linux/drivers/clk/ti/fapll.c
<<
>>
Prefs
   1/*
   2 * This program is free software; you can redistribute it and/or
   3 * modify it under the terms of the GNU General Public License as
   4 * published by the Free Software Foundation version 2.
   5 *
   6 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
   7 * kind, whether express or implied; without even the implied warranty
   8 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
   9 * GNU General Public License for more details.
  10 */
  11
  12#include <linux/clk.h>
  13#include <linux/clk-provider.h>
  14#include <linux/delay.h>
  15#include <linux/err.h>
  16#include <linux/io.h>
  17#include <linux/math64.h>
  18#include <linux/of.h>
  19#include <linux/of_address.h>
  20#include <linux/clk/ti.h>
  21
  22/* FAPLL Control Register PLL_CTRL */
  23#define FAPLL_MAIN_MULT_N_SHIFT 16
  24#define FAPLL_MAIN_DIV_P_SHIFT  8
  25#define FAPLL_MAIN_LOCK         BIT(7)
  26#define FAPLL_MAIN_PLLEN        BIT(3)
  27#define FAPLL_MAIN_BP           BIT(2)
  28#define FAPLL_MAIN_LOC_CTL      BIT(0)
  29
  30#define FAPLL_MAIN_MAX_MULT_N   0xffff
  31#define FAPLL_MAIN_MAX_DIV_P    0xff
  32#define FAPLL_MAIN_CLEAR_MASK   \
  33        ((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \
  34         (FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \
  35         FAPLL_MAIN_LOC_CTL)
  36
  37/* FAPLL powerdown register PWD */
  38#define FAPLL_PWD_OFFSET        4
  39
  40#define MAX_FAPLL_OUTPUTS       7
  41#define FAPLL_MAX_RETRIES       1000
  42
  43#define to_fapll(_hw)           container_of(_hw, struct fapll_data, hw)
  44#define to_synth(_hw)           container_of(_hw, struct fapll_synth, hw)
  45
  46/* The bypass bit is inverted on the ddr_pll.. */
  47#define fapll_is_ddr_pll(va)    (((u32)(va) & 0xffff) == 0x0440)
  48
  49/*
  50 * The audio_pll_clk1 input is hard wired to the 27MHz bypass clock,
  51 * and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output.
  52 */
  53#define is_ddr_pll_clk1(va)     (((u32)(va) & 0xffff) == 0x044c)
  54#define is_audio_pll_clk1(va)   (((u32)(va) & 0xffff) == 0x04a8)
  55
  56/* Synthesizer divider register */
  57#define SYNTH_LDMDIV1           BIT(8)
  58
  59/* Synthesizer frequency register */
  60#define SYNTH_LDFREQ            BIT(31)
  61
  62#define SYNTH_PHASE_K           8
  63#define SYNTH_MAX_INT_DIV       0xf
  64#define SYNTH_MAX_DIV_M         0xff
  65
  66struct fapll_data {
  67        struct clk_hw hw;
  68        void __iomem *base;
  69        const char *name;
  70        struct clk *clk_ref;
  71        struct clk *clk_bypass;
  72        struct clk_onecell_data outputs;
  73        bool bypass_bit_inverted;
  74};
  75
  76struct fapll_synth {
  77        struct clk_hw hw;
  78        struct fapll_data *fd;
  79        int index;
  80        void __iomem *freq;
  81        void __iomem *div;
  82        const char *name;
  83        struct clk *clk_pll;
  84};
  85
  86static bool ti_fapll_clock_is_bypass(struct fapll_data *fd)
  87{
  88        u32 v = readl_relaxed(fd->base);
  89
  90        if (fd->bypass_bit_inverted)
  91                return !(v & FAPLL_MAIN_BP);
  92        else
  93                return !!(v & FAPLL_MAIN_BP);
  94}
  95
  96static void ti_fapll_set_bypass(struct fapll_data *fd)
  97{
  98        u32 v = readl_relaxed(fd->base);
  99
 100        if (fd->bypass_bit_inverted)
 101                v &= ~FAPLL_MAIN_BP;
 102        else
 103                v |= FAPLL_MAIN_BP;
 104        writel_relaxed(v, fd->base);
 105}
 106
 107static void ti_fapll_clear_bypass(struct fapll_data *fd)
 108{
 109        u32 v = readl_relaxed(fd->base);
 110
 111        if (fd->bypass_bit_inverted)
 112                v |= FAPLL_MAIN_BP;
 113        else
 114                v &= ~FAPLL_MAIN_BP;
 115        writel_relaxed(v, fd->base);
 116}
 117
 118static int ti_fapll_wait_lock(struct fapll_data *fd)
 119{
 120        int retries = FAPLL_MAX_RETRIES;
 121        u32 v;
 122
 123        while ((v = readl_relaxed(fd->base))) {
 124                if (v & FAPLL_MAIN_LOCK)
 125                        return 0;
 126
 127                if (retries-- <= 0)
 128                        break;
 129
 130                udelay(1);
 131        }
 132
 133        pr_err("%s failed to lock\n", fd->name);
 134
 135        return -ETIMEDOUT;
 136}
 137
 138static int ti_fapll_enable(struct clk_hw *hw)
 139{
 140        struct fapll_data *fd = to_fapll(hw);
 141        u32 v = readl_relaxed(fd->base);
 142
 143        v |= FAPLL_MAIN_PLLEN;
 144        writel_relaxed(v, fd->base);
 145        ti_fapll_wait_lock(fd);
 146
 147        return 0;
 148}
 149
 150static void ti_fapll_disable(struct clk_hw *hw)
 151{
 152        struct fapll_data *fd = to_fapll(hw);
 153        u32 v = readl_relaxed(fd->base);
 154
 155        v &= ~FAPLL_MAIN_PLLEN;
 156        writel_relaxed(v, fd->base);
 157}
 158
 159static int ti_fapll_is_enabled(struct clk_hw *hw)
 160{
 161        struct fapll_data *fd = to_fapll(hw);
 162        u32 v = readl_relaxed(fd->base);
 163
 164        return v & FAPLL_MAIN_PLLEN;
 165}
 166
 167static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw,
 168                                          unsigned long parent_rate)
 169{
 170        struct fapll_data *fd = to_fapll(hw);
 171        u32 fapll_n, fapll_p, v;
 172        u64 rate;
 173
 174        if (ti_fapll_clock_is_bypass(fd))
 175                return parent_rate;
 176
 177        rate = parent_rate;
 178
 179        /* PLL pre-divider is P and multiplier is N */
 180        v = readl_relaxed(fd->base);
 181        fapll_p = (v >> 8) & 0xff;
 182        if (fapll_p)
 183                do_div(rate, fapll_p);
 184        fapll_n = v >> 16;
 185        if (fapll_n)
 186                rate *= fapll_n;
 187
 188        return rate;
 189}
 190
 191static u8 ti_fapll_get_parent(struct clk_hw *hw)
 192{
 193        struct fapll_data *fd = to_fapll(hw);
 194
 195        if (ti_fapll_clock_is_bypass(fd))
 196                return 1;
 197
 198        return 0;
 199}
 200
 201static int ti_fapll_set_div_mult(unsigned long rate,
 202                                 unsigned long parent_rate,
 203                                 u32 *pre_div_p, u32 *mult_n)
 204{
 205        /*
 206         * So far no luck getting decent clock with PLL divider,
 207         * PLL does not seem to lock and the signal does not look
 208         * right. It seems the divider can only be used together
 209         * with the multiplier?
 210         */
 211        if (rate < parent_rate) {
 212                pr_warn("FAPLL main divider rates unsupported\n");
 213                return -EINVAL;
 214        }
 215
 216        *mult_n = rate / parent_rate;
 217        if (*mult_n > FAPLL_MAIN_MAX_MULT_N)
 218                return -EINVAL;
 219        *pre_div_p = 1;
 220
 221        return 0;
 222}
 223
 224static long ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate,
 225                                unsigned long *parent_rate)
 226{
 227        u32 pre_div_p, mult_n;
 228        int error;
 229
 230        if (!rate)
 231                return -EINVAL;
 232
 233        error = ti_fapll_set_div_mult(rate, *parent_rate,
 234                                      &pre_div_p, &mult_n);
 235        if (error)
 236                return error;
 237
 238        rate = *parent_rate / pre_div_p;
 239        rate *= mult_n;
 240
 241        return rate;
 242}
 243
 244static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate,
 245                             unsigned long parent_rate)
 246{
 247        struct fapll_data *fd = to_fapll(hw);
 248        u32 pre_div_p, mult_n, v;
 249        int error;
 250
 251        if (!rate)
 252                return -EINVAL;
 253
 254        error = ti_fapll_set_div_mult(rate, parent_rate,
 255                                      &pre_div_p, &mult_n);
 256        if (error)
 257                return error;
 258
 259        ti_fapll_set_bypass(fd);
 260        v = readl_relaxed(fd->base);
 261        v &= ~FAPLL_MAIN_CLEAR_MASK;
 262        v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT;
 263        v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT;
 264        writel_relaxed(v, fd->base);
 265        if (ti_fapll_is_enabled(hw))
 266                ti_fapll_wait_lock(fd);
 267        ti_fapll_clear_bypass(fd);
 268
 269        return 0;
 270}
 271
 272static const struct clk_ops ti_fapll_ops = {
 273        .enable = ti_fapll_enable,
 274        .disable = ti_fapll_disable,
 275        .is_enabled = ti_fapll_is_enabled,
 276        .recalc_rate = ti_fapll_recalc_rate,
 277        .get_parent = ti_fapll_get_parent,
 278        .round_rate = ti_fapll_round_rate,
 279        .set_rate = ti_fapll_set_rate,
 280};
 281
 282static int ti_fapll_synth_enable(struct clk_hw *hw)
 283{
 284        struct fapll_synth *synth = to_synth(hw);
 285        u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
 286
 287        v &= ~(1 << synth->index);
 288        writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
 289
 290        return 0;
 291}
 292
 293static void ti_fapll_synth_disable(struct clk_hw *hw)
 294{
 295        struct fapll_synth *synth = to_synth(hw);
 296        u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
 297
 298        v |= 1 << synth->index;
 299        writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
 300}
 301
 302static int ti_fapll_synth_is_enabled(struct clk_hw *hw)
 303{
 304        struct fapll_synth *synth = to_synth(hw);
 305        u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
 306
 307        return !(v & (1 << synth->index));
 308}
 309
 310/*
 311 * See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info
 312 */
 313static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw,
 314                                                unsigned long parent_rate)
 315{
 316        struct fapll_synth *synth = to_synth(hw);
 317        u32 synth_div_m;
 318        u64 rate;
 319
 320        /* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */
 321        if (!synth->div)
 322                return 32768;
 323
 324        /*
 325         * PLL in bypass sets the synths in bypass mode too. The PLL rate
 326         * can be also be set to 27MHz, so we can't use parent_rate to
 327         * check for bypass mode.
 328         */
 329        if (ti_fapll_clock_is_bypass(synth->fd))
 330                return parent_rate;
 331
 332        rate = parent_rate;
 333
 334        /*
 335         * Synth frequency integer and fractional divider.
 336         * Note that the phase output K is 8, so the result needs
 337         * to be multiplied by SYNTH_PHASE_K.
 338         */
 339        if (synth->freq) {
 340                u32 v, synth_int_div, synth_frac_div, synth_div_freq;
 341
 342                v = readl_relaxed(synth->freq);
 343                synth_int_div = (v >> 24) & 0xf;
 344                synth_frac_div = v & 0xffffff;
 345                synth_div_freq = (synth_int_div * 10000000) + synth_frac_div;
 346                rate *= 10000000;
 347                do_div(rate, synth_div_freq);
 348                rate *= SYNTH_PHASE_K;
 349        }
 350
 351        /* Synth post-divider M */
 352        synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
 353
 354        return DIV_ROUND_UP_ULL(rate, synth_div_m);
 355}
 356
 357static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw,
 358                                                  unsigned long parent_rate)
 359{
 360        struct fapll_synth *synth = to_synth(hw);
 361        unsigned long current_rate, frac_rate;
 362        u32 post_div_m;
 363
 364        current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate);
 365        post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
 366        frac_rate = current_rate * post_div_m;
 367
 368        return frac_rate;
 369}
 370
 371static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth,
 372                                        unsigned long rate,
 373                                        unsigned long parent_rate)
 374{
 375        u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v;
 376
 377        post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate);
 378        post_div_m = post_div_m / SYNTH_MAX_INT_DIV;
 379        if (post_div_m > SYNTH_MAX_DIV_M)
 380                return -EINVAL;
 381        if (!post_div_m)
 382                post_div_m = 1;
 383
 384        for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) {
 385                synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate *
 386                                                 SYNTH_PHASE_K *
 387                                                 10000000,
 388                                                 rate * post_div_m);
 389                synth_frac_div = synth_int_div % 10000000;
 390                synth_int_div /= 10000000;
 391
 392                if (synth_int_div <= SYNTH_MAX_INT_DIV)
 393                        break;
 394        }
 395
 396        if (synth_int_div > SYNTH_MAX_INT_DIV)
 397                return -EINVAL;
 398
 399        v = readl_relaxed(synth->freq);
 400        v &= ~0x1fffffff;
 401        v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24;
 402        v |= (synth_frac_div & 0xffffff);
 403        v |= SYNTH_LDFREQ;
 404        writel_relaxed(v, synth->freq);
 405
 406        return post_div_m;
 407}
 408
 409static long ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate,
 410                                      unsigned long *parent_rate)
 411{
 412        struct fapll_synth *synth = to_synth(hw);
 413        struct fapll_data *fd = synth->fd;
 414        unsigned long r;
 415
 416        if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
 417                return -EINVAL;
 418
 419        /* Only post divider m available with no fractional divider? */
 420        if (!synth->freq) {
 421                unsigned long frac_rate;
 422                u32 synth_post_div_m;
 423
 424                frac_rate = ti_fapll_synth_get_frac_rate(hw, *parent_rate);
 425                synth_post_div_m = DIV_ROUND_UP(frac_rate, rate);
 426                r = DIV_ROUND_UP(frac_rate, synth_post_div_m);
 427                goto out;
 428        }
 429
 430        r = *parent_rate * SYNTH_PHASE_K;
 431        if (rate > r)
 432                goto out;
 433
 434        r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M);
 435        if (rate < r)
 436                goto out;
 437
 438        r = rate;
 439out:
 440        return r;
 441}
 442
 443static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate,
 444                                   unsigned long parent_rate)
 445{
 446        struct fapll_synth *synth = to_synth(hw);
 447        struct fapll_data *fd = synth->fd;
 448        unsigned long frac_rate, post_rate = 0;
 449        u32 post_div_m = 0, v;
 450
 451        if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
 452                return -EINVAL;
 453
 454        /* Produce the rate with just post divider M? */
 455        frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate);
 456        if (frac_rate < rate) {
 457                if (!synth->freq)
 458                        return -EINVAL;
 459        } else {
 460                post_div_m = DIV_ROUND_UP(frac_rate, rate);
 461                if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M))
 462                        post_rate = DIV_ROUND_UP(frac_rate, post_div_m);
 463                if (!synth->freq && !post_rate)
 464                        return -EINVAL;
 465        }
 466
 467        /* Need to recalculate the fractional divider? */
 468        if ((post_rate != rate) && synth->freq)
 469                post_div_m = ti_fapll_synth_set_frac_rate(synth,
 470                                                          rate,
 471                                                          parent_rate);
 472
 473        v = readl_relaxed(synth->div);
 474        v &= ~SYNTH_MAX_DIV_M;
 475        v |= post_div_m;
 476        v |= SYNTH_LDMDIV1;
 477        writel_relaxed(v, synth->div);
 478
 479        return 0;
 480}
 481
 482static const struct clk_ops ti_fapll_synt_ops = {
 483        .enable = ti_fapll_synth_enable,
 484        .disable = ti_fapll_synth_disable,
 485        .is_enabled = ti_fapll_synth_is_enabled,
 486        .recalc_rate = ti_fapll_synth_recalc_rate,
 487        .round_rate = ti_fapll_synth_round_rate,
 488        .set_rate = ti_fapll_synth_set_rate,
 489};
 490
 491static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd,
 492                                                void __iomem *freq,
 493                                                void __iomem *div,
 494                                                int index,
 495                                                const char *name,
 496                                                const char *parent,
 497                                                struct clk *pll_clk)
 498{
 499        struct clk_init_data *init;
 500        struct fapll_synth *synth;
 501
 502        init = kzalloc(sizeof(*init), GFP_KERNEL);
 503        if (!init)
 504                return ERR_PTR(-ENOMEM);
 505
 506        init->ops = &ti_fapll_synt_ops;
 507        init->name = name;
 508        init->parent_names = &parent;
 509        init->num_parents = 1;
 510
 511        synth = kzalloc(sizeof(*synth), GFP_KERNEL);
 512        if (!synth)
 513                goto free;
 514
 515        synth->fd = fd;
 516        synth->index = index;
 517        synth->freq = freq;
 518        synth->div = div;
 519        synth->name = name;
 520        synth->hw.init = init;
 521        synth->clk_pll = pll_clk;
 522
 523        return clk_register(NULL, &synth->hw);
 524
 525free:
 526        kfree(synth);
 527        kfree(init);
 528
 529        return ERR_PTR(-ENOMEM);
 530}
 531
 532static void __init ti_fapll_setup(struct device_node *node)
 533{
 534        struct fapll_data *fd;
 535        struct clk_init_data *init = NULL;
 536        const char *parent_name[2];
 537        struct clk *pll_clk;
 538        int i;
 539
 540        fd = kzalloc(sizeof(*fd), GFP_KERNEL);
 541        if (!fd)
 542                return;
 543
 544        fd->outputs.clks = kzalloc(sizeof(struct clk *) *
 545                                   MAX_FAPLL_OUTPUTS + 1,
 546                                   GFP_KERNEL);
 547        if (!fd->outputs.clks)
 548                goto free;
 549
 550        init = kzalloc(sizeof(*init), GFP_KERNEL);
 551        if (!init)
 552                goto free;
 553
 554        init->ops = &ti_fapll_ops;
 555        init->name = node->name;
 556
 557        init->num_parents = of_clk_get_parent_count(node);
 558        if (init->num_parents != 2) {
 559                pr_err("%pOFn must have two parents\n", node);
 560                goto free;
 561        }
 562
 563        of_clk_parent_fill(node, parent_name, 2);
 564        init->parent_names = parent_name;
 565
 566        fd->clk_ref = of_clk_get(node, 0);
 567        if (IS_ERR(fd->clk_ref)) {
 568                pr_err("%pOFn could not get clk_ref\n", node);
 569                goto free;
 570        }
 571
 572        fd->clk_bypass = of_clk_get(node, 1);
 573        if (IS_ERR(fd->clk_bypass)) {
 574                pr_err("%pOFn could not get clk_bypass\n", node);
 575                goto free;
 576        }
 577
 578        fd->base = of_iomap(node, 0);
 579        if (!fd->base) {
 580                pr_err("%pOFn could not get IO base\n", node);
 581                goto free;
 582        }
 583
 584        if (fapll_is_ddr_pll(fd->base))
 585                fd->bypass_bit_inverted = true;
 586
 587        fd->name = node->name;
 588        fd->hw.init = init;
 589
 590        /* Register the parent PLL */
 591        pll_clk = clk_register(NULL, &fd->hw);
 592        if (IS_ERR(pll_clk))
 593                goto unmap;
 594
 595        fd->outputs.clks[0] = pll_clk;
 596        fd->outputs.clk_num++;
 597
 598        /*
 599         * Set up the child synthesizers starting at index 1 as the
 600         * PLL output is at index 0. We need to check the clock-indices
 601         * for numbering in case there are holes in the synth mapping,
 602         * and then probe the synth register to see if it has a FREQ
 603         * register available.
 604         */
 605        for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) {
 606                const char *output_name;
 607                void __iomem *freq, *div;
 608                struct clk *synth_clk;
 609                int output_instance;
 610                u32 v;
 611
 612                if (of_property_read_string_index(node, "clock-output-names",
 613                                                  i, &output_name))
 614                        continue;
 615
 616                if (of_property_read_u32_index(node, "clock-indices", i,
 617                                               &output_instance))
 618                        output_instance = i;
 619
 620                freq = fd->base + (output_instance * 8);
 621                div = freq + 4;
 622
 623                /* Check for hardwired audio_pll_clk1 */
 624                if (is_audio_pll_clk1(freq)) {
 625                        freq = NULL;
 626                        div = NULL;
 627                } else {
 628                        /* Does the synthesizer have a FREQ register? */
 629                        v = readl_relaxed(freq);
 630                        if (!v)
 631                                freq = NULL;
 632                }
 633                synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance,
 634                                                 output_name, node->name,
 635                                                 pll_clk);
 636                if (IS_ERR(synth_clk))
 637                        continue;
 638
 639                fd->outputs.clks[output_instance] = synth_clk;
 640                fd->outputs.clk_num++;
 641
 642                clk_register_clkdev(synth_clk, output_name, NULL);
 643        }
 644
 645        /* Register the child synthesizers as the FAPLL outputs */
 646        of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs);
 647        /* Add clock alias for the outputs */
 648
 649        kfree(init);
 650
 651        return;
 652
 653unmap:
 654        iounmap(fd->base);
 655free:
 656        if (fd->clk_bypass)
 657                clk_put(fd->clk_bypass);
 658        if (fd->clk_ref)
 659                clk_put(fd->clk_ref);
 660        kfree(fd->outputs.clks);
 661        kfree(fd);
 662        kfree(init);
 663}
 664
 665CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup);
 666