linux/drivers/clocksource/jcore-pit.c
<<
>>
Prefs
   1/*
   2 * J-Core SoC PIT/clocksource driver
   3 *
   4 * Copyright (C) 2015-2016 Smart Energy Instruments, Inc.
   5 *
   6 * This file is subject to the terms and conditions of the GNU General Public
   7 * License.  See the file "COPYING" in the main directory of this archive
   8 * for more details.
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/slab.h>
  13#include <linux/interrupt.h>
  14#include <linux/clockchips.h>
  15#include <linux/clocksource.h>
  16#include <linux/sched_clock.h>
  17#include <linux/cpu.h>
  18#include <linux/cpuhotplug.h>
  19#include <linux/of_address.h>
  20#include <linux/of_irq.h>
  21
  22#define PIT_IRQ_SHIFT           12
  23#define PIT_PRIO_SHIFT          20
  24#define PIT_ENABLE_SHIFT        26
  25#define PIT_PRIO_MASK           0xf
  26
  27#define REG_PITEN               0x00
  28#define REG_THROT               0x10
  29#define REG_COUNT               0x14
  30#define REG_BUSPD               0x18
  31#define REG_SECHI               0x20
  32#define REG_SECLO               0x24
  33#define REG_NSEC                0x28
  34
  35struct jcore_pit {
  36        struct clock_event_device       ced;
  37        void __iomem                    *base;
  38        unsigned long                   periodic_delta;
  39        u32                             enable_val;
  40};
  41
  42static void __iomem *jcore_pit_base;
  43static struct jcore_pit __percpu *jcore_pit_percpu;
  44
  45static notrace u64 jcore_sched_clock_read(void)
  46{
  47        u32 seclo, nsec, seclo0;
  48        __iomem void *base = jcore_pit_base;
  49
  50        seclo = readl(base + REG_SECLO);
  51        do {
  52                seclo0 = seclo;
  53                nsec  = readl(base + REG_NSEC);
  54                seclo = readl(base + REG_SECLO);
  55        } while (seclo0 != seclo);
  56
  57        return seclo * NSEC_PER_SEC + nsec;
  58}
  59
  60static u64 jcore_clocksource_read(struct clocksource *cs)
  61{
  62        return jcore_sched_clock_read();
  63}
  64
  65static int jcore_pit_disable(struct jcore_pit *pit)
  66{
  67        writel(0, pit->base + REG_PITEN);
  68        return 0;
  69}
  70
  71static int jcore_pit_set(unsigned long delta, struct jcore_pit *pit)
  72{
  73        jcore_pit_disable(pit);
  74        writel(delta, pit->base + REG_THROT);
  75        writel(pit->enable_val, pit->base + REG_PITEN);
  76        return 0;
  77}
  78
  79static int jcore_pit_set_state_shutdown(struct clock_event_device *ced)
  80{
  81        struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced);
  82
  83        return jcore_pit_disable(pit);
  84}
  85
  86static int jcore_pit_set_state_oneshot(struct clock_event_device *ced)
  87{
  88        struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced);
  89
  90        return jcore_pit_disable(pit);
  91}
  92
  93static int jcore_pit_set_state_periodic(struct clock_event_device *ced)
  94{
  95        struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced);
  96
  97        return jcore_pit_set(pit->periodic_delta, pit);
  98}
  99
 100static int jcore_pit_set_next_event(unsigned long delta,
 101                                    struct clock_event_device *ced)
 102{
 103        struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced);
 104
 105        return jcore_pit_set(delta, pit);
 106}
 107
 108static int jcore_pit_local_init(unsigned cpu)
 109{
 110        struct jcore_pit *pit = this_cpu_ptr(jcore_pit_percpu);
 111        unsigned buspd, freq;
 112
 113        pr_info("Local J-Core PIT init on cpu %u\n", cpu);
 114
 115        buspd = readl(pit->base + REG_BUSPD);
 116        freq = DIV_ROUND_CLOSEST(NSEC_PER_SEC, buspd);
 117        pit->periodic_delta = DIV_ROUND_CLOSEST(NSEC_PER_SEC, HZ * buspd);
 118
 119        clockevents_config_and_register(&pit->ced, freq, 1, ULONG_MAX);
 120
 121        return 0;
 122}
 123
 124static irqreturn_t jcore_timer_interrupt(int irq, void *dev_id)
 125{
 126        struct jcore_pit *pit = this_cpu_ptr(dev_id);
 127
 128        if (clockevent_state_oneshot(&pit->ced))
 129                jcore_pit_disable(pit);
 130
 131        pit->ced.event_handler(&pit->ced);
 132
 133        return IRQ_HANDLED;
 134}
 135
 136static int __init jcore_pit_init(struct device_node *node)
 137{
 138        int err;
 139        unsigned pit_irq, cpu;
 140        unsigned long hwirq;
 141        u32 irqprio, enable_val;
 142
 143        jcore_pit_base = of_iomap(node, 0);
 144        if (!jcore_pit_base) {
 145                pr_err("Error: Cannot map base address for J-Core PIT\n");
 146                return -ENXIO;
 147        }
 148
 149        pit_irq = irq_of_parse_and_map(node, 0);
 150        if (!pit_irq) {
 151                pr_err("Error: J-Core PIT has no IRQ\n");
 152                return -ENXIO;
 153        }
 154
 155        pr_info("Initializing J-Core PIT at %p IRQ %d\n",
 156                jcore_pit_base, pit_irq);
 157
 158        err = clocksource_mmio_init(jcore_pit_base, "jcore_pit_cs",
 159                                    NSEC_PER_SEC, 400, 32,
 160                                    jcore_clocksource_read);
 161        if (err) {
 162                pr_err("Error registering clocksource device: %d\n", err);
 163                return err;
 164        }
 165
 166        sched_clock_register(jcore_sched_clock_read, 32, NSEC_PER_SEC);
 167
 168        jcore_pit_percpu = alloc_percpu(struct jcore_pit);
 169        if (!jcore_pit_percpu) {
 170                pr_err("Failed to allocate memory for clock event device\n");
 171                return -ENOMEM;
 172        }
 173
 174        err = request_irq(pit_irq, jcore_timer_interrupt,
 175                          IRQF_TIMER | IRQF_PERCPU,
 176                          "jcore_pit", jcore_pit_percpu);
 177        if (err) {
 178                pr_err("pit irq request failed: %d\n", err);
 179                free_percpu(jcore_pit_percpu);
 180                return err;
 181        }
 182
 183        /*
 184         * The J-Core PIT is not hard-wired to a particular IRQ, but
 185         * integrated with the interrupt controller such that the IRQ it
 186         * generates is programmable, as follows:
 187         *
 188         * The bit layout of the PIT enable register is:
 189         *
 190         *      .....e..ppppiiiiiiii............
 191         *
 192         * where the .'s indicate unrelated/unused bits, e is enable,
 193         * p is priority, and i is hard irq number.
 194         *
 195         * For the PIT included in AIC1 (obsolete but still in use),
 196         * any hard irq (trap number) can be programmed via the 8
 197         * iiiiiiii bits, and a priority (0-15) is programmable
 198         * separately in the pppp bits.
 199         *
 200         * For the PIT included in AIC2 (current), the programming
 201         * interface is equivalent modulo interrupt mapping. This is
 202         * why a different compatible tag was not used. However only
 203         * traps 64-127 (the ones actually intended to be used for
 204         * interrupts, rather than syscalls/exceptions/etc.) can be
 205         * programmed (the high 2 bits of i are ignored) and the
 206         * priority pppp is <<2'd and or'd onto the irq number. This
 207         * choice seems to have been made on the hardware engineering
 208         * side under an assumption that preserving old AIC1 priority
 209         * mappings was important. Future models will likely ignore
 210         * the pppp field.
 211         */
 212        hwirq = irq_get_irq_data(pit_irq)->hwirq;
 213        irqprio = (hwirq >> 2) & PIT_PRIO_MASK;
 214        enable_val = (1U << PIT_ENABLE_SHIFT)
 215                   | (hwirq << PIT_IRQ_SHIFT)
 216                   | (irqprio << PIT_PRIO_SHIFT);
 217
 218        for_each_present_cpu(cpu) {
 219                struct jcore_pit *pit = per_cpu_ptr(jcore_pit_percpu, cpu);
 220
 221                pit->base = of_iomap(node, cpu);
 222                if (!pit->base) {
 223                        pr_err("Unable to map PIT for cpu %u\n", cpu);
 224                        continue;
 225                }
 226
 227                pit->ced.name = "jcore_pit";
 228                pit->ced.features = CLOCK_EVT_FEAT_PERIODIC
 229                                  | CLOCK_EVT_FEAT_ONESHOT
 230                                  | CLOCK_EVT_FEAT_PERCPU;
 231                pit->ced.cpumask = cpumask_of(cpu);
 232                pit->ced.rating = 400;
 233                pit->ced.irq = pit_irq;
 234                pit->ced.set_state_shutdown = jcore_pit_set_state_shutdown;
 235                pit->ced.set_state_periodic = jcore_pit_set_state_periodic;
 236                pit->ced.set_state_oneshot = jcore_pit_set_state_oneshot;
 237                pit->ced.set_next_event = jcore_pit_set_next_event;
 238
 239                pit->enable_val = enable_val;
 240        }
 241
 242        cpuhp_setup_state(CPUHP_AP_JCORE_TIMER_STARTING,
 243                          "clockevents/jcore:starting",
 244                          jcore_pit_local_init, NULL);
 245
 246        return 0;
 247}
 248
 249TIMER_OF_DECLARE(jcore_pit, "jcore,pit", jcore_pit_init);
 250