linux/drivers/clocksource/sh_cmt.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH Timer Support - CMT
   4 *
   5 *  Copyright (C) 2008 Magnus Damm
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clockchips.h>
  10#include <linux/clocksource.h>
  11#include <linux/delay.h>
  12#include <linux/err.h>
  13#include <linux/init.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/ioport.h>
  17#include <linux/irq.h>
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/of_device.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_domain.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/sh_timer.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27
  28struct sh_cmt_device;
  29
  30/*
  31 * The CMT comes in 5 different identified flavours, depending not only on the
  32 * SoC but also on the particular instance. The following table lists the main
  33 * characteristics of those flavours.
  34 *
  35 *                      16B     32B     32B-F   48B     R-Car Gen2
  36 * -----------------------------------------------------------------------------
  37 * Channels             2       1/4     1       6       2/8
  38 * Control Width        16      16      16      16      32
  39 * Counter Width        16      32      32      32/48   32/48
  40 * Shared Start/Stop    Y       Y       Y       Y       N
  41 *
  42 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
  43 * located in the channel registers block. All other versions have a shared
  44 * start/stop register located in the global space.
  45 *
  46 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  47 * infers the start/stop bit position in the control register and the channel
  48 * registers block address. Some CMT instances have a subset of channels
  49 * available, in which case the index in the documentation doesn't match the
  50 * "real" index as implemented in hardware. This is for instance the case with
  51 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  52 * in the documentation but using start/stop bit 5 and having its registers
  53 * block at 0x60.
  54 *
  55 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  56 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  57 */
  58
  59enum sh_cmt_model {
  60        SH_CMT_16BIT,
  61        SH_CMT_32BIT,
  62        SH_CMT_48BIT,
  63        SH_CMT0_RCAR_GEN2,
  64        SH_CMT1_RCAR_GEN2,
  65};
  66
  67struct sh_cmt_info {
  68        enum sh_cmt_model model;
  69
  70        unsigned int channels_mask;
  71
  72        unsigned long width; /* 16 or 32 bit version of hardware block */
  73        u32 overflow_bit;
  74        u32 clear_bits;
  75
  76        /* callbacks for CMSTR and CMCSR access */
  77        u32 (*read_control)(void __iomem *base, unsigned long offs);
  78        void (*write_control)(void __iomem *base, unsigned long offs,
  79                              u32 value);
  80
  81        /* callbacks for CMCNT and CMCOR access */
  82        u32 (*read_count)(void __iomem *base, unsigned long offs);
  83        void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
  84};
  85
  86struct sh_cmt_channel {
  87        struct sh_cmt_device *cmt;
  88
  89        unsigned int index;     /* Index in the documentation */
  90        unsigned int hwidx;     /* Real hardware index */
  91
  92        void __iomem *iostart;
  93        void __iomem *ioctrl;
  94
  95        unsigned int timer_bit;
  96        unsigned long flags;
  97        u32 match_value;
  98        u32 next_match_value;
  99        u32 max_match_value;
 100        raw_spinlock_t lock;
 101        struct clock_event_device ced;
 102        struct clocksource cs;
 103        u64 total_cycles;
 104        bool cs_enabled;
 105};
 106
 107struct sh_cmt_device {
 108        struct platform_device *pdev;
 109
 110        const struct sh_cmt_info *info;
 111
 112        void __iomem *mapbase;
 113        struct clk *clk;
 114        unsigned long rate;
 115
 116        raw_spinlock_t lock; /* Protect the shared start/stop register */
 117
 118        struct sh_cmt_channel *channels;
 119        unsigned int num_channels;
 120        unsigned int hw_channels;
 121
 122        bool has_clockevent;
 123        bool has_clocksource;
 124};
 125
 126#define SH_CMT16_CMCSR_CMF              (1 << 7)
 127#define SH_CMT16_CMCSR_CMIE             (1 << 6)
 128#define SH_CMT16_CMCSR_CKS8             (0 << 0)
 129#define SH_CMT16_CMCSR_CKS32            (1 << 0)
 130#define SH_CMT16_CMCSR_CKS128           (2 << 0)
 131#define SH_CMT16_CMCSR_CKS512           (3 << 0)
 132#define SH_CMT16_CMCSR_CKS_MASK         (3 << 0)
 133
 134#define SH_CMT32_CMCSR_CMF              (1 << 15)
 135#define SH_CMT32_CMCSR_OVF              (1 << 14)
 136#define SH_CMT32_CMCSR_WRFLG            (1 << 13)
 137#define SH_CMT32_CMCSR_STTF             (1 << 12)
 138#define SH_CMT32_CMCSR_STPF             (1 << 11)
 139#define SH_CMT32_CMCSR_SSIE             (1 << 10)
 140#define SH_CMT32_CMCSR_CMS              (1 << 9)
 141#define SH_CMT32_CMCSR_CMM              (1 << 8)
 142#define SH_CMT32_CMCSR_CMTOUT_IE        (1 << 7)
 143#define SH_CMT32_CMCSR_CMR_NONE         (0 << 4)
 144#define SH_CMT32_CMCSR_CMR_DMA          (1 << 4)
 145#define SH_CMT32_CMCSR_CMR_IRQ          (2 << 4)
 146#define SH_CMT32_CMCSR_CMR_MASK         (3 << 4)
 147#define SH_CMT32_CMCSR_DBGIVD           (1 << 3)
 148#define SH_CMT32_CMCSR_CKS_RCLK8        (4 << 0)
 149#define SH_CMT32_CMCSR_CKS_RCLK32       (5 << 0)
 150#define SH_CMT32_CMCSR_CKS_RCLK128      (6 << 0)
 151#define SH_CMT32_CMCSR_CKS_RCLK1        (7 << 0)
 152#define SH_CMT32_CMCSR_CKS_MASK         (7 << 0)
 153
 154static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
 155{
 156        return ioread16(base + (offs << 1));
 157}
 158
 159static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
 160{
 161        return ioread32(base + (offs << 2));
 162}
 163
 164static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
 165{
 166        iowrite16(value, base + (offs << 1));
 167}
 168
 169static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
 170{
 171        iowrite32(value, base + (offs << 2));
 172}
 173
 174static const struct sh_cmt_info sh_cmt_info[] = {
 175        [SH_CMT_16BIT] = {
 176                .model = SH_CMT_16BIT,
 177                .width = 16,
 178                .overflow_bit = SH_CMT16_CMCSR_CMF,
 179                .clear_bits = ~SH_CMT16_CMCSR_CMF,
 180                .read_control = sh_cmt_read16,
 181                .write_control = sh_cmt_write16,
 182                .read_count = sh_cmt_read16,
 183                .write_count = sh_cmt_write16,
 184        },
 185        [SH_CMT_32BIT] = {
 186                .model = SH_CMT_32BIT,
 187                .width = 32,
 188                .overflow_bit = SH_CMT32_CMCSR_CMF,
 189                .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 190                .read_control = sh_cmt_read16,
 191                .write_control = sh_cmt_write16,
 192                .read_count = sh_cmt_read32,
 193                .write_count = sh_cmt_write32,
 194        },
 195        [SH_CMT_48BIT] = {
 196                .model = SH_CMT_48BIT,
 197                .channels_mask = 0x3f,
 198                .width = 32,
 199                .overflow_bit = SH_CMT32_CMCSR_CMF,
 200                .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 201                .read_control = sh_cmt_read32,
 202                .write_control = sh_cmt_write32,
 203                .read_count = sh_cmt_read32,
 204                .write_count = sh_cmt_write32,
 205        },
 206        [SH_CMT0_RCAR_GEN2] = {
 207                .model = SH_CMT0_RCAR_GEN2,
 208                .channels_mask = 0x60,
 209                .width = 32,
 210                .overflow_bit = SH_CMT32_CMCSR_CMF,
 211                .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 212                .read_control = sh_cmt_read32,
 213                .write_control = sh_cmt_write32,
 214                .read_count = sh_cmt_read32,
 215                .write_count = sh_cmt_write32,
 216        },
 217        [SH_CMT1_RCAR_GEN2] = {
 218                .model = SH_CMT1_RCAR_GEN2,
 219                .channels_mask = 0xff,
 220                .width = 32,
 221                .overflow_bit = SH_CMT32_CMCSR_CMF,
 222                .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 223                .read_control = sh_cmt_read32,
 224                .write_control = sh_cmt_write32,
 225                .read_count = sh_cmt_read32,
 226                .write_count = sh_cmt_write32,
 227        },
 228};
 229
 230#define CMCSR 0 /* channel register */
 231#define CMCNT 1 /* channel register */
 232#define CMCOR 2 /* channel register */
 233
 234static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 235{
 236        if (ch->iostart)
 237                return ch->cmt->info->read_control(ch->iostart, 0);
 238        else
 239                return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 240}
 241
 242static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
 243{
 244        if (ch->iostart)
 245                ch->cmt->info->write_control(ch->iostart, 0, value);
 246        else
 247                ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 248}
 249
 250static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 251{
 252        return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 253}
 254
 255static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
 256{
 257        ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 258}
 259
 260static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 261{
 262        return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 263}
 264
 265static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
 266{
 267        ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 268}
 269
 270static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
 271{
 272        ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 273}
 274
 275static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
 276{
 277        u32 v1, v2, v3;
 278        u32 o1, o2;
 279
 280        o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 281
 282        /* Make sure the timer value is stable. Stolen from acpi_pm.c */
 283        do {
 284                o2 = o1;
 285                v1 = sh_cmt_read_cmcnt(ch);
 286                v2 = sh_cmt_read_cmcnt(ch);
 287                v3 = sh_cmt_read_cmcnt(ch);
 288                o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 289        } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 290                          || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 291
 292        *has_wrapped = o1;
 293        return v2;
 294}
 295
 296static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 297{
 298        unsigned long flags;
 299        u32 value;
 300
 301        /* start stop register shared by multiple timer channels */
 302        raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 303        value = sh_cmt_read_cmstr(ch);
 304
 305        if (start)
 306                value |= 1 << ch->timer_bit;
 307        else
 308                value &= ~(1 << ch->timer_bit);
 309
 310        sh_cmt_write_cmstr(ch, value);
 311        raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 312}
 313
 314static int sh_cmt_enable(struct sh_cmt_channel *ch)
 315{
 316        int k, ret;
 317
 318        pm_runtime_get_sync(&ch->cmt->pdev->dev);
 319        dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 320
 321        /* enable clock */
 322        ret = clk_enable(ch->cmt->clk);
 323        if (ret) {
 324                dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 325                        ch->index);
 326                goto err0;
 327        }
 328
 329        /* make sure channel is disabled */
 330        sh_cmt_start_stop_ch(ch, 0);
 331
 332        /* configure channel, periodic mode and maximum timeout */
 333        if (ch->cmt->info->width == 16) {
 334                sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 335                                   SH_CMT16_CMCSR_CKS512);
 336        } else {
 337                sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
 338                                   SH_CMT32_CMCSR_CMTOUT_IE |
 339                                   SH_CMT32_CMCSR_CMR_IRQ |
 340                                   SH_CMT32_CMCSR_CKS_RCLK8);
 341        }
 342
 343        sh_cmt_write_cmcor(ch, 0xffffffff);
 344        sh_cmt_write_cmcnt(ch, 0);
 345
 346        /*
 347         * According to the sh73a0 user's manual, as CMCNT can be operated
 348         * only by the RCLK (Pseudo 32 KHz), there's one restriction on
 349         * modifying CMCNT register; two RCLK cycles are necessary before
 350         * this register is either read or any modification of the value
 351         * it holds is reflected in the LSI's actual operation.
 352         *
 353         * While at it, we're supposed to clear out the CMCNT as of this
 354         * moment, so make sure it's processed properly here.  This will
 355         * take RCLKx2 at maximum.
 356         */
 357        for (k = 0; k < 100; k++) {
 358                if (!sh_cmt_read_cmcnt(ch))
 359                        break;
 360                udelay(1);
 361        }
 362
 363        if (sh_cmt_read_cmcnt(ch)) {
 364                dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 365                        ch->index);
 366                ret = -ETIMEDOUT;
 367                goto err1;
 368        }
 369
 370        /* enable channel */
 371        sh_cmt_start_stop_ch(ch, 1);
 372        return 0;
 373 err1:
 374        /* stop clock */
 375        clk_disable(ch->cmt->clk);
 376
 377 err0:
 378        return ret;
 379}
 380
 381static void sh_cmt_disable(struct sh_cmt_channel *ch)
 382{
 383        /* disable channel */
 384        sh_cmt_start_stop_ch(ch, 0);
 385
 386        /* disable interrupts in CMT block */
 387        sh_cmt_write_cmcsr(ch, 0);
 388
 389        /* stop clock */
 390        clk_disable(ch->cmt->clk);
 391
 392        dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 393        pm_runtime_put(&ch->cmt->pdev->dev);
 394}
 395
 396/* private flags */
 397#define FLAG_CLOCKEVENT (1 << 0)
 398#define FLAG_CLOCKSOURCE (1 << 1)
 399#define FLAG_REPROGRAM (1 << 2)
 400#define FLAG_SKIPEVENT (1 << 3)
 401#define FLAG_IRQCONTEXT (1 << 4)
 402
 403static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 404                                              int absolute)
 405{
 406        u32 value = ch->next_match_value;
 407        u32 new_match;
 408        u32 delay = 0;
 409        u32 now = 0;
 410        u32 has_wrapped;
 411
 412        now = sh_cmt_get_counter(ch, &has_wrapped);
 413        ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 414
 415        if (has_wrapped) {
 416                /* we're competing with the interrupt handler.
 417                 *  -> let the interrupt handler reprogram the timer.
 418                 *  -> interrupt number two handles the event.
 419                 */
 420                ch->flags |= FLAG_SKIPEVENT;
 421                return;
 422        }
 423
 424        if (absolute)
 425                now = 0;
 426
 427        do {
 428                /* reprogram the timer hardware,
 429                 * but don't save the new match value yet.
 430                 */
 431                new_match = now + value + delay;
 432                if (new_match > ch->max_match_value)
 433                        new_match = ch->max_match_value;
 434
 435                sh_cmt_write_cmcor(ch, new_match);
 436
 437                now = sh_cmt_get_counter(ch, &has_wrapped);
 438                if (has_wrapped && (new_match > ch->match_value)) {
 439                        /* we are changing to a greater match value,
 440                         * so this wrap must be caused by the counter
 441                         * matching the old value.
 442                         * -> first interrupt reprograms the timer.
 443                         * -> interrupt number two handles the event.
 444                         */
 445                        ch->flags |= FLAG_SKIPEVENT;
 446                        break;
 447                }
 448
 449                if (has_wrapped) {
 450                        /* we are changing to a smaller match value,
 451                         * so the wrap must be caused by the counter
 452                         * matching the new value.
 453                         * -> save programmed match value.
 454                         * -> let isr handle the event.
 455                         */
 456                        ch->match_value = new_match;
 457                        break;
 458                }
 459
 460                /* be safe: verify hardware settings */
 461                if (now < new_match) {
 462                        /* timer value is below match value, all good.
 463                         * this makes sure we won't miss any match events.
 464                         * -> save programmed match value.
 465                         * -> let isr handle the event.
 466                         */
 467                        ch->match_value = new_match;
 468                        break;
 469                }
 470
 471                /* the counter has reached a value greater
 472                 * than our new match value. and since the
 473                 * has_wrapped flag isn't set we must have
 474                 * programmed a too close event.
 475                 * -> increase delay and retry.
 476                 */
 477                if (delay)
 478                        delay <<= 1;
 479                else
 480                        delay = 1;
 481
 482                if (!delay)
 483                        dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 484                                 ch->index);
 485
 486        } while (delay);
 487}
 488
 489static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 490{
 491        if (delta > ch->max_match_value)
 492                dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 493                         ch->index);
 494
 495        ch->next_match_value = delta;
 496        sh_cmt_clock_event_program_verify(ch, 0);
 497}
 498
 499static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 500{
 501        unsigned long flags;
 502
 503        raw_spin_lock_irqsave(&ch->lock, flags);
 504        __sh_cmt_set_next(ch, delta);
 505        raw_spin_unlock_irqrestore(&ch->lock, flags);
 506}
 507
 508static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 509{
 510        struct sh_cmt_channel *ch = dev_id;
 511
 512        /* clear flags */
 513        sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 514                           ch->cmt->info->clear_bits);
 515
 516        /* update clock source counter to begin with if enabled
 517         * the wrap flag should be cleared by the timer specific
 518         * isr before we end up here.
 519         */
 520        if (ch->flags & FLAG_CLOCKSOURCE)
 521                ch->total_cycles += ch->match_value + 1;
 522
 523        if (!(ch->flags & FLAG_REPROGRAM))
 524                ch->next_match_value = ch->max_match_value;
 525
 526        ch->flags |= FLAG_IRQCONTEXT;
 527
 528        if (ch->flags & FLAG_CLOCKEVENT) {
 529                if (!(ch->flags & FLAG_SKIPEVENT)) {
 530                        if (clockevent_state_oneshot(&ch->ced)) {
 531                                ch->next_match_value = ch->max_match_value;
 532                                ch->flags |= FLAG_REPROGRAM;
 533                        }
 534
 535                        ch->ced.event_handler(&ch->ced);
 536                }
 537        }
 538
 539        ch->flags &= ~FLAG_SKIPEVENT;
 540
 541        if (ch->flags & FLAG_REPROGRAM) {
 542                ch->flags &= ~FLAG_REPROGRAM;
 543                sh_cmt_clock_event_program_verify(ch, 1);
 544
 545                if (ch->flags & FLAG_CLOCKEVENT)
 546                        if ((clockevent_state_shutdown(&ch->ced))
 547                            || (ch->match_value == ch->next_match_value))
 548                                ch->flags &= ~FLAG_REPROGRAM;
 549        }
 550
 551        ch->flags &= ~FLAG_IRQCONTEXT;
 552
 553        return IRQ_HANDLED;
 554}
 555
 556static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 557{
 558        int ret = 0;
 559        unsigned long flags;
 560
 561        raw_spin_lock_irqsave(&ch->lock, flags);
 562
 563        if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 564                ret = sh_cmt_enable(ch);
 565
 566        if (ret)
 567                goto out;
 568        ch->flags |= flag;
 569
 570        /* setup timeout if no clockevent */
 571        if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
 572                __sh_cmt_set_next(ch, ch->max_match_value);
 573 out:
 574        raw_spin_unlock_irqrestore(&ch->lock, flags);
 575
 576        return ret;
 577}
 578
 579static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 580{
 581        unsigned long flags;
 582        unsigned long f;
 583
 584        raw_spin_lock_irqsave(&ch->lock, flags);
 585
 586        f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 587        ch->flags &= ~flag;
 588
 589        if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 590                sh_cmt_disable(ch);
 591
 592        /* adjust the timeout to maximum if only clocksource left */
 593        if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 594                __sh_cmt_set_next(ch, ch->max_match_value);
 595
 596        raw_spin_unlock_irqrestore(&ch->lock, flags);
 597}
 598
 599static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 600{
 601        return container_of(cs, struct sh_cmt_channel, cs);
 602}
 603
 604static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 605{
 606        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 607        unsigned long flags;
 608        u32 has_wrapped;
 609        u64 value;
 610        u32 raw;
 611
 612        raw_spin_lock_irqsave(&ch->lock, flags);
 613        value = ch->total_cycles;
 614        raw = sh_cmt_get_counter(ch, &has_wrapped);
 615
 616        if (unlikely(has_wrapped))
 617                raw += ch->match_value + 1;
 618        raw_spin_unlock_irqrestore(&ch->lock, flags);
 619
 620        return value + raw;
 621}
 622
 623static int sh_cmt_clocksource_enable(struct clocksource *cs)
 624{
 625        int ret;
 626        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 627
 628        WARN_ON(ch->cs_enabled);
 629
 630        ch->total_cycles = 0;
 631
 632        ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 633        if (!ret)
 634                ch->cs_enabled = true;
 635
 636        return ret;
 637}
 638
 639static void sh_cmt_clocksource_disable(struct clocksource *cs)
 640{
 641        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 642
 643        WARN_ON(!ch->cs_enabled);
 644
 645        sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 646        ch->cs_enabled = false;
 647}
 648
 649static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 650{
 651        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 652
 653        if (!ch->cs_enabled)
 654                return;
 655
 656        sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 657        pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 658}
 659
 660static void sh_cmt_clocksource_resume(struct clocksource *cs)
 661{
 662        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 663
 664        if (!ch->cs_enabled)
 665                return;
 666
 667        pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 668        sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 669}
 670
 671static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 672                                       const char *name)
 673{
 674        struct clocksource *cs = &ch->cs;
 675
 676        cs->name = name;
 677        cs->rating = 125;
 678        cs->read = sh_cmt_clocksource_read;
 679        cs->enable = sh_cmt_clocksource_enable;
 680        cs->disable = sh_cmt_clocksource_disable;
 681        cs->suspend = sh_cmt_clocksource_suspend;
 682        cs->resume = sh_cmt_clocksource_resume;
 683        cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
 684        cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 685
 686        dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 687                 ch->index);
 688
 689        clocksource_register_hz(cs, ch->cmt->rate);
 690        return 0;
 691}
 692
 693static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 694{
 695        return container_of(ced, struct sh_cmt_channel, ced);
 696}
 697
 698static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 699{
 700        sh_cmt_start(ch, FLAG_CLOCKEVENT);
 701
 702        if (periodic)
 703                sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
 704        else
 705                sh_cmt_set_next(ch, ch->max_match_value);
 706}
 707
 708static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 709{
 710        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 711
 712        sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 713        return 0;
 714}
 715
 716static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 717                                        int periodic)
 718{
 719        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 720
 721        /* deal with old setting first */
 722        if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 723                sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 724
 725        dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 726                 ch->index, periodic ? "periodic" : "oneshot");
 727        sh_cmt_clock_event_start(ch, periodic);
 728        return 0;
 729}
 730
 731static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 732{
 733        return sh_cmt_clock_event_set_state(ced, 0);
 734}
 735
 736static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 737{
 738        return sh_cmt_clock_event_set_state(ced, 1);
 739}
 740
 741static int sh_cmt_clock_event_next(unsigned long delta,
 742                                   struct clock_event_device *ced)
 743{
 744        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 745
 746        BUG_ON(!clockevent_state_oneshot(ced));
 747        if (likely(ch->flags & FLAG_IRQCONTEXT))
 748                ch->next_match_value = delta - 1;
 749        else
 750                sh_cmt_set_next(ch, delta - 1);
 751
 752        return 0;
 753}
 754
 755static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 756{
 757        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 758
 759        pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 760        clk_unprepare(ch->cmt->clk);
 761}
 762
 763static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 764{
 765        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 766
 767        clk_prepare(ch->cmt->clk);
 768        pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 769}
 770
 771static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 772                                      const char *name)
 773{
 774        struct clock_event_device *ced = &ch->ced;
 775        int irq;
 776        int ret;
 777
 778        irq = platform_get_irq(ch->cmt->pdev, ch->index);
 779        if (irq < 0) {
 780                dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
 781                        ch->index);
 782                return irq;
 783        }
 784
 785        ret = request_irq(irq, sh_cmt_interrupt,
 786                          IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 787                          dev_name(&ch->cmt->pdev->dev), ch);
 788        if (ret) {
 789                dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 790                        ch->index, irq);
 791                return ret;
 792        }
 793
 794        ced->name = name;
 795        ced->features = CLOCK_EVT_FEAT_PERIODIC;
 796        ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 797        ced->rating = 125;
 798        ced->cpumask = cpu_possible_mask;
 799        ced->set_next_event = sh_cmt_clock_event_next;
 800        ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 801        ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 802        ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 803        ced->suspend = sh_cmt_clock_event_suspend;
 804        ced->resume = sh_cmt_clock_event_resume;
 805
 806        /* TODO: calculate good shift from rate and counter bit width */
 807        ced->shift = 32;
 808        ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
 809        ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 810        ced->max_delta_ticks = ch->max_match_value;
 811        ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 812        ced->min_delta_ticks = 0x1f;
 813
 814        dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 815                 ch->index);
 816        clockevents_register_device(ced);
 817
 818        return 0;
 819}
 820
 821static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 822                           bool clockevent, bool clocksource)
 823{
 824        int ret;
 825
 826        if (clockevent) {
 827                ch->cmt->has_clockevent = true;
 828                ret = sh_cmt_register_clockevent(ch, name);
 829                if (ret < 0)
 830                        return ret;
 831        }
 832
 833        if (clocksource) {
 834                ch->cmt->has_clocksource = true;
 835                sh_cmt_register_clocksource(ch, name);
 836        }
 837
 838        return 0;
 839}
 840
 841static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 842                                unsigned int hwidx, bool clockevent,
 843                                bool clocksource, struct sh_cmt_device *cmt)
 844{
 845        int ret;
 846
 847        /* Skip unused channels. */
 848        if (!clockevent && !clocksource)
 849                return 0;
 850
 851        ch->cmt = cmt;
 852        ch->index = index;
 853        ch->hwidx = hwidx;
 854        ch->timer_bit = hwidx;
 855
 856        /*
 857         * Compute the address of the channel control register block. For the
 858         * timers with a per-channel start/stop register, compute its address
 859         * as well.
 860         */
 861        switch (cmt->info->model) {
 862        case SH_CMT_16BIT:
 863                ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 864                break;
 865        case SH_CMT_32BIT:
 866        case SH_CMT_48BIT:
 867                ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 868                break;
 869        case SH_CMT0_RCAR_GEN2:
 870        case SH_CMT1_RCAR_GEN2:
 871                ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 872                ch->ioctrl = ch->iostart + 0x10;
 873                ch->timer_bit = 0;
 874                break;
 875        }
 876
 877        if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 878                ch->max_match_value = ~0;
 879        else
 880                ch->max_match_value = (1 << cmt->info->width) - 1;
 881
 882        ch->match_value = ch->max_match_value;
 883        raw_spin_lock_init(&ch->lock);
 884
 885        ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 886                              clockevent, clocksource);
 887        if (ret) {
 888                dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 889                        ch->index);
 890                return ret;
 891        }
 892        ch->cs_enabled = false;
 893
 894        return 0;
 895}
 896
 897static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 898{
 899        struct resource *mem;
 900
 901        mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 902        if (!mem) {
 903                dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 904                return -ENXIO;
 905        }
 906
 907        cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
 908        if (cmt->mapbase == NULL) {
 909                dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 910                return -ENXIO;
 911        }
 912
 913        return 0;
 914}
 915
 916static const struct platform_device_id sh_cmt_id_table[] = {
 917        { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 918        { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 919        { }
 920};
 921MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 922
 923static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 924        { .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
 925        {
 926                /* deprecated, preserved for backward compatibility */
 927                .compatible = "renesas,cmt-48-gen2",
 928                .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 929        },
 930        {
 931                .compatible = "renesas,rcar-gen2-cmt0",
 932                .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 933        },
 934        {
 935                .compatible = "renesas,rcar-gen2-cmt1",
 936                .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 937        },
 938        {
 939                .compatible = "renesas,rcar-gen3-cmt0",
 940                .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 941        },
 942        {
 943                .compatible = "renesas,rcar-gen3-cmt1",
 944                .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 945        },
 946        { }
 947};
 948MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
 949
 950static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
 951{
 952        unsigned int mask;
 953        unsigned int i;
 954        int ret;
 955
 956        cmt->pdev = pdev;
 957        raw_spin_lock_init(&cmt->lock);
 958
 959        if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
 960                cmt->info = of_device_get_match_data(&pdev->dev);
 961                cmt->hw_channels = cmt->info->channels_mask;
 962        } else if (pdev->dev.platform_data) {
 963                struct sh_timer_config *cfg = pdev->dev.platform_data;
 964                const struct platform_device_id *id = pdev->id_entry;
 965
 966                cmt->info = (const struct sh_cmt_info *)id->driver_data;
 967                cmt->hw_channels = cfg->channels_mask;
 968        } else {
 969                dev_err(&cmt->pdev->dev, "missing platform data\n");
 970                return -ENXIO;
 971        }
 972
 973        /* Get hold of clock. */
 974        cmt->clk = clk_get(&cmt->pdev->dev, "fck");
 975        if (IS_ERR(cmt->clk)) {
 976                dev_err(&cmt->pdev->dev, "cannot get clock\n");
 977                return PTR_ERR(cmt->clk);
 978        }
 979
 980        ret = clk_prepare(cmt->clk);
 981        if (ret < 0)
 982                goto err_clk_put;
 983
 984        /* Determine clock rate. */
 985        ret = clk_enable(cmt->clk);
 986        if (ret < 0)
 987                goto err_clk_unprepare;
 988
 989        if (cmt->info->width == 16)
 990                cmt->rate = clk_get_rate(cmt->clk) / 512;
 991        else
 992                cmt->rate = clk_get_rate(cmt->clk) / 8;
 993
 994        clk_disable(cmt->clk);
 995
 996        /* Map the memory resource(s). */
 997        ret = sh_cmt_map_memory(cmt);
 998        if (ret < 0)
 999                goto err_clk_unprepare;
1000
1001        /* Allocate and setup the channels. */
1002        cmt->num_channels = hweight8(cmt->hw_channels);
1003        cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1004                                GFP_KERNEL);
1005        if (cmt->channels == NULL) {
1006                ret = -ENOMEM;
1007                goto err_unmap;
1008        }
1009
1010        /*
1011         * Use the first channel as a clock event device and the second channel
1012         * as a clock source. If only one channel is available use it for both.
1013         */
1014        for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1015                unsigned int hwidx = ffs(mask) - 1;
1016                bool clocksource = i == 1 || cmt->num_channels == 1;
1017                bool clockevent = i == 0;
1018
1019                ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1020                                           clockevent, clocksource, cmt);
1021                if (ret < 0)
1022                        goto err_unmap;
1023
1024                mask &= ~(1 << hwidx);
1025        }
1026
1027        platform_set_drvdata(pdev, cmt);
1028
1029        return 0;
1030
1031err_unmap:
1032        kfree(cmt->channels);
1033        iounmap(cmt->mapbase);
1034err_clk_unprepare:
1035        clk_unprepare(cmt->clk);
1036err_clk_put:
1037        clk_put(cmt->clk);
1038        return ret;
1039}
1040
1041static int sh_cmt_probe(struct platform_device *pdev)
1042{
1043        struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1044        int ret;
1045
1046        if (!is_early_platform_device(pdev)) {
1047                pm_runtime_set_active(&pdev->dev);
1048                pm_runtime_enable(&pdev->dev);
1049        }
1050
1051        if (cmt) {
1052                dev_info(&pdev->dev, "kept as earlytimer\n");
1053                goto out;
1054        }
1055
1056        cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1057        if (cmt == NULL)
1058                return -ENOMEM;
1059
1060        ret = sh_cmt_setup(cmt, pdev);
1061        if (ret) {
1062                kfree(cmt);
1063                pm_runtime_idle(&pdev->dev);
1064                return ret;
1065        }
1066        if (is_early_platform_device(pdev))
1067                return 0;
1068
1069 out:
1070        if (cmt->has_clockevent || cmt->has_clocksource)
1071                pm_runtime_irq_safe(&pdev->dev);
1072        else
1073                pm_runtime_idle(&pdev->dev);
1074
1075        return 0;
1076}
1077
1078static int sh_cmt_remove(struct platform_device *pdev)
1079{
1080        return -EBUSY; /* cannot unregister clockevent and clocksource */
1081}
1082
1083static struct platform_driver sh_cmt_device_driver = {
1084        .probe          = sh_cmt_probe,
1085        .remove         = sh_cmt_remove,
1086        .driver         = {
1087                .name   = "sh_cmt",
1088                .of_match_table = of_match_ptr(sh_cmt_of_table),
1089        },
1090        .id_table       = sh_cmt_id_table,
1091};
1092
1093static int __init sh_cmt_init(void)
1094{
1095        return platform_driver_register(&sh_cmt_device_driver);
1096}
1097
1098static void __exit sh_cmt_exit(void)
1099{
1100        platform_driver_unregister(&sh_cmt_device_driver);
1101}
1102
1103early_platform_init("earlytimer", &sh_cmt_device_driver);
1104subsys_initcall(sh_cmt_init);
1105module_exit(sh_cmt_exit);
1106
1107MODULE_AUTHOR("Magnus Damm");
1108MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1109MODULE_LICENSE("GPL v2");
1110