linux/drivers/cpufreq/intel_pstate.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * intel_pstate.c: Native P state management for Intel processors
   4 *
   5 * (C) Copyright 2012 Intel Corporation
   6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/kernel_stat.h>
  13#include <linux/module.h>
  14#include <linux/ktime.h>
  15#include <linux/hrtimer.h>
  16#include <linux/tick.h>
  17#include <linux/slab.h>
  18#include <linux/sched/cpufreq.h>
  19#include <linux/list.h>
  20#include <linux/cpu.h>
  21#include <linux/cpufreq.h>
  22#include <linux/sysfs.h>
  23#include <linux/types.h>
  24#include <linux/fs.h>
  25#include <linux/acpi.h>
  26#include <linux/vmalloc.h>
  27#include <trace/events/power.h>
  28
  29#include <asm/div64.h>
  30#include <asm/msr.h>
  31#include <asm/cpu_device_id.h>
  32#include <asm/cpufeature.h>
  33#include <asm/intel-family.h>
  34
  35#define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
  36
  37#define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
  38#define INTEL_CPUFREQ_TRANSITION_DELAY          500
  39
  40#ifdef CONFIG_ACPI
  41#include <acpi/processor.h>
  42#include <acpi/cppc_acpi.h>
  43#endif
  44
  45#define FRAC_BITS 8
  46#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
  47#define fp_toint(X) ((X) >> FRAC_BITS)
  48
  49#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
  50
  51#define EXT_BITS 6
  52#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
  53#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
  54#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
  55
  56static inline int32_t mul_fp(int32_t x, int32_t y)
  57{
  58        return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
  59}
  60
  61static inline int32_t div_fp(s64 x, s64 y)
  62{
  63        return div64_s64((int64_t)x << FRAC_BITS, y);
  64}
  65
  66static inline int ceiling_fp(int32_t x)
  67{
  68        int mask, ret;
  69
  70        ret = fp_toint(x);
  71        mask = (1 << FRAC_BITS) - 1;
  72        if (x & mask)
  73                ret += 1;
  74        return ret;
  75}
  76
  77static inline int32_t percent_fp(int percent)
  78{
  79        return div_fp(percent, 100);
  80}
  81
  82static inline u64 mul_ext_fp(u64 x, u64 y)
  83{
  84        return (x * y) >> EXT_FRAC_BITS;
  85}
  86
  87static inline u64 div_ext_fp(u64 x, u64 y)
  88{
  89        return div64_u64(x << EXT_FRAC_BITS, y);
  90}
  91
  92static inline int32_t percent_ext_fp(int percent)
  93{
  94        return div_ext_fp(percent, 100);
  95}
  96
  97/**
  98 * struct sample -      Store performance sample
  99 * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
 100 *                      performance during last sample period
 101 * @busy_scaled:        Scaled busy value which is used to calculate next
 102 *                      P state. This can be different than core_avg_perf
 103 *                      to account for cpu idle period
 104 * @aperf:              Difference of actual performance frequency clock count
 105 *                      read from APERF MSR between last and current sample
 106 * @mperf:              Difference of maximum performance frequency clock count
 107 *                      read from MPERF MSR between last and current sample
 108 * @tsc:                Difference of time stamp counter between last and
 109 *                      current sample
 110 * @time:               Current time from scheduler
 111 *
 112 * This structure is used in the cpudata structure to store performance sample
 113 * data for choosing next P State.
 114 */
 115struct sample {
 116        int32_t core_avg_perf;
 117        int32_t busy_scaled;
 118        u64 aperf;
 119        u64 mperf;
 120        u64 tsc;
 121        u64 time;
 122};
 123
 124/**
 125 * struct pstate_data - Store P state data
 126 * @current_pstate:     Current requested P state
 127 * @min_pstate:         Min P state possible for this platform
 128 * @max_pstate:         Max P state possible for this platform
 129 * @max_pstate_physical:This is physical Max P state for a processor
 130 *                      This can be higher than the max_pstate which can
 131 *                      be limited by platform thermal design power limits
 132 * @scaling:            Scaling factor to  convert frequency to cpufreq
 133 *                      frequency units
 134 * @turbo_pstate:       Max Turbo P state possible for this platform
 135 * @max_freq:           @max_pstate frequency in cpufreq units
 136 * @turbo_freq:         @turbo_pstate frequency in cpufreq units
 137 *
 138 * Stores the per cpu model P state limits and current P state.
 139 */
 140struct pstate_data {
 141        int     current_pstate;
 142        int     min_pstate;
 143        int     max_pstate;
 144        int     max_pstate_physical;
 145        int     scaling;
 146        int     turbo_pstate;
 147        unsigned int max_freq;
 148        unsigned int turbo_freq;
 149};
 150
 151/**
 152 * struct vid_data -    Stores voltage information data
 153 * @min:                VID data for this platform corresponding to
 154 *                      the lowest P state
 155 * @max:                VID data corresponding to the highest P State.
 156 * @turbo:              VID data for turbo P state
 157 * @ratio:              Ratio of (vid max - vid min) /
 158 *                      (max P state - Min P State)
 159 *
 160 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 161 * This data is used in Atom platforms, where in addition to target P state,
 162 * the voltage data needs to be specified to select next P State.
 163 */
 164struct vid_data {
 165        int min;
 166        int max;
 167        int turbo;
 168        int32_t ratio;
 169};
 170
 171/**
 172 * struct global_params - Global parameters, mostly tunable via sysfs.
 173 * @no_turbo:           Whether or not to use turbo P-states.
 174 * @turbo_disabled:     Whethet or not turbo P-states are available at all,
 175 *                      based on the MSR_IA32_MISC_ENABLE value and whether or
 176 *                      not the maximum reported turbo P-state is different from
 177 *                      the maximum reported non-turbo one.
 178 * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
 179 * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
 180 *                      P-state capacity.
 181 * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
 182 *                      P-state capacity.
 183 */
 184struct global_params {
 185        bool no_turbo;
 186        bool turbo_disabled;
 187        bool turbo_disabled_mf;
 188        int max_perf_pct;
 189        int min_perf_pct;
 190};
 191
 192/**
 193 * struct cpudata -     Per CPU instance data storage
 194 * @cpu:                CPU number for this instance data
 195 * @policy:             CPUFreq policy value
 196 * @update_util:        CPUFreq utility callback information
 197 * @update_util_set:    CPUFreq utility callback is set
 198 * @iowait_boost:       iowait-related boost fraction
 199 * @last_update:        Time of the last update.
 200 * @pstate:             Stores P state limits for this CPU
 201 * @vid:                Stores VID limits for this CPU
 202 * @last_sample_time:   Last Sample time
 203 * @aperf_mperf_shift:  Number of clock cycles after aperf, merf is incremented
 204 *                      This shift is a multiplier to mperf delta to
 205 *                      calculate CPU busy.
 206 * @prev_aperf:         Last APERF value read from APERF MSR
 207 * @prev_mperf:         Last MPERF value read from MPERF MSR
 208 * @prev_tsc:           Last timestamp counter (TSC) value
 209 * @prev_cummulative_iowait: IO Wait time difference from last and
 210 *                      current sample
 211 * @sample:             Storage for storing last Sample data
 212 * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
 213 * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
 214 * @acpi_perf_data:     Stores ACPI perf information read from _PSS
 215 * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
 216 * @epp_powersave:      Last saved HWP energy performance preference
 217 *                      (EPP) or energy performance bias (EPB),
 218 *                      when policy switched to performance
 219 * @epp_policy:         Last saved policy used to set EPP/EPB
 220 * @epp_default:        Power on default HWP energy performance
 221 *                      preference/bias
 222 * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
 223 *                      operation
 224 * @hwp_req_cached:     Cached value of the last HWP Request MSR
 225 * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
 226 * @last_io_update:     Last time when IO wake flag was set
 227 * @sched_flags:        Store scheduler flags for possible cross CPU update
 228 * @hwp_boost_min:      Last HWP boosted min performance
 229 *
 230 * This structure stores per CPU instance data for all CPUs.
 231 */
 232struct cpudata {
 233        int cpu;
 234
 235        unsigned int policy;
 236        struct update_util_data update_util;
 237        bool   update_util_set;
 238
 239        struct pstate_data pstate;
 240        struct vid_data vid;
 241
 242        u64     last_update;
 243        u64     last_sample_time;
 244        u64     aperf_mperf_shift;
 245        u64     prev_aperf;
 246        u64     prev_mperf;
 247        u64     prev_tsc;
 248        u64     prev_cummulative_iowait;
 249        struct sample sample;
 250        int32_t min_perf_ratio;
 251        int32_t max_perf_ratio;
 252#ifdef CONFIG_ACPI
 253        struct acpi_processor_performance acpi_perf_data;
 254        bool valid_pss_table;
 255#endif
 256        unsigned int iowait_boost;
 257        s16 epp_powersave;
 258        s16 epp_policy;
 259        s16 epp_default;
 260        s16 epp_saved;
 261        u64 hwp_req_cached;
 262        u64 hwp_cap_cached;
 263        u64 last_io_update;
 264        unsigned int sched_flags;
 265        u32 hwp_boost_min;
 266};
 267
 268static struct cpudata **all_cpu_data;
 269
 270/**
 271 * struct pstate_funcs - Per CPU model specific callbacks
 272 * @get_max:            Callback to get maximum non turbo effective P state
 273 * @get_max_physical:   Callback to get maximum non turbo physical P state
 274 * @get_min:            Callback to get minimum P state
 275 * @get_turbo:          Callback to get turbo P state
 276 * @get_scaling:        Callback to get frequency scaling factor
 277 * @get_val:            Callback to convert P state to actual MSR write value
 278 * @get_vid:            Callback to get VID data for Atom platforms
 279 *
 280 * Core and Atom CPU models have different way to get P State limits. This
 281 * structure is used to store those callbacks.
 282 */
 283struct pstate_funcs {
 284        int (*get_max)(void);
 285        int (*get_max_physical)(void);
 286        int (*get_min)(void);
 287        int (*get_turbo)(void);
 288        int (*get_scaling)(void);
 289        int (*get_aperf_mperf_shift)(void);
 290        u64 (*get_val)(struct cpudata*, int pstate);
 291        void (*get_vid)(struct cpudata *);
 292};
 293
 294static struct pstate_funcs pstate_funcs __read_mostly;
 295
 296static int hwp_active __read_mostly;
 297static int hwp_mode_bdw __read_mostly;
 298static bool per_cpu_limits __read_mostly;
 299static bool hwp_boost __read_mostly;
 300
 301static struct cpufreq_driver *intel_pstate_driver __read_mostly;
 302
 303#ifdef CONFIG_ACPI
 304static bool acpi_ppc;
 305#endif
 306
 307static struct global_params global;
 308
 309static DEFINE_MUTEX(intel_pstate_driver_lock);
 310static DEFINE_MUTEX(intel_pstate_limits_lock);
 311
 312#ifdef CONFIG_ACPI
 313
 314static bool intel_pstate_acpi_pm_profile_server(void)
 315{
 316        if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
 317            acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
 318                return true;
 319
 320        return false;
 321}
 322
 323static bool intel_pstate_get_ppc_enable_status(void)
 324{
 325        if (intel_pstate_acpi_pm_profile_server())
 326                return true;
 327
 328        return acpi_ppc;
 329}
 330
 331#ifdef CONFIG_ACPI_CPPC_LIB
 332
 333/* The work item is needed to avoid CPU hotplug locking issues */
 334static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
 335{
 336        sched_set_itmt_support();
 337}
 338
 339static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
 340
 341static void intel_pstate_set_itmt_prio(int cpu)
 342{
 343        struct cppc_perf_caps cppc_perf;
 344        static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
 345        int ret;
 346
 347        ret = cppc_get_perf_caps(cpu, &cppc_perf);
 348        if (ret)
 349                return;
 350
 351        /*
 352         * The priorities can be set regardless of whether or not
 353         * sched_set_itmt_support(true) has been called and it is valid to
 354         * update them at any time after it has been called.
 355         */
 356        sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
 357
 358        if (max_highest_perf <= min_highest_perf) {
 359                if (cppc_perf.highest_perf > max_highest_perf)
 360                        max_highest_perf = cppc_perf.highest_perf;
 361
 362                if (cppc_perf.highest_perf < min_highest_perf)
 363                        min_highest_perf = cppc_perf.highest_perf;
 364
 365                if (max_highest_perf > min_highest_perf) {
 366                        /*
 367                         * This code can be run during CPU online under the
 368                         * CPU hotplug locks, so sched_set_itmt_support()
 369                         * cannot be called from here.  Queue up a work item
 370                         * to invoke it.
 371                         */
 372                        schedule_work(&sched_itmt_work);
 373                }
 374        }
 375}
 376
 377static int intel_pstate_get_cppc_guranteed(int cpu)
 378{
 379        struct cppc_perf_caps cppc_perf;
 380        int ret;
 381
 382        ret = cppc_get_perf_caps(cpu, &cppc_perf);
 383        if (ret)
 384                return ret;
 385
 386        if (cppc_perf.guaranteed_perf)
 387                return cppc_perf.guaranteed_perf;
 388
 389        return cppc_perf.nominal_perf;
 390}
 391
 392#else /* CONFIG_ACPI_CPPC_LIB */
 393static void intel_pstate_set_itmt_prio(int cpu)
 394{
 395}
 396#endif /* CONFIG_ACPI_CPPC_LIB */
 397
 398static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 399{
 400        struct cpudata *cpu;
 401        int ret;
 402        int i;
 403
 404        if (hwp_active) {
 405                intel_pstate_set_itmt_prio(policy->cpu);
 406                return;
 407        }
 408
 409        if (!intel_pstate_get_ppc_enable_status())
 410                return;
 411
 412        cpu = all_cpu_data[policy->cpu];
 413
 414        ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
 415                                                  policy->cpu);
 416        if (ret)
 417                return;
 418
 419        /*
 420         * Check if the control value in _PSS is for PERF_CTL MSR, which should
 421         * guarantee that the states returned by it map to the states in our
 422         * list directly.
 423         */
 424        if (cpu->acpi_perf_data.control_register.space_id !=
 425                                                ACPI_ADR_SPACE_FIXED_HARDWARE)
 426                goto err;
 427
 428        /*
 429         * If there is only one entry _PSS, simply ignore _PSS and continue as
 430         * usual without taking _PSS into account
 431         */
 432        if (cpu->acpi_perf_data.state_count < 2)
 433                goto err;
 434
 435        pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
 436        for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
 437                pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
 438                         (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
 439                         (u32) cpu->acpi_perf_data.states[i].core_frequency,
 440                         (u32) cpu->acpi_perf_data.states[i].power,
 441                         (u32) cpu->acpi_perf_data.states[i].control);
 442        }
 443
 444        /*
 445         * The _PSS table doesn't contain whole turbo frequency range.
 446         * This just contains +1 MHZ above the max non turbo frequency,
 447         * with control value corresponding to max turbo ratio. But
 448         * when cpufreq set policy is called, it will call with this
 449         * max frequency, which will cause a reduced performance as
 450         * this driver uses real max turbo frequency as the max
 451         * frequency. So correct this frequency in _PSS table to
 452         * correct max turbo frequency based on the turbo state.
 453         * Also need to convert to MHz as _PSS freq is in MHz.
 454         */
 455        if (!global.turbo_disabled)
 456                cpu->acpi_perf_data.states[0].core_frequency =
 457                                        policy->cpuinfo.max_freq / 1000;
 458        cpu->valid_pss_table = true;
 459        pr_debug("_PPC limits will be enforced\n");
 460
 461        return;
 462
 463 err:
 464        cpu->valid_pss_table = false;
 465        acpi_processor_unregister_performance(policy->cpu);
 466}
 467
 468static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 469{
 470        struct cpudata *cpu;
 471
 472        cpu = all_cpu_data[policy->cpu];
 473        if (!cpu->valid_pss_table)
 474                return;
 475
 476        acpi_processor_unregister_performance(policy->cpu);
 477}
 478#else /* CONFIG_ACPI */
 479static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 480{
 481}
 482
 483static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 484{
 485}
 486
 487static inline bool intel_pstate_acpi_pm_profile_server(void)
 488{
 489        return false;
 490}
 491#endif /* CONFIG_ACPI */
 492
 493#ifndef CONFIG_ACPI_CPPC_LIB
 494static int intel_pstate_get_cppc_guranteed(int cpu)
 495{
 496        return -ENOTSUPP;
 497}
 498#endif /* CONFIG_ACPI_CPPC_LIB */
 499
 500static inline void update_turbo_state(void)
 501{
 502        u64 misc_en;
 503        struct cpudata *cpu;
 504
 505        cpu = all_cpu_data[0];
 506        rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
 507        global.turbo_disabled =
 508                (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
 509                 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
 510}
 511
 512static int min_perf_pct_min(void)
 513{
 514        struct cpudata *cpu = all_cpu_data[0];
 515        int turbo_pstate = cpu->pstate.turbo_pstate;
 516
 517        return turbo_pstate ?
 518                (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
 519}
 520
 521static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
 522{
 523        u64 epb;
 524        int ret;
 525
 526        if (!boot_cpu_has(X86_FEATURE_EPB))
 527                return -ENXIO;
 528
 529        ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 530        if (ret)
 531                return (s16)ret;
 532
 533        return (s16)(epb & 0x0f);
 534}
 535
 536static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
 537{
 538        s16 epp;
 539
 540        if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 541                /*
 542                 * When hwp_req_data is 0, means that caller didn't read
 543                 * MSR_HWP_REQUEST, so need to read and get EPP.
 544                 */
 545                if (!hwp_req_data) {
 546                        epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
 547                                            &hwp_req_data);
 548                        if (epp)
 549                                return epp;
 550                }
 551                epp = (hwp_req_data >> 24) & 0xff;
 552        } else {
 553                /* When there is no EPP present, HWP uses EPB settings */
 554                epp = intel_pstate_get_epb(cpu_data);
 555        }
 556
 557        return epp;
 558}
 559
 560static int intel_pstate_set_epb(int cpu, s16 pref)
 561{
 562        u64 epb;
 563        int ret;
 564
 565        if (!boot_cpu_has(X86_FEATURE_EPB))
 566                return -ENXIO;
 567
 568        ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 569        if (ret)
 570                return ret;
 571
 572        epb = (epb & ~0x0f) | pref;
 573        wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
 574
 575        return 0;
 576}
 577
 578/*
 579 * EPP/EPB display strings corresponding to EPP index in the
 580 * energy_perf_strings[]
 581 *      index           String
 582 *-------------------------------------
 583 *      0               default
 584 *      1               performance
 585 *      2               balance_performance
 586 *      3               balance_power
 587 *      4               power
 588 */
 589static const char * const energy_perf_strings[] = {
 590        "default",
 591        "performance",
 592        "balance_performance",
 593        "balance_power",
 594        "power",
 595        NULL
 596};
 597static const unsigned int epp_values[] = {
 598        HWP_EPP_PERFORMANCE,
 599        HWP_EPP_BALANCE_PERFORMANCE,
 600        HWP_EPP_BALANCE_POWERSAVE,
 601        HWP_EPP_POWERSAVE
 602};
 603
 604static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
 605{
 606        s16 epp;
 607        int index = -EINVAL;
 608
 609        epp = intel_pstate_get_epp(cpu_data, 0);
 610        if (epp < 0)
 611                return epp;
 612
 613        if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 614                if (epp == HWP_EPP_PERFORMANCE)
 615                        return 1;
 616                if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
 617                        return 2;
 618                if (epp <= HWP_EPP_BALANCE_POWERSAVE)
 619                        return 3;
 620                else
 621                        return 4;
 622        } else if (boot_cpu_has(X86_FEATURE_EPB)) {
 623                /*
 624                 * Range:
 625                 *      0x00-0x03       :       Performance
 626                 *      0x04-0x07       :       Balance performance
 627                 *      0x08-0x0B       :       Balance power
 628                 *      0x0C-0x0F       :       Power
 629                 * The EPB is a 4 bit value, but our ranges restrict the
 630                 * value which can be set. Here only using top two bits
 631                 * effectively.
 632                 */
 633                index = (epp >> 2) + 1;
 634        }
 635
 636        return index;
 637}
 638
 639static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
 640                                              int pref_index)
 641{
 642        int epp = -EINVAL;
 643        int ret;
 644
 645        if (!pref_index)
 646                epp = cpu_data->epp_default;
 647
 648        mutex_lock(&intel_pstate_limits_lock);
 649
 650        if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 651                u64 value;
 652
 653                ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
 654                if (ret)
 655                        goto return_pref;
 656
 657                value &= ~GENMASK_ULL(31, 24);
 658
 659                if (epp == -EINVAL)
 660                        epp = epp_values[pref_index - 1];
 661
 662                value |= (u64)epp << 24;
 663                ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
 664        } else {
 665                if (epp == -EINVAL)
 666                        epp = (pref_index - 1) << 2;
 667                ret = intel_pstate_set_epb(cpu_data->cpu, epp);
 668        }
 669return_pref:
 670        mutex_unlock(&intel_pstate_limits_lock);
 671
 672        return ret;
 673}
 674
 675static ssize_t show_energy_performance_available_preferences(
 676                                struct cpufreq_policy *policy, char *buf)
 677{
 678        int i = 0;
 679        int ret = 0;
 680
 681        while (energy_perf_strings[i] != NULL)
 682                ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
 683
 684        ret += sprintf(&buf[ret], "\n");
 685
 686        return ret;
 687}
 688
 689cpufreq_freq_attr_ro(energy_performance_available_preferences);
 690
 691static ssize_t store_energy_performance_preference(
 692                struct cpufreq_policy *policy, const char *buf, size_t count)
 693{
 694        struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 695        char str_preference[21];
 696        int ret;
 697
 698        ret = sscanf(buf, "%20s", str_preference);
 699        if (ret != 1)
 700                return -EINVAL;
 701
 702        ret = match_string(energy_perf_strings, -1, str_preference);
 703        if (ret < 0)
 704                return ret;
 705
 706        intel_pstate_set_energy_pref_index(cpu_data, ret);
 707        return count;
 708}
 709
 710static ssize_t show_energy_performance_preference(
 711                                struct cpufreq_policy *policy, char *buf)
 712{
 713        struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 714        int preference;
 715
 716        preference = intel_pstate_get_energy_pref_index(cpu_data);
 717        if (preference < 0)
 718                return preference;
 719
 720        return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
 721}
 722
 723cpufreq_freq_attr_rw(energy_performance_preference);
 724
 725static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
 726{
 727        struct cpudata *cpu;
 728        u64 cap;
 729        int ratio;
 730
 731        ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
 732        if (ratio <= 0) {
 733                rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
 734                ratio = HWP_GUARANTEED_PERF(cap);
 735        }
 736
 737        cpu = all_cpu_data[policy->cpu];
 738
 739        return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
 740}
 741
 742cpufreq_freq_attr_ro(base_frequency);
 743
 744static struct freq_attr *hwp_cpufreq_attrs[] = {
 745        &energy_performance_preference,
 746        &energy_performance_available_preferences,
 747        &base_frequency,
 748        NULL,
 749};
 750
 751static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
 752                                     int *current_max)
 753{
 754        u64 cap;
 755
 756        rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
 757        WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
 758        if (global.no_turbo)
 759                *current_max = HWP_GUARANTEED_PERF(cap);
 760        else
 761                *current_max = HWP_HIGHEST_PERF(cap);
 762
 763        *phy_max = HWP_HIGHEST_PERF(cap);
 764}
 765
 766static void intel_pstate_hwp_set(unsigned int cpu)
 767{
 768        struct cpudata *cpu_data = all_cpu_data[cpu];
 769        int max, min;
 770        u64 value;
 771        s16 epp;
 772
 773        max = cpu_data->max_perf_ratio;
 774        min = cpu_data->min_perf_ratio;
 775
 776        if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
 777                min = max;
 778
 779        rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
 780
 781        value &= ~HWP_MIN_PERF(~0L);
 782        value |= HWP_MIN_PERF(min);
 783
 784        value &= ~HWP_MAX_PERF(~0L);
 785        value |= HWP_MAX_PERF(max);
 786
 787        if (cpu_data->epp_policy == cpu_data->policy)
 788                goto skip_epp;
 789
 790        cpu_data->epp_policy = cpu_data->policy;
 791
 792        if (cpu_data->epp_saved >= 0) {
 793                epp = cpu_data->epp_saved;
 794                cpu_data->epp_saved = -EINVAL;
 795                goto update_epp;
 796        }
 797
 798        if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
 799                epp = intel_pstate_get_epp(cpu_data, value);
 800                cpu_data->epp_powersave = epp;
 801                /* If EPP read was failed, then don't try to write */
 802                if (epp < 0)
 803                        goto skip_epp;
 804
 805                epp = 0;
 806        } else {
 807                /* skip setting EPP, when saved value is invalid */
 808                if (cpu_data->epp_powersave < 0)
 809                        goto skip_epp;
 810
 811                /*
 812                 * No need to restore EPP when it is not zero. This
 813                 * means:
 814                 *  - Policy is not changed
 815                 *  - user has manually changed
 816                 *  - Error reading EPB
 817                 */
 818                epp = intel_pstate_get_epp(cpu_data, value);
 819                if (epp)
 820                        goto skip_epp;
 821
 822                epp = cpu_data->epp_powersave;
 823        }
 824update_epp:
 825        if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 826                value &= ~GENMASK_ULL(31, 24);
 827                value |= (u64)epp << 24;
 828        } else {
 829                intel_pstate_set_epb(cpu, epp);
 830        }
 831skip_epp:
 832        WRITE_ONCE(cpu_data->hwp_req_cached, value);
 833        wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
 834}
 835
 836static void intel_pstate_hwp_force_min_perf(int cpu)
 837{
 838        u64 value;
 839        int min_perf;
 840
 841        value = all_cpu_data[cpu]->hwp_req_cached;
 842        value &= ~GENMASK_ULL(31, 0);
 843        min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
 844
 845        /* Set hwp_max = hwp_min */
 846        value |= HWP_MAX_PERF(min_perf);
 847        value |= HWP_MIN_PERF(min_perf);
 848
 849        /* Set EPP/EPB to min */
 850        if (boot_cpu_has(X86_FEATURE_HWP_EPP))
 851                value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
 852        else
 853                intel_pstate_set_epb(cpu, HWP_EPP_BALANCE_POWERSAVE);
 854
 855        wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
 856}
 857
 858static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
 859{
 860        struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 861
 862        if (!hwp_active)
 863                return 0;
 864
 865        cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
 866
 867        return 0;
 868}
 869
 870static void intel_pstate_hwp_enable(struct cpudata *cpudata);
 871
 872static int intel_pstate_resume(struct cpufreq_policy *policy)
 873{
 874        if (!hwp_active)
 875                return 0;
 876
 877        mutex_lock(&intel_pstate_limits_lock);
 878
 879        if (policy->cpu == 0)
 880                intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
 881
 882        all_cpu_data[policy->cpu]->epp_policy = 0;
 883        intel_pstate_hwp_set(policy->cpu);
 884
 885        mutex_unlock(&intel_pstate_limits_lock);
 886
 887        return 0;
 888}
 889
 890static void intel_pstate_update_policies(void)
 891{
 892        int cpu;
 893
 894        for_each_possible_cpu(cpu)
 895                cpufreq_update_policy(cpu);
 896}
 897
 898static void intel_pstate_update_max_freq(unsigned int cpu)
 899{
 900        struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
 901        struct cpudata *cpudata;
 902
 903        if (!policy)
 904                return;
 905
 906        cpudata = all_cpu_data[cpu];
 907        policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
 908                        cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
 909
 910        refresh_frequency_limits(policy);
 911
 912        cpufreq_cpu_release(policy);
 913}
 914
 915static void intel_pstate_update_limits(unsigned int cpu)
 916{
 917        mutex_lock(&intel_pstate_driver_lock);
 918
 919        update_turbo_state();
 920        /*
 921         * If turbo has been turned on or off globally, policy limits for
 922         * all CPUs need to be updated to reflect that.
 923         */
 924        if (global.turbo_disabled_mf != global.turbo_disabled) {
 925                global.turbo_disabled_mf = global.turbo_disabled;
 926                for_each_possible_cpu(cpu)
 927                        intel_pstate_update_max_freq(cpu);
 928        } else {
 929                cpufreq_update_policy(cpu);
 930        }
 931
 932        mutex_unlock(&intel_pstate_driver_lock);
 933}
 934
 935/************************** sysfs begin ************************/
 936#define show_one(file_name, object)                                     \
 937        static ssize_t show_##file_name                                 \
 938        (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
 939        {                                                               \
 940                return sprintf(buf, "%u\n", global.object);             \
 941        }
 942
 943static ssize_t intel_pstate_show_status(char *buf);
 944static int intel_pstate_update_status(const char *buf, size_t size);
 945
 946static ssize_t show_status(struct kobject *kobj,
 947                           struct kobj_attribute *attr, char *buf)
 948{
 949        ssize_t ret;
 950
 951        mutex_lock(&intel_pstate_driver_lock);
 952        ret = intel_pstate_show_status(buf);
 953        mutex_unlock(&intel_pstate_driver_lock);
 954
 955        return ret;
 956}
 957
 958static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
 959                            const char *buf, size_t count)
 960{
 961        char *p = memchr(buf, '\n', count);
 962        int ret;
 963
 964        mutex_lock(&intel_pstate_driver_lock);
 965        ret = intel_pstate_update_status(buf, p ? p - buf : count);
 966        mutex_unlock(&intel_pstate_driver_lock);
 967
 968        return ret < 0 ? ret : count;
 969}
 970
 971static ssize_t show_turbo_pct(struct kobject *kobj,
 972                                struct kobj_attribute *attr, char *buf)
 973{
 974        struct cpudata *cpu;
 975        int total, no_turbo, turbo_pct;
 976        uint32_t turbo_fp;
 977
 978        mutex_lock(&intel_pstate_driver_lock);
 979
 980        if (!intel_pstate_driver) {
 981                mutex_unlock(&intel_pstate_driver_lock);
 982                return -EAGAIN;
 983        }
 984
 985        cpu = all_cpu_data[0];
 986
 987        total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
 988        no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
 989        turbo_fp = div_fp(no_turbo, total);
 990        turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
 991
 992        mutex_unlock(&intel_pstate_driver_lock);
 993
 994        return sprintf(buf, "%u\n", turbo_pct);
 995}
 996
 997static ssize_t show_num_pstates(struct kobject *kobj,
 998                                struct kobj_attribute *attr, char *buf)
 999{
1000        struct cpudata *cpu;
1001        int total;
1002
1003        mutex_lock(&intel_pstate_driver_lock);
1004
1005        if (!intel_pstate_driver) {
1006                mutex_unlock(&intel_pstate_driver_lock);
1007                return -EAGAIN;
1008        }
1009
1010        cpu = all_cpu_data[0];
1011        total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1012
1013        mutex_unlock(&intel_pstate_driver_lock);
1014
1015        return sprintf(buf, "%u\n", total);
1016}
1017
1018static ssize_t show_no_turbo(struct kobject *kobj,
1019                             struct kobj_attribute *attr, char *buf)
1020{
1021        ssize_t ret;
1022
1023        mutex_lock(&intel_pstate_driver_lock);
1024
1025        if (!intel_pstate_driver) {
1026                mutex_unlock(&intel_pstate_driver_lock);
1027                return -EAGAIN;
1028        }
1029
1030        update_turbo_state();
1031        if (global.turbo_disabled)
1032                ret = sprintf(buf, "%u\n", global.turbo_disabled);
1033        else
1034                ret = sprintf(buf, "%u\n", global.no_turbo);
1035
1036        mutex_unlock(&intel_pstate_driver_lock);
1037
1038        return ret;
1039}
1040
1041static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1042                              const char *buf, size_t count)
1043{
1044        unsigned int input;
1045        int ret;
1046
1047        ret = sscanf(buf, "%u", &input);
1048        if (ret != 1)
1049                return -EINVAL;
1050
1051        mutex_lock(&intel_pstate_driver_lock);
1052
1053        if (!intel_pstate_driver) {
1054                mutex_unlock(&intel_pstate_driver_lock);
1055                return -EAGAIN;
1056        }
1057
1058        mutex_lock(&intel_pstate_limits_lock);
1059
1060        update_turbo_state();
1061        if (global.turbo_disabled) {
1062                pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1063                mutex_unlock(&intel_pstate_limits_lock);
1064                mutex_unlock(&intel_pstate_driver_lock);
1065                return -EPERM;
1066        }
1067
1068        global.no_turbo = clamp_t(int, input, 0, 1);
1069
1070        if (global.no_turbo) {
1071                struct cpudata *cpu = all_cpu_data[0];
1072                int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1073
1074                /* Squash the global minimum into the permitted range. */
1075                if (global.min_perf_pct > pct)
1076                        global.min_perf_pct = pct;
1077        }
1078
1079        mutex_unlock(&intel_pstate_limits_lock);
1080
1081        intel_pstate_update_policies();
1082
1083        mutex_unlock(&intel_pstate_driver_lock);
1084
1085        return count;
1086}
1087
1088static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1089                                  const char *buf, size_t count)
1090{
1091        unsigned int input;
1092        int ret;
1093
1094        ret = sscanf(buf, "%u", &input);
1095        if (ret != 1)
1096                return -EINVAL;
1097
1098        mutex_lock(&intel_pstate_driver_lock);
1099
1100        if (!intel_pstate_driver) {
1101                mutex_unlock(&intel_pstate_driver_lock);
1102                return -EAGAIN;
1103        }
1104
1105        mutex_lock(&intel_pstate_limits_lock);
1106
1107        global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1108
1109        mutex_unlock(&intel_pstate_limits_lock);
1110
1111        intel_pstate_update_policies();
1112
1113        mutex_unlock(&intel_pstate_driver_lock);
1114
1115        return count;
1116}
1117
1118static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1119                                  const char *buf, size_t count)
1120{
1121        unsigned int input;
1122        int ret;
1123
1124        ret = sscanf(buf, "%u", &input);
1125        if (ret != 1)
1126                return -EINVAL;
1127
1128        mutex_lock(&intel_pstate_driver_lock);
1129
1130        if (!intel_pstate_driver) {
1131                mutex_unlock(&intel_pstate_driver_lock);
1132                return -EAGAIN;
1133        }
1134
1135        mutex_lock(&intel_pstate_limits_lock);
1136
1137        global.min_perf_pct = clamp_t(int, input,
1138                                      min_perf_pct_min(), global.max_perf_pct);
1139
1140        mutex_unlock(&intel_pstate_limits_lock);
1141
1142        intel_pstate_update_policies();
1143
1144        mutex_unlock(&intel_pstate_driver_lock);
1145
1146        return count;
1147}
1148
1149static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1150                                struct kobj_attribute *attr, char *buf)
1151{
1152        return sprintf(buf, "%u\n", hwp_boost);
1153}
1154
1155static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1156                                       struct kobj_attribute *b,
1157                                       const char *buf, size_t count)
1158{
1159        unsigned int input;
1160        int ret;
1161
1162        ret = kstrtouint(buf, 10, &input);
1163        if (ret)
1164                return ret;
1165
1166        mutex_lock(&intel_pstate_driver_lock);
1167        hwp_boost = !!input;
1168        intel_pstate_update_policies();
1169        mutex_unlock(&intel_pstate_driver_lock);
1170
1171        return count;
1172}
1173
1174show_one(max_perf_pct, max_perf_pct);
1175show_one(min_perf_pct, min_perf_pct);
1176
1177define_one_global_rw(status);
1178define_one_global_rw(no_turbo);
1179define_one_global_rw(max_perf_pct);
1180define_one_global_rw(min_perf_pct);
1181define_one_global_ro(turbo_pct);
1182define_one_global_ro(num_pstates);
1183define_one_global_rw(hwp_dynamic_boost);
1184
1185static struct attribute *intel_pstate_attributes[] = {
1186        &status.attr,
1187        &no_turbo.attr,
1188        &turbo_pct.attr,
1189        &num_pstates.attr,
1190        NULL
1191};
1192
1193static const struct attribute_group intel_pstate_attr_group = {
1194        .attrs = intel_pstate_attributes,
1195};
1196
1197static void __init intel_pstate_sysfs_expose_params(void)
1198{
1199        struct kobject *intel_pstate_kobject;
1200        int rc;
1201
1202        intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1203                                                &cpu_subsys.dev_root->kobj);
1204        if (WARN_ON(!intel_pstate_kobject))
1205                return;
1206
1207        rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1208        if (WARN_ON(rc))
1209                return;
1210
1211        /*
1212         * If per cpu limits are enforced there are no global limits, so
1213         * return without creating max/min_perf_pct attributes
1214         */
1215        if (per_cpu_limits)
1216                return;
1217
1218        rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1219        WARN_ON(rc);
1220
1221        rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1222        WARN_ON(rc);
1223
1224        if (hwp_active) {
1225                rc = sysfs_create_file(intel_pstate_kobject,
1226                                       &hwp_dynamic_boost.attr);
1227                WARN_ON(rc);
1228        }
1229}
1230/************************** sysfs end ************************/
1231
1232static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1233{
1234        /* First disable HWP notification interrupt as we don't process them */
1235        if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1236                wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1237
1238        wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1239        cpudata->epp_policy = 0;
1240        if (cpudata->epp_default == -EINVAL)
1241                cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1242}
1243
1244#define MSR_IA32_POWER_CTL_BIT_EE       19
1245
1246/* Disable energy efficiency optimization */
1247static void intel_pstate_disable_ee(int cpu)
1248{
1249        u64 power_ctl;
1250        int ret;
1251
1252        ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1253        if (ret)
1254                return;
1255
1256        if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1257                pr_info("Disabling energy efficiency optimization\n");
1258                power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1259                wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1260        }
1261}
1262
1263static int atom_get_min_pstate(void)
1264{
1265        u64 value;
1266
1267        rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1268        return (value >> 8) & 0x7F;
1269}
1270
1271static int atom_get_max_pstate(void)
1272{
1273        u64 value;
1274
1275        rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1276        return (value >> 16) & 0x7F;
1277}
1278
1279static int atom_get_turbo_pstate(void)
1280{
1281        u64 value;
1282
1283        rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1284        return value & 0x7F;
1285}
1286
1287static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1288{
1289        u64 val;
1290        int32_t vid_fp;
1291        u32 vid;
1292
1293        val = (u64)pstate << 8;
1294        if (global.no_turbo && !global.turbo_disabled)
1295                val |= (u64)1 << 32;
1296
1297        vid_fp = cpudata->vid.min + mul_fp(
1298                int_tofp(pstate - cpudata->pstate.min_pstate),
1299                cpudata->vid.ratio);
1300
1301        vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1302        vid = ceiling_fp(vid_fp);
1303
1304        if (pstate > cpudata->pstate.max_pstate)
1305                vid = cpudata->vid.turbo;
1306
1307        return val | vid;
1308}
1309
1310static int silvermont_get_scaling(void)
1311{
1312        u64 value;
1313        int i;
1314        /* Defined in Table 35-6 from SDM (Sept 2015) */
1315        static int silvermont_freq_table[] = {
1316                83300, 100000, 133300, 116700, 80000};
1317
1318        rdmsrl(MSR_FSB_FREQ, value);
1319        i = value & 0x7;
1320        WARN_ON(i > 4);
1321
1322        return silvermont_freq_table[i];
1323}
1324
1325static int airmont_get_scaling(void)
1326{
1327        u64 value;
1328        int i;
1329        /* Defined in Table 35-10 from SDM (Sept 2015) */
1330        static int airmont_freq_table[] = {
1331                83300, 100000, 133300, 116700, 80000,
1332                93300, 90000, 88900, 87500};
1333
1334        rdmsrl(MSR_FSB_FREQ, value);
1335        i = value & 0xF;
1336        WARN_ON(i > 8);
1337
1338        return airmont_freq_table[i];
1339}
1340
1341static void atom_get_vid(struct cpudata *cpudata)
1342{
1343        u64 value;
1344
1345        rdmsrl(MSR_ATOM_CORE_VIDS, value);
1346        cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1347        cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1348        cpudata->vid.ratio = div_fp(
1349                cpudata->vid.max - cpudata->vid.min,
1350                int_tofp(cpudata->pstate.max_pstate -
1351                        cpudata->pstate.min_pstate));
1352
1353        rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1354        cpudata->vid.turbo = value & 0x7f;
1355}
1356
1357static int core_get_min_pstate(void)
1358{
1359        u64 value;
1360
1361        rdmsrl(MSR_PLATFORM_INFO, value);
1362        return (value >> 40) & 0xFF;
1363}
1364
1365static int core_get_max_pstate_physical(void)
1366{
1367        u64 value;
1368
1369        rdmsrl(MSR_PLATFORM_INFO, value);
1370        return (value >> 8) & 0xFF;
1371}
1372
1373static int core_get_tdp_ratio(u64 plat_info)
1374{
1375        /* Check how many TDP levels present */
1376        if (plat_info & 0x600000000) {
1377                u64 tdp_ctrl;
1378                u64 tdp_ratio;
1379                int tdp_msr;
1380                int err;
1381
1382                /* Get the TDP level (0, 1, 2) to get ratios */
1383                err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1384                if (err)
1385                        return err;
1386
1387                /* TDP MSR are continuous starting at 0x648 */
1388                tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1389                err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1390                if (err)
1391                        return err;
1392
1393                /* For level 1 and 2, bits[23:16] contain the ratio */
1394                if (tdp_ctrl & 0x03)
1395                        tdp_ratio >>= 16;
1396
1397                tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1398                pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1399
1400                return (int)tdp_ratio;
1401        }
1402
1403        return -ENXIO;
1404}
1405
1406static int core_get_max_pstate(void)
1407{
1408        u64 tar;
1409        u64 plat_info;
1410        int max_pstate;
1411        int tdp_ratio;
1412        int err;
1413
1414        rdmsrl(MSR_PLATFORM_INFO, plat_info);
1415        max_pstate = (plat_info >> 8) & 0xFF;
1416
1417        tdp_ratio = core_get_tdp_ratio(plat_info);
1418        if (tdp_ratio <= 0)
1419                return max_pstate;
1420
1421        if (hwp_active) {
1422                /* Turbo activation ratio is not used on HWP platforms */
1423                return tdp_ratio;
1424        }
1425
1426        err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1427        if (!err) {
1428                int tar_levels;
1429
1430                /* Do some sanity checking for safety */
1431                tar_levels = tar & 0xff;
1432                if (tdp_ratio - 1 == tar_levels) {
1433                        max_pstate = tar_levels;
1434                        pr_debug("max_pstate=TAC %x\n", max_pstate);
1435                }
1436        }
1437
1438        return max_pstate;
1439}
1440
1441static int core_get_turbo_pstate(void)
1442{
1443        u64 value;
1444        int nont, ret;
1445
1446        rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1447        nont = core_get_max_pstate();
1448        ret = (value) & 255;
1449        if (ret <= nont)
1450                ret = nont;
1451        return ret;
1452}
1453
1454static inline int core_get_scaling(void)
1455{
1456        return 100000;
1457}
1458
1459static u64 core_get_val(struct cpudata *cpudata, int pstate)
1460{
1461        u64 val;
1462
1463        val = (u64)pstate << 8;
1464        if (global.no_turbo && !global.turbo_disabled)
1465                val |= (u64)1 << 32;
1466
1467        return val;
1468}
1469
1470static int knl_get_aperf_mperf_shift(void)
1471{
1472        return 10;
1473}
1474
1475static int knl_get_turbo_pstate(void)
1476{
1477        u64 value;
1478        int nont, ret;
1479
1480        rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1481        nont = core_get_max_pstate();
1482        ret = (((value) >> 8) & 0xFF);
1483        if (ret <= nont)
1484                ret = nont;
1485        return ret;
1486}
1487
1488static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1489{
1490        trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1491        cpu->pstate.current_pstate = pstate;
1492        /*
1493         * Generally, there is no guarantee that this code will always run on
1494         * the CPU being updated, so force the register update to run on the
1495         * right CPU.
1496         */
1497        wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1498                      pstate_funcs.get_val(cpu, pstate));
1499}
1500
1501static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1502{
1503        intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1504}
1505
1506static void intel_pstate_max_within_limits(struct cpudata *cpu)
1507{
1508        int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1509
1510        update_turbo_state();
1511        intel_pstate_set_pstate(cpu, pstate);
1512}
1513
1514static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1515{
1516        cpu->pstate.min_pstate = pstate_funcs.get_min();
1517        cpu->pstate.max_pstate = pstate_funcs.get_max();
1518        cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1519        cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1520        cpu->pstate.scaling = pstate_funcs.get_scaling();
1521        cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1522
1523        if (hwp_active && !hwp_mode_bdw) {
1524                unsigned int phy_max, current_max;
1525
1526                intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1527                cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1528        } else {
1529                cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1530        }
1531
1532        if (pstate_funcs.get_aperf_mperf_shift)
1533                cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1534
1535        if (pstate_funcs.get_vid)
1536                pstate_funcs.get_vid(cpu);
1537
1538        intel_pstate_set_min_pstate(cpu);
1539}
1540
1541/*
1542 * Long hold time will keep high perf limits for long time,
1543 * which negatively impacts perf/watt for some workloads,
1544 * like specpower. 3ms is based on experiements on some
1545 * workoads.
1546 */
1547static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1548
1549static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1550{
1551        u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1552        u32 max_limit = (hwp_req & 0xff00) >> 8;
1553        u32 min_limit = (hwp_req & 0xff);
1554        u32 boost_level1;
1555
1556        /*
1557         * Cases to consider (User changes via sysfs or boot time):
1558         * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1559         *      No boost, return.
1560         * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1561         *     Should result in one level boost only for P0.
1562         * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1563         *     Should result in two level boost:
1564         *         (min + p1)/2 and P1.
1565         * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1566         *     Should result in three level boost:
1567         *        (min + p1)/2, P1 and P0.
1568         */
1569
1570        /* If max and min are equal or already at max, nothing to boost */
1571        if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1572                return;
1573
1574        if (!cpu->hwp_boost_min)
1575                cpu->hwp_boost_min = min_limit;
1576
1577        /* level at half way mark between min and guranteed */
1578        boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1579
1580        if (cpu->hwp_boost_min < boost_level1)
1581                cpu->hwp_boost_min = boost_level1;
1582        else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1583                cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1584        else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1585                 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1586                cpu->hwp_boost_min = max_limit;
1587        else
1588                return;
1589
1590        hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1591        wrmsrl(MSR_HWP_REQUEST, hwp_req);
1592        cpu->last_update = cpu->sample.time;
1593}
1594
1595static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1596{
1597        if (cpu->hwp_boost_min) {
1598                bool expired;
1599
1600                /* Check if we are idle for hold time to boost down */
1601                expired = time_after64(cpu->sample.time, cpu->last_update +
1602                                       hwp_boost_hold_time_ns);
1603                if (expired) {
1604                        wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1605                        cpu->hwp_boost_min = 0;
1606                }
1607        }
1608        cpu->last_update = cpu->sample.time;
1609}
1610
1611static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1612                                                      u64 time)
1613{
1614        cpu->sample.time = time;
1615
1616        if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1617                bool do_io = false;
1618
1619                cpu->sched_flags = 0;
1620                /*
1621                 * Set iowait_boost flag and update time. Since IO WAIT flag
1622                 * is set all the time, we can't just conclude that there is
1623                 * some IO bound activity is scheduled on this CPU with just
1624                 * one occurrence. If we receive at least two in two
1625                 * consecutive ticks, then we treat as boost candidate.
1626                 */
1627                if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1628                        do_io = true;
1629
1630                cpu->last_io_update = time;
1631
1632                if (do_io)
1633                        intel_pstate_hwp_boost_up(cpu);
1634
1635        } else {
1636                intel_pstate_hwp_boost_down(cpu);
1637        }
1638}
1639
1640static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1641                                                u64 time, unsigned int flags)
1642{
1643        struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1644
1645        cpu->sched_flags |= flags;
1646
1647        if (smp_processor_id() == cpu->cpu)
1648                intel_pstate_update_util_hwp_local(cpu, time);
1649}
1650
1651static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1652{
1653        struct sample *sample = &cpu->sample;
1654
1655        sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1656}
1657
1658static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1659{
1660        u64 aperf, mperf;
1661        unsigned long flags;
1662        u64 tsc;
1663
1664        local_irq_save(flags);
1665        rdmsrl(MSR_IA32_APERF, aperf);
1666        rdmsrl(MSR_IA32_MPERF, mperf);
1667        tsc = rdtsc();
1668        if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1669                local_irq_restore(flags);
1670                return false;
1671        }
1672        local_irq_restore(flags);
1673
1674        cpu->last_sample_time = cpu->sample.time;
1675        cpu->sample.time = time;
1676        cpu->sample.aperf = aperf;
1677        cpu->sample.mperf = mperf;
1678        cpu->sample.tsc =  tsc;
1679        cpu->sample.aperf -= cpu->prev_aperf;
1680        cpu->sample.mperf -= cpu->prev_mperf;
1681        cpu->sample.tsc -= cpu->prev_tsc;
1682
1683        cpu->prev_aperf = aperf;
1684        cpu->prev_mperf = mperf;
1685        cpu->prev_tsc = tsc;
1686        /*
1687         * First time this function is invoked in a given cycle, all of the
1688         * previous sample data fields are equal to zero or stale and they must
1689         * be populated with meaningful numbers for things to work, so assume
1690         * that sample.time will always be reset before setting the utilization
1691         * update hook and make the caller skip the sample then.
1692         */
1693        if (cpu->last_sample_time) {
1694                intel_pstate_calc_avg_perf(cpu);
1695                return true;
1696        }
1697        return false;
1698}
1699
1700static inline int32_t get_avg_frequency(struct cpudata *cpu)
1701{
1702        return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1703}
1704
1705static inline int32_t get_avg_pstate(struct cpudata *cpu)
1706{
1707        return mul_ext_fp(cpu->pstate.max_pstate_physical,
1708                          cpu->sample.core_avg_perf);
1709}
1710
1711static inline int32_t get_target_pstate(struct cpudata *cpu)
1712{
1713        struct sample *sample = &cpu->sample;
1714        int32_t busy_frac;
1715        int target, avg_pstate;
1716
1717        busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1718                           sample->tsc);
1719
1720        if (busy_frac < cpu->iowait_boost)
1721                busy_frac = cpu->iowait_boost;
1722
1723        sample->busy_scaled = busy_frac * 100;
1724
1725        target = global.no_turbo || global.turbo_disabled ?
1726                        cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1727        target += target >> 2;
1728        target = mul_fp(target, busy_frac);
1729        if (target < cpu->pstate.min_pstate)
1730                target = cpu->pstate.min_pstate;
1731
1732        /*
1733         * If the average P-state during the previous cycle was higher than the
1734         * current target, add 50% of the difference to the target to reduce
1735         * possible performance oscillations and offset possible performance
1736         * loss related to moving the workload from one CPU to another within
1737         * a package/module.
1738         */
1739        avg_pstate = get_avg_pstate(cpu);
1740        if (avg_pstate > target)
1741                target += (avg_pstate - target) >> 1;
1742
1743        return target;
1744}
1745
1746static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1747{
1748        int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1749        int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1750
1751        return clamp_t(int, pstate, min_pstate, max_pstate);
1752}
1753
1754static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1755{
1756        if (pstate == cpu->pstate.current_pstate)
1757                return;
1758
1759        cpu->pstate.current_pstate = pstate;
1760        wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1761}
1762
1763static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1764{
1765        int from = cpu->pstate.current_pstate;
1766        struct sample *sample;
1767        int target_pstate;
1768
1769        update_turbo_state();
1770
1771        target_pstate = get_target_pstate(cpu);
1772        target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1773        trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1774        intel_pstate_update_pstate(cpu, target_pstate);
1775
1776        sample = &cpu->sample;
1777        trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1778                fp_toint(sample->busy_scaled),
1779                from,
1780                cpu->pstate.current_pstate,
1781                sample->mperf,
1782                sample->aperf,
1783                sample->tsc,
1784                get_avg_frequency(cpu),
1785                fp_toint(cpu->iowait_boost * 100));
1786}
1787
1788static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1789                                     unsigned int flags)
1790{
1791        struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1792        u64 delta_ns;
1793
1794        /* Don't allow remote callbacks */
1795        if (smp_processor_id() != cpu->cpu)
1796                return;
1797
1798        delta_ns = time - cpu->last_update;
1799        if (flags & SCHED_CPUFREQ_IOWAIT) {
1800                /* Start over if the CPU may have been idle. */
1801                if (delta_ns > TICK_NSEC) {
1802                        cpu->iowait_boost = ONE_EIGHTH_FP;
1803                } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1804                        cpu->iowait_boost <<= 1;
1805                        if (cpu->iowait_boost > int_tofp(1))
1806                                cpu->iowait_boost = int_tofp(1);
1807                } else {
1808                        cpu->iowait_boost = ONE_EIGHTH_FP;
1809                }
1810        } else if (cpu->iowait_boost) {
1811                /* Clear iowait_boost if the CPU may have been idle. */
1812                if (delta_ns > TICK_NSEC)
1813                        cpu->iowait_boost = 0;
1814                else
1815                        cpu->iowait_boost >>= 1;
1816        }
1817        cpu->last_update = time;
1818        delta_ns = time - cpu->sample.time;
1819        if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1820                return;
1821
1822        if (intel_pstate_sample(cpu, time))
1823                intel_pstate_adjust_pstate(cpu);
1824}
1825
1826static struct pstate_funcs core_funcs = {
1827        .get_max = core_get_max_pstate,
1828        .get_max_physical = core_get_max_pstate_physical,
1829        .get_min = core_get_min_pstate,
1830        .get_turbo = core_get_turbo_pstate,
1831        .get_scaling = core_get_scaling,
1832        .get_val = core_get_val,
1833};
1834
1835static const struct pstate_funcs silvermont_funcs = {
1836        .get_max = atom_get_max_pstate,
1837        .get_max_physical = atom_get_max_pstate,
1838        .get_min = atom_get_min_pstate,
1839        .get_turbo = atom_get_turbo_pstate,
1840        .get_val = atom_get_val,
1841        .get_scaling = silvermont_get_scaling,
1842        .get_vid = atom_get_vid,
1843};
1844
1845static const struct pstate_funcs airmont_funcs = {
1846        .get_max = atom_get_max_pstate,
1847        .get_max_physical = atom_get_max_pstate,
1848        .get_min = atom_get_min_pstate,
1849        .get_turbo = atom_get_turbo_pstate,
1850        .get_val = atom_get_val,
1851        .get_scaling = airmont_get_scaling,
1852        .get_vid = atom_get_vid,
1853};
1854
1855static const struct pstate_funcs knl_funcs = {
1856        .get_max = core_get_max_pstate,
1857        .get_max_physical = core_get_max_pstate_physical,
1858        .get_min = core_get_min_pstate,
1859        .get_turbo = knl_get_turbo_pstate,
1860        .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1861        .get_scaling = core_get_scaling,
1862        .get_val = core_get_val,
1863};
1864
1865#define ICPU(model, policy) \
1866        { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1867                        (unsigned long)&policy }
1868
1869static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1870        ICPU(INTEL_FAM6_SANDYBRIDGE,            core_funcs),
1871        ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_funcs),
1872        ICPU(INTEL_FAM6_ATOM_SILVERMONT,        silvermont_funcs),
1873        ICPU(INTEL_FAM6_IVYBRIDGE,              core_funcs),
1874        ICPU(INTEL_FAM6_HASWELL_CORE,           core_funcs),
1875        ICPU(INTEL_FAM6_BROADWELL_CORE,         core_funcs),
1876        ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_funcs),
1877        ICPU(INTEL_FAM6_HASWELL_X,              core_funcs),
1878        ICPU(INTEL_FAM6_HASWELL_ULT,            core_funcs),
1879        ICPU(INTEL_FAM6_HASWELL_GT3E,           core_funcs),
1880        ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_funcs),
1881        ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_funcs),
1882        ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_funcs),
1883        ICPU(INTEL_FAM6_BROADWELL_X,            core_funcs),
1884        ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_funcs),
1885        ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_funcs),
1886        ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_funcs),
1887        ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_funcs),
1888        ICPU(INTEL_FAM6_ATOM_GOLDMONT,          core_funcs),
1889        ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1890        ICPU(INTEL_FAM6_SKYLAKE_X,              core_funcs),
1891        {}
1892};
1893MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1894
1895static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1896        ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1897        ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1898        ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1899        {}
1900};
1901
1902static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1903        ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1904        {}
1905};
1906
1907static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1908        ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1909        ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1910        {}
1911};
1912
1913static int intel_pstate_init_cpu(unsigned int cpunum)
1914{
1915        struct cpudata *cpu;
1916
1917        cpu = all_cpu_data[cpunum];
1918
1919        if (!cpu) {
1920                cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1921                if (!cpu)
1922                        return -ENOMEM;
1923
1924                all_cpu_data[cpunum] = cpu;
1925
1926                cpu->epp_default = -EINVAL;
1927                cpu->epp_powersave = -EINVAL;
1928                cpu->epp_saved = -EINVAL;
1929        }
1930
1931        cpu = all_cpu_data[cpunum];
1932
1933        cpu->cpu = cpunum;
1934
1935        if (hwp_active) {
1936                const struct x86_cpu_id *id;
1937
1938                id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1939                if (id)
1940                        intel_pstate_disable_ee(cpunum);
1941
1942                intel_pstate_hwp_enable(cpu);
1943
1944                id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1945                if (id && intel_pstate_acpi_pm_profile_server())
1946                        hwp_boost = true;
1947        }
1948
1949        intel_pstate_get_cpu_pstates(cpu);
1950
1951        pr_debug("controlling: cpu %d\n", cpunum);
1952
1953        return 0;
1954}
1955
1956static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1957{
1958        struct cpudata *cpu = all_cpu_data[cpu_num];
1959
1960        if (hwp_active && !hwp_boost)
1961                return;
1962
1963        if (cpu->update_util_set)
1964                return;
1965
1966        /* Prevent intel_pstate_update_util() from using stale data. */
1967        cpu->sample.time = 0;
1968        cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1969                                     (hwp_active ?
1970                                      intel_pstate_update_util_hwp :
1971                                      intel_pstate_update_util));
1972        cpu->update_util_set = true;
1973}
1974
1975static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1976{
1977        struct cpudata *cpu_data = all_cpu_data[cpu];
1978
1979        if (!cpu_data->update_util_set)
1980                return;
1981
1982        cpufreq_remove_update_util_hook(cpu);
1983        cpu_data->update_util_set = false;
1984        synchronize_rcu();
1985}
1986
1987static int intel_pstate_get_max_freq(struct cpudata *cpu)
1988{
1989        return global.turbo_disabled || global.no_turbo ?
1990                        cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1991}
1992
1993static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1994                                            struct cpudata *cpu)
1995{
1996        int max_freq = intel_pstate_get_max_freq(cpu);
1997        int32_t max_policy_perf, min_policy_perf;
1998        int max_state, turbo_max;
1999
2000        /*
2001         * HWP needs some special consideration, because on BDX the
2002         * HWP_REQUEST uses abstract value to represent performance
2003         * rather than pure ratios.
2004         */
2005        if (hwp_active) {
2006                intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2007        } else {
2008                max_state = global.no_turbo || global.turbo_disabled ?
2009                        cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2010                turbo_max = cpu->pstate.turbo_pstate;
2011        }
2012
2013        max_policy_perf = max_state * policy->max / max_freq;
2014        if (policy->max == policy->min) {
2015                min_policy_perf = max_policy_perf;
2016        } else {
2017                min_policy_perf = max_state * policy->min / max_freq;
2018                min_policy_perf = clamp_t(int32_t, min_policy_perf,
2019                                          0, max_policy_perf);
2020        }
2021
2022        pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2023                 policy->cpu, max_state,
2024                 min_policy_perf, max_policy_perf);
2025
2026        /* Normalize user input to [min_perf, max_perf] */
2027        if (per_cpu_limits) {
2028                cpu->min_perf_ratio = min_policy_perf;
2029                cpu->max_perf_ratio = max_policy_perf;
2030        } else {
2031                int32_t global_min, global_max;
2032
2033                /* Global limits are in percent of the maximum turbo P-state. */
2034                global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2035                global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2036                global_min = clamp_t(int32_t, global_min, 0, global_max);
2037
2038                pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
2039                         global_min, global_max);
2040
2041                cpu->min_perf_ratio = max(min_policy_perf, global_min);
2042                cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2043                cpu->max_perf_ratio = min(max_policy_perf, global_max);
2044                cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2045
2046                /* Make sure min_perf <= max_perf */
2047                cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2048                                          cpu->max_perf_ratio);
2049
2050        }
2051        pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2052                 cpu->max_perf_ratio,
2053                 cpu->min_perf_ratio);
2054}
2055
2056static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2057{
2058        struct cpudata *cpu;
2059
2060        if (!policy->cpuinfo.max_freq)
2061                return -ENODEV;
2062
2063        pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2064                 policy->cpuinfo.max_freq, policy->max);
2065
2066        cpu = all_cpu_data[policy->cpu];
2067        cpu->policy = policy->policy;
2068
2069        mutex_lock(&intel_pstate_limits_lock);
2070
2071        intel_pstate_update_perf_limits(policy, cpu);
2072
2073        if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2074                /*
2075                 * NOHZ_FULL CPUs need this as the governor callback may not
2076                 * be invoked on them.
2077                 */
2078                intel_pstate_clear_update_util_hook(policy->cpu);
2079                intel_pstate_max_within_limits(cpu);
2080        } else {
2081                intel_pstate_set_update_util_hook(policy->cpu);
2082        }
2083
2084        if (hwp_active) {
2085                /*
2086                 * When hwp_boost was active before and dynamically it
2087                 * was turned off, in that case we need to clear the
2088                 * update util hook.
2089                 */
2090                if (!hwp_boost)
2091                        intel_pstate_clear_update_util_hook(policy->cpu);
2092                intel_pstate_hwp_set(policy->cpu);
2093        }
2094
2095        mutex_unlock(&intel_pstate_limits_lock);
2096
2097        return 0;
2098}
2099
2100static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2101                                         struct cpudata *cpu)
2102{
2103        if (!hwp_active &&
2104            cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2105            policy->max < policy->cpuinfo.max_freq &&
2106            policy->max > cpu->pstate.max_freq) {
2107                pr_debug("policy->max > max non turbo frequency\n");
2108                policy->max = policy->cpuinfo.max_freq;
2109        }
2110}
2111
2112static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2113{
2114        struct cpudata *cpu = all_cpu_data[policy->cpu];
2115
2116        update_turbo_state();
2117        cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2118                                     intel_pstate_get_max_freq(cpu));
2119
2120        if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2121            policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2122                return -EINVAL;
2123
2124        intel_pstate_adjust_policy_max(policy, cpu);
2125
2126        return 0;
2127}
2128
2129static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2130{
2131        intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2132}
2133
2134static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2135{
2136        pr_debug("CPU %d exiting\n", policy->cpu);
2137
2138        intel_pstate_clear_update_util_hook(policy->cpu);
2139        if (hwp_active) {
2140                intel_pstate_hwp_save_state(policy);
2141                intel_pstate_hwp_force_min_perf(policy->cpu);
2142        } else {
2143                intel_cpufreq_stop_cpu(policy);
2144        }
2145}
2146
2147static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2148{
2149        intel_pstate_exit_perf_limits(policy);
2150
2151        policy->fast_switch_possible = false;
2152
2153        return 0;
2154}
2155
2156static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2157{
2158        struct cpudata *cpu;
2159        int rc;
2160
2161        rc = intel_pstate_init_cpu(policy->cpu);
2162        if (rc)
2163                return rc;
2164
2165        cpu = all_cpu_data[policy->cpu];
2166
2167        cpu->max_perf_ratio = 0xFF;
2168        cpu->min_perf_ratio = 0;
2169
2170        policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2171        policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2172
2173        /* cpuinfo and default policy values */
2174        policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2175        update_turbo_state();
2176        global.turbo_disabled_mf = global.turbo_disabled;
2177        policy->cpuinfo.max_freq = global.turbo_disabled ?
2178                        cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2179        policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2180
2181        if (hwp_active) {
2182                unsigned int max_freq;
2183
2184                max_freq = global.turbo_disabled ?
2185                        cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2186                if (max_freq < policy->cpuinfo.max_freq)
2187                        policy->cpuinfo.max_freq = max_freq;
2188        }
2189
2190        intel_pstate_init_acpi_perf_limits(policy);
2191
2192        policy->fast_switch_possible = true;
2193
2194        return 0;
2195}
2196
2197static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2198{
2199        int ret = __intel_pstate_cpu_init(policy);
2200
2201        if (ret)
2202                return ret;
2203
2204        if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2205                policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2206        else
2207                policy->policy = CPUFREQ_POLICY_POWERSAVE;
2208
2209        return 0;
2210}
2211
2212static struct cpufreq_driver intel_pstate = {
2213        .flags          = CPUFREQ_CONST_LOOPS,
2214        .verify         = intel_pstate_verify_policy,
2215        .setpolicy      = intel_pstate_set_policy,
2216        .suspend        = intel_pstate_hwp_save_state,
2217        .resume         = intel_pstate_resume,
2218        .init           = intel_pstate_cpu_init,
2219        .exit           = intel_pstate_cpu_exit,
2220        .stop_cpu       = intel_pstate_stop_cpu,
2221        .update_limits  = intel_pstate_update_limits,
2222        .name           = "intel_pstate",
2223};
2224
2225static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2226{
2227        struct cpudata *cpu = all_cpu_data[policy->cpu];
2228
2229        update_turbo_state();
2230        cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2231                                     intel_pstate_get_max_freq(cpu));
2232
2233        intel_pstate_adjust_policy_max(policy, cpu);
2234
2235        intel_pstate_update_perf_limits(policy, cpu);
2236
2237        return 0;
2238}
2239
2240/* Use of trace in passive mode:
2241 *
2242 * In passive mode the trace core_busy field (also known as the
2243 * performance field, and lablelled as such on the graphs; also known as
2244 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2245 * driver call was via the normal or fast switch path. Various graphs
2246 * output from the intel_pstate_tracer.py utility that include core_busy
2247 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2248 * so we use 10 to indicate the the normal path through the driver, and
2249 * 90 to indicate the fast switch path through the driver.
2250 * The scaled_busy field is not used, and is set to 0.
2251 */
2252
2253#define INTEL_PSTATE_TRACE_TARGET 10
2254#define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2255
2256static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2257{
2258        struct sample *sample;
2259
2260        if (!trace_pstate_sample_enabled())
2261                return;
2262
2263        if (!intel_pstate_sample(cpu, ktime_get()))
2264                return;
2265
2266        sample = &cpu->sample;
2267        trace_pstate_sample(trace_type,
2268                0,
2269                old_pstate,
2270                cpu->pstate.current_pstate,
2271                sample->mperf,
2272                sample->aperf,
2273                sample->tsc,
2274                get_avg_frequency(cpu),
2275                fp_toint(cpu->iowait_boost * 100));
2276}
2277
2278static int intel_cpufreq_target(struct cpufreq_policy *policy,
2279                                unsigned int target_freq,
2280                                unsigned int relation)
2281{
2282        struct cpudata *cpu = all_cpu_data[policy->cpu];
2283        struct cpufreq_freqs freqs;
2284        int target_pstate, old_pstate;
2285
2286        update_turbo_state();
2287
2288        freqs.old = policy->cur;
2289        freqs.new = target_freq;
2290
2291        cpufreq_freq_transition_begin(policy, &freqs);
2292        switch (relation) {
2293        case CPUFREQ_RELATION_L:
2294                target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2295                break;
2296        case CPUFREQ_RELATION_H:
2297                target_pstate = freqs.new / cpu->pstate.scaling;
2298                break;
2299        default:
2300                target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2301                break;
2302        }
2303        target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2304        old_pstate = cpu->pstate.current_pstate;
2305        if (target_pstate != cpu->pstate.current_pstate) {
2306                cpu->pstate.current_pstate = target_pstate;
2307                wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2308                              pstate_funcs.get_val(cpu, target_pstate));
2309        }
2310        freqs.new = target_pstate * cpu->pstate.scaling;
2311        intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2312        cpufreq_freq_transition_end(policy, &freqs, false);
2313
2314        return 0;
2315}
2316
2317static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2318                                              unsigned int target_freq)
2319{
2320        struct cpudata *cpu = all_cpu_data[policy->cpu];
2321        int target_pstate, old_pstate;
2322
2323        update_turbo_state();
2324
2325        target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2326        target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2327        old_pstate = cpu->pstate.current_pstate;
2328        intel_pstate_update_pstate(cpu, target_pstate);
2329        intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2330        return target_pstate * cpu->pstate.scaling;
2331}
2332
2333static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2334{
2335        int ret = __intel_pstate_cpu_init(policy);
2336
2337        if (ret)
2338                return ret;
2339
2340        policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2341        policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2342        /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2343        policy->cur = policy->cpuinfo.min_freq;
2344
2345        return 0;
2346}
2347
2348static struct cpufreq_driver intel_cpufreq = {
2349        .flags          = CPUFREQ_CONST_LOOPS,
2350        .verify         = intel_cpufreq_verify_policy,
2351        .target         = intel_cpufreq_target,
2352        .fast_switch    = intel_cpufreq_fast_switch,
2353        .init           = intel_cpufreq_cpu_init,
2354        .exit           = intel_pstate_cpu_exit,
2355        .stop_cpu       = intel_cpufreq_stop_cpu,
2356        .update_limits  = intel_pstate_update_limits,
2357        .name           = "intel_cpufreq",
2358};
2359
2360static struct cpufreq_driver *default_driver = &intel_pstate;
2361
2362static void intel_pstate_driver_cleanup(void)
2363{
2364        unsigned int cpu;
2365
2366        get_online_cpus();
2367        for_each_online_cpu(cpu) {
2368                if (all_cpu_data[cpu]) {
2369                        if (intel_pstate_driver == &intel_pstate)
2370                                intel_pstate_clear_update_util_hook(cpu);
2371
2372                        kfree(all_cpu_data[cpu]);
2373                        all_cpu_data[cpu] = NULL;
2374                }
2375        }
2376        put_online_cpus();
2377        intel_pstate_driver = NULL;
2378}
2379
2380static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2381{
2382        int ret;
2383
2384        memset(&global, 0, sizeof(global));
2385        global.max_perf_pct = 100;
2386
2387        intel_pstate_driver = driver;
2388        ret = cpufreq_register_driver(intel_pstate_driver);
2389        if (ret) {
2390                intel_pstate_driver_cleanup();
2391                return ret;
2392        }
2393
2394        global.min_perf_pct = min_perf_pct_min();
2395
2396        return 0;
2397}
2398
2399static int intel_pstate_unregister_driver(void)
2400{
2401        if (hwp_active)
2402                return -EBUSY;
2403
2404        cpufreq_unregister_driver(intel_pstate_driver);
2405        intel_pstate_driver_cleanup();
2406
2407        return 0;
2408}
2409
2410static ssize_t intel_pstate_show_status(char *buf)
2411{
2412        if (!intel_pstate_driver)
2413                return sprintf(buf, "off\n");
2414
2415        return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2416                                        "active" : "passive");
2417}
2418
2419static int intel_pstate_update_status(const char *buf, size_t size)
2420{
2421        int ret;
2422
2423        if (size == 3 && !strncmp(buf, "off", size))
2424                return intel_pstate_driver ?
2425                        intel_pstate_unregister_driver() : -EINVAL;
2426
2427        if (size == 6 && !strncmp(buf, "active", size)) {
2428                if (intel_pstate_driver) {
2429                        if (intel_pstate_driver == &intel_pstate)
2430                                return 0;
2431
2432                        ret = intel_pstate_unregister_driver();
2433                        if (ret)
2434                                return ret;
2435                }
2436
2437                return intel_pstate_register_driver(&intel_pstate);
2438        }
2439
2440        if (size == 7 && !strncmp(buf, "passive", size)) {
2441                if (intel_pstate_driver) {
2442                        if (intel_pstate_driver == &intel_cpufreq)
2443                                return 0;
2444
2445                        ret = intel_pstate_unregister_driver();
2446                        if (ret)
2447                                return ret;
2448                }
2449
2450                return intel_pstate_register_driver(&intel_cpufreq);
2451        }
2452
2453        return -EINVAL;
2454}
2455
2456static int no_load __initdata;
2457static int no_hwp __initdata;
2458static int hwp_only __initdata;
2459static unsigned int force_load __initdata;
2460
2461static int __init intel_pstate_msrs_not_valid(void)
2462{
2463        if (!pstate_funcs.get_max() ||
2464            !pstate_funcs.get_min() ||
2465            !pstate_funcs.get_turbo())
2466                return -ENODEV;
2467
2468        return 0;
2469}
2470
2471static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2472{
2473        pstate_funcs.get_max   = funcs->get_max;
2474        pstate_funcs.get_max_physical = funcs->get_max_physical;
2475        pstate_funcs.get_min   = funcs->get_min;
2476        pstate_funcs.get_turbo = funcs->get_turbo;
2477        pstate_funcs.get_scaling = funcs->get_scaling;
2478        pstate_funcs.get_val   = funcs->get_val;
2479        pstate_funcs.get_vid   = funcs->get_vid;
2480        pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2481}
2482
2483#ifdef CONFIG_ACPI
2484
2485static bool __init intel_pstate_no_acpi_pss(void)
2486{
2487        int i;
2488
2489        for_each_possible_cpu(i) {
2490                acpi_status status;
2491                union acpi_object *pss;
2492                struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2493                struct acpi_processor *pr = per_cpu(processors, i);
2494
2495                if (!pr)
2496                        continue;
2497
2498                status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2499                if (ACPI_FAILURE(status))
2500                        continue;
2501
2502                pss = buffer.pointer;
2503                if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2504                        kfree(pss);
2505                        return false;
2506                }
2507
2508                kfree(pss);
2509        }
2510
2511        pr_debug("ACPI _PSS not found\n");
2512        return true;
2513}
2514
2515static bool __init intel_pstate_no_acpi_pcch(void)
2516{
2517        acpi_status status;
2518        acpi_handle handle;
2519
2520        status = acpi_get_handle(NULL, "\\_SB", &handle);
2521        if (ACPI_FAILURE(status))
2522                goto not_found;
2523
2524        if (acpi_has_method(handle, "PCCH"))
2525                return false;
2526
2527not_found:
2528        pr_debug("ACPI PCCH not found\n");
2529        return true;
2530}
2531
2532static bool __init intel_pstate_has_acpi_ppc(void)
2533{
2534        int i;
2535
2536        for_each_possible_cpu(i) {
2537                struct acpi_processor *pr = per_cpu(processors, i);
2538
2539                if (!pr)
2540                        continue;
2541                if (acpi_has_method(pr->handle, "_PPC"))
2542                        return true;
2543        }
2544        pr_debug("ACPI _PPC not found\n");
2545        return false;
2546}
2547
2548enum {
2549        PSS,
2550        PPC,
2551};
2552
2553/* Hardware vendor-specific info that has its own power management modes */
2554static struct acpi_platform_list plat_info[] __initdata = {
2555        {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2556        {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2557        {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2558        {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2559        {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2560        {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2561        {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2562        {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2563        {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2564        {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2565        {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2566        {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2567        {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2568        {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2569        {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2570        { } /* End */
2571};
2572
2573static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2574{
2575        const struct x86_cpu_id *id;
2576        u64 misc_pwr;
2577        int idx;
2578
2579        id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2580        if (id) {
2581                rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2582                if (misc_pwr & (1 << 8)) {
2583                        pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2584                        return true;
2585                }
2586        }
2587
2588        idx = acpi_match_platform_list(plat_info);
2589        if (idx < 0)
2590                return false;
2591
2592        switch (plat_info[idx].data) {
2593        case PSS:
2594                if (!intel_pstate_no_acpi_pss())
2595                        return false;
2596
2597                return intel_pstate_no_acpi_pcch();
2598        case PPC:
2599                return intel_pstate_has_acpi_ppc() && !force_load;
2600        }
2601
2602        return false;
2603}
2604
2605static void intel_pstate_request_control_from_smm(void)
2606{
2607        /*
2608         * It may be unsafe to request P-states control from SMM if _PPC support
2609         * has not been enabled.
2610         */
2611        if (acpi_ppc)
2612                acpi_processor_pstate_control();
2613}
2614#else /* CONFIG_ACPI not enabled */
2615static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2616static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2617static inline void intel_pstate_request_control_from_smm(void) {}
2618#endif /* CONFIG_ACPI */
2619
2620#define INTEL_PSTATE_HWP_BROADWELL      0x01
2621
2622#define ICPU_HWP(model, hwp_mode) \
2623        { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2624
2625static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2626        ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2627        ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2628        ICPU_HWP(X86_MODEL_ANY, 0),
2629        {}
2630};
2631
2632static int __init intel_pstate_init(void)
2633{
2634        const struct x86_cpu_id *id;
2635        int rc;
2636
2637        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2638                return -ENODEV;
2639
2640        if (no_load)
2641                return -ENODEV;
2642
2643        id = x86_match_cpu(hwp_support_ids);
2644        if (id) {
2645                copy_cpu_funcs(&core_funcs);
2646                if (!no_hwp) {
2647                        hwp_active++;
2648                        hwp_mode_bdw = id->driver_data;
2649                        intel_pstate.attr = hwp_cpufreq_attrs;
2650                        goto hwp_cpu_matched;
2651                }
2652        } else {
2653                id = x86_match_cpu(intel_pstate_cpu_ids);
2654                if (!id) {
2655                        pr_info("CPU model not supported\n");
2656                        return -ENODEV;
2657                }
2658
2659                copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2660        }
2661
2662        if (intel_pstate_msrs_not_valid()) {
2663                pr_info("Invalid MSRs\n");
2664                return -ENODEV;
2665        }
2666
2667hwp_cpu_matched:
2668        /*
2669         * The Intel pstate driver will be ignored if the platform
2670         * firmware has its own power management modes.
2671         */
2672        if (intel_pstate_platform_pwr_mgmt_exists()) {
2673                pr_info("P-states controlled by the platform\n");
2674                return -ENODEV;
2675        }
2676
2677        if (!hwp_active && hwp_only)
2678                return -ENOTSUPP;
2679
2680        pr_info("Intel P-state driver initializing\n");
2681
2682        all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2683        if (!all_cpu_data)
2684                return -ENOMEM;
2685
2686        intel_pstate_request_control_from_smm();
2687
2688        intel_pstate_sysfs_expose_params();
2689
2690        mutex_lock(&intel_pstate_driver_lock);
2691        rc = intel_pstate_register_driver(default_driver);
2692        mutex_unlock(&intel_pstate_driver_lock);
2693        if (rc)
2694                return rc;
2695
2696        if (hwp_active)
2697                pr_info("HWP enabled\n");
2698
2699        return 0;
2700}
2701device_initcall(intel_pstate_init);
2702
2703static int __init intel_pstate_setup(char *str)
2704{
2705        if (!str)
2706                return -EINVAL;
2707
2708        if (!strcmp(str, "disable")) {
2709                no_load = 1;
2710        } else if (!strcmp(str, "passive")) {
2711                pr_info("Passive mode enabled\n");
2712                default_driver = &intel_cpufreq;
2713                no_hwp = 1;
2714        }
2715        if (!strcmp(str, "no_hwp")) {
2716                pr_info("HWP disabled\n");
2717                no_hwp = 1;
2718        }
2719        if (!strcmp(str, "force"))
2720                force_load = 1;
2721        if (!strcmp(str, "hwp_only"))
2722                hwp_only = 1;
2723        if (!strcmp(str, "per_cpu_perf_limits"))
2724                per_cpu_limits = true;
2725
2726#ifdef CONFIG_ACPI
2727        if (!strcmp(str, "support_acpi_ppc"))
2728                acpi_ppc = true;
2729#endif
2730
2731        return 0;
2732}
2733early_param("intel_pstate", intel_pstate_setup);
2734
2735MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2736MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2737MODULE_LICENSE("GPL");
2738