linux/drivers/clk/clk.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   5 *
   6 * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/clk-provider.h>
  11#include <linux/clk/clk-conf.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/spinlock.h>
  15#include <linux/err.h>
  16#include <linux/list.h>
  17#include <linux/slab.h>
  18#include <linux/of.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/sched.h>
  23#include <linux/clkdev.h>
  24
  25#include "clk.h"
  26
  27static DEFINE_SPINLOCK(enable_lock);
  28static DEFINE_MUTEX(prepare_lock);
  29
  30static struct task_struct *prepare_owner;
  31static struct task_struct *enable_owner;
  32
  33static int prepare_refcnt;
  34static int enable_refcnt;
  35
  36static HLIST_HEAD(clk_root_list);
  37static HLIST_HEAD(clk_orphan_list);
  38static LIST_HEAD(clk_notifier_list);
  39
  40/***    private data structures    ***/
  41
  42struct clk_parent_map {
  43        const struct clk_hw     *hw;
  44        struct clk_core         *core;
  45        const char              *fw_name;
  46        const char              *name;
  47        int                     index;
  48};
  49
  50struct clk_core {
  51        const char              *name;
  52        const struct clk_ops    *ops;
  53        struct clk_hw           *hw;
  54        struct module           *owner;
  55        struct device           *dev;
  56        struct device_node      *of_node;
  57        struct clk_core         *parent;
  58        struct clk_parent_map   *parents;
  59        u8                      num_parents;
  60        u8                      new_parent_index;
  61        unsigned long           rate;
  62        unsigned long           req_rate;
  63        unsigned long           new_rate;
  64        struct clk_core         *new_parent;
  65        struct clk_core         *new_child;
  66        unsigned long           flags;
  67        bool                    orphan;
  68        bool                    rpm_enabled;
  69        unsigned int            enable_count;
  70        unsigned int            prepare_count;
  71        unsigned int            protect_count;
  72        unsigned long           min_rate;
  73        unsigned long           max_rate;
  74        unsigned long           accuracy;
  75        int                     phase;
  76        struct clk_duty         duty;
  77        struct hlist_head       children;
  78        struct hlist_node       child_node;
  79        struct hlist_head       clks;
  80        unsigned int            notifier_count;
  81#ifdef CONFIG_DEBUG_FS
  82        struct dentry           *dentry;
  83        struct hlist_node       debug_node;
  84#endif
  85        struct kref             ref;
  86};
  87
  88#define CREATE_TRACE_POINTS
  89#include <trace/events/clk.h>
  90
  91struct clk {
  92        struct clk_core *core;
  93        struct device *dev;
  94        const char *dev_id;
  95        const char *con_id;
  96        unsigned long min_rate;
  97        unsigned long max_rate;
  98        unsigned int exclusive_count;
  99        struct hlist_node clks_node;
 100};
 101
 102/***           runtime pm          ***/
 103static int clk_pm_runtime_get(struct clk_core *core)
 104{
 105        int ret;
 106
 107        if (!core->rpm_enabled)
 108                return 0;
 109
 110        ret = pm_runtime_get_sync(core->dev);
 111        return ret < 0 ? ret : 0;
 112}
 113
 114static void clk_pm_runtime_put(struct clk_core *core)
 115{
 116        if (!core->rpm_enabled)
 117                return;
 118
 119        pm_runtime_put_sync(core->dev);
 120}
 121
 122/***           locking             ***/
 123static void clk_prepare_lock(void)
 124{
 125        if (!mutex_trylock(&prepare_lock)) {
 126                if (prepare_owner == current) {
 127                        prepare_refcnt++;
 128                        return;
 129                }
 130                mutex_lock(&prepare_lock);
 131        }
 132        WARN_ON_ONCE(prepare_owner != NULL);
 133        WARN_ON_ONCE(prepare_refcnt != 0);
 134        prepare_owner = current;
 135        prepare_refcnt = 1;
 136}
 137
 138static void clk_prepare_unlock(void)
 139{
 140        WARN_ON_ONCE(prepare_owner != current);
 141        WARN_ON_ONCE(prepare_refcnt == 0);
 142
 143        if (--prepare_refcnt)
 144                return;
 145        prepare_owner = NULL;
 146        mutex_unlock(&prepare_lock);
 147}
 148
 149static unsigned long clk_enable_lock(void)
 150        __acquires(enable_lock)
 151{
 152        unsigned long flags;
 153
 154        /*
 155         * On UP systems, spin_trylock_irqsave() always returns true, even if
 156         * we already hold the lock. So, in that case, we rely only on
 157         * reference counting.
 158         */
 159        if (!IS_ENABLED(CONFIG_SMP) ||
 160            !spin_trylock_irqsave(&enable_lock, flags)) {
 161                if (enable_owner == current) {
 162                        enable_refcnt++;
 163                        __acquire(enable_lock);
 164                        if (!IS_ENABLED(CONFIG_SMP))
 165                                local_save_flags(flags);
 166                        return flags;
 167                }
 168                spin_lock_irqsave(&enable_lock, flags);
 169        }
 170        WARN_ON_ONCE(enable_owner != NULL);
 171        WARN_ON_ONCE(enable_refcnt != 0);
 172        enable_owner = current;
 173        enable_refcnt = 1;
 174        return flags;
 175}
 176
 177static void clk_enable_unlock(unsigned long flags)
 178        __releases(enable_lock)
 179{
 180        WARN_ON_ONCE(enable_owner != current);
 181        WARN_ON_ONCE(enable_refcnt == 0);
 182
 183        if (--enable_refcnt) {
 184                __release(enable_lock);
 185                return;
 186        }
 187        enable_owner = NULL;
 188        spin_unlock_irqrestore(&enable_lock, flags);
 189}
 190
 191static bool clk_core_rate_is_protected(struct clk_core *core)
 192{
 193        return core->protect_count;
 194}
 195
 196static bool clk_core_is_prepared(struct clk_core *core)
 197{
 198        bool ret = false;
 199
 200        /*
 201         * .is_prepared is optional for clocks that can prepare
 202         * fall back to software usage counter if it is missing
 203         */
 204        if (!core->ops->is_prepared)
 205                return core->prepare_count;
 206
 207        if (!clk_pm_runtime_get(core)) {
 208                ret = core->ops->is_prepared(core->hw);
 209                clk_pm_runtime_put(core);
 210        }
 211
 212        return ret;
 213}
 214
 215static bool clk_core_is_enabled(struct clk_core *core)
 216{
 217        bool ret = false;
 218
 219        /*
 220         * .is_enabled is only mandatory for clocks that gate
 221         * fall back to software usage counter if .is_enabled is missing
 222         */
 223        if (!core->ops->is_enabled)
 224                return core->enable_count;
 225
 226        /*
 227         * Check if clock controller's device is runtime active before
 228         * calling .is_enabled callback. If not, assume that clock is
 229         * disabled, because we might be called from atomic context, from
 230         * which pm_runtime_get() is not allowed.
 231         * This function is called mainly from clk_disable_unused_subtree,
 232         * which ensures proper runtime pm activation of controller before
 233         * taking enable spinlock, but the below check is needed if one tries
 234         * to call it from other places.
 235         */
 236        if (core->rpm_enabled) {
 237                pm_runtime_get_noresume(core->dev);
 238                if (!pm_runtime_active(core->dev)) {
 239                        ret = false;
 240                        goto done;
 241                }
 242        }
 243
 244        ret = core->ops->is_enabled(core->hw);
 245done:
 246        if (core->rpm_enabled)
 247                pm_runtime_put(core->dev);
 248
 249        return ret;
 250}
 251
 252/***    helper functions   ***/
 253
 254const char *__clk_get_name(const struct clk *clk)
 255{
 256        return !clk ? NULL : clk->core->name;
 257}
 258EXPORT_SYMBOL_GPL(__clk_get_name);
 259
 260const char *clk_hw_get_name(const struct clk_hw *hw)
 261{
 262        return hw->core->name;
 263}
 264EXPORT_SYMBOL_GPL(clk_hw_get_name);
 265
 266struct clk_hw *__clk_get_hw(struct clk *clk)
 267{
 268        return !clk ? NULL : clk->core->hw;
 269}
 270EXPORT_SYMBOL_GPL(__clk_get_hw);
 271
 272unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
 273{
 274        return hw->core->num_parents;
 275}
 276EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
 277
 278struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
 279{
 280        return hw->core->parent ? hw->core->parent->hw : NULL;
 281}
 282EXPORT_SYMBOL_GPL(clk_hw_get_parent);
 283
 284static struct clk_core *__clk_lookup_subtree(const char *name,
 285                                             struct clk_core *core)
 286{
 287        struct clk_core *child;
 288        struct clk_core *ret;
 289
 290        if (!strcmp(core->name, name))
 291                return core;
 292
 293        hlist_for_each_entry(child, &core->children, child_node) {
 294                ret = __clk_lookup_subtree(name, child);
 295                if (ret)
 296                        return ret;
 297        }
 298
 299        return NULL;
 300}
 301
 302static struct clk_core *clk_core_lookup(const char *name)
 303{
 304        struct clk_core *root_clk;
 305        struct clk_core *ret;
 306
 307        if (!name)
 308                return NULL;
 309
 310        /* search the 'proper' clk tree first */
 311        hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
 312                ret = __clk_lookup_subtree(name, root_clk);
 313                if (ret)
 314                        return ret;
 315        }
 316
 317        /* if not found, then search the orphan tree */
 318        hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
 319                ret = __clk_lookup_subtree(name, root_clk);
 320                if (ret)
 321                        return ret;
 322        }
 323
 324        return NULL;
 325}
 326
 327#ifdef CONFIG_OF
 328static int of_parse_clkspec(const struct device_node *np, int index,
 329                            const char *name, struct of_phandle_args *out_args);
 330static struct clk_hw *
 331of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
 332#else
 333static inline int of_parse_clkspec(const struct device_node *np, int index,
 334                                   const char *name,
 335                                   struct of_phandle_args *out_args)
 336{
 337        return -ENOENT;
 338}
 339static inline struct clk_hw *
 340of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
 341{
 342        return ERR_PTR(-ENOENT);
 343}
 344#endif
 345
 346/**
 347 * clk_core_get - Find the clk_core parent of a clk
 348 * @core: clk to find parent of
 349 * @p_index: parent index to search for
 350 *
 351 * This is the preferred method for clk providers to find the parent of a
 352 * clk when that parent is external to the clk controller. The parent_names
 353 * array is indexed and treated as a local name matching a string in the device
 354 * node's 'clock-names' property or as the 'con_id' matching the device's
 355 * dev_name() in a clk_lookup. This allows clk providers to use their own
 356 * namespace instead of looking for a globally unique parent string.
 357 *
 358 * For example the following DT snippet would allow a clock registered by the
 359 * clock-controller@c001 that has a clk_init_data::parent_data array
 360 * with 'xtal' in the 'name' member to find the clock provided by the
 361 * clock-controller@f00abcd without needing to get the globally unique name of
 362 * the xtal clk.
 363 *
 364 *      parent: clock-controller@f00abcd {
 365 *              reg = <0xf00abcd 0xabcd>;
 366 *              #clock-cells = <0>;
 367 *      };
 368 *
 369 *      clock-controller@c001 {
 370 *              reg = <0xc001 0xf00d>;
 371 *              clocks = <&parent>;
 372 *              clock-names = "xtal";
 373 *              #clock-cells = <1>;
 374 *      };
 375 *
 376 * Returns: -ENOENT when the provider can't be found or the clk doesn't
 377 * exist in the provider or the name can't be found in the DT node or
 378 * in a clkdev lookup. NULL when the provider knows about the clk but it
 379 * isn't provided on this system.
 380 * A valid clk_core pointer when the clk can be found in the provider.
 381 */
 382static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
 383{
 384        const char *name = core->parents[p_index].fw_name;
 385        int index = core->parents[p_index].index;
 386        struct clk_hw *hw = ERR_PTR(-ENOENT);
 387        struct device *dev = core->dev;
 388        const char *dev_id = dev ? dev_name(dev) : NULL;
 389        struct device_node *np = core->of_node;
 390        struct of_phandle_args clkspec;
 391
 392        if (np && (name || index >= 0) &&
 393            !of_parse_clkspec(np, index, name, &clkspec)) {
 394                hw = of_clk_get_hw_from_clkspec(&clkspec);
 395                of_node_put(clkspec.np);
 396        } else if (name) {
 397                /*
 398                 * If the DT search above couldn't find the provider fallback to
 399                 * looking up via clkdev based clk_lookups.
 400                 */
 401                hw = clk_find_hw(dev_id, name);
 402        }
 403
 404        if (IS_ERR(hw))
 405                return ERR_CAST(hw);
 406
 407        return hw->core;
 408}
 409
 410static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
 411{
 412        struct clk_parent_map *entry = &core->parents[index];
 413        struct clk_core *parent = ERR_PTR(-ENOENT);
 414
 415        if (entry->hw) {
 416                parent = entry->hw->core;
 417                /*
 418                 * We have a direct reference but it isn't registered yet?
 419                 * Orphan it and let clk_reparent() update the orphan status
 420                 * when the parent is registered.
 421                 */
 422                if (!parent)
 423                        parent = ERR_PTR(-EPROBE_DEFER);
 424        } else {
 425                parent = clk_core_get(core, index);
 426                if (IS_ERR(parent) && PTR_ERR(parent) == -ENOENT && entry->name)
 427                        parent = clk_core_lookup(entry->name);
 428        }
 429
 430        /* Only cache it if it's not an error */
 431        if (!IS_ERR(parent))
 432                entry->core = parent;
 433}
 434
 435static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
 436                                                         u8 index)
 437{
 438        if (!core || index >= core->num_parents || !core->parents)
 439                return NULL;
 440
 441        if (!core->parents[index].core)
 442                clk_core_fill_parent_index(core, index);
 443
 444        return core->parents[index].core;
 445}
 446
 447struct clk_hw *
 448clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
 449{
 450        struct clk_core *parent;
 451
 452        parent = clk_core_get_parent_by_index(hw->core, index);
 453
 454        return !parent ? NULL : parent->hw;
 455}
 456EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
 457
 458unsigned int __clk_get_enable_count(struct clk *clk)
 459{
 460        return !clk ? 0 : clk->core->enable_count;
 461}
 462
 463static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
 464{
 465        if (!core)
 466                return 0;
 467
 468        if (!core->num_parents || core->parent)
 469                return core->rate;
 470
 471        /*
 472         * Clk must have a parent because num_parents > 0 but the parent isn't
 473         * known yet. Best to return 0 as the rate of this clk until we can
 474         * properly recalc the rate based on the parent's rate.
 475         */
 476        return 0;
 477}
 478
 479unsigned long clk_hw_get_rate(const struct clk_hw *hw)
 480{
 481        return clk_core_get_rate_nolock(hw->core);
 482}
 483EXPORT_SYMBOL_GPL(clk_hw_get_rate);
 484
 485static unsigned long __clk_get_accuracy(struct clk_core *core)
 486{
 487        if (!core)
 488                return 0;
 489
 490        return core->accuracy;
 491}
 492
 493unsigned long __clk_get_flags(struct clk *clk)
 494{
 495        return !clk ? 0 : clk->core->flags;
 496}
 497EXPORT_SYMBOL_GPL(__clk_get_flags);
 498
 499unsigned long clk_hw_get_flags(const struct clk_hw *hw)
 500{
 501        return hw->core->flags;
 502}
 503EXPORT_SYMBOL_GPL(clk_hw_get_flags);
 504
 505bool clk_hw_is_prepared(const struct clk_hw *hw)
 506{
 507        return clk_core_is_prepared(hw->core);
 508}
 509EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
 510
 511bool clk_hw_rate_is_protected(const struct clk_hw *hw)
 512{
 513        return clk_core_rate_is_protected(hw->core);
 514}
 515EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
 516
 517bool clk_hw_is_enabled(const struct clk_hw *hw)
 518{
 519        return clk_core_is_enabled(hw->core);
 520}
 521EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
 522
 523bool __clk_is_enabled(struct clk *clk)
 524{
 525        if (!clk)
 526                return false;
 527
 528        return clk_core_is_enabled(clk->core);
 529}
 530EXPORT_SYMBOL_GPL(__clk_is_enabled);
 531
 532static bool mux_is_better_rate(unsigned long rate, unsigned long now,
 533                           unsigned long best, unsigned long flags)
 534{
 535        if (flags & CLK_MUX_ROUND_CLOSEST)
 536                return abs(now - rate) < abs(best - rate);
 537
 538        return now <= rate && now > best;
 539}
 540
 541int clk_mux_determine_rate_flags(struct clk_hw *hw,
 542                                 struct clk_rate_request *req,
 543                                 unsigned long flags)
 544{
 545        struct clk_core *core = hw->core, *parent, *best_parent = NULL;
 546        int i, num_parents, ret;
 547        unsigned long best = 0;
 548        struct clk_rate_request parent_req = *req;
 549
 550        /* if NO_REPARENT flag set, pass through to current parent */
 551        if (core->flags & CLK_SET_RATE_NO_REPARENT) {
 552                parent = core->parent;
 553                if (core->flags & CLK_SET_RATE_PARENT) {
 554                        ret = __clk_determine_rate(parent ? parent->hw : NULL,
 555                                                   &parent_req);
 556                        if (ret)
 557                                return ret;
 558
 559                        best = parent_req.rate;
 560                } else if (parent) {
 561                        best = clk_core_get_rate_nolock(parent);
 562                } else {
 563                        best = clk_core_get_rate_nolock(core);
 564                }
 565
 566                goto out;
 567        }
 568
 569        /* find the parent that can provide the fastest rate <= rate */
 570        num_parents = core->num_parents;
 571        for (i = 0; i < num_parents; i++) {
 572                parent = clk_core_get_parent_by_index(core, i);
 573                if (!parent)
 574                        continue;
 575
 576                if (core->flags & CLK_SET_RATE_PARENT) {
 577                        parent_req = *req;
 578                        ret = __clk_determine_rate(parent->hw, &parent_req);
 579                        if (ret)
 580                                continue;
 581                } else {
 582                        parent_req.rate = clk_core_get_rate_nolock(parent);
 583                }
 584
 585                if (mux_is_better_rate(req->rate, parent_req.rate,
 586                                       best, flags)) {
 587                        best_parent = parent;
 588                        best = parent_req.rate;
 589                }
 590        }
 591
 592        if (!best_parent)
 593                return -EINVAL;
 594
 595out:
 596        if (best_parent)
 597                req->best_parent_hw = best_parent->hw;
 598        req->best_parent_rate = best;
 599        req->rate = best;
 600
 601        return 0;
 602}
 603EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
 604
 605struct clk *__clk_lookup(const char *name)
 606{
 607        struct clk_core *core = clk_core_lookup(name);
 608
 609        return !core ? NULL : core->hw->clk;
 610}
 611
 612static void clk_core_get_boundaries(struct clk_core *core,
 613                                    unsigned long *min_rate,
 614                                    unsigned long *max_rate)
 615{
 616        struct clk *clk_user;
 617
 618        *min_rate = core->min_rate;
 619        *max_rate = core->max_rate;
 620
 621        hlist_for_each_entry(clk_user, &core->clks, clks_node)
 622                *min_rate = max(*min_rate, clk_user->min_rate);
 623
 624        hlist_for_each_entry(clk_user, &core->clks, clks_node)
 625                *max_rate = min(*max_rate, clk_user->max_rate);
 626}
 627
 628void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
 629                           unsigned long max_rate)
 630{
 631        hw->core->min_rate = min_rate;
 632        hw->core->max_rate = max_rate;
 633}
 634EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
 635
 636/*
 637 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
 638 * @hw: mux type clk to determine rate on
 639 * @req: rate request, also used to return preferred parent and frequencies
 640 *
 641 * Helper for finding best parent to provide a given frequency. This can be used
 642 * directly as a determine_rate callback (e.g. for a mux), or from a more
 643 * complex clock that may combine a mux with other operations.
 644 *
 645 * Returns: 0 on success, -EERROR value on error
 646 */
 647int __clk_mux_determine_rate(struct clk_hw *hw,
 648                             struct clk_rate_request *req)
 649{
 650        return clk_mux_determine_rate_flags(hw, req, 0);
 651}
 652EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
 653
 654int __clk_mux_determine_rate_closest(struct clk_hw *hw,
 655                                     struct clk_rate_request *req)
 656{
 657        return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
 658}
 659EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
 660
 661/***        clk api        ***/
 662
 663static void clk_core_rate_unprotect(struct clk_core *core)
 664{
 665        lockdep_assert_held(&prepare_lock);
 666
 667        if (!core)
 668                return;
 669
 670        if (WARN(core->protect_count == 0,
 671            "%s already unprotected\n", core->name))
 672                return;
 673
 674        if (--core->protect_count > 0)
 675                return;
 676
 677        clk_core_rate_unprotect(core->parent);
 678}
 679
 680static int clk_core_rate_nuke_protect(struct clk_core *core)
 681{
 682        int ret;
 683
 684        lockdep_assert_held(&prepare_lock);
 685
 686        if (!core)
 687                return -EINVAL;
 688
 689        if (core->protect_count == 0)
 690                return 0;
 691
 692        ret = core->protect_count;
 693        core->protect_count = 1;
 694        clk_core_rate_unprotect(core);
 695
 696        return ret;
 697}
 698
 699/**
 700 * clk_rate_exclusive_put - release exclusivity over clock rate control
 701 * @clk: the clk over which the exclusivity is released
 702 *
 703 * clk_rate_exclusive_put() completes a critical section during which a clock
 704 * consumer cannot tolerate any other consumer making any operation on the
 705 * clock which could result in a rate change or rate glitch. Exclusive clocks
 706 * cannot have their rate changed, either directly or indirectly due to changes
 707 * further up the parent chain of clocks. As a result, clocks up parent chain
 708 * also get under exclusive control of the calling consumer.
 709 *
 710 * If exlusivity is claimed more than once on clock, even by the same consumer,
 711 * the rate effectively gets locked as exclusivity can't be preempted.
 712 *
 713 * Calls to clk_rate_exclusive_put() must be balanced with calls to
 714 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
 715 * error status.
 716 */
 717void clk_rate_exclusive_put(struct clk *clk)
 718{
 719        if (!clk)
 720                return;
 721
 722        clk_prepare_lock();
 723
 724        /*
 725         * if there is something wrong with this consumer protect count, stop
 726         * here before messing with the provider
 727         */
 728        if (WARN_ON(clk->exclusive_count <= 0))
 729                goto out;
 730
 731        clk_core_rate_unprotect(clk->core);
 732        clk->exclusive_count--;
 733out:
 734        clk_prepare_unlock();
 735}
 736EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
 737
 738static void clk_core_rate_protect(struct clk_core *core)
 739{
 740        lockdep_assert_held(&prepare_lock);
 741
 742        if (!core)
 743                return;
 744
 745        if (core->protect_count == 0)
 746                clk_core_rate_protect(core->parent);
 747
 748        core->protect_count++;
 749}
 750
 751static void clk_core_rate_restore_protect(struct clk_core *core, int count)
 752{
 753        lockdep_assert_held(&prepare_lock);
 754
 755        if (!core)
 756                return;
 757
 758        if (count == 0)
 759                return;
 760
 761        clk_core_rate_protect(core);
 762        core->protect_count = count;
 763}
 764
 765/**
 766 * clk_rate_exclusive_get - get exclusivity over the clk rate control
 767 * @clk: the clk over which the exclusity of rate control is requested
 768 *
 769 * clk_rate_exlusive_get() begins a critical section during which a clock
 770 * consumer cannot tolerate any other consumer making any operation on the
 771 * clock which could result in a rate change or rate glitch. Exclusive clocks
 772 * cannot have their rate changed, either directly or indirectly due to changes
 773 * further up the parent chain of clocks. As a result, clocks up parent chain
 774 * also get under exclusive control of the calling consumer.
 775 *
 776 * If exlusivity is claimed more than once on clock, even by the same consumer,
 777 * the rate effectively gets locked as exclusivity can't be preempted.
 778 *
 779 * Calls to clk_rate_exclusive_get() should be balanced with calls to
 780 * clk_rate_exclusive_put(). Calls to this function may sleep.
 781 * Returns 0 on success, -EERROR otherwise
 782 */
 783int clk_rate_exclusive_get(struct clk *clk)
 784{
 785        if (!clk)
 786                return 0;
 787
 788        clk_prepare_lock();
 789        clk_core_rate_protect(clk->core);
 790        clk->exclusive_count++;
 791        clk_prepare_unlock();
 792
 793        return 0;
 794}
 795EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
 796
 797static void clk_core_unprepare(struct clk_core *core)
 798{
 799        lockdep_assert_held(&prepare_lock);
 800
 801        if (!core)
 802                return;
 803
 804        if (WARN(core->prepare_count == 0,
 805            "%s already unprepared\n", core->name))
 806                return;
 807
 808        if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
 809            "Unpreparing critical %s\n", core->name))
 810                return;
 811
 812        if (core->flags & CLK_SET_RATE_GATE)
 813                clk_core_rate_unprotect(core);
 814
 815        if (--core->prepare_count > 0)
 816                return;
 817
 818        WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
 819
 820        trace_clk_unprepare(core);
 821
 822        if (core->ops->unprepare)
 823                core->ops->unprepare(core->hw);
 824
 825        clk_pm_runtime_put(core);
 826
 827        trace_clk_unprepare_complete(core);
 828        clk_core_unprepare(core->parent);
 829}
 830
 831static void clk_core_unprepare_lock(struct clk_core *core)
 832{
 833        clk_prepare_lock();
 834        clk_core_unprepare(core);
 835        clk_prepare_unlock();
 836}
 837
 838/**
 839 * clk_unprepare - undo preparation of a clock source
 840 * @clk: the clk being unprepared
 841 *
 842 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 843 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 844 * if the operation may sleep.  One example is a clk which is accessed over
 845 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 846 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 847 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 848 */
 849void clk_unprepare(struct clk *clk)
 850{
 851        if (IS_ERR_OR_NULL(clk))
 852                return;
 853
 854        clk_core_unprepare_lock(clk->core);
 855}
 856EXPORT_SYMBOL_GPL(clk_unprepare);
 857
 858static int clk_core_prepare(struct clk_core *core)
 859{
 860        int ret = 0;
 861
 862        lockdep_assert_held(&prepare_lock);
 863
 864        if (!core)
 865                return 0;
 866
 867        if (core->prepare_count == 0) {
 868                ret = clk_pm_runtime_get(core);
 869                if (ret)
 870                        return ret;
 871
 872                ret = clk_core_prepare(core->parent);
 873                if (ret)
 874                        goto runtime_put;
 875
 876                trace_clk_prepare(core);
 877
 878                if (core->ops->prepare)
 879                        ret = core->ops->prepare(core->hw);
 880
 881                trace_clk_prepare_complete(core);
 882
 883                if (ret)
 884                        goto unprepare;
 885        }
 886
 887        core->prepare_count++;
 888
 889        /*
 890         * CLK_SET_RATE_GATE is a special case of clock protection
 891         * Instead of a consumer claiming exclusive rate control, it is
 892         * actually the provider which prevents any consumer from making any
 893         * operation which could result in a rate change or rate glitch while
 894         * the clock is prepared.
 895         */
 896        if (core->flags & CLK_SET_RATE_GATE)
 897                clk_core_rate_protect(core);
 898
 899        return 0;
 900unprepare:
 901        clk_core_unprepare(core->parent);
 902runtime_put:
 903        clk_pm_runtime_put(core);
 904        return ret;
 905}
 906
 907static int clk_core_prepare_lock(struct clk_core *core)
 908{
 909        int ret;
 910
 911        clk_prepare_lock();
 912        ret = clk_core_prepare(core);
 913        clk_prepare_unlock();
 914
 915        return ret;
 916}
 917
 918/**
 919 * clk_prepare - prepare a clock source
 920 * @clk: the clk being prepared
 921 *
 922 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
 923 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
 924 * operation may sleep.  One example is a clk which is accessed over I2c.  In
 925 * the complex case a clk ungate operation may require a fast and a slow part.
 926 * It is this reason that clk_prepare and clk_enable are not mutually
 927 * exclusive.  In fact clk_prepare must be called before clk_enable.
 928 * Returns 0 on success, -EERROR otherwise.
 929 */
 930int clk_prepare(struct clk *clk)
 931{
 932        if (!clk)
 933                return 0;
 934
 935        return clk_core_prepare_lock(clk->core);
 936}
 937EXPORT_SYMBOL_GPL(clk_prepare);
 938
 939static void clk_core_disable(struct clk_core *core)
 940{
 941        lockdep_assert_held(&enable_lock);
 942
 943        if (!core)
 944                return;
 945
 946        if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
 947                return;
 948
 949        if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
 950            "Disabling critical %s\n", core->name))
 951                return;
 952
 953        if (--core->enable_count > 0)
 954                return;
 955
 956        trace_clk_disable_rcuidle(core);
 957
 958        if (core->ops->disable)
 959                core->ops->disable(core->hw);
 960
 961        trace_clk_disable_complete_rcuidle(core);
 962
 963        clk_core_disable(core->parent);
 964}
 965
 966static void clk_core_disable_lock(struct clk_core *core)
 967{
 968        unsigned long flags;
 969
 970        flags = clk_enable_lock();
 971        clk_core_disable(core);
 972        clk_enable_unlock(flags);
 973}
 974
 975/**
 976 * clk_disable - gate a clock
 977 * @clk: the clk being gated
 978 *
 979 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
 980 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
 981 * clk if the operation is fast and will never sleep.  One example is a
 982 * SoC-internal clk which is controlled via simple register writes.  In the
 983 * complex case a clk gate operation may require a fast and a slow part.  It is
 984 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
 985 * In fact clk_disable must be called before clk_unprepare.
 986 */
 987void clk_disable(struct clk *clk)
 988{
 989        if (IS_ERR_OR_NULL(clk))
 990                return;
 991
 992        clk_core_disable_lock(clk->core);
 993}
 994EXPORT_SYMBOL_GPL(clk_disable);
 995
 996static int clk_core_enable(struct clk_core *core)
 997{
 998        int ret = 0;
 999
1000        lockdep_assert_held(&enable_lock);
1001
1002        if (!core)
1003                return 0;
1004
1005        if (WARN(core->prepare_count == 0,
1006            "Enabling unprepared %s\n", core->name))
1007                return -ESHUTDOWN;
1008
1009        if (core->enable_count == 0) {
1010                ret = clk_core_enable(core->parent);
1011
1012                if (ret)
1013                        return ret;
1014
1015                trace_clk_enable_rcuidle(core);
1016
1017                if (core->ops->enable)
1018                        ret = core->ops->enable(core->hw);
1019
1020                trace_clk_enable_complete_rcuidle(core);
1021
1022                if (ret) {
1023                        clk_core_disable(core->parent);
1024                        return ret;
1025                }
1026        }
1027
1028        core->enable_count++;
1029        return 0;
1030}
1031
1032static int clk_core_enable_lock(struct clk_core *core)
1033{
1034        unsigned long flags;
1035        int ret;
1036
1037        flags = clk_enable_lock();
1038        ret = clk_core_enable(core);
1039        clk_enable_unlock(flags);
1040
1041        return ret;
1042}
1043
1044/**
1045 * clk_gate_restore_context - restore context for poweroff
1046 * @hw: the clk_hw pointer of clock whose state is to be restored
1047 *
1048 * The clock gate restore context function enables or disables
1049 * the gate clocks based on the enable_count. This is done in cases
1050 * where the clock context is lost and based on the enable_count
1051 * the clock either needs to be enabled/disabled. This
1052 * helps restore the state of gate clocks.
1053 */
1054void clk_gate_restore_context(struct clk_hw *hw)
1055{
1056        struct clk_core *core = hw->core;
1057
1058        if (core->enable_count)
1059                core->ops->enable(hw);
1060        else
1061                core->ops->disable(hw);
1062}
1063EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1064
1065static int clk_core_save_context(struct clk_core *core)
1066{
1067        struct clk_core *child;
1068        int ret = 0;
1069
1070        hlist_for_each_entry(child, &core->children, child_node) {
1071                ret = clk_core_save_context(child);
1072                if (ret < 0)
1073                        return ret;
1074        }
1075
1076        if (core->ops && core->ops->save_context)
1077                ret = core->ops->save_context(core->hw);
1078
1079        return ret;
1080}
1081
1082static void clk_core_restore_context(struct clk_core *core)
1083{
1084        struct clk_core *child;
1085
1086        if (core->ops && core->ops->restore_context)
1087                core->ops->restore_context(core->hw);
1088
1089        hlist_for_each_entry(child, &core->children, child_node)
1090                clk_core_restore_context(child);
1091}
1092
1093/**
1094 * clk_save_context - save clock context for poweroff
1095 *
1096 * Saves the context of the clock register for powerstates in which the
1097 * contents of the registers will be lost. Occurs deep within the suspend
1098 * code.  Returns 0 on success.
1099 */
1100int clk_save_context(void)
1101{
1102        struct clk_core *clk;
1103        int ret;
1104
1105        hlist_for_each_entry(clk, &clk_root_list, child_node) {
1106                ret = clk_core_save_context(clk);
1107                if (ret < 0)
1108                        return ret;
1109        }
1110
1111        hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1112                ret = clk_core_save_context(clk);
1113                if (ret < 0)
1114                        return ret;
1115        }
1116
1117        return 0;
1118}
1119EXPORT_SYMBOL_GPL(clk_save_context);
1120
1121/**
1122 * clk_restore_context - restore clock context after poweroff
1123 *
1124 * Restore the saved clock context upon resume.
1125 *
1126 */
1127void clk_restore_context(void)
1128{
1129        struct clk_core *core;
1130
1131        hlist_for_each_entry(core, &clk_root_list, child_node)
1132                clk_core_restore_context(core);
1133
1134        hlist_for_each_entry(core, &clk_orphan_list, child_node)
1135                clk_core_restore_context(core);
1136}
1137EXPORT_SYMBOL_GPL(clk_restore_context);
1138
1139/**
1140 * clk_enable - ungate a clock
1141 * @clk: the clk being ungated
1142 *
1143 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1144 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1145 * if the operation will never sleep.  One example is a SoC-internal clk which
1146 * is controlled via simple register writes.  In the complex case a clk ungate
1147 * operation may require a fast and a slow part.  It is this reason that
1148 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1149 * must be called before clk_enable.  Returns 0 on success, -EERROR
1150 * otherwise.
1151 */
1152int clk_enable(struct clk *clk)
1153{
1154        if (!clk)
1155                return 0;
1156
1157        return clk_core_enable_lock(clk->core);
1158}
1159EXPORT_SYMBOL_GPL(clk_enable);
1160
1161static int clk_core_prepare_enable(struct clk_core *core)
1162{
1163        int ret;
1164
1165        ret = clk_core_prepare_lock(core);
1166        if (ret)
1167                return ret;
1168
1169        ret = clk_core_enable_lock(core);
1170        if (ret)
1171                clk_core_unprepare_lock(core);
1172
1173        return ret;
1174}
1175
1176static void clk_core_disable_unprepare(struct clk_core *core)
1177{
1178        clk_core_disable_lock(core);
1179        clk_core_unprepare_lock(core);
1180}
1181
1182static void clk_unprepare_unused_subtree(struct clk_core *core)
1183{
1184        struct clk_core *child;
1185
1186        lockdep_assert_held(&prepare_lock);
1187
1188        hlist_for_each_entry(child, &core->children, child_node)
1189                clk_unprepare_unused_subtree(child);
1190
1191        if (core->prepare_count)
1192                return;
1193
1194        if (core->flags & CLK_IGNORE_UNUSED)
1195                return;
1196
1197        if (clk_pm_runtime_get(core))
1198                return;
1199
1200        if (clk_core_is_prepared(core)) {
1201                trace_clk_unprepare(core);
1202                if (core->ops->unprepare_unused)
1203                        core->ops->unprepare_unused(core->hw);
1204                else if (core->ops->unprepare)
1205                        core->ops->unprepare(core->hw);
1206                trace_clk_unprepare_complete(core);
1207        }
1208
1209        clk_pm_runtime_put(core);
1210}
1211
1212static void clk_disable_unused_subtree(struct clk_core *core)
1213{
1214        struct clk_core *child;
1215        unsigned long flags;
1216
1217        lockdep_assert_held(&prepare_lock);
1218
1219        hlist_for_each_entry(child, &core->children, child_node)
1220                clk_disable_unused_subtree(child);
1221
1222        if (core->flags & CLK_OPS_PARENT_ENABLE)
1223                clk_core_prepare_enable(core->parent);
1224
1225        if (clk_pm_runtime_get(core))
1226                goto unprepare_out;
1227
1228        flags = clk_enable_lock();
1229
1230        if (core->enable_count)
1231                goto unlock_out;
1232
1233        if (core->flags & CLK_IGNORE_UNUSED)
1234                goto unlock_out;
1235
1236        /*
1237         * some gate clocks have special needs during the disable-unused
1238         * sequence.  call .disable_unused if available, otherwise fall
1239         * back to .disable
1240         */
1241        if (clk_core_is_enabled(core)) {
1242                trace_clk_disable(core);
1243                if (core->ops->disable_unused)
1244                        core->ops->disable_unused(core->hw);
1245                else if (core->ops->disable)
1246                        core->ops->disable(core->hw);
1247                trace_clk_disable_complete(core);
1248        }
1249
1250unlock_out:
1251        clk_enable_unlock(flags);
1252        clk_pm_runtime_put(core);
1253unprepare_out:
1254        if (core->flags & CLK_OPS_PARENT_ENABLE)
1255                clk_core_disable_unprepare(core->parent);
1256}
1257
1258static bool clk_ignore_unused;
1259static int __init clk_ignore_unused_setup(char *__unused)
1260{
1261        clk_ignore_unused = true;
1262        return 1;
1263}
1264__setup("clk_ignore_unused", clk_ignore_unused_setup);
1265
1266static int clk_disable_unused(void)
1267{
1268        struct clk_core *core;
1269
1270        if (clk_ignore_unused) {
1271                pr_warn("clk: Not disabling unused clocks\n");
1272                return 0;
1273        }
1274
1275        clk_prepare_lock();
1276
1277        hlist_for_each_entry(core, &clk_root_list, child_node)
1278                clk_disable_unused_subtree(core);
1279
1280        hlist_for_each_entry(core, &clk_orphan_list, child_node)
1281                clk_disable_unused_subtree(core);
1282
1283        hlist_for_each_entry(core, &clk_root_list, child_node)
1284                clk_unprepare_unused_subtree(core);
1285
1286        hlist_for_each_entry(core, &clk_orphan_list, child_node)
1287                clk_unprepare_unused_subtree(core);
1288
1289        clk_prepare_unlock();
1290
1291        return 0;
1292}
1293late_initcall_sync(clk_disable_unused);
1294
1295static int clk_core_determine_round_nolock(struct clk_core *core,
1296                                           struct clk_rate_request *req)
1297{
1298        long rate;
1299
1300        lockdep_assert_held(&prepare_lock);
1301
1302        if (!core)
1303                return 0;
1304
1305        /*
1306         * At this point, core protection will be disabled if
1307         * - if the provider is not protected at all
1308         * - if the calling consumer is the only one which has exclusivity
1309         *   over the provider
1310         */
1311        if (clk_core_rate_is_protected(core)) {
1312                req->rate = core->rate;
1313        } else if (core->ops->determine_rate) {
1314                return core->ops->determine_rate(core->hw, req);
1315        } else if (core->ops->round_rate) {
1316                rate = core->ops->round_rate(core->hw, req->rate,
1317                                             &req->best_parent_rate);
1318                if (rate < 0)
1319                        return rate;
1320
1321                req->rate = rate;
1322        } else {
1323                return -EINVAL;
1324        }
1325
1326        return 0;
1327}
1328
1329static void clk_core_init_rate_req(struct clk_core * const core,
1330                                   struct clk_rate_request *req)
1331{
1332        struct clk_core *parent;
1333
1334        if (WARN_ON(!core || !req))
1335                return;
1336
1337        parent = core->parent;
1338        if (parent) {
1339                req->best_parent_hw = parent->hw;
1340                req->best_parent_rate = parent->rate;
1341        } else {
1342                req->best_parent_hw = NULL;
1343                req->best_parent_rate = 0;
1344        }
1345}
1346
1347static bool clk_core_can_round(struct clk_core * const core)
1348{
1349        return core->ops->determine_rate || core->ops->round_rate;
1350}
1351
1352static int clk_core_round_rate_nolock(struct clk_core *core,
1353                                      struct clk_rate_request *req)
1354{
1355        lockdep_assert_held(&prepare_lock);
1356
1357        if (!core) {
1358                req->rate = 0;
1359                return 0;
1360        }
1361
1362        clk_core_init_rate_req(core, req);
1363
1364        if (clk_core_can_round(core))
1365                return clk_core_determine_round_nolock(core, req);
1366        else if (core->flags & CLK_SET_RATE_PARENT)
1367                return clk_core_round_rate_nolock(core->parent, req);
1368
1369        req->rate = core->rate;
1370        return 0;
1371}
1372
1373/**
1374 * __clk_determine_rate - get the closest rate actually supported by a clock
1375 * @hw: determine the rate of this clock
1376 * @req: target rate request
1377 *
1378 * Useful for clk_ops such as .set_rate and .determine_rate.
1379 */
1380int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1381{
1382        if (!hw) {
1383                req->rate = 0;
1384                return 0;
1385        }
1386
1387        return clk_core_round_rate_nolock(hw->core, req);
1388}
1389EXPORT_SYMBOL_GPL(__clk_determine_rate);
1390
1391unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1392{
1393        int ret;
1394        struct clk_rate_request req;
1395
1396        clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1397        req.rate = rate;
1398
1399        ret = clk_core_round_rate_nolock(hw->core, &req);
1400        if (ret)
1401                return 0;
1402
1403        return req.rate;
1404}
1405EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1406
1407/**
1408 * clk_round_rate - round the given rate for a clk
1409 * @clk: the clk for which we are rounding a rate
1410 * @rate: the rate which is to be rounded
1411 *
1412 * Takes in a rate as input and rounds it to a rate that the clk can actually
1413 * use which is then returned.  If clk doesn't support round_rate operation
1414 * then the parent rate is returned.
1415 */
1416long clk_round_rate(struct clk *clk, unsigned long rate)
1417{
1418        struct clk_rate_request req;
1419        int ret;
1420
1421        if (!clk)
1422                return 0;
1423
1424        clk_prepare_lock();
1425
1426        if (clk->exclusive_count)
1427                clk_core_rate_unprotect(clk->core);
1428
1429        clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1430        req.rate = rate;
1431
1432        ret = clk_core_round_rate_nolock(clk->core, &req);
1433
1434        if (clk->exclusive_count)
1435                clk_core_rate_protect(clk->core);
1436
1437        clk_prepare_unlock();
1438
1439        if (ret)
1440                return ret;
1441
1442        return req.rate;
1443}
1444EXPORT_SYMBOL_GPL(clk_round_rate);
1445
1446/**
1447 * __clk_notify - call clk notifier chain
1448 * @core: clk that is changing rate
1449 * @msg: clk notifier type (see include/linux/clk.h)
1450 * @old_rate: old clk rate
1451 * @new_rate: new clk rate
1452 *
1453 * Triggers a notifier call chain on the clk rate-change notification
1454 * for 'clk'.  Passes a pointer to the struct clk and the previous
1455 * and current rates to the notifier callback.  Intended to be called by
1456 * internal clock code only.  Returns NOTIFY_DONE from the last driver
1457 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1458 * a driver returns that.
1459 */
1460static int __clk_notify(struct clk_core *core, unsigned long msg,
1461                unsigned long old_rate, unsigned long new_rate)
1462{
1463        struct clk_notifier *cn;
1464        struct clk_notifier_data cnd;
1465        int ret = NOTIFY_DONE;
1466
1467        cnd.old_rate = old_rate;
1468        cnd.new_rate = new_rate;
1469
1470        list_for_each_entry(cn, &clk_notifier_list, node) {
1471                if (cn->clk->core == core) {
1472                        cnd.clk = cn->clk;
1473                        ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1474                                        &cnd);
1475                        if (ret & NOTIFY_STOP_MASK)
1476                                return ret;
1477                }
1478        }
1479
1480        return ret;
1481}
1482
1483/**
1484 * __clk_recalc_accuracies
1485 * @core: first clk in the subtree
1486 *
1487 * Walks the subtree of clks starting with clk and recalculates accuracies as
1488 * it goes.  Note that if a clk does not implement the .recalc_accuracy
1489 * callback then it is assumed that the clock will take on the accuracy of its
1490 * parent.
1491 */
1492static void __clk_recalc_accuracies(struct clk_core *core)
1493{
1494        unsigned long parent_accuracy = 0;
1495        struct clk_core *child;
1496
1497        lockdep_assert_held(&prepare_lock);
1498
1499        if (core->parent)
1500                parent_accuracy = core->parent->accuracy;
1501
1502        if (core->ops->recalc_accuracy)
1503                core->accuracy = core->ops->recalc_accuracy(core->hw,
1504                                                          parent_accuracy);
1505        else
1506                core->accuracy = parent_accuracy;
1507
1508        hlist_for_each_entry(child, &core->children, child_node)
1509                __clk_recalc_accuracies(child);
1510}
1511
1512static long clk_core_get_accuracy(struct clk_core *core)
1513{
1514        unsigned long accuracy;
1515
1516        clk_prepare_lock();
1517        if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1518                __clk_recalc_accuracies(core);
1519
1520        accuracy = __clk_get_accuracy(core);
1521        clk_prepare_unlock();
1522
1523        return accuracy;
1524}
1525
1526/**
1527 * clk_get_accuracy - return the accuracy of clk
1528 * @clk: the clk whose accuracy is being returned
1529 *
1530 * Simply returns the cached accuracy of the clk, unless
1531 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1532 * issued.
1533 * If clk is NULL then returns 0.
1534 */
1535long clk_get_accuracy(struct clk *clk)
1536{
1537        if (!clk)
1538                return 0;
1539
1540        return clk_core_get_accuracy(clk->core);
1541}
1542EXPORT_SYMBOL_GPL(clk_get_accuracy);
1543
1544static unsigned long clk_recalc(struct clk_core *core,
1545                                unsigned long parent_rate)
1546{
1547        unsigned long rate = parent_rate;
1548
1549        if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1550                rate = core->ops->recalc_rate(core->hw, parent_rate);
1551                clk_pm_runtime_put(core);
1552        }
1553        return rate;
1554}
1555
1556/**
1557 * __clk_recalc_rates
1558 * @core: first clk in the subtree
1559 * @msg: notification type (see include/linux/clk.h)
1560 *
1561 * Walks the subtree of clks starting with clk and recalculates rates as it
1562 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1563 * it is assumed that the clock will take on the rate of its parent.
1564 *
1565 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1566 * if necessary.
1567 */
1568static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1569{
1570        unsigned long old_rate;
1571        unsigned long parent_rate = 0;
1572        struct clk_core *child;
1573
1574        lockdep_assert_held(&prepare_lock);
1575
1576        old_rate = core->rate;
1577
1578        if (core->parent)
1579                parent_rate = core->parent->rate;
1580
1581        core->rate = clk_recalc(core, parent_rate);
1582
1583        /*
1584         * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1585         * & ABORT_RATE_CHANGE notifiers
1586         */
1587        if (core->notifier_count && msg)
1588                __clk_notify(core, msg, old_rate, core->rate);
1589
1590        hlist_for_each_entry(child, &core->children, child_node)
1591                __clk_recalc_rates(child, msg);
1592}
1593
1594static unsigned long clk_core_get_rate(struct clk_core *core)
1595{
1596        unsigned long rate;
1597
1598        clk_prepare_lock();
1599
1600        if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1601                __clk_recalc_rates(core, 0);
1602
1603        rate = clk_core_get_rate_nolock(core);
1604        clk_prepare_unlock();
1605
1606        return rate;
1607}
1608
1609/**
1610 * clk_get_rate - return the rate of clk
1611 * @clk: the clk whose rate is being returned
1612 *
1613 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1614 * is set, which means a recalc_rate will be issued.
1615 * If clk is NULL then returns 0.
1616 */
1617unsigned long clk_get_rate(struct clk *clk)
1618{
1619        if (!clk)
1620                return 0;
1621
1622        return clk_core_get_rate(clk->core);
1623}
1624EXPORT_SYMBOL_GPL(clk_get_rate);
1625
1626static int clk_fetch_parent_index(struct clk_core *core,
1627                                  struct clk_core *parent)
1628{
1629        int i;
1630
1631        if (!parent)
1632                return -EINVAL;
1633
1634        for (i = 0; i < core->num_parents; i++) {
1635                /* Found it first try! */
1636                if (core->parents[i].core == parent)
1637                        return i;
1638
1639                /* Something else is here, so keep looking */
1640                if (core->parents[i].core)
1641                        continue;
1642
1643                /* Maybe core hasn't been cached but the hw is all we know? */
1644                if (core->parents[i].hw) {
1645                        if (core->parents[i].hw == parent->hw)
1646                                break;
1647
1648                        /* Didn't match, but we're expecting a clk_hw */
1649                        continue;
1650                }
1651
1652                /* Maybe it hasn't been cached (clk_set_parent() path) */
1653                if (parent == clk_core_get(core, i))
1654                        break;
1655
1656                /* Fallback to comparing globally unique names */
1657                if (core->parents[i].name &&
1658                    !strcmp(parent->name, core->parents[i].name))
1659                        break;
1660        }
1661
1662        if (i == core->num_parents)
1663                return -EINVAL;
1664
1665        core->parents[i].core = parent;
1666        return i;
1667}
1668
1669/*
1670 * Update the orphan status of @core and all its children.
1671 */
1672static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1673{
1674        struct clk_core *child;
1675
1676        core->orphan = is_orphan;
1677
1678        hlist_for_each_entry(child, &core->children, child_node)
1679                clk_core_update_orphan_status(child, is_orphan);
1680}
1681
1682static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1683{
1684        bool was_orphan = core->orphan;
1685
1686        hlist_del(&core->child_node);
1687
1688        if (new_parent) {
1689                bool becomes_orphan = new_parent->orphan;
1690
1691                /* avoid duplicate POST_RATE_CHANGE notifications */
1692                if (new_parent->new_child == core)
1693                        new_parent->new_child = NULL;
1694
1695                hlist_add_head(&core->child_node, &new_parent->children);
1696
1697                if (was_orphan != becomes_orphan)
1698                        clk_core_update_orphan_status(core, becomes_orphan);
1699        } else {
1700                hlist_add_head(&core->child_node, &clk_orphan_list);
1701                if (!was_orphan)
1702                        clk_core_update_orphan_status(core, true);
1703        }
1704
1705        core->parent = new_parent;
1706}
1707
1708static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1709                                           struct clk_core *parent)
1710{
1711        unsigned long flags;
1712        struct clk_core *old_parent = core->parent;
1713
1714        /*
1715         * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1716         *
1717         * 2. Migrate prepare state between parents and prevent race with
1718         * clk_enable().
1719         *
1720         * If the clock is not prepared, then a race with
1721         * clk_enable/disable() is impossible since we already have the
1722         * prepare lock (future calls to clk_enable() need to be preceded by
1723         * a clk_prepare()).
1724         *
1725         * If the clock is prepared, migrate the prepared state to the new
1726         * parent and also protect against a race with clk_enable() by
1727         * forcing the clock and the new parent on.  This ensures that all
1728         * future calls to clk_enable() are practically NOPs with respect to
1729         * hardware and software states.
1730         *
1731         * See also: Comment for clk_set_parent() below.
1732         */
1733
1734        /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1735        if (core->flags & CLK_OPS_PARENT_ENABLE) {
1736                clk_core_prepare_enable(old_parent);
1737                clk_core_prepare_enable(parent);
1738        }
1739
1740        /* migrate prepare count if > 0 */
1741        if (core->prepare_count) {
1742                clk_core_prepare_enable(parent);
1743                clk_core_enable_lock(core);
1744        }
1745
1746        /* update the clk tree topology */
1747        flags = clk_enable_lock();
1748        clk_reparent(core, parent);
1749        clk_enable_unlock(flags);
1750
1751        return old_parent;
1752}
1753
1754static void __clk_set_parent_after(struct clk_core *core,
1755                                   struct clk_core *parent,
1756                                   struct clk_core *old_parent)
1757{
1758        /*
1759         * Finish the migration of prepare state and undo the changes done
1760         * for preventing a race with clk_enable().
1761         */
1762        if (core->prepare_count) {
1763                clk_core_disable_lock(core);
1764                clk_core_disable_unprepare(old_parent);
1765        }
1766
1767        /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1768        if (core->flags & CLK_OPS_PARENT_ENABLE) {
1769                clk_core_disable_unprepare(parent);
1770                clk_core_disable_unprepare(old_parent);
1771        }
1772}
1773
1774static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1775                            u8 p_index)
1776{
1777        unsigned long flags;
1778        int ret = 0;
1779        struct clk_core *old_parent;
1780
1781        old_parent = __clk_set_parent_before(core, parent);
1782
1783        trace_clk_set_parent(core, parent);
1784
1785        /* change clock input source */
1786        if (parent && core->ops->set_parent)
1787                ret = core->ops->set_parent(core->hw, p_index);
1788
1789        trace_clk_set_parent_complete(core, parent);
1790
1791        if (ret) {
1792                flags = clk_enable_lock();
1793                clk_reparent(core, old_parent);
1794                clk_enable_unlock(flags);
1795                __clk_set_parent_after(core, old_parent, parent);
1796
1797                return ret;
1798        }
1799
1800        __clk_set_parent_after(core, parent, old_parent);
1801
1802        return 0;
1803}
1804
1805/**
1806 * __clk_speculate_rates
1807 * @core: first clk in the subtree
1808 * @parent_rate: the "future" rate of clk's parent
1809 *
1810 * Walks the subtree of clks starting with clk, speculating rates as it
1811 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1812 *
1813 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1814 * pre-rate change notifications and returns early if no clks in the
1815 * subtree have subscribed to the notifications.  Note that if a clk does not
1816 * implement the .recalc_rate callback then it is assumed that the clock will
1817 * take on the rate of its parent.
1818 */
1819static int __clk_speculate_rates(struct clk_core *core,
1820                                 unsigned long parent_rate)
1821{
1822        struct clk_core *child;
1823        unsigned long new_rate;
1824        int ret = NOTIFY_DONE;
1825
1826        lockdep_assert_held(&prepare_lock);
1827
1828        new_rate = clk_recalc(core, parent_rate);
1829
1830        /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1831        if (core->notifier_count)
1832                ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1833
1834        if (ret & NOTIFY_STOP_MASK) {
1835                pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1836                                __func__, core->name, ret);
1837                goto out;
1838        }
1839
1840        hlist_for_each_entry(child, &core->children, child_node) {
1841                ret = __clk_speculate_rates(child, new_rate);
1842                if (ret & NOTIFY_STOP_MASK)
1843                        break;
1844        }
1845
1846out:
1847        return ret;
1848}
1849
1850static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1851                             struct clk_core *new_parent, u8 p_index)
1852{
1853        struct clk_core *child;
1854
1855        core->new_rate = new_rate;
1856        core->new_parent = new_parent;
1857        core->new_parent_index = p_index;
1858        /* include clk in new parent's PRE_RATE_CHANGE notifications */
1859        core->new_child = NULL;
1860        if (new_parent && new_parent != core->parent)
1861                new_parent->new_child = core;
1862
1863        hlist_for_each_entry(child, &core->children, child_node) {
1864                child->new_rate = clk_recalc(child, new_rate);
1865                clk_calc_subtree(child, child->new_rate, NULL, 0);
1866        }
1867}
1868
1869/*
1870 * calculate the new rates returning the topmost clock that has to be
1871 * changed.
1872 */
1873static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1874                                           unsigned long rate)
1875{
1876        struct clk_core *top = core;
1877        struct clk_core *old_parent, *parent;
1878        unsigned long best_parent_rate = 0;
1879        unsigned long new_rate;
1880        unsigned long min_rate;
1881        unsigned long max_rate;
1882        int p_index = 0;
1883        long ret;
1884
1885        /* sanity */
1886        if (IS_ERR_OR_NULL(core))
1887                return NULL;
1888
1889        /* save parent rate, if it exists */
1890        parent = old_parent = core->parent;
1891        if (parent)
1892                best_parent_rate = parent->rate;
1893
1894        clk_core_get_boundaries(core, &min_rate, &max_rate);
1895
1896        /* find the closest rate and parent clk/rate */
1897        if (clk_core_can_round(core)) {
1898                struct clk_rate_request req;
1899
1900                req.rate = rate;
1901                req.min_rate = min_rate;
1902                req.max_rate = max_rate;
1903
1904                clk_core_init_rate_req(core, &req);
1905
1906                ret = clk_core_determine_round_nolock(core, &req);
1907                if (ret < 0)
1908                        return NULL;
1909
1910                best_parent_rate = req.best_parent_rate;
1911                new_rate = req.rate;
1912                parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1913
1914                if (new_rate < min_rate || new_rate > max_rate)
1915                        return NULL;
1916        } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1917                /* pass-through clock without adjustable parent */
1918                core->new_rate = core->rate;
1919                return NULL;
1920        } else {
1921                /* pass-through clock with adjustable parent */
1922                top = clk_calc_new_rates(parent, rate);
1923                new_rate = parent->new_rate;
1924                goto out;
1925        }
1926
1927        /* some clocks must be gated to change parent */
1928        if (parent != old_parent &&
1929            (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1930                pr_debug("%s: %s not gated but wants to reparent\n",
1931                         __func__, core->name);
1932                return NULL;
1933        }
1934
1935        /* try finding the new parent index */
1936        if (parent && core->num_parents > 1) {
1937                p_index = clk_fetch_parent_index(core, parent);
1938                if (p_index < 0) {
1939                        pr_debug("%s: clk %s can not be parent of clk %s\n",
1940                                 __func__, parent->name, core->name);
1941                        return NULL;
1942                }
1943        }
1944
1945        if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1946            best_parent_rate != parent->rate)
1947                top = clk_calc_new_rates(parent, best_parent_rate);
1948
1949out:
1950        clk_calc_subtree(core, new_rate, parent, p_index);
1951
1952        return top;
1953}
1954
1955/*
1956 * Notify about rate changes in a subtree. Always walk down the whole tree
1957 * so that in case of an error we can walk down the whole tree again and
1958 * abort the change.
1959 */
1960static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1961                                                  unsigned long event)
1962{
1963        struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1964        int ret = NOTIFY_DONE;
1965
1966        if (core->rate == core->new_rate)
1967                return NULL;
1968
1969        if (core->notifier_count) {
1970                ret = __clk_notify(core, event, core->rate, core->new_rate);
1971                if (ret & NOTIFY_STOP_MASK)
1972                        fail_clk = core;
1973        }
1974
1975        hlist_for_each_entry(child, &core->children, child_node) {
1976                /* Skip children who will be reparented to another clock */
1977                if (child->new_parent && child->new_parent != core)
1978                        continue;
1979                tmp_clk = clk_propagate_rate_change(child, event);
1980                if (tmp_clk)
1981                        fail_clk = tmp_clk;
1982        }
1983
1984        /* handle the new child who might not be in core->children yet */
1985        if (core->new_child) {
1986                tmp_clk = clk_propagate_rate_change(core->new_child, event);
1987                if (tmp_clk)
1988                        fail_clk = tmp_clk;
1989        }
1990
1991        return fail_clk;
1992}
1993
1994/*
1995 * walk down a subtree and set the new rates notifying the rate
1996 * change on the way
1997 */
1998static void clk_change_rate(struct clk_core *core)
1999{
2000        struct clk_core *child;
2001        struct hlist_node *tmp;
2002        unsigned long old_rate;
2003        unsigned long best_parent_rate = 0;
2004        bool skip_set_rate = false;
2005        struct clk_core *old_parent;
2006        struct clk_core *parent = NULL;
2007
2008        old_rate = core->rate;
2009
2010        if (core->new_parent) {
2011                parent = core->new_parent;
2012                best_parent_rate = core->new_parent->rate;
2013        } else if (core->parent) {
2014                parent = core->parent;
2015                best_parent_rate = core->parent->rate;
2016        }
2017
2018        if (clk_pm_runtime_get(core))
2019                return;
2020
2021        if (core->flags & CLK_SET_RATE_UNGATE) {
2022                unsigned long flags;
2023
2024                clk_core_prepare(core);
2025                flags = clk_enable_lock();
2026                clk_core_enable(core);
2027                clk_enable_unlock(flags);
2028        }
2029
2030        if (core->new_parent && core->new_parent != core->parent) {
2031                old_parent = __clk_set_parent_before(core, core->new_parent);
2032                trace_clk_set_parent(core, core->new_parent);
2033
2034                if (core->ops->set_rate_and_parent) {
2035                        skip_set_rate = true;
2036                        core->ops->set_rate_and_parent(core->hw, core->new_rate,
2037                                        best_parent_rate,
2038                                        core->new_parent_index);
2039                } else if (core->ops->set_parent) {
2040                        core->ops->set_parent(core->hw, core->new_parent_index);
2041                }
2042
2043                trace_clk_set_parent_complete(core, core->new_parent);
2044                __clk_set_parent_after(core, core->new_parent, old_parent);
2045        }
2046
2047        if (core->flags & CLK_OPS_PARENT_ENABLE)
2048                clk_core_prepare_enable(parent);
2049
2050        trace_clk_set_rate(core, core->new_rate);
2051
2052        if (!skip_set_rate && core->ops->set_rate)
2053                core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2054
2055        trace_clk_set_rate_complete(core, core->new_rate);
2056
2057        core->rate = clk_recalc(core, best_parent_rate);
2058
2059        if (core->flags & CLK_SET_RATE_UNGATE) {
2060                unsigned long flags;
2061
2062                flags = clk_enable_lock();
2063                clk_core_disable(core);
2064                clk_enable_unlock(flags);
2065                clk_core_unprepare(core);
2066        }
2067
2068        if (core->flags & CLK_OPS_PARENT_ENABLE)
2069                clk_core_disable_unprepare(parent);
2070
2071        if (core->notifier_count && old_rate != core->rate)
2072                __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2073
2074        if (core->flags & CLK_RECALC_NEW_RATES)
2075                (void)clk_calc_new_rates(core, core->new_rate);
2076
2077        /*
2078         * Use safe iteration, as change_rate can actually swap parents
2079         * for certain clock types.
2080         */
2081        hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2082                /* Skip children who will be reparented to another clock */
2083                if (child->new_parent && child->new_parent != core)
2084                        continue;
2085                clk_change_rate(child);
2086        }
2087
2088        /* handle the new child who might not be in core->children yet */
2089        if (core->new_child)
2090                clk_change_rate(core->new_child);
2091
2092        clk_pm_runtime_put(core);
2093}
2094
2095static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2096                                                     unsigned long req_rate)
2097{
2098        int ret, cnt;
2099        struct clk_rate_request req;
2100
2101        lockdep_assert_held(&prepare_lock);
2102
2103        if (!core)
2104                return 0;
2105
2106        /* simulate what the rate would be if it could be freely set */
2107        cnt = clk_core_rate_nuke_protect(core);
2108        if (cnt < 0)
2109                return cnt;
2110
2111        clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2112        req.rate = req_rate;
2113
2114        ret = clk_core_round_rate_nolock(core, &req);
2115
2116        /* restore the protection */
2117        clk_core_rate_restore_protect(core, cnt);
2118
2119        return ret ? 0 : req.rate;
2120}
2121
2122static int clk_core_set_rate_nolock(struct clk_core *core,
2123                                    unsigned long req_rate)
2124{
2125        struct clk_core *top, *fail_clk;
2126        unsigned long rate;
2127        int ret = 0;
2128
2129        if (!core)
2130                return 0;
2131
2132        rate = clk_core_req_round_rate_nolock(core, req_rate);
2133
2134        /* bail early if nothing to do */
2135        if (rate == clk_core_get_rate_nolock(core))
2136                return 0;
2137
2138        /* fail on a direct rate set of a protected provider */
2139        if (clk_core_rate_is_protected(core))
2140                return -EBUSY;
2141
2142        /* calculate new rates and get the topmost changed clock */
2143        top = clk_calc_new_rates(core, req_rate);
2144        if (!top)
2145                return -EINVAL;
2146
2147        ret = clk_pm_runtime_get(core);
2148        if (ret)
2149                return ret;
2150
2151        /* notify that we are about to change rates */
2152        fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2153        if (fail_clk) {
2154                pr_debug("%s: failed to set %s rate\n", __func__,
2155                                fail_clk->name);
2156                clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2157                ret = -EBUSY;
2158                goto err;
2159        }
2160
2161        /* change the rates */
2162        clk_change_rate(top);
2163
2164        core->req_rate = req_rate;
2165err:
2166        clk_pm_runtime_put(core);
2167
2168        return ret;
2169}
2170
2171/**
2172 * clk_set_rate - specify a new rate for clk
2173 * @clk: the clk whose rate is being changed
2174 * @rate: the new rate for clk
2175 *
2176 * In the simplest case clk_set_rate will only adjust the rate of clk.
2177 *
2178 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2179 * propagate up to clk's parent; whether or not this happens depends on the
2180 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2181 * after calling .round_rate then upstream parent propagation is ignored.  If
2182 * *parent_rate comes back with a new rate for clk's parent then we propagate
2183 * up to clk's parent and set its rate.  Upward propagation will continue
2184 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2185 * .round_rate stops requesting changes to clk's parent_rate.
2186 *
2187 * Rate changes are accomplished via tree traversal that also recalculates the
2188 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2189 *
2190 * Returns 0 on success, -EERROR otherwise.
2191 */
2192int clk_set_rate(struct clk *clk, unsigned long rate)
2193{
2194        int ret;
2195
2196        if (!clk)
2197                return 0;
2198
2199        /* prevent racing with updates to the clock topology */
2200        clk_prepare_lock();
2201
2202        if (clk->exclusive_count)
2203                clk_core_rate_unprotect(clk->core);
2204
2205        ret = clk_core_set_rate_nolock(clk->core, rate);
2206
2207        if (clk->exclusive_count)
2208                clk_core_rate_protect(clk->core);
2209
2210        clk_prepare_unlock();
2211
2212        return ret;
2213}
2214EXPORT_SYMBOL_GPL(clk_set_rate);
2215
2216/**
2217 * clk_set_rate_exclusive - specify a new rate and get exclusive control
2218 * @clk: the clk whose rate is being changed
2219 * @rate: the new rate for clk
2220 *
2221 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2222 * within a critical section
2223 *
2224 * This can be used initially to ensure that at least 1 consumer is
2225 * satisfied when several consumers are competing for exclusivity over the
2226 * same clock provider.
2227 *
2228 * The exclusivity is not applied if setting the rate failed.
2229 *
2230 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2231 * clk_rate_exclusive_put().
2232 *
2233 * Returns 0 on success, -EERROR otherwise.
2234 */
2235int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2236{
2237        int ret;
2238
2239        if (!clk)
2240                return 0;
2241
2242        /* prevent racing with updates to the clock topology */
2243        clk_prepare_lock();
2244
2245        /*
2246         * The temporary protection removal is not here, on purpose
2247         * This function is meant to be used instead of clk_rate_protect,
2248         * so before the consumer code path protect the clock provider
2249         */
2250
2251        ret = clk_core_set_rate_nolock(clk->core, rate);
2252        if (!ret) {
2253                clk_core_rate_protect(clk->core);
2254                clk->exclusive_count++;
2255        }
2256
2257        clk_prepare_unlock();
2258
2259        return ret;
2260}
2261EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2262
2263/**
2264 * clk_set_rate_range - set a rate range for a clock source
2265 * @clk: clock source
2266 * @min: desired minimum clock rate in Hz, inclusive
2267 * @max: desired maximum clock rate in Hz, inclusive
2268 *
2269 * Returns success (0) or negative errno.
2270 */
2271int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2272{
2273        int ret = 0;
2274        unsigned long old_min, old_max, rate;
2275
2276        if (!clk)
2277                return 0;
2278
2279        if (min > max) {
2280                pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2281                       __func__, clk->core->name, clk->dev_id, clk->con_id,
2282                       min, max);
2283                return -EINVAL;
2284        }
2285
2286        clk_prepare_lock();
2287
2288        if (clk->exclusive_count)
2289                clk_core_rate_unprotect(clk->core);
2290
2291        /* Save the current values in case we need to rollback the change */
2292        old_min = clk->min_rate;
2293        old_max = clk->max_rate;
2294        clk->min_rate = min;
2295        clk->max_rate = max;
2296
2297        rate = clk_core_get_rate_nolock(clk->core);
2298        if (rate < min || rate > max) {
2299                /*
2300                 * FIXME:
2301                 * We are in bit of trouble here, current rate is outside the
2302                 * the requested range. We are going try to request appropriate
2303                 * range boundary but there is a catch. It may fail for the
2304                 * usual reason (clock broken, clock protected, etc) but also
2305                 * because:
2306                 * - round_rate() was not favorable and fell on the wrong
2307                 *   side of the boundary
2308                 * - the determine_rate() callback does not really check for
2309                 *   this corner case when determining the rate
2310                 */
2311
2312                if (rate < min)
2313                        rate = min;
2314                else
2315                        rate = max;
2316
2317                ret = clk_core_set_rate_nolock(clk->core, rate);
2318                if (ret) {
2319                        /* rollback the changes */
2320                        clk->min_rate = old_min;
2321                        clk->max_rate = old_max;
2322                }
2323        }
2324
2325        if (clk->exclusive_count)
2326                clk_core_rate_protect(clk->core);
2327
2328        clk_prepare_unlock();
2329
2330        return ret;
2331}
2332EXPORT_SYMBOL_GPL(clk_set_rate_range);
2333
2334/**
2335 * clk_set_min_rate - set a minimum clock rate for a clock source
2336 * @clk: clock source
2337 * @rate: desired minimum clock rate in Hz, inclusive
2338 *
2339 * Returns success (0) or negative errno.
2340 */
2341int clk_set_min_rate(struct clk *clk, unsigned long rate)
2342{
2343        if (!clk)
2344                return 0;
2345
2346        return clk_set_rate_range(clk, rate, clk->max_rate);
2347}
2348EXPORT_SYMBOL_GPL(clk_set_min_rate);
2349
2350/**
2351 * clk_set_max_rate - set a maximum clock rate for a clock source
2352 * @clk: clock source
2353 * @rate: desired maximum clock rate in Hz, inclusive
2354 *
2355 * Returns success (0) or negative errno.
2356 */
2357int clk_set_max_rate(struct clk *clk, unsigned long rate)
2358{
2359        if (!clk)
2360                return 0;
2361
2362        return clk_set_rate_range(clk, clk->min_rate, rate);
2363}
2364EXPORT_SYMBOL_GPL(clk_set_max_rate);
2365
2366/**
2367 * clk_get_parent - return the parent of a clk
2368 * @clk: the clk whose parent gets returned
2369 *
2370 * Simply returns clk->parent.  Returns NULL if clk is NULL.
2371 */
2372struct clk *clk_get_parent(struct clk *clk)
2373{
2374        struct clk *parent;
2375
2376        if (!clk)
2377                return NULL;
2378
2379        clk_prepare_lock();
2380        /* TODO: Create a per-user clk and change callers to call clk_put */
2381        parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2382        clk_prepare_unlock();
2383
2384        return parent;
2385}
2386EXPORT_SYMBOL_GPL(clk_get_parent);
2387
2388static struct clk_core *__clk_init_parent(struct clk_core *core)
2389{
2390        u8 index = 0;
2391
2392        if (core->num_parents > 1 && core->ops->get_parent)
2393                index = core->ops->get_parent(core->hw);
2394
2395        return clk_core_get_parent_by_index(core, index);
2396}
2397
2398static void clk_core_reparent(struct clk_core *core,
2399                                  struct clk_core *new_parent)
2400{
2401        clk_reparent(core, new_parent);
2402        __clk_recalc_accuracies(core);
2403        __clk_recalc_rates(core, POST_RATE_CHANGE);
2404}
2405
2406void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2407{
2408        if (!hw)
2409                return;
2410
2411        clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2412}
2413
2414/**
2415 * clk_has_parent - check if a clock is a possible parent for another
2416 * @clk: clock source
2417 * @parent: parent clock source
2418 *
2419 * This function can be used in drivers that need to check that a clock can be
2420 * the parent of another without actually changing the parent.
2421 *
2422 * Returns true if @parent is a possible parent for @clk, false otherwise.
2423 */
2424bool clk_has_parent(struct clk *clk, struct clk *parent)
2425{
2426        struct clk_core *core, *parent_core;
2427        int i;
2428
2429        /* NULL clocks should be nops, so return success if either is NULL. */
2430        if (!clk || !parent)
2431                return true;
2432
2433        core = clk->core;
2434        parent_core = parent->core;
2435
2436        /* Optimize for the case where the parent is already the parent. */
2437        if (core->parent == parent_core)
2438                return true;
2439
2440        for (i = 0; i < core->num_parents; i++)
2441                if (!strcmp(core->parents[i].name, parent_core->name))
2442                        return true;
2443
2444        return false;
2445}
2446EXPORT_SYMBOL_GPL(clk_has_parent);
2447
2448static int clk_core_set_parent_nolock(struct clk_core *core,
2449                                      struct clk_core *parent)
2450{
2451        int ret = 0;
2452        int p_index = 0;
2453        unsigned long p_rate = 0;
2454
2455        lockdep_assert_held(&prepare_lock);
2456
2457        if (!core)
2458                return 0;
2459
2460        if (core->parent == parent)
2461                return 0;
2462
2463        /* verify ops for for multi-parent clks */
2464        if (core->num_parents > 1 && !core->ops->set_parent)
2465                return -EPERM;
2466
2467        /* check that we are allowed to re-parent if the clock is in use */
2468        if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2469                return -EBUSY;
2470
2471        if (clk_core_rate_is_protected(core))
2472                return -EBUSY;
2473
2474        /* try finding the new parent index */
2475        if (parent) {
2476                p_index = clk_fetch_parent_index(core, parent);
2477                if (p_index < 0) {
2478                        pr_debug("%s: clk %s can not be parent of clk %s\n",
2479                                        __func__, parent->name, core->name);
2480                        return p_index;
2481                }
2482                p_rate = parent->rate;
2483        }
2484
2485        ret = clk_pm_runtime_get(core);
2486        if (ret)
2487                return ret;
2488
2489        /* propagate PRE_RATE_CHANGE notifications */
2490        ret = __clk_speculate_rates(core, p_rate);
2491
2492        /* abort if a driver objects */
2493        if (ret & NOTIFY_STOP_MASK)
2494                goto runtime_put;
2495
2496        /* do the re-parent */
2497        ret = __clk_set_parent(core, parent, p_index);
2498
2499        /* propagate rate an accuracy recalculation accordingly */
2500        if (ret) {
2501                __clk_recalc_rates(core, ABORT_RATE_CHANGE);
2502        } else {
2503                __clk_recalc_rates(core, POST_RATE_CHANGE);
2504                __clk_recalc_accuracies(core);
2505        }
2506
2507runtime_put:
2508        clk_pm_runtime_put(core);
2509
2510        return ret;
2511}
2512
2513/**
2514 * clk_set_parent - switch the parent of a mux clk
2515 * @clk: the mux clk whose input we are switching
2516 * @parent: the new input to clk
2517 *
2518 * Re-parent clk to use parent as its new input source.  If clk is in
2519 * prepared state, the clk will get enabled for the duration of this call. If
2520 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2521 * that, the reparenting is glitchy in hardware, etc), use the
2522 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2523 *
2524 * After successfully changing clk's parent clk_set_parent will update the
2525 * clk topology, sysfs topology and propagate rate recalculation via
2526 * __clk_recalc_rates.
2527 *
2528 * Returns 0 on success, -EERROR otherwise.
2529 */
2530int clk_set_parent(struct clk *clk, struct clk *parent)
2531{
2532        int ret;
2533
2534        if (!clk)
2535                return 0;
2536
2537        clk_prepare_lock();
2538
2539        if (clk->exclusive_count)
2540                clk_core_rate_unprotect(clk->core);
2541
2542        ret = clk_core_set_parent_nolock(clk->core,
2543                                         parent ? parent->core : NULL);
2544
2545        if (clk->exclusive_count)
2546                clk_core_rate_protect(clk->core);
2547
2548        clk_prepare_unlock();
2549
2550        return ret;
2551}
2552EXPORT_SYMBOL_GPL(clk_set_parent);
2553
2554static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2555{
2556        int ret = -EINVAL;
2557
2558        lockdep_assert_held(&prepare_lock);
2559
2560        if (!core)
2561                return 0;
2562
2563        if (clk_core_rate_is_protected(core))
2564                return -EBUSY;
2565
2566        trace_clk_set_phase(core, degrees);
2567
2568        if (core->ops->set_phase) {
2569                ret = core->ops->set_phase(core->hw, degrees);
2570                if (!ret)
2571                        core->phase = degrees;
2572        }
2573
2574        trace_clk_set_phase_complete(core, degrees);
2575
2576        return ret;
2577}
2578
2579/**
2580 * clk_set_phase - adjust the phase shift of a clock signal
2581 * @clk: clock signal source
2582 * @degrees: number of degrees the signal is shifted
2583 *
2584 * Shifts the phase of a clock signal by the specified
2585 * degrees. Returns 0 on success, -EERROR otherwise.
2586 *
2587 * This function makes no distinction about the input or reference
2588 * signal that we adjust the clock signal phase against. For example
2589 * phase locked-loop clock signal generators we may shift phase with
2590 * respect to feedback clock signal input, but for other cases the
2591 * clock phase may be shifted with respect to some other, unspecified
2592 * signal.
2593 *
2594 * Additionally the concept of phase shift does not propagate through
2595 * the clock tree hierarchy, which sets it apart from clock rates and
2596 * clock accuracy. A parent clock phase attribute does not have an
2597 * impact on the phase attribute of a child clock.
2598 */
2599int clk_set_phase(struct clk *clk, int degrees)
2600{
2601        int ret;
2602
2603        if (!clk)
2604                return 0;
2605
2606        /* sanity check degrees */
2607        degrees %= 360;
2608        if (degrees < 0)
2609                degrees += 360;
2610
2611        clk_prepare_lock();
2612
2613        if (clk->exclusive_count)
2614                clk_core_rate_unprotect(clk->core);
2615
2616        ret = clk_core_set_phase_nolock(clk->core, degrees);
2617
2618        if (clk->exclusive_count)
2619                clk_core_rate_protect(clk->core);
2620
2621        clk_prepare_unlock();
2622
2623        return ret;
2624}
2625EXPORT_SYMBOL_GPL(clk_set_phase);
2626
2627static int clk_core_get_phase(struct clk_core *core)
2628{
2629        int ret;
2630
2631        clk_prepare_lock();
2632        /* Always try to update cached phase if possible */
2633        if (core->ops->get_phase)
2634                core->phase = core->ops->get_phase(core->hw);
2635        ret = core->phase;
2636        clk_prepare_unlock();
2637
2638        return ret;
2639}
2640
2641/**
2642 * clk_get_phase - return the phase shift of a clock signal
2643 * @clk: clock signal source
2644 *
2645 * Returns the phase shift of a clock node in degrees, otherwise returns
2646 * -EERROR.
2647 */
2648int clk_get_phase(struct clk *clk)
2649{
2650        if (!clk)
2651                return 0;
2652
2653        return clk_core_get_phase(clk->core);
2654}
2655EXPORT_SYMBOL_GPL(clk_get_phase);
2656
2657static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2658{
2659        /* Assume a default value of 50% */
2660        core->duty.num = 1;
2661        core->duty.den = 2;
2662}
2663
2664static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2665
2666static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2667{
2668        struct clk_duty *duty = &core->duty;
2669        int ret = 0;
2670
2671        if (!core->ops->get_duty_cycle)
2672                return clk_core_update_duty_cycle_parent_nolock(core);
2673
2674        ret = core->ops->get_duty_cycle(core->hw, duty);
2675        if (ret)
2676                goto reset;
2677
2678        /* Don't trust the clock provider too much */
2679        if (duty->den == 0 || duty->num > duty->den) {
2680                ret = -EINVAL;
2681                goto reset;
2682        }
2683
2684        return 0;
2685
2686reset:
2687        clk_core_reset_duty_cycle_nolock(core);
2688        return ret;
2689}
2690
2691static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2692{
2693        int ret = 0;
2694
2695        if (core->parent &&
2696            core->flags & CLK_DUTY_CYCLE_PARENT) {
2697                ret = clk_core_update_duty_cycle_nolock(core->parent);
2698                memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2699        } else {
2700                clk_core_reset_duty_cycle_nolock(core);
2701        }
2702
2703        return ret;
2704}
2705
2706static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2707                                                 struct clk_duty *duty);
2708
2709static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2710                                          struct clk_duty *duty)
2711{
2712        int ret;
2713
2714        lockdep_assert_held(&prepare_lock);
2715
2716        if (clk_core_rate_is_protected(core))
2717                return -EBUSY;
2718
2719        trace_clk_set_duty_cycle(core, duty);
2720
2721        if (!core->ops->set_duty_cycle)
2722                return clk_core_set_duty_cycle_parent_nolock(core, duty);
2723
2724        ret = core->ops->set_duty_cycle(core->hw, duty);
2725        if (!ret)
2726                memcpy(&core->duty, duty, sizeof(*duty));
2727
2728        trace_clk_set_duty_cycle_complete(core, duty);
2729
2730        return ret;
2731}
2732
2733static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2734                                                 struct clk_duty *duty)
2735{
2736        int ret = 0;
2737
2738        if (core->parent &&
2739            core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2740                ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2741                memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2742        }
2743
2744        return ret;
2745}
2746
2747/**
2748 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2749 * @clk: clock signal source
2750 * @num: numerator of the duty cycle ratio to be applied
2751 * @den: denominator of the duty cycle ratio to be applied
2752 *
2753 * Apply the duty cycle ratio if the ratio is valid and the clock can
2754 * perform this operation
2755 *
2756 * Returns (0) on success, a negative errno otherwise.
2757 */
2758int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2759{
2760        int ret;
2761        struct clk_duty duty;
2762
2763        if (!clk)
2764                return 0;
2765
2766        /* sanity check the ratio */
2767        if (den == 0 || num > den)
2768                return -EINVAL;
2769
2770        duty.num = num;
2771        duty.den = den;
2772
2773        clk_prepare_lock();
2774
2775        if (clk->exclusive_count)
2776                clk_core_rate_unprotect(clk->core);
2777
2778        ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2779
2780        if (clk->exclusive_count)
2781                clk_core_rate_protect(clk->core);
2782
2783        clk_prepare_unlock();
2784
2785        return ret;
2786}
2787EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2788
2789static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2790                                          unsigned int scale)
2791{
2792        struct clk_duty *duty = &core->duty;
2793        int ret;
2794
2795        clk_prepare_lock();
2796
2797        ret = clk_core_update_duty_cycle_nolock(core);
2798        if (!ret)
2799                ret = mult_frac(scale, duty->num, duty->den);
2800
2801        clk_prepare_unlock();
2802
2803        return ret;
2804}
2805
2806/**
2807 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2808 * @clk: clock signal source
2809 * @scale: scaling factor to be applied to represent the ratio as an integer
2810 *
2811 * Returns the duty cycle ratio of a clock node multiplied by the provided
2812 * scaling factor, or negative errno on error.
2813 */
2814int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2815{
2816        if (!clk)
2817                return 0;
2818
2819        return clk_core_get_scaled_duty_cycle(clk->core, scale);
2820}
2821EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2822
2823/**
2824 * clk_is_match - check if two clk's point to the same hardware clock
2825 * @p: clk compared against q
2826 * @q: clk compared against p
2827 *
2828 * Returns true if the two struct clk pointers both point to the same hardware
2829 * clock node. Put differently, returns true if struct clk *p and struct clk *q
2830 * share the same struct clk_core object.
2831 *
2832 * Returns false otherwise. Note that two NULL clks are treated as matching.
2833 */
2834bool clk_is_match(const struct clk *p, const struct clk *q)
2835{
2836        /* trivial case: identical struct clk's or both NULL */
2837        if (p == q)
2838                return true;
2839
2840        /* true if clk->core pointers match. Avoid dereferencing garbage */
2841        if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2842                if (p->core == q->core)
2843                        return true;
2844
2845        return false;
2846}
2847EXPORT_SYMBOL_GPL(clk_is_match);
2848
2849/***        debugfs support        ***/
2850
2851#ifdef CONFIG_DEBUG_FS
2852#include <linux/debugfs.h>
2853
2854static struct dentry *rootdir;
2855static int inited = 0;
2856static DEFINE_MUTEX(clk_debug_lock);
2857static HLIST_HEAD(clk_debug_list);
2858
2859static struct hlist_head *all_lists[] = {
2860        &clk_root_list,
2861        &clk_orphan_list,
2862        NULL,
2863};
2864
2865static struct hlist_head *orphan_list[] = {
2866        &clk_orphan_list,
2867        NULL,
2868};
2869
2870static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2871                                 int level)
2872{
2873        if (!c)
2874                return;
2875
2876        seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %5d %6d\n",
2877                   level * 3 + 1, "",
2878                   30 - level * 3, c->name,
2879                   c->enable_count, c->prepare_count, c->protect_count,
2880                   clk_core_get_rate(c), clk_core_get_accuracy(c),
2881                   clk_core_get_phase(c),
2882                   clk_core_get_scaled_duty_cycle(c, 100000));
2883}
2884
2885static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2886                                     int level)
2887{
2888        struct clk_core *child;
2889
2890        if (!c)
2891                return;
2892
2893        clk_summary_show_one(s, c, level);
2894
2895        hlist_for_each_entry(child, &c->children, child_node)
2896                clk_summary_show_subtree(s, child, level + 1);
2897}
2898
2899static int clk_summary_show(struct seq_file *s, void *data)
2900{
2901        struct clk_core *c;
2902        struct hlist_head **lists = (struct hlist_head **)s->private;
2903
2904        seq_puts(s, "                                 enable  prepare  protect                                duty\n");
2905        seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle\n");
2906        seq_puts(s, "---------------------------------------------------------------------------------------------\n");
2907
2908        clk_prepare_lock();
2909
2910        for (; *lists; lists++)
2911                hlist_for_each_entry(c, *lists, child_node)
2912                        clk_summary_show_subtree(s, c, 0);
2913
2914        clk_prepare_unlock();
2915
2916        return 0;
2917}
2918DEFINE_SHOW_ATTRIBUTE(clk_summary);
2919
2920static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2921{
2922        if (!c)
2923                return;
2924
2925        /* This should be JSON format, i.e. elements separated with a comma */
2926        seq_printf(s, "\"%s\": { ", c->name);
2927        seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2928        seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2929        seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2930        seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2931        seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2932        seq_printf(s, "\"phase\": %d,", clk_core_get_phase(c));
2933        seq_printf(s, "\"duty_cycle\": %u",
2934                   clk_core_get_scaled_duty_cycle(c, 100000));
2935}
2936
2937static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2938{
2939        struct clk_core *child;
2940
2941        if (!c)
2942                return;
2943
2944        clk_dump_one(s, c, level);
2945
2946        hlist_for_each_entry(child, &c->children, child_node) {
2947                seq_putc(s, ',');
2948                clk_dump_subtree(s, child, level + 1);
2949        }
2950
2951        seq_putc(s, '}');
2952}
2953
2954static int clk_dump_show(struct seq_file *s, void *data)
2955{
2956        struct clk_core *c;
2957        bool first_node = true;
2958        struct hlist_head **lists = (struct hlist_head **)s->private;
2959
2960        seq_putc(s, '{');
2961        clk_prepare_lock();
2962
2963        for (; *lists; lists++) {
2964                hlist_for_each_entry(c, *lists, child_node) {
2965                        if (!first_node)
2966                                seq_putc(s, ',');
2967                        first_node = false;
2968                        clk_dump_subtree(s, c, 0);
2969                }
2970        }
2971
2972        clk_prepare_unlock();
2973
2974        seq_puts(s, "}\n");
2975        return 0;
2976}
2977DEFINE_SHOW_ATTRIBUTE(clk_dump);
2978
2979static const struct {
2980        unsigned long flag;
2981        const char *name;
2982} clk_flags[] = {
2983#define ENTRY(f) { f, #f }
2984        ENTRY(CLK_SET_RATE_GATE),
2985        ENTRY(CLK_SET_PARENT_GATE),
2986        ENTRY(CLK_SET_RATE_PARENT),
2987        ENTRY(CLK_IGNORE_UNUSED),
2988        ENTRY(CLK_GET_RATE_NOCACHE),
2989        ENTRY(CLK_SET_RATE_NO_REPARENT),
2990        ENTRY(CLK_GET_ACCURACY_NOCACHE),
2991        ENTRY(CLK_RECALC_NEW_RATES),
2992        ENTRY(CLK_SET_RATE_UNGATE),
2993        ENTRY(CLK_IS_CRITICAL),
2994        ENTRY(CLK_OPS_PARENT_ENABLE),
2995        ENTRY(CLK_DUTY_CYCLE_PARENT),
2996#undef ENTRY
2997};
2998
2999static int clk_flags_show(struct seq_file *s, void *data)
3000{
3001        struct clk_core *core = s->private;
3002        unsigned long flags = core->flags;
3003        unsigned int i;
3004
3005        for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3006                if (flags & clk_flags[i].flag) {
3007                        seq_printf(s, "%s\n", clk_flags[i].name);
3008                        flags &= ~clk_flags[i].flag;
3009                }
3010        }
3011        if (flags) {
3012                /* Unknown flags */
3013                seq_printf(s, "0x%lx\n", flags);
3014        }
3015
3016        return 0;
3017}
3018DEFINE_SHOW_ATTRIBUTE(clk_flags);
3019
3020static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3021                                 unsigned int i, char terminator)
3022{
3023        struct clk_core *parent;
3024
3025        /*
3026         * Go through the following options to fetch a parent's name.
3027         *
3028         * 1. Fetch the registered parent clock and use its name
3029         * 2. Use the global (fallback) name if specified
3030         * 3. Use the local fw_name if provided
3031         * 4. Fetch parent clock's clock-output-name if DT index was set
3032         *
3033         * This may still fail in some cases, such as when the parent is
3034         * specified directly via a struct clk_hw pointer, but it isn't
3035         * registered (yet).
3036         */
3037        parent = clk_core_get_parent_by_index(core, i);
3038        if (parent)
3039                seq_printf(s, "%s", parent->name);
3040        else if (core->parents[i].name)
3041                seq_printf(s, "%s", core->parents[i].name);
3042        else if (core->parents[i].fw_name)
3043                seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3044        else if (core->parents[i].index >= 0)
3045                seq_printf(s, "%s",
3046                           of_clk_get_parent_name(core->of_node,
3047                                                  core->parents[i].index));
3048        else
3049                seq_puts(s, "(missing)");
3050
3051        seq_putc(s, terminator);
3052}
3053
3054static int possible_parents_show(struct seq_file *s, void *data)
3055{
3056        struct clk_core *core = s->private;
3057        int i;
3058
3059        for (i = 0; i < core->num_parents - 1; i++)
3060                possible_parent_show(s, core, i, ' ');
3061
3062        possible_parent_show(s, core, i, '\n');
3063
3064        return 0;
3065}
3066DEFINE_SHOW_ATTRIBUTE(possible_parents);
3067
3068static int current_parent_show(struct seq_file *s, void *data)
3069{
3070        struct clk_core *core = s->private;
3071
3072        if (core->parent)
3073                seq_printf(s, "%s\n", core->parent->name);
3074
3075        return 0;
3076}
3077DEFINE_SHOW_ATTRIBUTE(current_parent);
3078
3079static int clk_duty_cycle_show(struct seq_file *s, void *data)
3080{
3081        struct clk_core *core = s->private;
3082        struct clk_duty *duty = &core->duty;
3083
3084        seq_printf(s, "%u/%u\n", duty->num, duty->den);
3085
3086        return 0;
3087}
3088DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3089
3090static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3091{
3092        struct dentry *root;
3093
3094        if (!core || !pdentry)
3095                return;
3096
3097        root = debugfs_create_dir(core->name, pdentry);
3098        core->dentry = root;
3099
3100        debugfs_create_ulong("clk_rate", 0444, root, &core->rate);
3101        debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3102        debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3103        debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3104        debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3105        debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3106        debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3107        debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3108        debugfs_create_file("clk_duty_cycle", 0444, root, core,
3109                            &clk_duty_cycle_fops);
3110
3111        if (core->num_parents > 0)
3112                debugfs_create_file("clk_parent", 0444, root, core,
3113                                    &current_parent_fops);
3114
3115        if (core->num_parents > 1)
3116                debugfs_create_file("clk_possible_parents", 0444, root, core,
3117                                    &possible_parents_fops);
3118
3119        if (core->ops->debug_init)
3120                core->ops->debug_init(core->hw, core->dentry);
3121}
3122
3123/**
3124 * clk_debug_register - add a clk node to the debugfs clk directory
3125 * @core: the clk being added to the debugfs clk directory
3126 *
3127 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3128 * initialized.  Otherwise it bails out early since the debugfs clk directory
3129 * will be created lazily by clk_debug_init as part of a late_initcall.
3130 */
3131static void clk_debug_register(struct clk_core *core)
3132{
3133        mutex_lock(&clk_debug_lock);
3134        hlist_add_head(&core->debug_node, &clk_debug_list);
3135        if (inited)
3136                clk_debug_create_one(core, rootdir);
3137        mutex_unlock(&clk_debug_lock);
3138}
3139
3140 /**
3141 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3142 * @core: the clk being removed from the debugfs clk directory
3143 *
3144 * Dynamically removes a clk and all its child nodes from the
3145 * debugfs clk directory if clk->dentry points to debugfs created by
3146 * clk_debug_register in __clk_core_init.
3147 */
3148static void clk_debug_unregister(struct clk_core *core)
3149{
3150        mutex_lock(&clk_debug_lock);
3151        hlist_del_init(&core->debug_node);
3152        debugfs_remove_recursive(core->dentry);
3153        core->dentry = NULL;
3154        mutex_unlock(&clk_debug_lock);
3155}
3156
3157/**
3158 * clk_debug_init - lazily populate the debugfs clk directory
3159 *
3160 * clks are often initialized very early during boot before memory can be
3161 * dynamically allocated and well before debugfs is setup. This function
3162 * populates the debugfs clk directory once at boot-time when we know that
3163 * debugfs is setup. It should only be called once at boot-time, all other clks
3164 * added dynamically will be done so with clk_debug_register.
3165 */
3166static int __init clk_debug_init(void)
3167{
3168        struct clk_core *core;
3169
3170        rootdir = debugfs_create_dir("clk", NULL);
3171
3172        debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3173                            &clk_summary_fops);
3174        debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3175                            &clk_dump_fops);
3176        debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3177                            &clk_summary_fops);
3178        debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3179                            &clk_dump_fops);
3180
3181        mutex_lock(&clk_debug_lock);
3182        hlist_for_each_entry(core, &clk_debug_list, debug_node)
3183                clk_debug_create_one(core, rootdir);
3184
3185        inited = 1;
3186        mutex_unlock(&clk_debug_lock);
3187
3188        return 0;
3189}
3190late_initcall(clk_debug_init);
3191#else
3192static inline void clk_debug_register(struct clk_core *core) { }
3193static inline void clk_debug_reparent(struct clk_core *core,
3194                                      struct clk_core *new_parent)
3195{
3196}
3197static inline void clk_debug_unregister(struct clk_core *core)
3198{
3199}
3200#endif
3201
3202/**
3203 * __clk_core_init - initialize the data structures in a struct clk_core
3204 * @core:       clk_core being initialized
3205 *
3206 * Initializes the lists in struct clk_core, queries the hardware for the
3207 * parent and rate and sets them both.
3208 */
3209static int __clk_core_init(struct clk_core *core)
3210{
3211        int ret;
3212        struct clk_core *orphan;
3213        struct hlist_node *tmp2;
3214        unsigned long rate;
3215
3216        if (!core)
3217                return -EINVAL;
3218
3219        clk_prepare_lock();
3220
3221        ret = clk_pm_runtime_get(core);
3222        if (ret)
3223                goto unlock;
3224
3225        /* check to see if a clock with this name is already registered */
3226        if (clk_core_lookup(core->name)) {
3227                pr_debug("%s: clk %s already initialized\n",
3228                                __func__, core->name);
3229                ret = -EEXIST;
3230                goto out;
3231        }
3232
3233        /* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3234        if (core->ops->set_rate &&
3235            !((core->ops->round_rate || core->ops->determine_rate) &&
3236              core->ops->recalc_rate)) {
3237                pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3238                       __func__, core->name);
3239                ret = -EINVAL;
3240                goto out;
3241        }
3242
3243        if (core->ops->set_parent && !core->ops->get_parent) {
3244                pr_err("%s: %s must implement .get_parent & .set_parent\n",
3245                       __func__, core->name);
3246                ret = -EINVAL;
3247                goto out;
3248        }
3249
3250        if (core->num_parents > 1 && !core->ops->get_parent) {
3251                pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3252                       __func__, core->name);
3253                ret = -EINVAL;
3254                goto out;
3255        }
3256
3257        if (core->ops->set_rate_and_parent &&
3258                        !(core->ops->set_parent && core->ops->set_rate)) {
3259                pr_err("%s: %s must implement .set_parent & .set_rate\n",
3260                                __func__, core->name);
3261                ret = -EINVAL;
3262                goto out;
3263        }
3264
3265        core->parent = __clk_init_parent(core);
3266
3267        /*
3268         * Populate core->parent if parent has already been clk_core_init'd. If
3269         * parent has not yet been clk_core_init'd then place clk in the orphan
3270         * list.  If clk doesn't have any parents then place it in the root
3271         * clk list.
3272         *
3273         * Every time a new clk is clk_init'd then we walk the list of orphan
3274         * clocks and re-parent any that are children of the clock currently
3275         * being clk_init'd.
3276         */
3277        if (core->parent) {
3278                hlist_add_head(&core->child_node,
3279                                &core->parent->children);
3280                core->orphan = core->parent->orphan;
3281        } else if (!core->num_parents) {
3282                hlist_add_head(&core->child_node, &clk_root_list);
3283                core->orphan = false;
3284        } else {
3285                hlist_add_head(&core->child_node, &clk_orphan_list);
3286                core->orphan = true;
3287        }
3288
3289        /*
3290         * optional platform-specific magic
3291         *
3292         * The .init callback is not used by any of the basic clock types, but
3293         * exists for weird hardware that must perform initialization magic.
3294         * Please consider other ways of solving initialization problems before
3295         * using this callback, as its use is discouraged.
3296         */
3297        if (core->ops->init)
3298                core->ops->init(core->hw);
3299
3300        /*
3301         * Set clk's accuracy.  The preferred method is to use
3302         * .recalc_accuracy. For simple clocks and lazy developers the default
3303         * fallback is to use the parent's accuracy.  If a clock doesn't have a
3304         * parent (or is orphaned) then accuracy is set to zero (perfect
3305         * clock).
3306         */
3307        if (core->ops->recalc_accuracy)
3308                core->accuracy = core->ops->recalc_accuracy(core->hw,
3309                                        __clk_get_accuracy(core->parent));
3310        else if (core->parent)
3311                core->accuracy = core->parent->accuracy;
3312        else
3313                core->accuracy = 0;
3314
3315        /*
3316         * Set clk's phase.
3317         * Since a phase is by definition relative to its parent, just
3318         * query the current clock phase, or just assume it's in phase.
3319         */
3320        if (core->ops->get_phase)
3321                core->phase = core->ops->get_phase(core->hw);
3322        else
3323                core->phase = 0;
3324
3325        /*
3326         * Set clk's duty cycle.
3327         */
3328        clk_core_update_duty_cycle_nolock(core);
3329
3330        /*
3331         * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3332         * simple clocks and lazy developers the default fallback is to use the
3333         * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3334         * then rate is set to zero.
3335         */
3336        if (core->ops->recalc_rate)
3337                rate = core->ops->recalc_rate(core->hw,
3338                                clk_core_get_rate_nolock(core->parent));
3339        else if (core->parent)
3340                rate = core->parent->rate;
3341        else
3342                rate = 0;
3343        core->rate = core->req_rate = rate;
3344
3345        /*
3346         * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3347         * don't get accidentally disabled when walking the orphan tree and
3348         * reparenting clocks
3349         */
3350        if (core->flags & CLK_IS_CRITICAL) {
3351                unsigned long flags;
3352
3353                clk_core_prepare(core);
3354
3355                flags = clk_enable_lock();
3356                clk_core_enable(core);
3357                clk_enable_unlock(flags);
3358        }
3359
3360        /*
3361         * walk the list of orphan clocks and reparent any that newly finds a
3362         * parent.
3363         */
3364        hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3365                struct clk_core *parent = __clk_init_parent(orphan);
3366
3367                /*
3368                 * We need to use __clk_set_parent_before() and _after() to
3369                 * to properly migrate any prepare/enable count of the orphan
3370                 * clock. This is important for CLK_IS_CRITICAL clocks, which
3371                 * are enabled during init but might not have a parent yet.
3372                 */
3373                if (parent) {
3374                        /* update the clk tree topology */
3375                        __clk_set_parent_before(orphan, parent);
3376                        __clk_set_parent_after(orphan, parent, NULL);
3377                        __clk_recalc_accuracies(orphan);
3378                        __clk_recalc_rates(orphan, 0);
3379                }
3380        }
3381
3382        kref_init(&core->ref);
3383out:
3384        clk_pm_runtime_put(core);
3385unlock:
3386        clk_prepare_unlock();
3387
3388        if (!ret)
3389                clk_debug_register(core);
3390
3391        return ret;
3392}
3393
3394/**
3395 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3396 * @core: clk to add consumer to
3397 * @clk: consumer to link to a clk
3398 */
3399static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3400{
3401        clk_prepare_lock();
3402        hlist_add_head(&clk->clks_node, &core->clks);
3403        clk_prepare_unlock();
3404}
3405
3406/**
3407 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3408 * @clk: consumer to unlink
3409 */
3410static void clk_core_unlink_consumer(struct clk *clk)
3411{
3412        lockdep_assert_held(&prepare_lock);
3413        hlist_del(&clk->clks_node);
3414}
3415
3416/**
3417 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3418 * @core: clk to allocate a consumer for
3419 * @dev_id: string describing device name
3420 * @con_id: connection ID string on device
3421 *
3422 * Returns: clk consumer left unlinked from the consumer list
3423 */
3424static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3425                             const char *con_id)
3426{
3427        struct clk *clk;
3428
3429        clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3430        if (!clk)
3431                return ERR_PTR(-ENOMEM);
3432
3433        clk->core = core;
3434        clk->dev_id = dev_id;
3435        clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3436        clk->max_rate = ULONG_MAX;
3437
3438        return clk;
3439}
3440
3441/**
3442 * free_clk - Free a clk consumer
3443 * @clk: clk consumer to free
3444 *
3445 * Note, this assumes the clk has been unlinked from the clk_core consumer
3446 * list.
3447 */
3448static void free_clk(struct clk *clk)
3449{
3450        kfree_const(clk->con_id);
3451        kfree(clk);
3452}
3453
3454/**
3455 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3456 * a clk_hw
3457 * @dev: clk consumer device
3458 * @hw: clk_hw associated with the clk being consumed
3459 * @dev_id: string describing device name
3460 * @con_id: connection ID string on device
3461 *
3462 * This is the main function used to create a clk pointer for use by clk
3463 * consumers. It connects a consumer to the clk_core and clk_hw structures
3464 * used by the framework and clk provider respectively.
3465 */
3466struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3467                              const char *dev_id, const char *con_id)
3468{
3469        struct clk *clk;
3470        struct clk_core *core;
3471
3472        /* This is to allow this function to be chained to others */
3473        if (IS_ERR_OR_NULL(hw))
3474                return ERR_CAST(hw);
3475
3476        core = hw->core;
3477        clk = alloc_clk(core, dev_id, con_id);
3478        if (IS_ERR(clk))
3479                return clk;
3480        clk->dev = dev;
3481
3482        if (!try_module_get(core->owner)) {
3483                free_clk(clk);
3484                return ERR_PTR(-ENOENT);
3485        }
3486
3487        kref_get(&core->ref);
3488        clk_core_link_consumer(core, clk);
3489
3490        return clk;
3491}
3492
3493static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3494{
3495        const char *dst;
3496
3497        if (!src) {
3498                if (must_exist)
3499                        return -EINVAL;
3500                return 0;
3501        }
3502
3503        *dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3504        if (!dst)
3505                return -ENOMEM;
3506
3507        return 0;
3508}
3509
3510static int clk_core_populate_parent_map(struct clk_core *core)
3511{
3512        const struct clk_init_data *init = core->hw->init;
3513        u8 num_parents = init->num_parents;
3514        const char * const *parent_names = init->parent_names;
3515        const struct clk_hw **parent_hws = init->parent_hws;
3516        const struct clk_parent_data *parent_data = init->parent_data;
3517        int i, ret = 0;
3518        struct clk_parent_map *parents, *parent;
3519
3520        if (!num_parents)
3521                return 0;
3522
3523        /*
3524         * Avoid unnecessary string look-ups of clk_core's possible parents by
3525         * having a cache of names/clk_hw pointers to clk_core pointers.
3526         */
3527        parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3528        core->parents = parents;
3529        if (!parents)
3530                return -ENOMEM;
3531
3532        /* Copy everything over because it might be __initdata */
3533        for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3534                parent->index = -1;
3535                if (parent_names) {
3536                        /* throw a WARN if any entries are NULL */
3537                        WARN(!parent_names[i],
3538                                "%s: invalid NULL in %s's .parent_names\n",
3539                                __func__, core->name);
3540                        ret = clk_cpy_name(&parent->name, parent_names[i],
3541                                           true);
3542                } else if (parent_data) {
3543                        parent->hw = parent_data[i].hw;
3544                        parent->index = parent_data[i].index;
3545                        ret = clk_cpy_name(&parent->fw_name,
3546                                           parent_data[i].fw_name, false);
3547                        if (!ret)
3548                                ret = clk_cpy_name(&parent->name,
3549                                                   parent_data[i].name,
3550                                                   false);
3551                } else if (parent_hws) {
3552                        parent->hw = parent_hws[i];
3553                } else {
3554                        ret = -EINVAL;
3555                        WARN(1, "Must specify parents if num_parents > 0\n");
3556                }
3557
3558                if (ret) {
3559                        do {
3560                                kfree_const(parents[i].name);
3561                                kfree_const(parents[i].fw_name);
3562                        } while (--i >= 0);
3563                        kfree(parents);
3564
3565                        return ret;
3566                }
3567        }
3568
3569        return 0;
3570}
3571
3572static void clk_core_free_parent_map(struct clk_core *core)
3573{
3574        int i = core->num_parents;
3575
3576        if (!core->num_parents)
3577                return;
3578
3579        while (--i >= 0) {
3580                kfree_const(core->parents[i].name);
3581                kfree_const(core->parents[i].fw_name);
3582        }
3583
3584        kfree(core->parents);
3585}
3586
3587static struct clk *
3588__clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3589{
3590        int ret;
3591        struct clk_core *core;
3592
3593        core = kzalloc(sizeof(*core), GFP_KERNEL);
3594        if (!core) {
3595                ret = -ENOMEM;
3596                goto fail_out;
3597        }
3598
3599        core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
3600        if (!core->name) {
3601                ret = -ENOMEM;
3602                goto fail_name;
3603        }
3604
3605        if (WARN_ON(!hw->init->ops)) {
3606                ret = -EINVAL;
3607                goto fail_ops;
3608        }
3609        core->ops = hw->init->ops;
3610
3611        if (dev && pm_runtime_enabled(dev))
3612                core->rpm_enabled = true;
3613        core->dev = dev;
3614        core->of_node = np;
3615        if (dev && dev->driver)
3616                core->owner = dev->driver->owner;
3617        core->hw = hw;
3618        core->flags = hw->init->flags;
3619        core->num_parents = hw->init->num_parents;
3620        core->min_rate = 0;
3621        core->max_rate = ULONG_MAX;
3622        hw->core = core;
3623
3624        ret = clk_core_populate_parent_map(core);
3625        if (ret)
3626                goto fail_parents;
3627
3628        INIT_HLIST_HEAD(&core->clks);
3629
3630        /*
3631         * Don't call clk_hw_create_clk() here because that would pin the
3632         * provider module to itself and prevent it from ever being removed.
3633         */
3634        hw->clk = alloc_clk(core, NULL, NULL);
3635        if (IS_ERR(hw->clk)) {
3636                ret = PTR_ERR(hw->clk);
3637                goto fail_create_clk;
3638        }
3639
3640        clk_core_link_consumer(hw->core, hw->clk);
3641
3642        ret = __clk_core_init(core);
3643        if (!ret)
3644                return hw->clk;
3645
3646        clk_prepare_lock();
3647        clk_core_unlink_consumer(hw->clk);
3648        clk_prepare_unlock();
3649
3650        free_clk(hw->clk);
3651        hw->clk = NULL;
3652
3653fail_create_clk:
3654        clk_core_free_parent_map(core);
3655fail_parents:
3656fail_ops:
3657        kfree_const(core->name);
3658fail_name:
3659        kfree(core);
3660fail_out:
3661        return ERR_PTR(ret);
3662}
3663
3664/**
3665 * clk_register - allocate a new clock, register it and return an opaque cookie
3666 * @dev: device that is registering this clock
3667 * @hw: link to hardware-specific clock data
3668 *
3669 * clk_register is the *deprecated* interface for populating the clock tree with
3670 * new clock nodes. Use clk_hw_register() instead.
3671 *
3672 * Returns: a pointer to the newly allocated struct clk which
3673 * cannot be dereferenced by driver code but may be used in conjunction with the
3674 * rest of the clock API.  In the event of an error clk_register will return an
3675 * error code; drivers must test for an error code after calling clk_register.
3676 */
3677struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3678{
3679        return __clk_register(dev, dev_of_node(dev), hw);
3680}
3681EXPORT_SYMBOL_GPL(clk_register);
3682
3683/**
3684 * clk_hw_register - register a clk_hw and return an error code
3685 * @dev: device that is registering this clock
3686 * @hw: link to hardware-specific clock data
3687 *
3688 * clk_hw_register is the primary interface for populating the clock tree with
3689 * new clock nodes. It returns an integer equal to zero indicating success or
3690 * less than zero indicating failure. Drivers must test for an error code after
3691 * calling clk_hw_register().
3692 */
3693int clk_hw_register(struct device *dev, struct clk_hw *hw)
3694{
3695        return PTR_ERR_OR_ZERO(__clk_register(dev, dev_of_node(dev), hw));
3696}
3697EXPORT_SYMBOL_GPL(clk_hw_register);
3698
3699/*
3700 * of_clk_hw_register - register a clk_hw and return an error code
3701 * @node: device_node of device that is registering this clock
3702 * @hw: link to hardware-specific clock data
3703 *
3704 * of_clk_hw_register() is the primary interface for populating the clock tree
3705 * with new clock nodes when a struct device is not available, but a struct
3706 * device_node is. It returns an integer equal to zero indicating success or
3707 * less than zero indicating failure. Drivers must test for an error code after
3708 * calling of_clk_hw_register().
3709 */
3710int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
3711{
3712        return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
3713}
3714EXPORT_SYMBOL_GPL(of_clk_hw_register);
3715
3716/* Free memory allocated for a clock. */
3717static void __clk_release(struct kref *ref)
3718{
3719        struct clk_core *core = container_of(ref, struct clk_core, ref);
3720
3721        lockdep_assert_held(&prepare_lock);
3722
3723        clk_core_free_parent_map(core);
3724        kfree_const(core->name);
3725        kfree(core);
3726}
3727
3728/*
3729 * Empty clk_ops for unregistered clocks. These are used temporarily
3730 * after clk_unregister() was called on a clock and until last clock
3731 * consumer calls clk_put() and the struct clk object is freed.
3732 */
3733static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3734{
3735        return -ENXIO;
3736}
3737
3738static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3739{
3740        WARN_ON_ONCE(1);
3741}
3742
3743static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3744                                        unsigned long parent_rate)
3745{
3746        return -ENXIO;
3747}
3748
3749static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3750{
3751        return -ENXIO;
3752}
3753
3754static const struct clk_ops clk_nodrv_ops = {
3755        .enable         = clk_nodrv_prepare_enable,
3756        .disable        = clk_nodrv_disable_unprepare,
3757        .prepare        = clk_nodrv_prepare_enable,
3758        .unprepare      = clk_nodrv_disable_unprepare,
3759        .set_rate       = clk_nodrv_set_rate,
3760        .set_parent     = clk_nodrv_set_parent,
3761};
3762
3763/**
3764 * clk_unregister - unregister a currently registered clock
3765 * @clk: clock to unregister
3766 */
3767void clk_unregister(struct clk *clk)
3768{
3769        unsigned long flags;
3770
3771        if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3772                return;
3773
3774        clk_debug_unregister(clk->core);
3775
3776        clk_prepare_lock();
3777
3778        if (clk->core->ops == &clk_nodrv_ops) {
3779                pr_err("%s: unregistered clock: %s\n", __func__,
3780                       clk->core->name);
3781                goto unlock;
3782        }
3783        /*
3784         * Assign empty clock ops for consumers that might still hold
3785         * a reference to this clock.
3786         */
3787        flags = clk_enable_lock();
3788        clk->core->ops = &clk_nodrv_ops;
3789        clk_enable_unlock(flags);
3790
3791        if (!hlist_empty(&clk->core->children)) {
3792                struct clk_core *child;
3793                struct hlist_node *t;
3794
3795                /* Reparent all children to the orphan list. */
3796                hlist_for_each_entry_safe(child, t, &clk->core->children,
3797                                          child_node)
3798                        clk_core_set_parent_nolock(child, NULL);
3799        }
3800
3801        hlist_del_init(&clk->core->child_node);
3802
3803        if (clk->core->prepare_count)
3804                pr_warn("%s: unregistering prepared clock: %s\n",
3805                                        __func__, clk->core->name);
3806
3807        if (clk->core->protect_count)
3808                pr_warn("%s: unregistering protected clock: %s\n",
3809                                        __func__, clk->core->name);
3810
3811        kref_put(&clk->core->ref, __clk_release);
3812unlock:
3813        clk_prepare_unlock();
3814}
3815EXPORT_SYMBOL_GPL(clk_unregister);
3816
3817/**
3818 * clk_hw_unregister - unregister a currently registered clk_hw
3819 * @hw: hardware-specific clock data to unregister
3820 */
3821void clk_hw_unregister(struct clk_hw *hw)
3822{
3823        clk_unregister(hw->clk);
3824}
3825EXPORT_SYMBOL_GPL(clk_hw_unregister);
3826
3827static void devm_clk_release(struct device *dev, void *res)
3828{
3829        clk_unregister(*(struct clk **)res);
3830}
3831
3832static void devm_clk_hw_release(struct device *dev, void *res)
3833{
3834        clk_hw_unregister(*(struct clk_hw **)res);
3835}
3836
3837/**
3838 * devm_clk_register - resource managed clk_register()
3839 * @dev: device that is registering this clock
3840 * @hw: link to hardware-specific clock data
3841 *
3842 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
3843 *
3844 * Clocks returned from this function are automatically clk_unregister()ed on
3845 * driver detach. See clk_register() for more information.
3846 */
3847struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
3848{
3849        struct clk *clk;
3850        struct clk **clkp;
3851
3852        clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
3853        if (!clkp)
3854                return ERR_PTR(-ENOMEM);
3855
3856        clk = clk_register(dev, hw);
3857        if (!IS_ERR(clk)) {
3858                *clkp = clk;
3859                devres_add(dev, clkp);
3860        } else {
3861                devres_free(clkp);
3862        }
3863
3864        return clk;
3865}
3866EXPORT_SYMBOL_GPL(devm_clk_register);
3867
3868/**
3869 * devm_clk_hw_register - resource managed clk_hw_register()
3870 * @dev: device that is registering this clock
3871 * @hw: link to hardware-specific clock data
3872 *
3873 * Managed clk_hw_register(). Clocks registered by this function are
3874 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
3875 * for more information.
3876 */
3877int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
3878{
3879        struct clk_hw **hwp;
3880        int ret;
3881
3882        hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
3883        if (!hwp)
3884                return -ENOMEM;
3885
3886        ret = clk_hw_register(dev, hw);
3887        if (!ret) {
3888                *hwp = hw;
3889                devres_add(dev, hwp);
3890        } else {
3891                devres_free(hwp);
3892        }
3893
3894        return ret;
3895}
3896EXPORT_SYMBOL_GPL(devm_clk_hw_register);
3897
3898static int devm_clk_match(struct device *dev, void *res, void *data)
3899{
3900        struct clk *c = res;
3901        if (WARN_ON(!c))
3902                return 0;
3903        return c == data;
3904}
3905
3906static int devm_clk_hw_match(struct device *dev, void *res, void *data)
3907{
3908        struct clk_hw *hw = res;
3909
3910        if (WARN_ON(!hw))
3911                return 0;
3912        return hw == data;
3913}
3914
3915/**
3916 * devm_clk_unregister - resource managed clk_unregister()
3917 * @clk: clock to unregister
3918 *
3919 * Deallocate a clock allocated with devm_clk_register(). Normally
3920 * this function will not need to be called and the resource management
3921 * code will ensure that the resource is freed.
3922 */
3923void devm_clk_unregister(struct device *dev, struct clk *clk)
3924{
3925        WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
3926}
3927EXPORT_SYMBOL_GPL(devm_clk_unregister);
3928
3929/**
3930 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
3931 * @dev: device that is unregistering the hardware-specific clock data
3932 * @hw: link to hardware-specific clock data
3933 *
3934 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
3935 * this function will not need to be called and the resource management
3936 * code will ensure that the resource is freed.
3937 */
3938void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
3939{
3940        WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
3941                                hw));
3942}
3943EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
3944
3945/*
3946 * clkdev helpers
3947 */
3948
3949void __clk_put(struct clk *clk)
3950{
3951        struct module *owner;
3952
3953        if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3954                return;
3955
3956        clk_prepare_lock();
3957
3958        /*
3959         * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
3960         * given user should be balanced with calls to clk_rate_exclusive_put()
3961         * and by that same consumer
3962         */
3963        if (WARN_ON(clk->exclusive_count)) {
3964                /* We voiced our concern, let's sanitize the situation */
3965                clk->core->protect_count -= (clk->exclusive_count - 1);
3966                clk_core_rate_unprotect(clk->core);
3967                clk->exclusive_count = 0;
3968        }
3969
3970        hlist_del(&clk->clks_node);
3971        if (clk->min_rate > clk->core->req_rate ||
3972            clk->max_rate < clk->core->req_rate)
3973                clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
3974
3975        owner = clk->core->owner;
3976        kref_put(&clk->core->ref, __clk_release);
3977
3978        clk_prepare_unlock();
3979
3980        module_put(owner);
3981
3982        free_clk(clk);
3983}
3984
3985/***        clk rate change notifiers        ***/
3986
3987/**
3988 * clk_notifier_register - add a clk rate change notifier
3989 * @clk: struct clk * to watch
3990 * @nb: struct notifier_block * with callback info
3991 *
3992 * Request notification when clk's rate changes.  This uses an SRCU
3993 * notifier because we want it to block and notifier unregistrations are
3994 * uncommon.  The callbacks associated with the notifier must not
3995 * re-enter into the clk framework by calling any top-level clk APIs;
3996 * this will cause a nested prepare_lock mutex.
3997 *
3998 * In all notification cases (pre, post and abort rate change) the original
3999 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4000 * and the new frequency is passed via struct clk_notifier_data.new_rate.
4001 *
4002 * clk_notifier_register() must be called from non-atomic context.
4003 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4004 * allocation failure; otherwise, passes along the return value of
4005 * srcu_notifier_chain_register().
4006 */
4007int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4008{
4009        struct clk_notifier *cn;
4010        int ret = -ENOMEM;
4011
4012        if (!clk || !nb)
4013                return -EINVAL;
4014
4015        clk_prepare_lock();
4016
4017        /* search the list of notifiers for this clk */
4018        list_for_each_entry(cn, &clk_notifier_list, node)
4019                if (cn->clk == clk)
4020                        break;
4021
4022        /* if clk wasn't in the notifier list, allocate new clk_notifier */
4023        if (cn->clk != clk) {
4024                cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4025                if (!cn)
4026                        goto out;
4027
4028                cn->clk = clk;
4029                srcu_init_notifier_head(&cn->notifier_head);
4030
4031                list_add(&cn->node, &clk_notifier_list);
4032        }
4033
4034        ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4035
4036        clk->core->notifier_count++;
4037
4038out:
4039        clk_prepare_unlock();
4040
4041        return ret;
4042}
4043EXPORT_SYMBOL_GPL(clk_notifier_register);
4044
4045/**
4046 * clk_notifier_unregister - remove a clk rate change notifier
4047 * @clk: struct clk *
4048 * @nb: struct notifier_block * with callback info
4049 *
4050 * Request no further notification for changes to 'clk' and frees memory
4051 * allocated in clk_notifier_register.
4052 *
4053 * Returns -EINVAL if called with null arguments; otherwise, passes
4054 * along the return value of srcu_notifier_chain_unregister().
4055 */
4056int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4057{
4058        struct clk_notifier *cn = NULL;
4059        int ret = -EINVAL;
4060
4061        if (!clk || !nb)
4062                return -EINVAL;
4063
4064        clk_prepare_lock();
4065
4066        list_for_each_entry(cn, &clk_notifier_list, node)
4067                if (cn->clk == clk)
4068                        break;
4069
4070        if (cn->clk == clk) {
4071                ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4072
4073                clk->core->notifier_count--;
4074
4075                /* XXX the notifier code should handle this better */
4076                if (!cn->notifier_head.head) {
4077                        srcu_cleanup_notifier_head(&cn->notifier_head);
4078                        list_del(&cn->node);
4079                        kfree(cn);
4080                }
4081
4082        } else {
4083                ret = -ENOENT;
4084        }
4085
4086        clk_prepare_unlock();
4087
4088        return ret;
4089}
4090EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4091
4092#ifdef CONFIG_OF
4093/**
4094 * struct of_clk_provider - Clock provider registration structure
4095 * @link: Entry in global list of clock providers
4096 * @node: Pointer to device tree node of clock provider
4097 * @get: Get clock callback.  Returns NULL or a struct clk for the
4098 *       given clock specifier
4099 * @data: context pointer to be passed into @get callback
4100 */
4101struct of_clk_provider {
4102        struct list_head link;
4103
4104        struct device_node *node;
4105        struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4106        struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4107        void *data;
4108};
4109
4110extern struct of_device_id __clk_of_table;
4111static const struct of_device_id __clk_of_table_sentinel
4112        __used __section(__clk_of_table_end);
4113
4114static LIST_HEAD(of_clk_providers);
4115static DEFINE_MUTEX(of_clk_mutex);
4116
4117struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4118                                     void *data)
4119{
4120        return data;
4121}
4122EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4123
4124struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4125{
4126        return data;
4127}
4128EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4129
4130struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4131{
4132        struct clk_onecell_data *clk_data = data;
4133        unsigned int idx = clkspec->args[0];
4134
4135        if (idx >= clk_data->clk_num) {
4136                pr_err("%s: invalid clock index %u\n", __func__, idx);
4137                return ERR_PTR(-EINVAL);
4138        }
4139
4140        return clk_data->clks[idx];
4141}
4142EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4143
4144struct clk_hw *
4145of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4146{
4147        struct clk_hw_onecell_data *hw_data = data;
4148        unsigned int idx = clkspec->args[0];
4149
4150        if (idx >= hw_data->num) {
4151                pr_err("%s: invalid index %u\n", __func__, idx);
4152                return ERR_PTR(-EINVAL);
4153        }
4154
4155        return hw_data->hws[idx];
4156}
4157EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4158
4159/**
4160 * of_clk_add_provider() - Register a clock provider for a node
4161 * @np: Device node pointer associated with clock provider
4162 * @clk_src_get: callback for decoding clock
4163 * @data: context pointer for @clk_src_get callback.
4164 *
4165 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4166 */
4167int of_clk_add_provider(struct device_node *np,
4168                        struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4169                                                   void *data),
4170                        void *data)
4171{
4172        struct of_clk_provider *cp;
4173        int ret;
4174
4175        cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4176        if (!cp)
4177                return -ENOMEM;
4178
4179        cp->node = of_node_get(np);
4180        cp->data = data;
4181        cp->get = clk_src_get;
4182
4183        mutex_lock(&of_clk_mutex);
4184        list_add(&cp->link, &of_clk_providers);
4185        mutex_unlock(&of_clk_mutex);
4186        pr_debug("Added clock from %pOF\n", np);
4187
4188        ret = of_clk_set_defaults(np, true);
4189        if (ret < 0)
4190                of_clk_del_provider(np);
4191
4192        return ret;
4193}
4194EXPORT_SYMBOL_GPL(of_clk_add_provider);
4195
4196/**
4197 * of_clk_add_hw_provider() - Register a clock provider for a node
4198 * @np: Device node pointer associated with clock provider
4199 * @get: callback for decoding clk_hw
4200 * @data: context pointer for @get callback.
4201 */
4202int of_clk_add_hw_provider(struct device_node *np,
4203                           struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4204                                                 void *data),
4205                           void *data)
4206{
4207        struct of_clk_provider *cp;
4208        int ret;
4209
4210        cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4211        if (!cp)
4212                return -ENOMEM;
4213
4214        cp->node = of_node_get(np);
4215        cp->data = data;
4216        cp->get_hw = get;
4217
4218        mutex_lock(&of_clk_mutex);
4219        list_add(&cp->link, &of_clk_providers);
4220        mutex_unlock(&of_clk_mutex);
4221        pr_debug("Added clk_hw provider from %pOF\n", np);
4222
4223        ret = of_clk_set_defaults(np, true);
4224        if (ret < 0)
4225                of_clk_del_provider(np);
4226
4227        return ret;
4228}
4229EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4230
4231static void devm_of_clk_release_provider(struct device *dev, void *res)
4232{
4233        of_clk_del_provider(*(struct device_node **)res);
4234}
4235
4236/*
4237 * We allow a child device to use its parent device as the clock provider node
4238 * for cases like MFD sub-devices where the child device driver wants to use
4239 * devm_*() APIs but not list the device in DT as a sub-node.
4240 */
4241static struct device_node *get_clk_provider_node(struct device *dev)
4242{
4243        struct device_node *np, *parent_np;
4244
4245        np = dev->of_node;
4246        parent_np = dev->parent ? dev->parent->of_node : NULL;
4247
4248        if (!of_find_property(np, "#clock-cells", NULL))
4249                if (of_find_property(parent_np, "#clock-cells", NULL))
4250                        np = parent_np;
4251
4252        return np;
4253}
4254
4255/**
4256 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4257 * @dev: Device acting as the clock provider (used for DT node and lifetime)
4258 * @get: callback for decoding clk_hw
4259 * @data: context pointer for @get callback
4260 *
4261 * Registers clock provider for given device's node. If the device has no DT
4262 * node or if the device node lacks of clock provider information (#clock-cells)
4263 * then the parent device's node is scanned for this information. If parent node
4264 * has the #clock-cells then it is used in registration. Provider is
4265 * automatically released at device exit.
4266 *
4267 * Return: 0 on success or an errno on failure.
4268 */
4269int devm_of_clk_add_hw_provider(struct device *dev,
4270                        struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4271                                              void *data),
4272                        void *data)
4273{
4274        struct device_node **ptr, *np;
4275        int ret;
4276
4277        ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4278                           GFP_KERNEL);
4279        if (!ptr)
4280                return -ENOMEM;
4281
4282        np = get_clk_provider_node(dev);
4283        ret = of_clk_add_hw_provider(np, get, data);
4284        if (!ret) {
4285                *ptr = np;
4286                devres_add(dev, ptr);
4287        } else {
4288                devres_free(ptr);
4289        }
4290
4291        return ret;
4292}
4293EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4294
4295/**
4296 * of_clk_del_provider() - Remove a previously registered clock provider
4297 * @np: Device node pointer associated with clock provider
4298 */
4299void of_clk_del_provider(struct device_node *np)
4300{
4301        struct of_clk_provider *cp;
4302
4303        mutex_lock(&of_clk_mutex);
4304        list_for_each_entry(cp, &of_clk_providers, link) {
4305                if (cp->node == np) {
4306                        list_del(&cp->link);
4307                        of_node_put(cp->node);
4308                        kfree(cp);
4309                        break;
4310                }
4311        }
4312        mutex_unlock(&of_clk_mutex);
4313}
4314EXPORT_SYMBOL_GPL(of_clk_del_provider);
4315
4316static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4317{
4318        struct device_node **np = res;
4319
4320        if (WARN_ON(!np || !*np))
4321                return 0;
4322
4323        return *np == data;
4324}
4325
4326/**
4327 * devm_of_clk_del_provider() - Remove clock provider registered using devm
4328 * @dev: Device to whose lifetime the clock provider was bound
4329 */
4330void devm_of_clk_del_provider(struct device *dev)
4331{
4332        int ret;
4333        struct device_node *np = get_clk_provider_node(dev);
4334
4335        ret = devres_release(dev, devm_of_clk_release_provider,
4336                             devm_clk_provider_match, np);
4337
4338        WARN_ON(ret);
4339}
4340EXPORT_SYMBOL(devm_of_clk_del_provider);
4341
4342/*
4343 * Beware the return values when np is valid, but no clock provider is found.
4344 * If name == NULL, the function returns -ENOENT.
4345 * If name != NULL, the function returns -EINVAL. This is because
4346 * of_parse_phandle_with_args() is called even if of_property_match_string()
4347 * returns an error.
4348 */
4349static int of_parse_clkspec(const struct device_node *np, int index,
4350                            const char *name, struct of_phandle_args *out_args)
4351{
4352        int ret = -ENOENT;
4353
4354        /* Walk up the tree of devices looking for a clock property that matches */
4355        while (np) {
4356                /*
4357                 * For named clocks, first look up the name in the
4358                 * "clock-names" property.  If it cannot be found, then index
4359                 * will be an error code and of_parse_phandle_with_args() will
4360                 * return -EINVAL.
4361                 */
4362                if (name)
4363                        index = of_property_match_string(np, "clock-names", name);
4364                ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4365                                                 index, out_args);
4366                if (!ret)
4367                        break;
4368                if (name && index >= 0)
4369                        break;
4370
4371                /*
4372                 * No matching clock found on this node.  If the parent node
4373                 * has a "clock-ranges" property, then we can try one of its
4374                 * clocks.
4375                 */
4376                np = np->parent;
4377                if (np && !of_get_property(np, "clock-ranges", NULL))
4378                        break;
4379                index = 0;
4380        }
4381
4382        return ret;
4383}
4384
4385static struct clk_hw *
4386__of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4387                              struct of_phandle_args *clkspec)
4388{
4389        struct clk *clk;
4390
4391        if (provider->get_hw)
4392                return provider->get_hw(clkspec, provider->data);
4393
4394        clk = provider->get(clkspec, provider->data);
4395        if (IS_ERR(clk))
4396                return ERR_CAST(clk);
4397        return __clk_get_hw(clk);
4398}
4399
4400static struct clk_hw *
4401of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4402{
4403        struct of_clk_provider *provider;
4404        struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4405
4406        if (!clkspec)
4407                return ERR_PTR(-EINVAL);
4408
4409        mutex_lock(&of_clk_mutex);
4410        list_for_each_entry(provider, &of_clk_providers, link) {
4411                if (provider->node == clkspec->np) {
4412                        hw = __of_clk_get_hw_from_provider(provider, clkspec);
4413                        if (!IS_ERR(hw))
4414                                break;
4415                }
4416        }
4417        mutex_unlock(&of_clk_mutex);
4418
4419        return hw;
4420}
4421
4422/**
4423 * of_clk_get_from_provider() - Lookup a clock from a clock provider
4424 * @clkspec: pointer to a clock specifier data structure
4425 *
4426 * This function looks up a struct clk from the registered list of clock
4427 * providers, an input is a clock specifier data structure as returned
4428 * from the of_parse_phandle_with_args() function call.
4429 */
4430struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4431{
4432        struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4433
4434        return clk_hw_create_clk(NULL, hw, NULL, __func__);
4435}
4436EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4437
4438struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4439                             const char *con_id)
4440{
4441        int ret;
4442        struct clk_hw *hw;
4443        struct of_phandle_args clkspec;
4444
4445        ret = of_parse_clkspec(np, index, con_id, &clkspec);
4446        if (ret)
4447                return ERR_PTR(ret);
4448
4449        hw = of_clk_get_hw_from_clkspec(&clkspec);
4450        of_node_put(clkspec.np);
4451
4452        return hw;
4453}
4454
4455static struct clk *__of_clk_get(struct device_node *np,
4456                                int index, const char *dev_id,
4457                                const char *con_id)
4458{
4459        struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4460
4461        return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4462}
4463
4464struct clk *of_clk_get(struct device_node *np, int index)
4465{
4466        return __of_clk_get(np, index, np->full_name, NULL);
4467}
4468EXPORT_SYMBOL(of_clk_get);
4469
4470/**
4471 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4472 * @np: pointer to clock consumer node
4473 * @name: name of consumer's clock input, or NULL for the first clock reference
4474 *
4475 * This function parses the clocks and clock-names properties,
4476 * and uses them to look up the struct clk from the registered list of clock
4477 * providers.
4478 */
4479struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4480{
4481        if (!np)
4482                return ERR_PTR(-ENOENT);
4483
4484        return __of_clk_get(np, 0, np->full_name, name);
4485}
4486EXPORT_SYMBOL(of_clk_get_by_name);
4487
4488/**
4489 * of_clk_get_parent_count() - Count the number of clocks a device node has
4490 * @np: device node to count
4491 *
4492 * Returns: The number of clocks that are possible parents of this node
4493 */
4494unsigned int of_clk_get_parent_count(struct device_node *np)
4495{
4496        int count;
4497
4498        count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4499        if (count < 0)
4500                return 0;
4501
4502        return count;
4503}
4504EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4505
4506const char *of_clk_get_parent_name(struct device_node *np, int index)
4507{
4508        struct of_phandle_args clkspec;
4509        struct property *prop;
4510        const char *clk_name;
4511        const __be32 *vp;
4512        u32 pv;
4513        int rc;
4514        int count;
4515        struct clk *clk;
4516
4517        rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4518                                        &clkspec);
4519        if (rc)
4520                return NULL;
4521
4522        index = clkspec.args_count ? clkspec.args[0] : 0;
4523        count = 0;
4524
4525        /* if there is an indices property, use it to transfer the index
4526         * specified into an array offset for the clock-output-names property.
4527         */
4528        of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4529                if (index == pv) {
4530                        index = count;
4531                        break;
4532                }
4533                count++;
4534        }
4535        /* We went off the end of 'clock-indices' without finding it */
4536        if (prop && !vp)
4537                return NULL;
4538
4539        if (of_property_read_string_index(clkspec.np, "clock-output-names",
4540                                          index,
4541                                          &clk_name) < 0) {
4542                /*
4543                 * Best effort to get the name if the clock has been
4544                 * registered with the framework. If the clock isn't
4545                 * registered, we return the node name as the name of
4546                 * the clock as long as #clock-cells = 0.
4547                 */
4548                clk = of_clk_get_from_provider(&clkspec);
4549                if (IS_ERR(clk)) {
4550                        if (clkspec.args_count == 0)
4551                                clk_name = clkspec.np->name;
4552                        else
4553                                clk_name = NULL;
4554                } else {
4555                        clk_name = __clk_get_name(clk);
4556                        clk_put(clk);
4557                }
4558        }
4559
4560
4561        of_node_put(clkspec.np);
4562        return clk_name;
4563}
4564EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
4565
4566/**
4567 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
4568 * number of parents
4569 * @np: Device node pointer associated with clock provider
4570 * @parents: pointer to char array that hold the parents' names
4571 * @size: size of the @parents array
4572 *
4573 * Return: number of parents for the clock node.
4574 */
4575int of_clk_parent_fill(struct device_node *np, const char **parents,
4576                       unsigned int size)
4577{
4578        unsigned int i = 0;
4579
4580        while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
4581                i++;
4582
4583        return i;
4584}
4585EXPORT_SYMBOL_GPL(of_clk_parent_fill);
4586
4587struct clock_provider {
4588        void (*clk_init_cb)(struct device_node *);
4589        struct device_node *np;
4590        struct list_head node;
4591};
4592
4593/*
4594 * This function looks for a parent clock. If there is one, then it
4595 * checks that the provider for this parent clock was initialized, in
4596 * this case the parent clock will be ready.
4597 */
4598static int parent_ready(struct device_node *np)
4599{
4600        int i = 0;
4601
4602        while (true) {
4603                struct clk *clk = of_clk_get(np, i);
4604
4605                /* this parent is ready we can check the next one */
4606                if (!IS_ERR(clk)) {
4607                        clk_put(clk);
4608                        i++;
4609                        continue;
4610                }
4611
4612                /* at least one parent is not ready, we exit now */
4613                if (PTR_ERR(clk) == -EPROBE_DEFER)
4614                        return 0;
4615
4616                /*
4617                 * Here we make assumption that the device tree is
4618                 * written correctly. So an error means that there is
4619                 * no more parent. As we didn't exit yet, then the
4620                 * previous parent are ready. If there is no clock
4621                 * parent, no need to wait for them, then we can
4622                 * consider their absence as being ready
4623                 */
4624                return 1;
4625        }
4626}
4627
4628/**
4629 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
4630 * @np: Device node pointer associated with clock provider
4631 * @index: clock index
4632 * @flags: pointer to top-level framework flags
4633 *
4634 * Detects if the clock-critical property exists and, if so, sets the
4635 * corresponding CLK_IS_CRITICAL flag.
4636 *
4637 * Do not use this function. It exists only for legacy Device Tree
4638 * bindings, such as the one-clock-per-node style that are outdated.
4639 * Those bindings typically put all clock data into .dts and the Linux
4640 * driver has no clock data, thus making it impossible to set this flag
4641 * correctly from the driver. Only those drivers may call
4642 * of_clk_detect_critical from their setup functions.
4643 *
4644 * Return: error code or zero on success
4645 */
4646int of_clk_detect_critical(struct device_node *np,
4647                                          int index, unsigned long *flags)
4648{
4649        struct property *prop;
4650        const __be32 *cur;
4651        uint32_t idx;
4652
4653        if (!np || !flags)
4654                return -EINVAL;
4655
4656        of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
4657                if (index == idx)
4658                        *flags |= CLK_IS_CRITICAL;
4659
4660        return 0;
4661}
4662
4663/**
4664 * of_clk_init() - Scan and init clock providers from the DT
4665 * @matches: array of compatible values and init functions for providers.
4666 *
4667 * This function scans the device tree for matching clock providers
4668 * and calls their initialization functions. It also does it by trying
4669 * to follow the dependencies.
4670 */
4671void __init of_clk_init(const struct of_device_id *matches)
4672{
4673        const struct of_device_id *match;
4674        struct device_node *np;
4675        struct clock_provider *clk_provider, *next;
4676        bool is_init_done;
4677        bool force = false;
4678        LIST_HEAD(clk_provider_list);
4679
4680        if (!matches)
4681                matches = &__clk_of_table;
4682
4683        /* First prepare the list of the clocks providers */
4684        for_each_matching_node_and_match(np, matches, &match) {
4685                struct clock_provider *parent;
4686
4687                if (!of_device_is_available(np))
4688                        continue;
4689
4690                parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4691                if (!parent) {
4692                        list_for_each_entry_safe(clk_provider, next,
4693                                                 &clk_provider_list, node) {
4694                                list_del(&clk_provider->node);
4695                                of_node_put(clk_provider->np);
4696                                kfree(clk_provider);
4697                        }
4698                        of_node_put(np);
4699                        return;
4700                }
4701
4702                parent->clk_init_cb = match->data;
4703                parent->np = of_node_get(np);
4704                list_add_tail(&parent->node, &clk_provider_list);
4705        }
4706
4707        while (!list_empty(&clk_provider_list)) {
4708                is_init_done = false;
4709                list_for_each_entry_safe(clk_provider, next,
4710                                        &clk_provider_list, node) {
4711                        if (force || parent_ready(clk_provider->np)) {
4712
4713                                /* Don't populate platform devices */
4714                                of_node_set_flag(clk_provider->np,
4715                                                 OF_POPULATED);
4716
4717                                clk_provider->clk_init_cb(clk_provider->np);
4718                                of_clk_set_defaults(clk_provider->np, true);
4719
4720                                list_del(&clk_provider->node);
4721                                of_node_put(clk_provider->np);
4722                                kfree(clk_provider);
4723                                is_init_done = true;
4724                        }
4725                }
4726
4727                /*
4728                 * We didn't manage to initialize any of the
4729                 * remaining providers during the last loop, so now we
4730                 * initialize all the remaining ones unconditionally
4731                 * in case the clock parent was not mandatory
4732                 */
4733                if (!is_init_done)
4734                        force = true;
4735        }
4736}
4737#endif
4738