linux/drivers/cpufreq/cppc_cpufreq.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * CPPC (Collaborative Processor Performance Control) driver for
   4 * interfacing with the CPUfreq layer and governors. See
   5 * cppc_acpi.c for CPPC specific methods.
   6 *
   7 * (C) Copyright 2014, 2015 Linaro Ltd.
   8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
   9 */
  10
  11#define pr_fmt(fmt)     "CPPC Cpufreq:" fmt
  12
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/delay.h>
  16#include <linux/cpu.h>
  17#include <linux/cpufreq.h>
  18#include <linux/dmi.h>
  19#include <linux/time.h>
  20#include <linux/vmalloc.h>
  21
  22#include <asm/unaligned.h>
  23
  24#include <acpi/cppc_acpi.h>
  25
  26/* Minimum struct length needed for the DMI processor entry we want */
  27#define DMI_ENTRY_PROCESSOR_MIN_LENGTH  48
  28
  29/* Offest in the DMI processor structure for the max frequency */
  30#define DMI_PROCESSOR_MAX_SPEED  0x14
  31
  32/*
  33 * These structs contain information parsed from per CPU
  34 * ACPI _CPC structures.
  35 * e.g. For each CPU the highest, lowest supported
  36 * performance capabilities, desired performance level
  37 * requested etc.
  38 */
  39static struct cppc_cpudata **all_cpu_data;
  40
  41struct cppc_workaround_oem_info {
  42        char oem_id[ACPI_OEM_ID_SIZE +1];
  43        char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
  44        u32 oem_revision;
  45};
  46
  47static bool apply_hisi_workaround;
  48
  49static struct cppc_workaround_oem_info wa_info[] = {
  50        {
  51                .oem_id         = "HISI  ",
  52                .oem_table_id   = "HIP07   ",
  53                .oem_revision   = 0,
  54        }, {
  55                .oem_id         = "HISI  ",
  56                .oem_table_id   = "HIP08   ",
  57                .oem_revision   = 0,
  58        }
  59};
  60
  61static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
  62                                        unsigned int perf);
  63
  64/*
  65 * HISI platform does not support delivered performance counter and
  66 * reference performance counter. It can calculate the performance using the
  67 * platform specific mechanism. We reuse the desired performance register to
  68 * store the real performance calculated by the platform.
  69 */
  70static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpunum)
  71{
  72        struct cppc_cpudata *cpudata = all_cpu_data[cpunum];
  73        u64 desired_perf;
  74        int ret;
  75
  76        ret = cppc_get_desired_perf(cpunum, &desired_perf);
  77        if (ret < 0)
  78                return -EIO;
  79
  80        return cppc_cpufreq_perf_to_khz(cpudata, desired_perf);
  81}
  82
  83static void cppc_check_hisi_workaround(void)
  84{
  85        struct acpi_table_header *tbl;
  86        acpi_status status = AE_OK;
  87        int i;
  88
  89        status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
  90        if (ACPI_FAILURE(status) || !tbl)
  91                return;
  92
  93        for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
  94                if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
  95                    !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
  96                    wa_info[i].oem_revision == tbl->oem_revision)
  97                        apply_hisi_workaround = true;
  98        }
  99}
 100
 101/* Callback function used to retrieve the max frequency from DMI */
 102static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
 103{
 104        const u8 *dmi_data = (const u8 *)dm;
 105        u16 *mhz = (u16 *)private;
 106
 107        if (dm->type == DMI_ENTRY_PROCESSOR &&
 108            dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
 109                u16 val = (u16)get_unaligned((const u16 *)
 110                                (dmi_data + DMI_PROCESSOR_MAX_SPEED));
 111                *mhz = val > *mhz ? val : *mhz;
 112        }
 113}
 114
 115/* Look up the max frequency in DMI */
 116static u64 cppc_get_dmi_max_khz(void)
 117{
 118        u16 mhz = 0;
 119
 120        dmi_walk(cppc_find_dmi_mhz, &mhz);
 121
 122        /*
 123         * Real stupid fallback value, just in case there is no
 124         * actual value set.
 125         */
 126        mhz = mhz ? mhz : 1;
 127
 128        return (1000 * mhz);
 129}
 130
 131/*
 132 * If CPPC lowest_freq and nominal_freq registers are exposed then we can
 133 * use them to convert perf to freq and vice versa
 134 *
 135 * If the perf/freq point lies between Nominal and Lowest, we can treat
 136 * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
 137 * and extrapolate the rest
 138 * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
 139 */
 140static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
 141                                        unsigned int perf)
 142{
 143        static u64 max_khz;
 144        struct cppc_perf_caps *caps = &cpu->perf_caps;
 145        u64 mul, div;
 146
 147        if (caps->lowest_freq && caps->nominal_freq) {
 148                if (perf >= caps->nominal_perf) {
 149                        mul = caps->nominal_freq;
 150                        div = caps->nominal_perf;
 151                } else {
 152                        mul = caps->nominal_freq - caps->lowest_freq;
 153                        div = caps->nominal_perf - caps->lowest_perf;
 154                }
 155        } else {
 156                if (!max_khz)
 157                        max_khz = cppc_get_dmi_max_khz();
 158                mul = max_khz;
 159                div = cpu->perf_caps.highest_perf;
 160        }
 161        return (u64)perf * mul / div;
 162}
 163
 164static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu,
 165                                        unsigned int freq)
 166{
 167        static u64 max_khz;
 168        struct cppc_perf_caps *caps = &cpu->perf_caps;
 169        u64  mul, div;
 170
 171        if (caps->lowest_freq && caps->nominal_freq) {
 172                if (freq >= caps->nominal_freq) {
 173                        mul = caps->nominal_perf;
 174                        div = caps->nominal_freq;
 175                } else {
 176                        mul = caps->lowest_perf;
 177                        div = caps->lowest_freq;
 178                }
 179        } else {
 180                if (!max_khz)
 181                        max_khz = cppc_get_dmi_max_khz();
 182                mul = cpu->perf_caps.highest_perf;
 183                div = max_khz;
 184        }
 185
 186        return (u64)freq * mul / div;
 187}
 188
 189static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
 190                unsigned int target_freq,
 191                unsigned int relation)
 192{
 193        struct cppc_cpudata *cpu;
 194        struct cpufreq_freqs freqs;
 195        u32 desired_perf;
 196        int ret = 0;
 197
 198        cpu = all_cpu_data[policy->cpu];
 199
 200        desired_perf = cppc_cpufreq_khz_to_perf(cpu, target_freq);
 201        /* Return if it is exactly the same perf */
 202        if (desired_perf == cpu->perf_ctrls.desired_perf)
 203                return ret;
 204
 205        cpu->perf_ctrls.desired_perf = desired_perf;
 206        freqs.old = policy->cur;
 207        freqs.new = target_freq;
 208
 209        cpufreq_freq_transition_begin(policy, &freqs);
 210        ret = cppc_set_perf(cpu->cpu, &cpu->perf_ctrls);
 211        cpufreq_freq_transition_end(policy, &freqs, ret != 0);
 212
 213        if (ret)
 214                pr_debug("Failed to set target on CPU:%d. ret:%d\n",
 215                                cpu->cpu, ret);
 216
 217        return ret;
 218}
 219
 220static int cppc_verify_policy(struct cpufreq_policy *policy)
 221{
 222        cpufreq_verify_within_cpu_limits(policy);
 223        return 0;
 224}
 225
 226static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
 227{
 228        int cpu_num = policy->cpu;
 229        struct cppc_cpudata *cpu = all_cpu_data[cpu_num];
 230        int ret;
 231
 232        cpu->perf_ctrls.desired_perf = cpu->perf_caps.lowest_perf;
 233
 234        ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
 235        if (ret)
 236                pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
 237                                cpu->perf_caps.lowest_perf, cpu_num, ret);
 238}
 239
 240/*
 241 * The PCC subspace describes the rate at which platform can accept commands
 242 * on the shared PCC channel (including READs which do not count towards freq
 243 * trasition requests), so ideally we need to use the PCC values as a fallback
 244 * if we don't have a platform specific transition_delay_us
 245 */
 246#ifdef CONFIG_ARM64
 247#include <asm/cputype.h>
 248
 249static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
 250{
 251        unsigned long implementor = read_cpuid_implementor();
 252        unsigned long part_num = read_cpuid_part_number();
 253        unsigned int delay_us = 0;
 254
 255        switch (implementor) {
 256        case ARM_CPU_IMP_QCOM:
 257                switch (part_num) {
 258                case QCOM_CPU_PART_FALKOR_V1:
 259                case QCOM_CPU_PART_FALKOR:
 260                        delay_us = 10000;
 261                        break;
 262                default:
 263                        delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
 264                        break;
 265                }
 266                break;
 267        default:
 268                delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
 269                break;
 270        }
 271
 272        return delay_us;
 273}
 274
 275#else
 276
 277static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
 278{
 279        return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
 280}
 281#endif
 282
 283static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
 284{
 285        struct cppc_cpudata *cpu;
 286        unsigned int cpu_num = policy->cpu;
 287        int ret = 0;
 288
 289        cpu = all_cpu_data[policy->cpu];
 290
 291        cpu->cpu = cpu_num;
 292        ret = cppc_get_perf_caps(policy->cpu, &cpu->perf_caps);
 293
 294        if (ret) {
 295                pr_debug("Err reading CPU%d perf capabilities. ret:%d\n",
 296                                cpu_num, ret);
 297                return ret;
 298        }
 299
 300        /* Convert the lowest and nominal freq from MHz to KHz */
 301        cpu->perf_caps.lowest_freq *= 1000;
 302        cpu->perf_caps.nominal_freq *= 1000;
 303
 304        /*
 305         * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
 306         * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
 307         */
 308        policy->min = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_nonlinear_perf);
 309        policy->max = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
 310
 311        /*
 312         * Set cpuinfo.min_freq to Lowest to make the full range of performance
 313         * available if userspace wants to use any perf between lowest & lowest
 314         * nonlinear perf
 315         */
 316        policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_perf);
 317        policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
 318
 319        policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu_num);
 320        policy->shared_type = cpu->shared_type;
 321
 322        if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
 323                int i;
 324
 325                cpumask_copy(policy->cpus, cpu->shared_cpu_map);
 326
 327                for_each_cpu(i, policy->cpus) {
 328                        if (unlikely(i == policy->cpu))
 329                                continue;
 330
 331                        memcpy(&all_cpu_data[i]->perf_caps, &cpu->perf_caps,
 332                               sizeof(cpu->perf_caps));
 333                }
 334        } else if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL) {
 335                /* Support only SW_ANY for now. */
 336                pr_debug("Unsupported CPU co-ord type\n");
 337                return -EFAULT;
 338        }
 339
 340        cpu->cur_policy = policy;
 341
 342        /* Set policy->cur to max now. The governors will adjust later. */
 343        policy->cur = cppc_cpufreq_perf_to_khz(cpu,
 344                                        cpu->perf_caps.highest_perf);
 345        cpu->perf_ctrls.desired_perf = cpu->perf_caps.highest_perf;
 346
 347        ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
 348        if (ret)
 349                pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
 350                                cpu->perf_caps.highest_perf, cpu_num, ret);
 351
 352        return ret;
 353}
 354
 355static inline u64 get_delta(u64 t1, u64 t0)
 356{
 357        if (t1 > t0 || t0 > ~(u32)0)
 358                return t1 - t0;
 359
 360        return (u32)t1 - (u32)t0;
 361}
 362
 363static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu,
 364                                     struct cppc_perf_fb_ctrs fb_ctrs_t0,
 365                                     struct cppc_perf_fb_ctrs fb_ctrs_t1)
 366{
 367        u64 delta_reference, delta_delivered;
 368        u64 reference_perf, delivered_perf;
 369
 370        reference_perf = fb_ctrs_t0.reference_perf;
 371
 372        delta_reference = get_delta(fb_ctrs_t1.reference,
 373                                    fb_ctrs_t0.reference);
 374        delta_delivered = get_delta(fb_ctrs_t1.delivered,
 375                                    fb_ctrs_t0.delivered);
 376
 377        /* Check to avoid divide-by zero */
 378        if (delta_reference || delta_delivered)
 379                delivered_perf = (reference_perf * delta_delivered) /
 380                                        delta_reference;
 381        else
 382                delivered_perf = cpu->perf_ctrls.desired_perf;
 383
 384        return cppc_cpufreq_perf_to_khz(cpu, delivered_perf);
 385}
 386
 387static unsigned int cppc_cpufreq_get_rate(unsigned int cpunum)
 388{
 389        struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
 390        struct cppc_cpudata *cpu = all_cpu_data[cpunum];
 391        int ret;
 392
 393        if (apply_hisi_workaround)
 394                return hisi_cppc_cpufreq_get_rate(cpunum);
 395
 396        ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t0);
 397        if (ret)
 398                return ret;
 399
 400        udelay(2); /* 2usec delay between sampling */
 401
 402        ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t1);
 403        if (ret)
 404                return ret;
 405
 406        return cppc_get_rate_from_fbctrs(cpu, fb_ctrs_t0, fb_ctrs_t1);
 407}
 408
 409static struct cpufreq_driver cppc_cpufreq_driver = {
 410        .flags = CPUFREQ_CONST_LOOPS,
 411        .verify = cppc_verify_policy,
 412        .target = cppc_cpufreq_set_target,
 413        .get = cppc_cpufreq_get_rate,
 414        .init = cppc_cpufreq_cpu_init,
 415        .stop_cpu = cppc_cpufreq_stop_cpu,
 416        .name = "cppc_cpufreq",
 417};
 418
 419static int __init cppc_cpufreq_init(void)
 420{
 421        int i, ret = 0;
 422        struct cppc_cpudata *cpu;
 423
 424        if (acpi_disabled)
 425                return -ENODEV;
 426
 427        all_cpu_data = kcalloc(num_possible_cpus(), sizeof(void *),
 428                               GFP_KERNEL);
 429        if (!all_cpu_data)
 430                return -ENOMEM;
 431
 432        for_each_possible_cpu(i) {
 433                all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
 434                if (!all_cpu_data[i])
 435                        goto out;
 436
 437                cpu = all_cpu_data[i];
 438                if (!zalloc_cpumask_var(&cpu->shared_cpu_map, GFP_KERNEL))
 439                        goto out;
 440        }
 441
 442        ret = acpi_get_psd_map(all_cpu_data);
 443        if (ret) {
 444                pr_debug("Error parsing PSD data. Aborting cpufreq registration.\n");
 445                goto out;
 446        }
 447
 448        cppc_check_hisi_workaround();
 449
 450        ret = cpufreq_register_driver(&cppc_cpufreq_driver);
 451        if (ret)
 452                goto out;
 453
 454        return ret;
 455
 456out:
 457        for_each_possible_cpu(i) {
 458                cpu = all_cpu_data[i];
 459                if (!cpu)
 460                        break;
 461                free_cpumask_var(cpu->shared_cpu_map);
 462                kfree(cpu);
 463        }
 464
 465        kfree(all_cpu_data);
 466        return -ENODEV;
 467}
 468
 469static void __exit cppc_cpufreq_exit(void)
 470{
 471        struct cppc_cpudata *cpu;
 472        int i;
 473
 474        cpufreq_unregister_driver(&cppc_cpufreq_driver);
 475
 476        for_each_possible_cpu(i) {
 477                cpu = all_cpu_data[i];
 478                free_cpumask_var(cpu->shared_cpu_map);
 479                kfree(cpu);
 480        }
 481
 482        kfree(all_cpu_data);
 483}
 484
 485module_exit(cppc_cpufreq_exit);
 486MODULE_AUTHOR("Ashwin Chaugule");
 487MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
 488MODULE_LICENSE("GPL");
 489
 490late_initcall(cppc_cpufreq_init);
 491
 492static const struct acpi_device_id cppc_acpi_ids[] __used = {
 493        {ACPI_PROCESSOR_DEVICE_HID, },
 494        {}
 495};
 496
 497MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
 498