthesizers obtain their input from the PLL */
  36struct clk_si5341_synth {
  37        struct clk_hw hw;
  38        struct clk_si5341 *data;
  39        u8 index;
  40};
  41#define to_clk_si5341_synth(_hw) \
  42        container_of(_hw, struct clk_si5341_synth, hw)
  43
  44/* The output stages can be connected to any synth (full mux) */
  45struct clk_si5341_output {
  46        struct clk_hw hw;
  47        struct clk_si5341 *data;
  48        u8 index;
  49};
  50#define to_clk_si5341_output(_hw) \
  51        container_of(_hw, struct clk_si5341_output, hw)
  52
  53struct clk_si5341 {
  54        struct clk_hw hw;
  55        struct regmap *regmap;
  56        struct i2c_client *i2c_client;
  57        struct clk_si5341_synth synth[SI5341_NUM_SYNTH];
  58        struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS];
  59        struct clk *pxtal;
  60        const char *pxtal_name;
  61        const u16 *reg_output_offset;
  62        const u16 *reg_rdiv_offset;
  63        u64 freq_vco; /* 13500–14256 MHz */
  64        u8 num_outputs;
  65        u8 num_synth;
  66};
  67#define to_clk_si5341(_hw)      container_of(_hw, struct clk_si5341, hw)
  68
  69struct clk_si5341_output_config {
  70        u8 out_format_drv_bits;
  71        u8 out_cm_ampl_bits;
  72        bool synth_master;
  73        bool always_on;
  74};
  75
  76#define SI5341_PAGE             0x0001
  77#define SI5341_PN_BASE          0x0002
  78#define SI5341_DEVICE_REV       0x0005
  79#define SI5341_STATUS           0x000C
  80#define SI5341_SOFT_RST         0x001C
  81
  82/* Input dividers (48-bit) */
  83#define SI5341_IN_PDIV(x)       (0x0208 + ((x) * 10))
  84#define SI5341_IN_PSET(x)       (0x020E + ((x) * 10))
  85
  86/* PLL configuration */
  87#define SI5341_PLL_M_NUM        0x0235
  88#define SI5341_PLL_M_DEN        0x023B
  89
  90/* Output configuration */
  91#define SI5341_OUT_CONFIG(output)       \
  92                        ((output)->data->reg_output_offset[(output)->index])
  93#define SI5341_OUT_FORMAT(output)       (SI5341_OUT_CONFIG(output) + 1)
  94#define SI5341_OUT_CM(output)           (SI5341_OUT_CONFIG(output) + 2)
  95#define SI5341_OUT_MUX_SEL(output)      (SI5341_OUT_CONFIG(output) + 3)
  96#define SI5341_OUT_R_REG(output)        \
  97                        ((output)->data->reg_rdiv_offset[(output)->index])
  98
  99/* Synthesize N divider */
 100#define SI5341_SYNTH_N_NUM(x)   (0x0302 + ((x) * 11))
 101#define SI5341_SYNTH_N_DEN(x)   (0x0308 + ((x) * 11))
 102#define SI5341_SYNTH_N_UPD(x)   (0x030C + ((x) * 11))
 103
 104/* Synthesizer output enable, phase bypass, power mode */
 105#define SI5341_SYNTH_N_CLK_TO_OUTX_EN   0x0A03
 106#define SI5341_SYNTH_N_PIBYP            0x0A04
 107#define SI5341_SYNTH_N_PDNB             0x0A05
 108#define SI5341_SYNTH_N_CLK_DIS          0x0B4A
 109
 110#define SI5341_REGISTER_MAX     0xBFF
 111
 112/* SI5341_OUT_CONFIG bits */
 113#define SI5341_OUT_CFG_PDN              BIT(0)
 114#define SI5341_OUT_CFG_OE               BIT(1)
 115#define SI5341_OUT_CFG_RDIV_FORCE2      BIT(2)
 116
 117/* Static configuration (to be moved to firmware) */
 118struct si5341_reg_default {
 119        u16 address;
 120        u8 value;
 121};
 122
 123/* Output configuration registers 0..9 are not quite logically organized */
 124static const u16 si5341_reg_output_offset[] = {
 125        0x0108,
 126        0x010D,
 127        0x0112,
 128        0x0117,
 129        0x011C,
 130        0x0121,
 131        0x0126,
 132        0x012B,
 133        0x0130,
 134        0x013A,
 135};
 136
 137static const u16 si5340_reg_output_offset[] = {
 138        0x0112,
 139        0x0117,
 140        0x0126,
 141        0x012B,
 142};
 143
 144/* The location of the R divider registers */
 145static const u16 si5341_reg_rdiv_offset[] = {
 146        0x024A,
 147        0x024D,
 148        0x0250,
 149        0x0253,
 150        0x0256,
 151        0x0259,
 152        0x025C,
 153        0x025F,
 154        0x0262,
 155        0x0268,
 156};
 157static const u16 si5340_reg_rdiv_offset[] = {
 158        0x0250,
 159        0x0253,
 160        0x025C,
 161        0x025F,
 162};
 163
 164/*
 165 * Programming sequence from ClockBuilder, settings to initialize the system
 166 * using only the XTAL input, without pre-divider.
 167 * This also contains settings that aren't mentioned anywhere in the datasheet.
 168 * The "known" settings like synth and output configuration are done later.
 169 */
 170static const struct si5341_reg_default si5341_reg_defaults[] = {
 171        { 0x0017, 0x3A }, /* INT mask (disable interrupts) */
 172        { 0x0018, 0xFF }, /* INT mask */
 173        { 0x0021, 0x0F }, /* Select XTAL as input */
 174        { 0x0022, 0x00 }, /* Not in datasheet */
 175        { 0x002B, 0x02 }, /* SPI config */
 176        { 0x002C, 0x20 }, /* LOS enable for XTAL */
 177        { 0x002D, 0x00 }, /* LOS timing */
 178        { 0x002E, 0x00 },
 179        { 0x002F, 0x00 },
 180        { 0x0030, 0x00 },
 181        { 0x0031, 0x00 },
 182        { 0x0032, 0x00 },
 183        { 0x0033, 0x00 },
 184        { 0x0034, 0x00 },
 185        { 0x0035, 0x00 },
 186        { 0x0036, 0x00 },
 187        { 0x0037, 0x00 },
 188        { 0x0038, 0x00 }, /* LOS setting (thresholds) */
 189        { 0x0039, 0x00 },
 190        { 0x003A, 0x00 },
 191        { 0x003B, 0x00 },
 192        { 0x003C, 0x00 },
 193        { 0x003D, 0x00 }, /* LOS setting (thresholds) end */
 194        { 0x0041, 0x00 }, /* LOS0_DIV_SEL */
 195        { 0x0042, 0x00 }, /* LOS1_DIV_SEL */
 196        { 0x0043, 0x00 }, /* LOS2_DIV_SEL */
 197        { 0x0044, 0x00 }, /* LOS3_DIV_SEL */
 198        { 0x009E, 0x00 }, /* Not in datasheet */
 199        { 0x0102, 0x01 }, /* Enable outputs */
 200        { 0x013F, 0x00 }, /* Not in datasheet */
 201        { 0x0140, 0x00 }, /* Not in datasheet */
 202        { 0x0141, 0x40 }, /* OUT LOS */
 203        { 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/
 204        { 0x0203, 0x00 },
 205        { 0x0204, 0x00 },
 206        { 0x0205, 0x00 },
 207        { 0x0206, 0x00 }, /* PXAXB (2^x) */
 208        { 0x0208, 0x00 }, /* Px divider setting (usually 0) */
 209        { 0x0209, 0x00 },
 210        { 0x020A, 0x00 },
 211        { 0x020B, 0x00 },
 212        { 0x020C, 0x00 },
 213        { 0x020D, 0x00 },
 214        { 0x020E, 0x00 },
 215        { 0x020F, 0x00 },
 216        { 0x0210, 0x00 },
 217        { 0x0211, 0x00 },
 218        { 0x0212, 0x00 },
 219        { 0x0213, 0x00 },
 220        { 0x0214, 0x00 },
 221        { 0x0215, 0x00 },
 222        { 0x0216, 0x00 },
 223        { 0x0217, 0x00 },
 224        { 0x0218, 0x00 },
 225        { 0x0219, 0x00 },
 226        { 0x021A, 0x00 },
 227        { 0x021B, 0x00 },
 228        { 0x021C, 0x00 },
 229        { 0x021D, 0x00 },
 230        { 0x021E, 0x00 },
 231        { 0x021F, 0x00 },
 232        { 0x0220, 0x00 },
 233        { 0x0221, 0x00 },
 234        { 0x0222, 0x00 },
 235        { 0x0223, 0x00 },
 236        { 0x0224, 0x00 },
 237        { 0x0225, 0x00 },
 238        { 0x0226, 0x00 },
 239        { 0x0227, 0x00 },
 240        { 0x0228, 0x00 },
 241        { 0x0229, 0x00 },
 242        { 0x022A, 0x00 },
 243        { 0x022B, 0x00 },
 244        { 0x022C, 0x00 },
 245        { 0x022D, 0x00 },
 246        { 0x022E, 0x00 },
 247        { 0x022F, 0x00 }, /* Px divider setting (usually 0) end */
 248        { 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */
 249        { 0x026C, 0x00 },
 250        { 0x026D, 0x00 },
 251        { 0x026E, 0x00 },
 252        { 0x026F, 0x00 },
 253        { 0x0270, 0x00 },
 254        { 0x0271, 0x00 },
 255        { 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */
 256        { 0x0339, 0x1F }, /* N_FSTEP_MSK */
 257        { 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */
 258        { 0x033C, 0x00 },
 259        { 0x033D, 0x00 },
 260        { 0x033E, 0x00 },
 261        { 0x033F, 0x00 },
 262        { 0x0340, 0x00 },
 263        { 0x0341, 0x00 },
 264        { 0x0342, 0x00 },
 265        { 0x0343, 0x00 },
 266        { 0x0344, 0x00 },
 267        { 0x0345, 0x00 },
 268        { 0x0346, 0x00 },
 269        { 0x0347, 0x00 },
 270        { 0x0348, 0x00 },
 271        { 0x0349, 0x00 },
 272        { 0x034A, 0x00 },
 273        { 0x034B, 0x00 },
 274        { 0x034C, 0x00 },
 275        { 0x034D, 0x00 },
 276        { 0x034E, 0x00 },
 277        { 0x034F, 0x00 },
 278        { 0x0350, 0x00 },
 279        { 0x0351, 0x00 },
 280        { 0x0352, 0x00 },
 281        { 0x0353, 0x00 },
 282        { 0x0354, 0x00 },
 283        { 0x0355, 0x00 },
 284        { 0x0356, 0x00 },
 285        { 0x0357, 0x00 },
 286        { 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */
 287        { 0x0359, 0x00 }, /* Nx_DELAY */
 288        { 0x035A, 0x00 },
 289        { 0x035B, 0x00 },
 290        { 0x035C, 0x00 },
 291        { 0x035D, 0x00 },
 292        { 0x035E, 0x00 },
 293        { 0x035F, 0x00 },
 294        { 0x0360, 0x00 },
 295        { 0x0361, 0x00 },
 296        { 0x0362, 0x00 }, /* Nx_DELAY end */
 297        { 0x0802, 0x00 }, /* Not in datasheet */
 298        { 0x0803, 0x00 }, /* Not in datasheet */
 299        { 0x0804, 0x00 }, /* Not in datasheet */
 300        { 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */
 301        { 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */
 302        { 0x0943, 0x00 }, /* IO_VDD_SEL=0 (0=1v8, use 1=3v3) */
 303        { 0x0949, 0x00 }, /* IN_EN (disable input clocks) */
 304        { 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */
 305        { 0x0A02, 0x00 }, /* Not in datasheet */
 306        { 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */
 307};
 308
 309/* Read and interpret a 44-bit followed by a 32-bit value in the regmap */
 310static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg,
 311        u64 *val1, u32 *val2)
 312{
 313        int err;
 314        u8 r[10];
 315
 316        err = regmap_bulk_read(regmap, reg, r, 10);
 317        if (err < 0)
 318                return err;
 319
 320        *val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) |
 321                 (get_unaligned_le32(r));
 322        *val2 = get_unaligned_le32(&r[6]);
 323
 324        return 0;
 325}
 326
 327static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg,
 328        u64 n_num, u32 n_den)
 329{
 330        u8 r[10];
 331
 332        /* Shift left as far as possible without overflowing */
 333        while (!(n_num & BIT_ULL(43)) && !(n_den & BIT(31))) {
 334                n_num <<= 1;
 335                n_den <<= 1;
 336        }
 337
 338        /* 44 bits (6 bytes) numerator */
 339        put_unaligned_le32(n_num, r);
 340        r[4] = (n_num >> 32) & 0xff;
 341        r[5] = (n_num >> 40) & 0x0f;
 342        /* 32 bits denominator */
 343        put_unaligned_le32(n_den, &r[6]);
 344
 345        /* Program the fraction */
 346        return regmap_bulk_write(regmap, reg, r, sizeof(r));
 347}
 348
 349/* VCO, we assume it runs at a constant frequency */
 350static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw,
 351                unsigned long parent_rate)
 352{
 353        struct clk_si5341 *data = to_clk_si5341(hw);
 354        int err;
 355        u64 res;
 356        u64 m_num;
 357        u32 m_den;
 358        unsigned int shift;
 359
 360        /* Assume that PDIV is not being used, just read the PLL setting */
 361        err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM,
 362                                &m_num, &m_den);
 363        if (err < 0)
 364                return 0;
 365
 366        if (!m_num || !m_den)
 367                return 0;
 368
 369        /*
 370         * Though m_num is 64-bit, only the upper bits are actually used. While
 371         * calculating m_num and m_den, they are shifted as far as possible to
 372         * the left. To avoid 96-bit division here, we just shift them back so
 373         * we can do with just 64 bits.
 374         */
 375        shift = 0;
 376        res = m_num;
 377        while (res & 0xffff00000000ULL) {
 378                ++shift;
 379                res >>= 1;
 380        }
 381        res *= parent_rate;
 382        do_div(res, (m_den >> shift));
 383
 384        /* We cannot return the actual frequency in 32 bit, store it locally */
 385        data->freq_vco = res;
 386
 387        /* Report kHz since the value is out of range */
 388        do_div(res, 1000);
 389
 390        return (unsigned long)res;
 391}
 392
 393static const struct clk_ops si5341_clk_ops = {
 394        .recalc_rate = si5341_clk_recalc_rate,
 395};
 396
 397/* Synthesizers, there are 5 synthesizers that connect to any of the outputs */
 398
 399/* The synthesizer is on if all power and enable bits are set */
 400static int si5341_synth_clk_is_on(struct clk_hw *hw)
 401{
 402        struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 403        int err;
 404        u32 val;
 405        u8 index = synth->index;
 406
 407        err = regmap_read(synth->data->regmap,
 408                        SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val);
 409        if (err < 0)
 410                return 0;
 411
 412        if (!(val & BIT(index)))
 413                return 0;
 414
 415        err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val);
 416        if (err < 0)
 417                return 0;
 418
 419        if (!(val & BIT(index)))
 420                return 0;
 421
 422        /* This bit must be 0 for the synthesizer to receive clock input */
 423        err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val);
 424        if (err < 0)
 425                return 0;
 426
 427        return !(val & BIT(index));
 428}
 429
 430static void si5341_synth_clk_unprepare(struct clk_hw *hw)
 431{
 432        struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 433        u8 index = synth->index; /* In range 0..5 */
 434        u8 mask = BIT(index);
 435
 436        /* Disable output */
 437        regmap_update_bits(synth->data->regmap,
 438                SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0);
 439        /* Power down */
 440        regmap_update_bits(synth->data->regmap,
 441                SI5341_SYNTH_N_PDNB, mask, 0);
 442        /* Disable clock input to synth (set to 1 to disable) */
 443        regmap_update_bits(synth->data->regmap,
 444                SI5341_SYNTH_N_CLK_DIS, mask, mask);
 445}
 446
 447static int si5341_synth_clk_prepare(struct clk_hw *hw)
 448{
 449        struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 450        int err;
 451        u8 index = synth->index;
 452        u8 mask = BIT(index);
 453
 454        /* Power up */
 455        err = regmap_update_bits(synth->data->regmap,
 456                SI5341_SYNTH_N_PDNB, mask, mask);
 457        if (err < 0)
 458                return err;
 459
 460        /* Enable clock input to synth (set bit to 0 to enable) */
 461        err = regmap_update_bits(synth->data->regmap,
 462                SI5341_SYNTH_N_CLK_DIS, mask, 0);
 463        if (err < 0)
 464                return err;
 465
 466        /* Enable output */
 467        return regmap_update_bits(synth->data->regmap,
 468                SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask);
 469}
 470
 471/* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */
 472static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw,
 473                unsigned long parent_rate)
 474{
 475        struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 476        u64 f;
 477        u64 n_num;
 478        u32 n_den;
 479        int err;
 480
 481        err = si5341_decode_44_32(synth->data->regmap,
 482                        SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den);
 483        if (err < 0)
 484                return err;
 485
 486        /*
 487         * n_num and n_den are shifted left as much as possible, so to prevent
 488         * overflow in 64-bit math, we shift n_den 4 bits to the right
 489         */
 490        f = synth->data->freq_vco;
 491        f *= n_den >> 4;
 492
 493        /* Now we need to to 64-bit division: f/n_num */
 494        /* And compensate for the 4 bits we dropped */
 495        f = div64_u64(f, (n_num >> 4));
 496
 497        return f;
 498}
 499
 500static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate,
 501                unsigned long *parent_rate)
 502{
 503        struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 504        u64 f;
 505
 506        /* The synthesizer accuracy is such that anything in range will work */
 507        f = synth->data->freq_vco;
 508        do_div(f, SI5341_SYNTH_N_MAX);
 509        if (rate < f)
 510                return f;
 511
 512        f = synth->data->freq_vco;
 513        do_div(f, SI5341_SYNTH_N_MIN);
 514        if (rate > f)
 515                return f;
 516
 517        return rate;
 518}
 519
 520static int si5341_synth_program(struct clk_si5341_synth *synth,
 521        u64 n_num, u32 n_den, bool is_integer)
 522{
 523        int err;
 524        u8 index = synth->index;
 525
 526        err = si5341_encode_44_32(synth->data->regmap,
 527                        SI5341_SYNTH_N_NUM(index), n_num, n_den);
 528
 529        err = regmap_update_bits(synth->data->regmap,
 530                SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0);
 531        if (err < 0)
 532                return err;
 533
 534        return regmap_write(synth->data->regmap,
 535                SI5341_SYNTH_N_UPD(index), 0x01);
 536}
 537
 538
 539static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 540                unsigned long parent_rate)
 541{
 542        struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 543        u64 n_num;
 544        u32 n_den;
 545        u32 r;
 546        u32 g;
 547        bool is_integer;
 548
 549        n_num = synth->data->freq_vco;
 550        n_den = rate;
 551
 552        /* see if there's an integer solution */
 553        r = do_div(n_num, rate);
 554        is_integer = (r == 0);
 555        if (is_integer) {
 556                /* Integer divider equal to n_num */
 557                n_den = 1;
 558        } else {
 559                /* Calculate a fractional solution */
 560                g = gcd(r, rate);
 561                n_den = rate / g;
 562                n_num *= n_den;
 563                n_num += r / g;
 564        }
 565
 566        dev_dbg(&synth->data->i2c_client->dev,
 567                        "%s(%u): n=0x%llx d=0x%x %s\n", __func__,
 568                                synth->index, n_num, n_den,
 569                                is_integer ? "int" : "frac");
 570
 571        return si5341_synth_program(synth, n_num, n_den, is_integer);
 572}
 573
 574static const struct clk_ops si5341_synth_clk_ops = {
 575        .is_prepared = si5341_synth_clk_is_on,
 576        .prepare = si5341_synth_clk_prepare,
 577        .unprepare = si5341_synth_clk_unprepare,
 578        .recalc_rate = si5341_synth_clk_recalc_rate,
 579        .round_rate = si5341_synth_clk_round_rate,
 580        .set_rate = si5341_synth_clk_set_rate,
 581};
 582
 583static int si5341_output_clk_is_on(struct clk_hw *hw)
 584{
 585        struct clk_si5341_output *output = to_clk_si5341_output(hw);
 586        int err;
 587        u32 val;
 588
 589        err = regmap_read(output->data->regmap,
 590                        SI5341_OUT_CONFIG(output), &val);
 591        if (err < 0)
 592                return err;
 593
 594        /* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */
 595        return (val & 0x03) == SI5341_OUT_CFG_OE;
 596}
 597
 598/* Disables and then powers down the output */
 599static void si5341_output_clk_unprepare(struct clk_hw *hw)
 600{
 601        struct clk_si5341_output *output = to_clk_si5341_output(hw);
 602
 603        regmap_update_bits(output->data->regmap,
 604                        SI5341_OUT_CONFIG(output),
 605                        SI5341_OUT_CFG_OE, 0);
 606        regmap_update_bits(output->data->regmap,
 607                        SI5341_OUT_CONFIG(output),
 608                        SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN);
 609}
 610
 611/* Powers up and then enables the output */
 612static int si5341_output_clk_prepare(struct clk_hw *hw)
 613{
 614        struct clk_si5341_output *output = to_clk_si5341_output(hw);
 615        int err;
 616
 617        err = regmap_update_bits(output->data->regmap,
 618                        SI5341_OUT_CONFIG(output),
 619                        SI5341_OUT_CFG_PDN, 0);
 620        if (err < 0)
 621                return err;
 622
 623        return regmap_update_bits(output->data->regmap,
 624                        SI5341_OUT_CONFIG(output),
 625                        SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE);
 626}
 627
 628static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw,
 629                unsigned long parent_rate)
 630{
 631        struct clk_si5341_output *output = to_clk_si5341_output(hw);
 632        int err;
 633        u32 val;
 634        u32 r_divider;
 635        u8 r[3];
 636
 637        err = regmap_bulk_read(output->data->regmap,
 638                        SI5341_OUT_R_REG(output), r, 3);
 639        if (err < 0)
 640                return err;
 641
 642        /* Calculate value as 24-bit integer*/
 643        r_divider = r[2] << 16 | r[1] << 8 | r[0];
 644
 645        /* If Rx_REG is zero, the divider is disabled, so return a "0" rate */
 646        if (!r_divider)
 647                return 0;
 648
 649        /* Divider is 2*(Rx_REG+1) */
 650        r_divider += 1;
 651        r_divider <<= 1;
 652
 653        err = regmap_read(output->data->regmap,
 654                        SI5341_OUT_CONFIG(output), &val);
 655        if (err < 0)
 656                return err;
 657
 658        if (val & SI5341_OUT_CFG_RDIV_FORCE2)
 659                r_divider = 2;
 660
 661        return parent_rate / r_divider;
 662}
 663
 664static long si5341_output_clk_round_rate(struct clk_hw *hw, unsigned long rate,
 665                unsigned long *parent_rate)
 666{
 667        unsigned long r;
 668
 669        r = *parent_rate >> 1;
 670
 671        /* If rate is an even divisor, no changes to parent required */
 672        if (r && !(r % rate))
 673                return (long)rate;
 674
 675        if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
 676                if (rate > 200000000) {
 677                        /* minimum r-divider is 2 */
 678                        r = 2;
 679                } else {
 680                        /* Take a parent frequency near 400 MHz */
 681                        r = (400000000u / rate) & ~1;
 682                }
 683                *parent_rate = r * rate;
 684        } else {
 685                /* We cannot change our parent's rate, report what we can do */
 686                r /= rate;
 687                rate = *parent_rate / (r << 1);
 688        }
 689
 690        return rate;
 691}
 692
 693static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 694                unsigned long parent_rate)
 695{
 696        struct clk_si5341_output *output = to_clk_si5341_output(hw);
 697        /* Frequency divider is (r_div + 1) * 2 */
 698        u32 r_div = (parent_rate / rate) >> 1;
 699        int err;
 700        u8 r[3];
 701
 702        if (r_div <= 1)
 703                r_div = 0;
 704        else if (r_div >= BIT(24))
 705                r_div = BIT(24) - 1;
 706        else
 707                --r_div;
 708
 709        /* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */
 710        err = regmap_update_bits(output->data->regmap,
 711                        SI5341_OUT_CONFIG(output),
 712                        SI5341_OUT_CFG_RDIV_FORCE2,
 713                        (r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0);
 714        if (err < 0)
 715                return err;
 716
 717        /* Always write Rx_REG, because a zero value disables the divider */
 718        r[0] = r_div ? (r_div & 0xff) : 1;
 719        r[1] = (r_div >> 8) & 0xff;
 720        r[2] = (r_div >> 16) & 0xff;
 721        err = regmap_bulk_write(output->data->regmap,
 722                        SI5341_OUT_R_REG(output), r, 3);
 723
 724        return 0;
 725}
 726
 727static int si5341_output_reparent(struct clk_si5341_output *output, u8 index)
 728{
 729        return regmap_update_bits(output->data->regmap,
 730                SI5341_OUT_MUX_SEL(output), 0x07, index);
 731}
 732
 733static int si5341_output_set_parent(struct clk_hw *hw, u8 index)
 734{
 735        struct clk_si5341_output *output = to_clk_si5341_output(hw);
 736
 737        if (index >= output->data->num_synth)
 738                return -EINVAL;
 739
 740        return si5341_output_reparent(output, index);
 741}
 742
 743static u8 si5341_output_get_parent(struct clk_hw *hw)
 744{
 745        struct clk_si5341_output *output = to_clk_si5341_output(hw);
 746        int err;
 747        u32 val;
 748
 749        err = regmap_read(output->data->regmap,
 750                        SI5341_OUT_MUX_SEL(output), &val);
 751
 752        return val & 0x7;
 753}
 754
 755static const struct clk_ops si5341_output_clk_ops = {
 756        .is_prepared = si5341_output_clk_is_on,
 757        .prepare = si5341_output_clk_prepare,
 758        .unprepare = si5341_output_clk_unprepare,
 759        .recalc_rate = si5341_output_clk_recalc_rate,
 760        .round_rate = si5341_output_clk_round_rate,
 761        .set_rate = si5341_output_clk_set_rate,
 762        .set_parent = si5341_output_set_parent,
 763        .get_parent = si5341_output_get_parent,
 764};
 765
 766/*
 767 * The chip can be bought in a pre-programmed version, or one can program the
 768 * NVM in the chip to boot up in a preset mode. This routine tries to determine
 769 * if that's the case, or if we need to reset and program everything from
 770 * scratch. Returns negative error, or true/false.
 771 */
 772static int si5341_is_programmed_already(struct clk_si5341 *data)
 773{
 774        int err;
 775        u8 r[4];
 776
 777        /* Read the PLL divider value, it must have a non-zero value */
 778        err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN,
 779                        r, ARRAY_SIZE(r));
 780        if (err < 0)
 781                return err;
 782
 783        return !!get_unaligned_le32(r);
 784}
 785
 786static struct clk_hw *
 787of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data)
 788{
 789        struct clk_si5341 *data = _data;
 790        unsigned int idx = clkspec->args[1];
 791        unsigned int group = clkspec->args[0];
 792
 793        switch (group) {
 794        case 0:
 795                if (idx >= data->num_outputs) {
 796                        dev_err(&data->i2c_client->dev,
 797                                "invalid output index %u\n", idx);
 798                        return ERR_PTR(-EINVAL);
 799                }
 800                return &data->clk[idx].hw;
 801        case 1:
 802                if (idx >= data->num_synth) {
 803                        dev_err(&data->i2c_client->dev,
 804                                "invalid synthesizer index %u\n", idx);
 805                        return ERR_PTR(-EINVAL);
 806                }
 807                return &data->synth[idx].hw;
 808        case 2:
 809                if (idx > 0) {
 810                        dev_err(&data->i2c_client->dev,
 811                                "invalid PLL index %u\n", idx);
 812                        return ERR_PTR(-EINVAL);
 813                }
 814                return &data->hw;
 815        default:
 816                dev_err(&data->i2c_client->dev, "invalid group %u\n", group);
 817                return ERR_PTR(-EINVAL);
 818        }
 819}
 820
 821static int si5341_probe_chip_id(struct clk_si5341 *data)
 822{
 823        int err;
 824        u8 reg[4];
 825        u16 model;
 826
 827        err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg,
 828                                ARRAY_SIZE(reg));
 829        if (err < 0) {
 830                dev_err(&data->i2c_client->dev, "Failed to read chip ID\n");
 831                return err;
 832        }
 833
 834        model = get_unaligned_le16(reg);
 835
 836        dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n",
 837                 model, reg[2], reg[3]);
 838
 839        switch (model) {
 840        case 0x5340:
 841                data->num_outputs = SI5340_MAX_NUM_OUTPUTS;
 842                data->num_synth = SI5340_NUM_SYNTH;
 843                data->reg_output_offset = si5340_reg_output_offset;
 844                data->reg_rdiv_offset = si5340_reg_rdiv_offset;
 845                break;
 846        case 0x5341:
 847                data->num_outputs = SI5341_MAX_NUM_OUTPUTS;
 848                data->num_synth = SI5341_NUM_SYNTH;
 849                data->reg_output_offset = si5341_reg_output_offset;
 850                data->reg_rdiv_offset = si5341_reg_rdiv_offset;
 851                break;
 852        default:
 853                dev_err(&data->i2c_client->dev, "Model '%x' not supported\n",
 854                        model);
 855                return -EINVAL;
 856        }
 857
 858        return 0;
 859}
 860
 861/* Read active settings into the regmap cache for later reference */
 862static int si5341_read_settings(struct clk_si5341 *data)
 863{
 864        int err;
 865        u8 i;
 866        u8 r[10];
 867
 868        err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10);
 869        if (err < 0)
 870                return err;
 871
 872        err = regmap_bulk_read(data->regmap,
 873                                SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3);
 874        if (err < 0)
 875                return err;
 876
 877        err = regmap_bulk_read(data->regmap,
 878                                SI5341_SYNTH_N_CLK_DIS, r, 1);
 879        if (err < 0)
 880                return err;
 881
 882        for (i = 0; i < data->num_synth; ++i) {
 883                err = regmap_bulk_read(data->regmap,
 884                                        SI5341_SYNTH_N_NUM(i), r, 10);
 885                if (err < 0)
 886                        return err;
 887        }
 888
 889        for (i = 0; i < data->num_outputs; ++i) {
 890                err = regmap_bulk_read(data->regmap,
 891                                        data->reg_output_offset[i], r, 4);
 892                if (err < 0)
 893                        return err;
 894
 895                err = regmap_bulk_read(data->regmap,
 896                                        data->reg_rdiv_offset[i], r, 3);
 897                if (err < 0)
 898                        return err;
 899        }
 900
 901        return 0;
 902}
 903
 904static int si5341_write_multiple(struct clk_si5341 *data,
 905        const struct si5341_reg_default *values, unsigned int num_values)
 906{
 907        unsigned int i;
 908        int res;
 909
 910        for (i = 0; i < num_values; ++i) {
 911                res = regmap_write(data->regmap,
 912                        values[i].address, values[i].value);
 913                if (res < 0) {
 914                        dev_err(&data->i2c_client->dev,
 915                                "Failed to write %#x:%#x\n",
 916                                values[i].address, values[i].value);
 917                        return res;
 918                }
 919        }
 920
 921        return 0;
 922}
 923
 924static const struct si5341_reg_default si5341_preamble[] = {
 925        { 0x0B25, 0x00 },
 926        { 0x0502, 0x01 },
 927        { 0x0505, 0x03 },
 928        { 0x0957, 0x1F },
 929        { 0x0B4E, 0x1A },
 930};
 931
 932static int si5341_send_preamble(struct clk_si5341 *data)
 933{
 934        int res;
 935        u32 revision;
 936
 937        /* For revision 2 and up, the values are slightly different */
 938        res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
 939        if (res < 0)
 940                return res;
 941
 942        /* Write "preamble" as specified by datasheet */
 943        res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0);
 944        if (res < 0)
 945                return res;
 946        res = si5341_write_multiple(data,
 947                si5341_preamble, ARRAY_SIZE(si5341_preamble));
 948        if (res < 0)
 949                return res;
 950
 951        /* Datasheet specifies a 300ms wait after sending the preamble */
 952        msleep(300);
 953
 954        return 0;
 955}
 956
 957/* Perform a soft reset and write post-amble */
 958static int si5341_finalize_defaults(struct clk_si5341 *data)
 959{
 960        int res;
 961        u32 revision;
 962
 963        res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
 964        if (res < 0)
 965                return res;
 966
 967        dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision);
 968
 969        res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01);
 970        if (res < 0)
 971                return res;
 972
 973        /* Datasheet does not explain these nameless registers */
 974        res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3);
 975        if (res < 0)
 976                return res;
 977        res = regmap_write(data->regmap, 0x0B25, 0x02);
 978        if (res < 0)
 979                return res;
 980
 981        return 0;
 982}
 983
 984
 985static const struct regmap_range si5341_regmap_volatile_range[] = {
 986        regmap_reg_range(0x000C, 0x0012), /* Status */
 987        regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */
 988        regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */
 989        /* Update bits for synth config */
 990        regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)),
 991        regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)),
 992        regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)),
 993        regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)),
 994        regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)),
 995};
 996
 997static const struct regmap_access_table si5341_regmap_volatile = {
 998        .yes_ranges = si5341_regmap_volatile_range,
 999        .n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range),
1000};
1001
1002/* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */
1003static const struct regmap_range_cfg si5341_regmap_ranges[] = {
1004        {
1005                .range_min = 0,
1006                .range_max = SI5341_REGISTER_MAX,
1007                .selector_reg = SI5341_PAGE,
1008                .selector_mask = 0xff,
1009                .selector_shift = 0,
1010                .window_start = 0,
1011                .window_len = 256,
1012        },
1013};
1014
1015static const struct regmap_config si5341_regmap_config = {
1016        .reg_bits = 8,
1017        .val_bits = 8,
1018        .cache_type = REGCACHE_RBTREE,
1019        .ranges = si5341_regmap_ranges,
1020        .num_ranges = ARRAY_SIZE(si5341_regmap_ranges),
1021        .max_register = SI5341_REGISTER_MAX,
1022        .volatile_table = &si5341_regmap_volatile,
1023};
1024
1025static int si5341_dt_parse_dt(struct i2c_client *client,
1026        struct clk_si5341_output_config *config)
1027{
1028        struct device_node *child;
1029        struct device_node *np = client->dev.of_node;
1030        u32 num;
1031        u32 val;
1032
1033        memset(config, 0, sizeof(struct clk_si5341_output_config) *
1034                                SI5341_MAX_NUM_OUTPUTS);
1035
1036        for_each_child_of_node(np, child) {
1037                if (of_property_read_u32(child, "reg", &num)) {
1038                        dev_err(&client->dev, "missing reg property of %s\n",
1039                                child->name);
1040                        goto put_child;
1041                }
1042
1043                if (num >= SI5341_MAX_NUM_OUTPUTS) {
1044                        dev_err(&client->dev, "invalid clkout %d\n", num);
1045                        goto put_child;
1046                }
1047
1048                if (!of_property_read_u32(child, "silabs,format", &val)) {
1049                        /* Set cm and ampl conservatively to 3v3 settings */
1050                        switch (val) {
1051                        case 1: /* normal differential */
1052                                config[num].out_cm_ampl_bits = 0x33;
1053                                break;
1054                        case 2: /* low-power differential */
1055                                config[num].out_cm_ampl_bits = 0x13;
1056                                break;
1057                        case 4: /* LVCMOS */
1058                                config[num].out_cm_ampl_bits = 0x33;
1059                                /* Set SI recommended impedance for LVCMOS */
1060                                config[num].out_format_drv_bits |= 0xc0;
1061                                break;
1062                        default:
1063                                dev_err(&client->dev,
1064                                        "invalid silabs,format %u for %u\n",
1065                                        val, num);
1066                                goto put_child;
1067                        }
1068                        config[num].out_format_drv_bits &= ~0x07;
1069                        config[num].out_format_drv_bits |= val & 0x07;
1070                        /* Always enable the SYNC feature */
1071                        config[num].out_format_drv_bits |= 0x08;
1072                }
1073
1074                if (!of_property_read_u32(child, "silabs,common-mode", &val)) {
1075                        if (val > 0xf) {
1076                                dev_err(&client->dev,
1077                                        "invalid silabs,common-mode %u\n",
1078                                        val);
1079                                goto put_child;
1080                        }
1081                        config[num].out_cm_ampl_bits &= 0xf0;
1082                        config[num].out_cm_ampl_bits |= val & 0x0f;
1083                }
1084
1085                if (!of_property_read_u32(child, "silabs,amplitude", &val)) {
1086                        if (val > 0xf) {
1087                                dev_err(&client->dev,
1088                                        "invalid silabs,amplitude %u\n",
1089                                        val);
1090                                goto put_child;
1091                        }
1092                        config[num].out_cm_ampl_bits &= 0x0f;
1093                        config[num].out_cm_ampl_bits |= (val << 4) & 0xf0;
1094                }
1095
1096                if (of_property_read_bool(child, "silabs,disable-high"))
1097                        config[num].out_format_drv_bits |= 0x10;
1098
1099                config[num].synth_master =
1100                        of_property_read_bool(child, "silabs,synth-master");
1101
1102                config[num].always_on =
1103                        of_property_read_bool(child, "always-on");
1104        }
1105
1106        return 0;
1107
1108put_child:
1109        of_node_put(child);
1110        return -EINVAL;
1111}
1112
1113/*
1114 * If not pre-configured, calculate and set the PLL configuration manually.
1115 * For low-jitter performance, the PLL should be set such that the synthesizers
1116 * only need integer division.
1117 * Without any user guidance, we'll set the PLL to 14GHz, which still allows
1118 * the chip to generate any frequency on its outputs, but jitter performance
1119 * may be sub-optimal.
1120 */
1121static int si5341_initialize_pll(struct clk_si5341 *data)
1122{
1123        struct device_node *np = data->i2c_client->dev.of_node;
1124        u32 m_num = 0;
1125        u32 m_den = 0;
1126
1127        if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) {
1128                dev_err(&data->i2c_client->dev,
1129                        "PLL configuration requires silabs,pll-m-num\n");
1130        }
1131        if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) {
1132                dev_err(&data->i2c_client->dev,
1133                        "PLL configuration requires silabs,pll-m-den\n");
1134        }
1135
1136        if (!m_num || !m_den) {
1137                dev_err(&data->i2c_client->dev,
1138                        "PLL configuration invalid, assume 14GHz\n");
1139                m_den = clk_get_rate(data->pxtal) / 10;
1140                m_num = 1400000000;
1141        }
1142
1143        return si5341_encode_44_32(data->regmap,
1144                        SI5341_PLL_M_NUM, m_num, m_den);
1145}
1146
1147static int si5341_probe(struct i2c_client *client,
1148                const struct i2c_device_id *id)
1149{
1150        struct clk_si5341 *data;
1151        struct clk_init_data init;
1152        const char *root_clock_name;
1153        const char *synth_clock_names[SI5341_NUM_SYNTH];
1154        int err;
1155        unsigned int i;
1156        struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS];
1157        bool initialization_required;
1158
1159        data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
1160        if (!data)
1161                return -ENOMEM;
1162
1163        data->i2c_client = client;
1164
1165        data->pxtal = devm_clk_get(&client->dev, "xtal");
1166        if (IS_ERR(data->pxtal)) {
1167                if (PTR_ERR(data->pxtal) == -EPROBE_DEFER)
1168                        return -EPROBE_DEFER;
1169
1170                dev_err(&client->dev, "Missing xtal clock input\n");
1171        }
1172
1173        err = si5341_dt_parse_dt(client, config);
1174        if (err)
1175                return err;
1176
1177        if (of_property_read_string(client->dev.of_node, "clock-output-names",
1178                        &init.name))
1179                init.name = client->dev.of_node->name;
1180        root_clock_name = init.name;
1181
1182        data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config);
1183        if (IS_ERR(data->regmap))
1184                return PTR_ERR(data->regmap);
1185
1186        i2c_set_clientdata(client, data);
1187
1188        err = si5341_probe_chip_id(data);
1189        if (err < 0)
1190                return err;
1191
1192        /* "Activate" the xtal (usually a fixed clock) */
1193        clk_prepare_enable(data->pxtal);
1194
1195        if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) {
1196                initialization_required = true;
1197        } else {
1198                err = si5341_is_programmed_already(data);
1199                if (err < 0)
1200                        return err;
1201
1202                initialization_required = !err;
1203        }
1204
1205        if (initialization_required) {
1206                /* Populate the regmap cache in preparation for "cache only" */
1207                err = si5341_read_settings(data);
1208                if (err < 0)
1209                        return err;
1210
1211                err = si5341_send_preamble(data);
1212                if (err < 0)
1213                        return err;
1214
1215                /*
1216                 * We intend to send all 'final' register values in a single
1217                 * transaction. So cache all register writes until we're done
1218                 * configuring.
1219                 */
1220                regcache_cache_only(data->regmap, true);
1221
1222                /* Write the configuration pairs from the firmware blob */
1223                err = si5341_write_multiple(data, si5341_reg_defaults,
1224                                        ARRAY_SIZE(si5341_reg_defaults));
1225                if (err < 0)
1226                        return err;
1227
1228                /* PLL configuration is required */
1229                err = si5341_initialize_pll(data);
1230                if (err < 0)
1231                        return err;
1232        }
1233
1234        /* Register the PLL */
1235        data->pxtal_name = __clk_get_name(data->pxtal);
1236        init.parent_names = &data->pxtal_name;
1237        init.num_parents = 1; /* For now, only XTAL input supported */
1238        init.ops = &si5341_clk_ops;
1239        init.flags = 0;
1240        data->hw.init = &init;
1241
1242        err = devm_clk_hw_register(&client->dev, &data->hw);
1243        if (err) {
1244                dev_err(&client->dev, "clock registration failed\n");
1245                return err;
1246        }
1247
1248        init.num_parents = 1;
1249        init.parent_names = &root_clock_name;
1250        init.ops = &si5341_synth_clk_ops;
1251        for (i = 0; i < data->num_synth; ++i) {
1252                synth_clock_names[i] = devm_kasprintf(&client->dev, GFP_KERNEL,
1253                                "%s.N%u", client->dev.of_node->name, i);
1254                init.name = synth_clock_names[i];
1255                data->synth[i].index = i;
1256                data->synth[i].data = data;
1257                data->synth[i].hw.init = &init;
1258                err = devm_clk_hw_register(&client->dev, &data->synth[i].hw);
1259                if (err) {
1260                        dev_err(&client->dev,
1261                                "synth N%u registration failed\n", i);
1262                }
1263        }
1264
1265        init.num_parents = data->num_synth;
1266        init.parent_names = synth_clock_names;
1267        init.ops = &si5341_output_clk_ops;
1268        for (i = 0; i < data->num_outputs; ++i) {
1269                init.name = kasprintf(GFP_KERNEL, "%s.%d",
1270                        client->dev.of_node->name, i);
1271                init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0;
1272                data->clk[i].index = i;
1273                data->clk[i].data = data;
1274                data->clk[i].hw.init = &init;
1275                if (config[i].out_format_drv_bits & 0x07) {
1276                        regmap_write(data->regmap,
1277                                SI5341_OUT_FORMAT(&data->clk[i]),
1278                                config[i].out_format_drv_bits);
1279                        regmap_write(data->regmap,
1280                                SI5341_OUT_CM(&data->clk[i]),
1281                                config[i].out_cm_ampl_bits);
1282                }
1283                err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
1284                kfree(init.name); /* clock framework made a copy of the name */
1285                if (err) {
1286                        dev_err(&client->dev,
1287                                "output %u registration failed\n", i);
1288                        return err;
1289                }
1290                if (config[i].always_on)
1291                        clk_prepare(data->clk[i].hw.clk);
1292        }
1293
1294        err = of_clk_add_hw_provider(client->dev.of_node, of_clk_si5341_get,
1295                        data);
1296        if (err) {
1297                dev_err(&client->dev, "unable to add clk provider\n");
1298                return err;
1299        }
1300
1301        if (initialization_required) {
1302                /* Synchronize */
1303                regcache_cache_only(data->regmap, false);
1304                err = regcache_sync(data->regmap);
1305                if (err < 0)
1306                        return err;
1307
1308                err = si5341_finalize_defaults(data);
1309                if (err < 0)
1310                        return err;
1311        }
1312
1313        /* Free the names, clk framework makes copies */
1314        for (i = 0; i < data->num_synth; ++i)
1315                 devm_kfree(&client->dev, (void *)synth_clock_names[i]);
1316
1317        return 0;
1318}
1319
1320static const struct i2c_device_id si5341_id[] = {
1321        { "si5340", 0 },
1322        { "si5341", 1 },
1323        { }
1324};
1325MODULE_DEVICE_TABLE(i2c, si5341_id);
1326
1327static const struct of_device_id clk_si5341_of_match[] = {
1328        { .compatible = "silabs,si5340" },
1329        { .compatible = "silabs,si5341" },
1330        { }
1331};
1332MODULE_DEVICE_TABLE(of, clk_si5341_of_match);
1333
1334static struct i2c_driver si5341_driver = {
1335        .driver = {
1336                .name = "si5341",
1337                .of_match_table = clk_si5341_of_match,
1338        },
1339        .probe          = si5341_probe,
1340        .id_table       = si5341_id,
1341};
1342module_i2c_driver(si5341_driver);
1343
1344MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
1345MODULE_DESCRIPTION("Si5341 driver");
1346MODULE_LICENSE("GPL");
1347