linux/drivers/clocksource/sh_tmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH Timer Support - TMU
   4 *
   5 *  Copyright (C) 2009 Magnus Damm
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clockchips.h>
  10#include <linux/clocksource.h>
  11#include <linux/delay.h>
  12#include <linux/err.h>
  13#include <linux/init.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/ioport.h>
  17#include <linux/irq.h>
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/platform_device.h>
  21#include <linux/pm_domain.h>
  22#include <linux/pm_runtime.h>
  23#include <linux/sh_timer.h>
  24#include <linux/slab.h>
  25#include <linux/spinlock.h>
  26
  27enum sh_tmu_model {
  28        SH_TMU,
  29        SH_TMU_SH3,
  30};
  31
  32struct sh_tmu_device;
  33
  34struct sh_tmu_channel {
  35        struct sh_tmu_device *tmu;
  36        unsigned int index;
  37
  38        void __iomem *base;
  39        int irq;
  40
  41        unsigned long periodic;
  42        struct clock_event_device ced;
  43        struct clocksource cs;
  44        bool cs_enabled;
  45        unsigned int enable_count;
  46};
  47
  48struct sh_tmu_device {
  49        struct platform_device *pdev;
  50
  51        void __iomem *mapbase;
  52        struct clk *clk;
  53        unsigned long rate;
  54
  55        enum sh_tmu_model model;
  56
  57        raw_spinlock_t lock; /* Protect the shared start/stop register */
  58
  59        struct sh_tmu_channel *channels;
  60        unsigned int num_channels;
  61
  62        bool has_clockevent;
  63        bool has_clocksource;
  64};
  65
  66#define TSTR -1 /* shared register */
  67#define TCOR  0 /* channel register */
  68#define TCNT 1 /* channel register */
  69#define TCR 2 /* channel register */
  70
  71#define TCR_UNF                 (1 << 8)
  72#define TCR_UNIE                (1 << 5)
  73#define TCR_TPSC_CLK4           (0 << 0)
  74#define TCR_TPSC_CLK16          (1 << 0)
  75#define TCR_TPSC_CLK64          (2 << 0)
  76#define TCR_TPSC_CLK256         (3 << 0)
  77#define TCR_TPSC_CLK1024        (4 << 0)
  78#define TCR_TPSC_MASK           (7 << 0)
  79
  80static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
  81{
  82        unsigned long offs;
  83
  84        if (reg_nr == TSTR) {
  85                switch (ch->tmu->model) {
  86                case SH_TMU_SH3:
  87                        return ioread8(ch->tmu->mapbase + 2);
  88                case SH_TMU:
  89                        return ioread8(ch->tmu->mapbase + 4);
  90                }
  91        }
  92
  93        offs = reg_nr << 2;
  94
  95        if (reg_nr == TCR)
  96                return ioread16(ch->base + offs);
  97        else
  98                return ioread32(ch->base + offs);
  99}
 100
 101static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
 102                                unsigned long value)
 103{
 104        unsigned long offs;
 105
 106        if (reg_nr == TSTR) {
 107                switch (ch->tmu->model) {
 108                case SH_TMU_SH3:
 109                        return iowrite8(value, ch->tmu->mapbase + 2);
 110                case SH_TMU:
 111                        return iowrite8(value, ch->tmu->mapbase + 4);
 112                }
 113        }
 114
 115        offs = reg_nr << 2;
 116
 117        if (reg_nr == TCR)
 118                iowrite16(value, ch->base + offs);
 119        else
 120                iowrite32(value, ch->base + offs);
 121}
 122
 123static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
 124{
 125        unsigned long flags, value;
 126
 127        /* start stop register shared by multiple timer channels */
 128        raw_spin_lock_irqsave(&ch->tmu->lock, flags);
 129        value = sh_tmu_read(ch, TSTR);
 130
 131        if (start)
 132                value |= 1 << ch->index;
 133        else
 134                value &= ~(1 << ch->index);
 135
 136        sh_tmu_write(ch, TSTR, value);
 137        raw_spin_unlock_irqrestore(&ch->tmu->lock, flags);
 138}
 139
 140static int __sh_tmu_enable(struct sh_tmu_channel *ch)
 141{
 142        int ret;
 143
 144        /* enable clock */
 145        ret = clk_enable(ch->tmu->clk);
 146        if (ret) {
 147                dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
 148                        ch->index);
 149                return ret;
 150        }
 151
 152        /* make sure channel is disabled */
 153        sh_tmu_start_stop_ch(ch, 0);
 154
 155        /* maximum timeout */
 156        sh_tmu_write(ch, TCOR, 0xffffffff);
 157        sh_tmu_write(ch, TCNT, 0xffffffff);
 158
 159        /* configure channel to parent clock / 4, irq off */
 160        sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
 161
 162        /* enable channel */
 163        sh_tmu_start_stop_ch(ch, 1);
 164
 165        return 0;
 166}
 167
 168static int sh_tmu_enable(struct sh_tmu_channel *ch)
 169{
 170        if (ch->enable_count++ > 0)
 171                return 0;
 172
 173        pm_runtime_get_sync(&ch->tmu->pdev->dev);
 174        dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
 175
 176        return __sh_tmu_enable(ch);
 177}
 178
 179static void __sh_tmu_disable(struct sh_tmu_channel *ch)
 180{
 181        /* disable channel */
 182        sh_tmu_start_stop_ch(ch, 0);
 183
 184        /* disable interrupts in TMU block */
 185        sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
 186
 187        /* stop clock */
 188        clk_disable(ch->tmu->clk);
 189}
 190
 191static void sh_tmu_disable(struct sh_tmu_channel *ch)
 192{
 193        if (WARN_ON(ch->enable_count == 0))
 194                return;
 195
 196        if (--ch->enable_count > 0)
 197                return;
 198
 199        __sh_tmu_disable(ch);
 200
 201        dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
 202        pm_runtime_put(&ch->tmu->pdev->dev);
 203}
 204
 205static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
 206                            int periodic)
 207{
 208        /* stop timer */
 209        sh_tmu_start_stop_ch(ch, 0);
 210
 211        /* acknowledge interrupt */
 212        sh_tmu_read(ch, TCR);
 213
 214        /* enable interrupt */
 215        sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
 216
 217        /* reload delta value in case of periodic timer */
 218        if (periodic)
 219                sh_tmu_write(ch, TCOR, delta);
 220        else
 221                sh_tmu_write(ch, TCOR, 0xffffffff);
 222
 223        sh_tmu_write(ch, TCNT, delta);
 224
 225        /* start timer */
 226        sh_tmu_start_stop_ch(ch, 1);
 227}
 228
 229static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
 230{
 231        struct sh_tmu_channel *ch = dev_id;
 232
 233        /* disable or acknowledge interrupt */
 234        if (clockevent_state_oneshot(&ch->ced))
 235                sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
 236        else
 237                sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
 238
 239        /* notify clockevent layer */
 240        ch->ced.event_handler(&ch->ced);
 241        return IRQ_HANDLED;
 242}
 243
 244static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
 245{
 246        return container_of(cs, struct sh_tmu_channel, cs);
 247}
 248
 249static u64 sh_tmu_clocksource_read(struct clocksource *cs)
 250{
 251        struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
 252
 253        return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
 254}
 255
 256static int sh_tmu_clocksource_enable(struct clocksource *cs)
 257{
 258        struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
 259        int ret;
 260
 261        if (WARN_ON(ch->cs_enabled))
 262                return 0;
 263
 264        ret = sh_tmu_enable(ch);
 265        if (!ret)
 266                ch->cs_enabled = true;
 267
 268        return ret;
 269}
 270
 271static void sh_tmu_clocksource_disable(struct clocksource *cs)
 272{
 273        struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
 274
 275        if (WARN_ON(!ch->cs_enabled))
 276                return;
 277
 278        sh_tmu_disable(ch);
 279        ch->cs_enabled = false;
 280}
 281
 282static void sh_tmu_clocksource_suspend(struct clocksource *cs)
 283{
 284        struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
 285
 286        if (!ch->cs_enabled)
 287                return;
 288
 289        if (--ch->enable_count == 0) {
 290                __sh_tmu_disable(ch);
 291                pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev);
 292        }
 293}
 294
 295static void sh_tmu_clocksource_resume(struct clocksource *cs)
 296{
 297        struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
 298
 299        if (!ch->cs_enabled)
 300                return;
 301
 302        if (ch->enable_count++ == 0) {
 303                pm_genpd_syscore_poweron(&ch->tmu->pdev->dev);
 304                __sh_tmu_enable(ch);
 305        }
 306}
 307
 308static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
 309                                       const char *name)
 310{
 311        struct clocksource *cs = &ch->cs;
 312
 313        cs->name = name;
 314        cs->rating = 200;
 315        cs->read = sh_tmu_clocksource_read;
 316        cs->enable = sh_tmu_clocksource_enable;
 317        cs->disable = sh_tmu_clocksource_disable;
 318        cs->suspend = sh_tmu_clocksource_suspend;
 319        cs->resume = sh_tmu_clocksource_resume;
 320        cs->mask = CLOCKSOURCE_MASK(32);
 321        cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 322
 323        dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
 324                 ch->index);
 325
 326        clocksource_register_hz(cs, ch->tmu->rate);
 327        return 0;
 328}
 329
 330static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
 331{
 332        return container_of(ced, struct sh_tmu_channel, ced);
 333}
 334
 335static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
 336{
 337        sh_tmu_enable(ch);
 338
 339        if (periodic) {
 340                ch->periodic = (ch->tmu->rate + HZ/2) / HZ;
 341                sh_tmu_set_next(ch, ch->periodic, 1);
 342        }
 343}
 344
 345static int sh_tmu_clock_event_shutdown(struct clock_event_device *ced)
 346{
 347        struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
 348
 349        if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 350                sh_tmu_disable(ch);
 351        return 0;
 352}
 353
 354static int sh_tmu_clock_event_set_state(struct clock_event_device *ced,
 355                                        int periodic)
 356{
 357        struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
 358
 359        /* deal with old setting first */
 360        if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 361                sh_tmu_disable(ch);
 362
 363        dev_info(&ch->tmu->pdev->dev, "ch%u: used for %s clock events\n",
 364                 ch->index, periodic ? "periodic" : "oneshot");
 365        sh_tmu_clock_event_start(ch, periodic);
 366        return 0;
 367}
 368
 369static int sh_tmu_clock_event_set_oneshot(struct clock_event_device *ced)
 370{
 371        return sh_tmu_clock_event_set_state(ced, 0);
 372}
 373
 374static int sh_tmu_clock_event_set_periodic(struct clock_event_device *ced)
 375{
 376        return sh_tmu_clock_event_set_state(ced, 1);
 377}
 378
 379static int sh_tmu_clock_event_next(unsigned long delta,
 380                                   struct clock_event_device *ced)
 381{
 382        struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
 383
 384        BUG_ON(!clockevent_state_oneshot(ced));
 385
 386        /* program new delta value */
 387        sh_tmu_set_next(ch, delta, 0);
 388        return 0;
 389}
 390
 391static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
 392{
 393        pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
 394}
 395
 396static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
 397{
 398        pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
 399}
 400
 401static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
 402                                       const char *name)
 403{
 404        struct clock_event_device *ced = &ch->ced;
 405        int ret;
 406
 407        ced->name = name;
 408        ced->features = CLOCK_EVT_FEAT_PERIODIC;
 409        ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 410        ced->rating = 200;
 411        ced->cpumask = cpu_possible_mask;
 412        ced->set_next_event = sh_tmu_clock_event_next;
 413        ced->set_state_shutdown = sh_tmu_clock_event_shutdown;
 414        ced->set_state_periodic = sh_tmu_clock_event_set_periodic;
 415        ced->set_state_oneshot = sh_tmu_clock_event_set_oneshot;
 416        ced->suspend = sh_tmu_clock_event_suspend;
 417        ced->resume = sh_tmu_clock_event_resume;
 418
 419        dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
 420                 ch->index);
 421
 422        clockevents_config_and_register(ced, ch->tmu->rate, 0x300, 0xffffffff);
 423
 424        ret = request_irq(ch->irq, sh_tmu_interrupt,
 425                          IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 426                          dev_name(&ch->tmu->pdev->dev), ch);
 427        if (ret) {
 428                dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
 429                        ch->index, ch->irq);
 430                return;
 431        }
 432}
 433
 434static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
 435                           bool clockevent, bool clocksource)
 436{
 437        if (clockevent) {
 438                ch->tmu->has_clockevent = true;
 439                sh_tmu_register_clockevent(ch, name);
 440        } else if (clocksource) {
 441                ch->tmu->has_clocksource = true;
 442                sh_tmu_register_clocksource(ch, name);
 443        }
 444
 445        return 0;
 446}
 447
 448static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index,
 449                                bool clockevent, bool clocksource,
 450                                struct sh_tmu_device *tmu)
 451{
 452        /* Skip unused channels. */
 453        if (!clockevent && !clocksource)
 454                return 0;
 455
 456        ch->tmu = tmu;
 457        ch->index = index;
 458
 459        if (tmu->model == SH_TMU_SH3)
 460                ch->base = tmu->mapbase + 4 + ch->index * 12;
 461        else
 462                ch->base = tmu->mapbase + 8 + ch->index * 12;
 463
 464        ch->irq = platform_get_irq(tmu->pdev, index);
 465        if (ch->irq < 0) {
 466                dev_err(&tmu->pdev->dev, "ch%u: failed to get irq\n",
 467                        ch->index);
 468                return ch->irq;
 469        }
 470
 471        ch->cs_enabled = false;
 472        ch->enable_count = 0;
 473
 474        return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
 475                               clockevent, clocksource);
 476}
 477
 478static int sh_tmu_map_memory(struct sh_tmu_device *tmu)
 479{
 480        struct resource *res;
 481
 482        res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
 483        if (!res) {
 484                dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
 485                return -ENXIO;
 486        }
 487
 488        tmu->mapbase = ioremap_nocache(res->start, resource_size(res));
 489        if (tmu->mapbase == NULL)
 490                return -ENXIO;
 491
 492        return 0;
 493}
 494
 495static int sh_tmu_parse_dt(struct sh_tmu_device *tmu)
 496{
 497        struct device_node *np = tmu->pdev->dev.of_node;
 498
 499        tmu->model = SH_TMU;
 500        tmu->num_channels = 3;
 501
 502        of_property_read_u32(np, "#renesas,channels", &tmu->num_channels);
 503
 504        if (tmu->num_channels != 2 && tmu->num_channels != 3) {
 505                dev_err(&tmu->pdev->dev, "invalid number of channels %u\n",
 506                        tmu->num_channels);
 507                return -EINVAL;
 508        }
 509
 510        return 0;
 511}
 512
 513static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
 514{
 515        unsigned int i;
 516        int ret;
 517
 518        tmu->pdev = pdev;
 519
 520        raw_spin_lock_init(&tmu->lock);
 521
 522        if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
 523                ret = sh_tmu_parse_dt(tmu);
 524                if (ret < 0)
 525                        return ret;
 526        } else if (pdev->dev.platform_data) {
 527                const struct platform_device_id *id = pdev->id_entry;
 528                struct sh_timer_config *cfg = pdev->dev.platform_data;
 529
 530                tmu->model = id->driver_data;
 531                tmu->num_channels = hweight8(cfg->channels_mask);
 532        } else {
 533                dev_err(&tmu->pdev->dev, "missing platform data\n");
 534                return -ENXIO;
 535        }
 536
 537        /* Get hold of clock. */
 538        tmu->clk = clk_get(&tmu->pdev->dev, "fck");
 539        if (IS_ERR(tmu->clk)) {
 540                dev_err(&tmu->pdev->dev, "cannot get clock\n");
 541                return PTR_ERR(tmu->clk);
 542        }
 543
 544        ret = clk_prepare(tmu->clk);
 545        if (ret < 0)
 546                goto err_clk_put;
 547
 548        /* Determine clock rate. */
 549        ret = clk_enable(tmu->clk);
 550        if (ret < 0)
 551                goto err_clk_unprepare;
 552
 553        tmu->rate = clk_get_rate(tmu->clk) / 4;
 554        clk_disable(tmu->clk);
 555
 556        /* Map the memory resource. */
 557        ret = sh_tmu_map_memory(tmu);
 558        if (ret < 0) {
 559                dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
 560                goto err_clk_unprepare;
 561        }
 562
 563        /* Allocate and setup the channels. */
 564        tmu->channels = kcalloc(tmu->num_channels, sizeof(*tmu->channels),
 565                                GFP_KERNEL);
 566        if (tmu->channels == NULL) {
 567                ret = -ENOMEM;
 568                goto err_unmap;
 569        }
 570
 571        /*
 572         * Use the first channel as a clock event device and the second channel
 573         * as a clock source.
 574         */
 575        for (i = 0; i < tmu->num_channels; ++i) {
 576                ret = sh_tmu_channel_setup(&tmu->channels[i], i,
 577                                           i == 0, i == 1, tmu);
 578                if (ret < 0)
 579                        goto err_unmap;
 580        }
 581
 582        platform_set_drvdata(pdev, tmu);
 583
 584        return 0;
 585
 586err_unmap:
 587        kfree(tmu->channels);
 588        iounmap(tmu->mapbase);
 589err_clk_unprepare:
 590        clk_unprepare(tmu->clk);
 591err_clk_put:
 592        clk_put(tmu->clk);
 593        return ret;
 594}
 595
 596static int sh_tmu_probe(struct platform_device *pdev)
 597{
 598        struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
 599        int ret;
 600
 601        if (!is_early_platform_device(pdev)) {
 602                pm_runtime_set_active(&pdev->dev);
 603                pm_runtime_enable(&pdev->dev);
 604        }
 605
 606        if (tmu) {
 607                dev_info(&pdev->dev, "kept as earlytimer\n");
 608                goto out;
 609        }
 610
 611        tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
 612        if (tmu == NULL)
 613                return -ENOMEM;
 614
 615        ret = sh_tmu_setup(tmu, pdev);
 616        if (ret) {
 617                kfree(tmu);
 618                pm_runtime_idle(&pdev->dev);
 619                return ret;
 620        }
 621        if (is_early_platform_device(pdev))
 622                return 0;
 623
 624 out:
 625        if (tmu->has_clockevent || tmu->has_clocksource)
 626                pm_runtime_irq_safe(&pdev->dev);
 627        else
 628                pm_runtime_idle(&pdev->dev);
 629
 630        return 0;
 631}
 632
 633static int sh_tmu_remove(struct platform_device *pdev)
 634{
 635        return -EBUSY; /* cannot unregister clockevent and clocksource */
 636}
 637
 638static const struct platform_device_id sh_tmu_id_table[] = {
 639        { "sh-tmu", SH_TMU },
 640        { "sh-tmu-sh3", SH_TMU_SH3 },
 641        { }
 642};
 643MODULE_DEVICE_TABLE(platform, sh_tmu_id_table);
 644
 645static const struct of_device_id sh_tmu_of_table[] __maybe_unused = {
 646        { .compatible = "renesas,tmu" },
 647        { }
 648};
 649MODULE_DEVICE_TABLE(of, sh_tmu_of_table);
 650
 651static struct platform_driver sh_tmu_device_driver = {
 652        .probe          = sh_tmu_probe,
 653        .remove         = sh_tmu_remove,
 654        .driver         = {
 655                .name   = "sh_tmu",
 656                .of_match_table = of_match_ptr(sh_tmu_of_table),
 657        },
 658        .id_table       = sh_tmu_id_table,
 659};
 660
 661static int __init sh_tmu_init(void)
 662{
 663        return platform_driver_register(&sh_tmu_device_driver);
 664}
 665
 666static void __exit sh_tmu_exit(void)
 667{
 668        platform_driver_unregister(&sh_tmu_device_driver);
 669}
 670
 671early_platform_init("earlytimer", &sh_tmu_device_driver);
 672subsys_initcall(sh_tmu_init);
 673module_exit(sh_tmu_exit);
 674
 675MODULE_AUTHOR("Magnus Damm");
 676MODULE_DESCRIPTION("SuperH TMU Timer Driver");
 677MODULE_LICENSE("GPL v2");
 678