linux/drivers/clocksource/timer-atmel-tcb.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/init.h>
   3#include <linux/clocksource.h>
   4#include <linux/clockchips.h>
   5#include <linux/interrupt.h>
   6#include <linux/irq.h>
   7
   8#include <linux/clk.h>
   9#include <linux/err.h>
  10#include <linux/ioport.h>
  11#include <linux/io.h>
  12#include <linux/of_address.h>
  13#include <linux/of_irq.h>
  14#include <linux/sched_clock.h>
  15#include <linux/syscore_ops.h>
  16#include <soc/at91/atmel_tcb.h>
  17
  18
  19/*
  20 * We're configured to use a specific TC block, one that's not hooked
  21 * up to external hardware, to provide a time solution:
  22 *
  23 *   - Two channels combine to create a free-running 32 bit counter
  24 *     with a base rate of 5+ MHz, packaged as a clocksource (with
  25 *     resolution better than 200 nsec).
  26 *   - Some chips support 32 bit counter. A single channel is used for
  27 *     this 32 bit free-running counter. the second channel is not used.
  28 *
  29 *   - The third channel may be used to provide a 16-bit clockevent
  30 *     source, used in either periodic or oneshot mode.  This runs
  31 *     at 32 KiHZ, and can handle delays of up to two seconds.
  32 *
  33 * REVISIT behavior during system suspend states... we should disable
  34 * all clocks and save the power.  Easily done for clockevent devices,
  35 * but clocksources won't necessarily get the needed notifications.
  36 * For deeper system sleep states, this will be mandatory...
  37 */
  38
  39static void __iomem *tcaddr;
  40static struct
  41{
  42        u32 cmr;
  43        u32 imr;
  44        u32 rc;
  45        bool clken;
  46} tcb_cache[3];
  47static u32 bmr_cache;
  48
  49static u64 tc_get_cycles(struct clocksource *cs)
  50{
  51        unsigned long   flags;
  52        u32             lower, upper;
  53
  54        raw_local_irq_save(flags);
  55        do {
  56                upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV));
  57                lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
  58        } while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)));
  59
  60        raw_local_irq_restore(flags);
  61        return (upper << 16) | lower;
  62}
  63
  64static u64 tc_get_cycles32(struct clocksource *cs)
  65{
  66        return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
  67}
  68
  69static void tc_clksrc_suspend(struct clocksource *cs)
  70{
  71        int i;
  72
  73        for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
  74                tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR));
  75                tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR));
  76                tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC));
  77                tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) &
  78                                        ATMEL_TC_CLKSTA);
  79        }
  80
  81        bmr_cache = readl(tcaddr + ATMEL_TC_BMR);
  82}
  83
  84static void tc_clksrc_resume(struct clocksource *cs)
  85{
  86        int i;
  87
  88        for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
  89                /* Restore registers for the channel, RA and RB are not used  */
  90                writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR));
  91                writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC));
  92                writel(0, tcaddr + ATMEL_TC_REG(i, RA));
  93                writel(0, tcaddr + ATMEL_TC_REG(i, RB));
  94                /* Disable all the interrupts */
  95                writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR));
  96                /* Reenable interrupts that were enabled before suspending */
  97                writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER));
  98                /* Start the clock if it was used */
  99                if (tcb_cache[i].clken)
 100                        writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR));
 101        }
 102
 103        /* Dual channel, chain channels */
 104        writel(bmr_cache, tcaddr + ATMEL_TC_BMR);
 105        /* Finally, trigger all the channels*/
 106        writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
 107}
 108
 109static struct clocksource clksrc = {
 110        .rating         = 200,
 111        .read           = tc_get_cycles,
 112        .mask           = CLOCKSOURCE_MASK(32),
 113        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 114        .suspend        = tc_clksrc_suspend,
 115        .resume         = tc_clksrc_resume,
 116};
 117
 118static u64 notrace tc_sched_clock_read(void)
 119{
 120        return tc_get_cycles(&clksrc);
 121}
 122
 123static u64 notrace tc_sched_clock_read32(void)
 124{
 125        return tc_get_cycles32(&clksrc);
 126}
 127
 128#ifdef CONFIG_GENERIC_CLOCKEVENTS
 129
 130struct tc_clkevt_device {
 131        struct clock_event_device       clkevt;
 132        struct clk                      *clk;
 133        void __iomem                    *regs;
 134};
 135
 136static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
 137{
 138        return container_of(clkevt, struct tc_clkevt_device, clkevt);
 139}
 140
 141/* For now, we always use the 32K clock ... this optimizes for NO_HZ,
 142 * because using one of the divided clocks would usually mean the
 143 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
 144 *
 145 * A divided clock could be good for high resolution timers, since
 146 * 30.5 usec resolution can seem "low".
 147 */
 148static u32 timer_clock;
 149
 150static int tc_shutdown(struct clock_event_device *d)
 151{
 152        struct tc_clkevt_device *tcd = to_tc_clkevt(d);
 153        void __iomem            *regs = tcd->regs;
 154
 155        writel(0xff, regs + ATMEL_TC_REG(2, IDR));
 156        writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
 157        if (!clockevent_state_detached(d))
 158                clk_disable(tcd->clk);
 159
 160        return 0;
 161}
 162
 163static int tc_set_oneshot(struct clock_event_device *d)
 164{
 165        struct tc_clkevt_device *tcd = to_tc_clkevt(d);
 166        void __iomem            *regs = tcd->regs;
 167
 168        if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
 169                tc_shutdown(d);
 170
 171        clk_enable(tcd->clk);
 172
 173        /* slow clock, count up to RC, then irq and stop */
 174        writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
 175                     ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
 176        writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
 177
 178        /* set_next_event() configures and starts the timer */
 179        return 0;
 180}
 181
 182static int tc_set_periodic(struct clock_event_device *d)
 183{
 184        struct tc_clkevt_device *tcd = to_tc_clkevt(d);
 185        void __iomem            *regs = tcd->regs;
 186
 187        if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
 188                tc_shutdown(d);
 189
 190        /* By not making the gentime core emulate periodic mode on top
 191         * of oneshot, we get lower overhead and improved accuracy.
 192         */
 193        clk_enable(tcd->clk);
 194
 195        /* slow clock, count up to RC, then irq and restart */
 196        writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
 197                     regs + ATMEL_TC_REG(2, CMR));
 198        writel((32768 + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
 199
 200        /* Enable clock and interrupts on RC compare */
 201        writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
 202
 203        /* go go gadget! */
 204        writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
 205                     ATMEL_TC_REG(2, CCR));
 206        return 0;
 207}
 208
 209static int tc_next_event(unsigned long delta, struct clock_event_device *d)
 210{
 211        writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC));
 212
 213        /* go go gadget! */
 214        writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
 215                        tcaddr + ATMEL_TC_REG(2, CCR));
 216        return 0;
 217}
 218
 219static struct tc_clkevt_device clkevt = {
 220        .clkevt = {
 221                .features               = CLOCK_EVT_FEAT_PERIODIC |
 222                                          CLOCK_EVT_FEAT_ONESHOT,
 223                /* Should be lower than at91rm9200's system timer */
 224                .rating                 = 125,
 225                .set_next_event         = tc_next_event,
 226                .set_state_shutdown     = tc_shutdown,
 227                .set_state_periodic     = tc_set_periodic,
 228                .set_state_oneshot      = tc_set_oneshot,
 229        },
 230};
 231
 232static irqreturn_t ch2_irq(int irq, void *handle)
 233{
 234        struct tc_clkevt_device *dev = handle;
 235        unsigned int            sr;
 236
 237        sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR));
 238        if (sr & ATMEL_TC_CPCS) {
 239                dev->clkevt.event_handler(&dev->clkevt);
 240                return IRQ_HANDLED;
 241        }
 242
 243        return IRQ_NONE;
 244}
 245
 246static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
 247{
 248        int ret;
 249        struct clk *t2_clk = tc->clk[2];
 250        int irq = tc->irq[2];
 251
 252        ret = clk_prepare_enable(tc->slow_clk);
 253        if (ret)
 254                return ret;
 255
 256        /* try to enable t2 clk to avoid future errors in mode change */
 257        ret = clk_prepare_enable(t2_clk);
 258        if (ret) {
 259                clk_disable_unprepare(tc->slow_clk);
 260                return ret;
 261        }
 262
 263        clk_disable(t2_clk);
 264
 265        clkevt.regs = tc->regs;
 266        clkevt.clk = t2_clk;
 267
 268        timer_clock = clk32k_divisor_idx;
 269
 270        clkevt.clkevt.cpumask = cpumask_of(0);
 271
 272        ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
 273        if (ret) {
 274                clk_unprepare(t2_clk);
 275                clk_disable_unprepare(tc->slow_clk);
 276                return ret;
 277        }
 278
 279        clockevents_config_and_register(&clkevt.clkevt, 32768, 1, 0xffff);
 280
 281        return ret;
 282}
 283
 284#else /* !CONFIG_GENERIC_CLOCKEVENTS */
 285
 286static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
 287{
 288        /* NOTHING */
 289        return 0;
 290}
 291
 292#endif
 293
 294static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
 295{
 296        /* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
 297        writel(mck_divisor_idx                  /* likely divide-by-8 */
 298                        | ATMEL_TC_WAVE
 299                        | ATMEL_TC_WAVESEL_UP           /* free-run */
 300                        | ATMEL_TC_ACPA_SET             /* TIOA0 rises at 0 */
 301                        | ATMEL_TC_ACPC_CLEAR,          /* (duty cycle 50%) */
 302                        tcaddr + ATMEL_TC_REG(0, CMR));
 303        writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
 304        writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
 305        writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));    /* no irqs */
 306        writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
 307
 308        /* channel 1:  waveform mode, input TIOA0 */
 309        writel(ATMEL_TC_XC1                     /* input: TIOA0 */
 310                        | ATMEL_TC_WAVE
 311                        | ATMEL_TC_WAVESEL_UP,          /* free-run */
 312                        tcaddr + ATMEL_TC_REG(1, CMR));
 313        writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));    /* no irqs */
 314        writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
 315
 316        /* chain channel 0 to channel 1*/
 317        writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
 318        /* then reset all the timers */
 319        writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
 320}
 321
 322static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
 323{
 324        /* channel 0:  waveform mode, input mclk/8 */
 325        writel(mck_divisor_idx                  /* likely divide-by-8 */
 326                        | ATMEL_TC_WAVE
 327                        | ATMEL_TC_WAVESEL_UP,          /* free-run */
 328                        tcaddr + ATMEL_TC_REG(0, CMR));
 329        writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));    /* no irqs */
 330        writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
 331
 332        /* then reset all the timers */
 333        writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
 334}
 335
 336static const u8 atmel_tcb_divisors[5] = { 2, 8, 32, 128, 0, };
 337
 338static const struct of_device_id atmel_tcb_of_match[] = {
 339        { .compatible = "atmel,at91rm9200-tcb", .data = (void *)16, },
 340        { .compatible = "atmel,at91sam9x5-tcb", .data = (void *)32, },
 341        { /* sentinel */ }
 342};
 343
 344static int __init tcb_clksrc_init(struct device_node *node)
 345{
 346        struct atmel_tc tc;
 347        struct clk *t0_clk;
 348        const struct of_device_id *match;
 349        u64 (*tc_sched_clock)(void);
 350        u32 rate, divided_rate = 0;
 351        int best_divisor_idx = -1;
 352        int clk32k_divisor_idx = -1;
 353        int bits;
 354        int i;
 355        int ret;
 356
 357        /* Protect against multiple calls */
 358        if (tcaddr)
 359                return 0;
 360
 361        tc.regs = of_iomap(node->parent, 0);
 362        if (!tc.regs)
 363                return -ENXIO;
 364
 365        t0_clk = of_clk_get_by_name(node->parent, "t0_clk");
 366        if (IS_ERR(t0_clk))
 367                return PTR_ERR(t0_clk);
 368
 369        tc.slow_clk = of_clk_get_by_name(node->parent, "slow_clk");
 370        if (IS_ERR(tc.slow_clk))
 371                return PTR_ERR(tc.slow_clk);
 372
 373        tc.clk[0] = t0_clk;
 374        tc.clk[1] = of_clk_get_by_name(node->parent, "t1_clk");
 375        if (IS_ERR(tc.clk[1]))
 376                tc.clk[1] = t0_clk;
 377        tc.clk[2] = of_clk_get_by_name(node->parent, "t2_clk");
 378        if (IS_ERR(tc.clk[2]))
 379                tc.clk[2] = t0_clk;
 380
 381        tc.irq[2] = of_irq_get(node->parent, 2);
 382        if (tc.irq[2] <= 0) {
 383                tc.irq[2] = of_irq_get(node->parent, 0);
 384                if (tc.irq[2] <= 0)
 385                        return -EINVAL;
 386        }
 387
 388        match = of_match_node(atmel_tcb_of_match, node->parent);
 389        bits = (uintptr_t)match->data;
 390
 391        for (i = 0; i < ARRAY_SIZE(tc.irq); i++)
 392                writel(ATMEL_TC_ALL_IRQ, tc.regs + ATMEL_TC_REG(i, IDR));
 393
 394        ret = clk_prepare_enable(t0_clk);
 395        if (ret) {
 396                pr_debug("can't enable T0 clk\n");
 397                return ret;
 398        }
 399
 400        /* How fast will we be counting?  Pick something over 5 MHz.  */
 401        rate = (u32) clk_get_rate(t0_clk);
 402        for (i = 0; i < ARRAY_SIZE(atmel_tcb_divisors); i++) {
 403                unsigned divisor = atmel_tcb_divisors[i];
 404                unsigned tmp;
 405
 406                /* remember 32 KiHz clock for later */
 407                if (!divisor) {
 408                        clk32k_divisor_idx = i;
 409                        continue;
 410                }
 411
 412                tmp = rate / divisor;
 413                pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
 414                if (best_divisor_idx > 0) {
 415                        if (tmp < 5 * 1000 * 1000)
 416                                continue;
 417                }
 418                divided_rate = tmp;
 419                best_divisor_idx = i;
 420        }
 421
 422        clksrc.name = kbasename(node->parent->full_name);
 423        clkevt.clkevt.name = kbasename(node->parent->full_name);
 424        pr_debug("%s at %d.%03d MHz\n", clksrc.name, divided_rate / 1000000,
 425                        ((divided_rate % 1000000) + 500) / 1000);
 426
 427        tcaddr = tc.regs;
 428
 429        if (bits == 32) {
 430                /* use apropriate function to read 32 bit counter */
 431                clksrc.read = tc_get_cycles32;
 432                /* setup ony channel 0 */
 433                tcb_setup_single_chan(&tc, best_divisor_idx);
 434                tc_sched_clock = tc_sched_clock_read32;
 435        } else {
 436                /* we have three clocks no matter what the
 437                 * underlying platform supports.
 438                 */
 439                ret = clk_prepare_enable(tc.clk[1]);
 440                if (ret) {
 441                        pr_debug("can't enable T1 clk\n");
 442                        goto err_disable_t0;
 443                }
 444                /* setup both channel 0 & 1 */
 445                tcb_setup_dual_chan(&tc, best_divisor_idx);
 446                tc_sched_clock = tc_sched_clock_read;
 447        }
 448
 449        /* and away we go! */
 450        ret = clocksource_register_hz(&clksrc, divided_rate);
 451        if (ret)
 452                goto err_disable_t1;
 453
 454        /* channel 2:  periodic and oneshot timer support */
 455        ret = setup_clkevents(&tc, clk32k_divisor_idx);
 456        if (ret)
 457                goto err_unregister_clksrc;
 458
 459        sched_clock_register(tc_sched_clock, 32, divided_rate);
 460
 461        return 0;
 462
 463err_unregister_clksrc:
 464        clocksource_unregister(&clksrc);
 465
 466err_disable_t1:
 467        if (bits != 32)
 468                clk_disable_unprepare(tc.clk[1]);
 469
 470err_disable_t0:
 471        clk_disable_unprepare(t0_clk);
 472
 473        tcaddr = NULL;
 474
 475        return ret;
 476}
 477TIMER_OF_DECLARE(atmel_tcb_clksrc, "atmel,tcb-timer", tcb_clksrc_init);
 478