linux/drivers/crypto/amcc/crypto4xx_core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/**
   3 * AMCC SoC PPC4xx Crypto Driver
   4 *
   5 * Copyright (c) 2008 Applied Micro Circuits Corporation.
   6 * All rights reserved. James Hsiao <jhsiao@amcc.com>
   7 *
   8 * This file implements AMCC crypto offload Linux device driver for use with
   9 * Linux CryptoAPI.
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/interrupt.h>
  14#include <linux/spinlock_types.h>
  15#include <linux/random.h>
  16#include <linux/scatterlist.h>
  17#include <linux/crypto.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/platform_device.h>
  20#include <linux/init.h>
  21#include <linux/module.h>
  22#include <linux/of_address.h>
  23#include <linux/of_irq.h>
  24#include <linux/of_platform.h>
  25#include <linux/slab.h>
  26#include <asm/dcr.h>
  27#include <asm/dcr-regs.h>
  28#include <asm/cacheflush.h>
  29#include <crypto/aead.h>
  30#include <crypto/aes.h>
  31#include <crypto/ctr.h>
  32#include <crypto/gcm.h>
  33#include <crypto/sha.h>
  34#include <crypto/rng.h>
  35#include <crypto/scatterwalk.h>
  36#include <crypto/skcipher.h>
  37#include <crypto/internal/aead.h>
  38#include <crypto/internal/rng.h>
  39#include <crypto/internal/skcipher.h>
  40#include "crypto4xx_reg_def.h"
  41#include "crypto4xx_core.h"
  42#include "crypto4xx_sa.h"
  43#include "crypto4xx_trng.h"
  44
  45#define PPC4XX_SEC_VERSION_STR                  "0.5"
  46
  47/**
  48 * PPC4xx Crypto Engine Initialization Routine
  49 */
  50static void crypto4xx_hw_init(struct crypto4xx_device *dev)
  51{
  52        union ce_ring_size ring_size;
  53        union ce_ring_control ring_ctrl;
  54        union ce_part_ring_size part_ring_size;
  55        union ce_io_threshold io_threshold;
  56        u32 rand_num;
  57        union ce_pe_dma_cfg pe_dma_cfg;
  58        u32 device_ctrl;
  59
  60        writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
  61        /* setup pe dma, include reset sg, pdr and pe, then release reset */
  62        pe_dma_cfg.w = 0;
  63        pe_dma_cfg.bf.bo_sgpd_en = 1;
  64        pe_dma_cfg.bf.bo_data_en = 0;
  65        pe_dma_cfg.bf.bo_sa_en = 1;
  66        pe_dma_cfg.bf.bo_pd_en = 1;
  67        pe_dma_cfg.bf.dynamic_sa_en = 1;
  68        pe_dma_cfg.bf.reset_sg = 1;
  69        pe_dma_cfg.bf.reset_pdr = 1;
  70        pe_dma_cfg.bf.reset_pe = 1;
  71        writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
  72        /* un reset pe,sg and pdr */
  73        pe_dma_cfg.bf.pe_mode = 0;
  74        pe_dma_cfg.bf.reset_sg = 0;
  75        pe_dma_cfg.bf.reset_pdr = 0;
  76        pe_dma_cfg.bf.reset_pe = 0;
  77        pe_dma_cfg.bf.bo_td_en = 0;
  78        writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
  79        writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
  80        writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
  81        writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
  82        get_random_bytes(&rand_num, sizeof(rand_num));
  83        writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
  84        get_random_bytes(&rand_num, sizeof(rand_num));
  85        writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
  86        ring_size.w = 0;
  87        ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
  88        ring_size.bf.ring_size   = PPC4XX_NUM_PD;
  89        writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
  90        ring_ctrl.w = 0;
  91        writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
  92        device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
  93        device_ctrl |= PPC4XX_DC_3DES_EN;
  94        writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
  95        writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
  96        writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
  97        part_ring_size.w = 0;
  98        part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
  99        part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
 100        writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
 101        writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
 102        io_threshold.w = 0;
 103        io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
 104        io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
 105        writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
 106        writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
 107        writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
 108        writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
 109        writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
 110        writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
 111        writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
 112        writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
 113        /* un reset pe,sg and pdr */
 114        pe_dma_cfg.bf.pe_mode = 1;
 115        pe_dma_cfg.bf.reset_sg = 0;
 116        pe_dma_cfg.bf.reset_pdr = 0;
 117        pe_dma_cfg.bf.reset_pe = 0;
 118        pe_dma_cfg.bf.bo_td_en = 0;
 119        writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
 120        /*clear all pending interrupt*/
 121        writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
 122        writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
 123        writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
 124        writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
 125        if (dev->is_revb) {
 126                writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
 127                       dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
 128                writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
 129                       dev->ce_base + CRYPTO4XX_INT_EN);
 130        } else {
 131                writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
 132        }
 133}
 134
 135int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
 136{
 137        ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
 138        if (ctx->sa_in == NULL)
 139                return -ENOMEM;
 140
 141        ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
 142        if (ctx->sa_out == NULL) {
 143                kfree(ctx->sa_in);
 144                ctx->sa_in = NULL;
 145                return -ENOMEM;
 146        }
 147
 148        ctx->sa_len = size;
 149
 150        return 0;
 151}
 152
 153void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
 154{
 155        kfree(ctx->sa_in);
 156        ctx->sa_in = NULL;
 157        kfree(ctx->sa_out);
 158        ctx->sa_out = NULL;
 159        ctx->sa_len = 0;
 160}
 161
 162/**
 163 * alloc memory for the gather ring
 164 * no need to alloc buf for the ring
 165 * gdr_tail, gdr_head and gdr_count are initialized by this function
 166 */
 167static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
 168{
 169        int i;
 170        dev->pdr = dma_alloc_coherent(dev->core_dev->device,
 171                                      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
 172                                      &dev->pdr_pa, GFP_ATOMIC);
 173        if (!dev->pdr)
 174                return -ENOMEM;
 175
 176        dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
 177                                 GFP_KERNEL);
 178        if (!dev->pdr_uinfo) {
 179                dma_free_coherent(dev->core_dev->device,
 180                                  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
 181                                  dev->pdr,
 182                                  dev->pdr_pa);
 183                return -ENOMEM;
 184        }
 185        dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
 186                                   sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
 187                                   &dev->shadow_sa_pool_pa,
 188                                   GFP_ATOMIC);
 189        if (!dev->shadow_sa_pool)
 190                return -ENOMEM;
 191
 192        dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
 193                         sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
 194                         &dev->shadow_sr_pool_pa, GFP_ATOMIC);
 195        if (!dev->shadow_sr_pool)
 196                return -ENOMEM;
 197        for (i = 0; i < PPC4XX_NUM_PD; i++) {
 198                struct ce_pd *pd = &dev->pdr[i];
 199                struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
 200
 201                pd->sa = dev->shadow_sa_pool_pa +
 202                        sizeof(union shadow_sa_buf) * i;
 203
 204                /* alloc 256 bytes which is enough for any kind of dynamic sa */
 205                pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
 206
 207                /* alloc state record */
 208                pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
 209                pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
 210                    sizeof(struct sa_state_record) * i;
 211        }
 212
 213        return 0;
 214}
 215
 216static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
 217{
 218        if (dev->pdr)
 219                dma_free_coherent(dev->core_dev->device,
 220                                  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
 221                                  dev->pdr, dev->pdr_pa);
 222
 223        if (dev->shadow_sa_pool)
 224                dma_free_coherent(dev->core_dev->device,
 225                        sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
 226                        dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
 227
 228        if (dev->shadow_sr_pool)
 229                dma_free_coherent(dev->core_dev->device,
 230                        sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
 231                        dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
 232
 233        kfree(dev->pdr_uinfo);
 234}
 235
 236static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
 237{
 238        u32 retval;
 239        u32 tmp;
 240
 241        retval = dev->pdr_head;
 242        tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
 243
 244        if (tmp == dev->pdr_tail)
 245                return ERING_WAS_FULL;
 246
 247        dev->pdr_head = tmp;
 248
 249        return retval;
 250}
 251
 252static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
 253{
 254        struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
 255        u32 tail;
 256        unsigned long flags;
 257
 258        spin_lock_irqsave(&dev->core_dev->lock, flags);
 259        pd_uinfo->state = PD_ENTRY_FREE;
 260
 261        if (dev->pdr_tail != PPC4XX_LAST_PD)
 262                dev->pdr_tail++;
 263        else
 264                dev->pdr_tail = 0;
 265        tail = dev->pdr_tail;
 266        spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 267
 268        return tail;
 269}
 270
 271/**
 272 * alloc memory for the gather ring
 273 * no need to alloc buf for the ring
 274 * gdr_tail, gdr_head and gdr_count are initialized by this function
 275 */
 276static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
 277{
 278        dev->gdr = dma_alloc_coherent(dev->core_dev->device,
 279                                      sizeof(struct ce_gd) * PPC4XX_NUM_GD,
 280                                      &dev->gdr_pa, GFP_ATOMIC);
 281        if (!dev->gdr)
 282                return -ENOMEM;
 283
 284        return 0;
 285}
 286
 287static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
 288{
 289        dma_free_coherent(dev->core_dev->device,
 290                          sizeof(struct ce_gd) * PPC4XX_NUM_GD,
 291                          dev->gdr, dev->gdr_pa);
 292}
 293
 294/*
 295 * when this function is called.
 296 * preemption or interrupt must be disabled
 297 */
 298static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
 299{
 300        u32 retval;
 301        u32 tmp;
 302
 303        if (n >= PPC4XX_NUM_GD)
 304                return ERING_WAS_FULL;
 305
 306        retval = dev->gdr_head;
 307        tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
 308        if (dev->gdr_head > dev->gdr_tail) {
 309                if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
 310                        return ERING_WAS_FULL;
 311        } else if (dev->gdr_head < dev->gdr_tail) {
 312                if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
 313                        return ERING_WAS_FULL;
 314        }
 315        dev->gdr_head = tmp;
 316
 317        return retval;
 318}
 319
 320static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
 321{
 322        unsigned long flags;
 323
 324        spin_lock_irqsave(&dev->core_dev->lock, flags);
 325        if (dev->gdr_tail == dev->gdr_head) {
 326                spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 327                return 0;
 328        }
 329
 330        if (dev->gdr_tail != PPC4XX_LAST_GD)
 331                dev->gdr_tail++;
 332        else
 333                dev->gdr_tail = 0;
 334
 335        spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 336
 337        return 0;
 338}
 339
 340static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
 341                                              dma_addr_t *gd_dma, u32 idx)
 342{
 343        *gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
 344
 345        return &dev->gdr[idx];
 346}
 347
 348/**
 349 * alloc memory for the scatter ring
 350 * need to alloc buf for the ring
 351 * sdr_tail, sdr_head and sdr_count are initialized by this function
 352 */
 353static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
 354{
 355        int i;
 356
 357        /* alloc memory for scatter descriptor ring */
 358        dev->sdr = dma_alloc_coherent(dev->core_dev->device,
 359                                      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
 360                                      &dev->sdr_pa, GFP_ATOMIC);
 361        if (!dev->sdr)
 362                return -ENOMEM;
 363
 364        dev->scatter_buffer_va =
 365                dma_alloc_coherent(dev->core_dev->device,
 366                        PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
 367                        &dev->scatter_buffer_pa, GFP_ATOMIC);
 368        if (!dev->scatter_buffer_va) {
 369                dma_free_coherent(dev->core_dev->device,
 370                                  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
 371                                  dev->sdr, dev->sdr_pa);
 372                return -ENOMEM;
 373        }
 374
 375        for (i = 0; i < PPC4XX_NUM_SD; i++) {
 376                dev->sdr[i].ptr = dev->scatter_buffer_pa +
 377                                  PPC4XX_SD_BUFFER_SIZE * i;
 378        }
 379
 380        return 0;
 381}
 382
 383static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
 384{
 385        if (dev->sdr)
 386                dma_free_coherent(dev->core_dev->device,
 387                                  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
 388                                  dev->sdr, dev->sdr_pa);
 389
 390        if (dev->scatter_buffer_va)
 391                dma_free_coherent(dev->core_dev->device,
 392                                  PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
 393                                  dev->scatter_buffer_va,
 394                                  dev->scatter_buffer_pa);
 395}
 396
 397/*
 398 * when this function is called.
 399 * preemption or interrupt must be disabled
 400 */
 401static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
 402{
 403        u32 retval;
 404        u32 tmp;
 405
 406        if (n >= PPC4XX_NUM_SD)
 407                return ERING_WAS_FULL;
 408
 409        retval = dev->sdr_head;
 410        tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
 411        if (dev->sdr_head > dev->gdr_tail) {
 412                if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
 413                        return ERING_WAS_FULL;
 414        } else if (dev->sdr_head < dev->sdr_tail) {
 415                if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
 416                        return ERING_WAS_FULL;
 417        } /* the head = tail, or empty case is already take cared */
 418        dev->sdr_head = tmp;
 419
 420        return retval;
 421}
 422
 423static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
 424{
 425        unsigned long flags;
 426
 427        spin_lock_irqsave(&dev->core_dev->lock, flags);
 428        if (dev->sdr_tail == dev->sdr_head) {
 429                spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 430                return 0;
 431        }
 432        if (dev->sdr_tail != PPC4XX_LAST_SD)
 433                dev->sdr_tail++;
 434        else
 435                dev->sdr_tail = 0;
 436        spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 437
 438        return 0;
 439}
 440
 441static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
 442                                              dma_addr_t *sd_dma, u32 idx)
 443{
 444        *sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
 445
 446        return &dev->sdr[idx];
 447}
 448
 449static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
 450                                      struct ce_pd *pd,
 451                                      struct pd_uinfo *pd_uinfo,
 452                                      u32 nbytes,
 453                                      struct scatterlist *dst)
 454{
 455        unsigned int first_sd = pd_uinfo->first_sd;
 456        unsigned int last_sd;
 457        unsigned int overflow = 0;
 458        unsigned int to_copy;
 459        unsigned int dst_start = 0;
 460
 461        /*
 462         * Because the scatter buffers are all neatly organized in one
 463         * big continuous ringbuffer; scatterwalk_map_and_copy() can
 464         * be instructed to copy a range of buffers in one go.
 465         */
 466
 467        last_sd = (first_sd + pd_uinfo->num_sd);
 468        if (last_sd > PPC4XX_LAST_SD) {
 469                last_sd = PPC4XX_LAST_SD;
 470                overflow = last_sd % PPC4XX_NUM_SD;
 471        }
 472
 473        while (nbytes) {
 474                void *buf = dev->scatter_buffer_va +
 475                        first_sd * PPC4XX_SD_BUFFER_SIZE;
 476
 477                to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
 478                                      (1 + last_sd - first_sd));
 479                scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
 480                nbytes -= to_copy;
 481
 482                if (overflow) {
 483                        first_sd = 0;
 484                        last_sd = overflow;
 485                        dst_start += to_copy;
 486                        overflow = 0;
 487                }
 488        }
 489}
 490
 491static void crypto4xx_copy_digest_to_dst(void *dst,
 492                                        struct pd_uinfo *pd_uinfo,
 493                                        struct crypto4xx_ctx *ctx)
 494{
 495        struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
 496
 497        if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
 498                memcpy(dst, pd_uinfo->sr_va->save_digest,
 499                       SA_HASH_ALG_SHA1_DIGEST_SIZE);
 500        }
 501}
 502
 503static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
 504                                  struct pd_uinfo *pd_uinfo)
 505{
 506        int i;
 507        if (pd_uinfo->num_gd) {
 508                for (i = 0; i < pd_uinfo->num_gd; i++)
 509                        crypto4xx_put_gd_to_gdr(dev);
 510                pd_uinfo->first_gd = 0xffffffff;
 511                pd_uinfo->num_gd = 0;
 512        }
 513        if (pd_uinfo->num_sd) {
 514                for (i = 0; i < pd_uinfo->num_sd; i++)
 515                        crypto4xx_put_sd_to_sdr(dev);
 516
 517                pd_uinfo->first_sd = 0xffffffff;
 518                pd_uinfo->num_sd = 0;
 519        }
 520}
 521
 522static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
 523                                     struct pd_uinfo *pd_uinfo,
 524                                     struct ce_pd *pd)
 525{
 526        struct skcipher_request *req;
 527        struct scatterlist *dst;
 528        dma_addr_t addr;
 529
 530        req = skcipher_request_cast(pd_uinfo->async_req);
 531
 532        if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
 533                crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
 534                                          req->cryptlen, req->dst);
 535        } else {
 536                dst = pd_uinfo->dest_va;
 537                addr = dma_map_page(dev->core_dev->device, sg_page(dst),
 538                                    dst->offset, dst->length, DMA_FROM_DEVICE);
 539        }
 540
 541        if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
 542                struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 543
 544                crypto4xx_memcpy_from_le32((u32 *)req->iv,
 545                        pd_uinfo->sr_va->save_iv,
 546                        crypto_skcipher_ivsize(skcipher));
 547        }
 548
 549        crypto4xx_ret_sg_desc(dev, pd_uinfo);
 550
 551        if (pd_uinfo->state & PD_ENTRY_BUSY)
 552                skcipher_request_complete(req, -EINPROGRESS);
 553        skcipher_request_complete(req, 0);
 554}
 555
 556static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
 557                                struct pd_uinfo *pd_uinfo)
 558{
 559        struct crypto4xx_ctx *ctx;
 560        struct ahash_request *ahash_req;
 561
 562        ahash_req = ahash_request_cast(pd_uinfo->async_req);
 563        ctx  = crypto_tfm_ctx(ahash_req->base.tfm);
 564
 565        crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo,
 566                                     crypto_tfm_ctx(ahash_req->base.tfm));
 567        crypto4xx_ret_sg_desc(dev, pd_uinfo);
 568
 569        if (pd_uinfo->state & PD_ENTRY_BUSY)
 570                ahash_request_complete(ahash_req, -EINPROGRESS);
 571        ahash_request_complete(ahash_req, 0);
 572}
 573
 574static void crypto4xx_aead_done(struct crypto4xx_device *dev,
 575                                struct pd_uinfo *pd_uinfo,
 576                                struct ce_pd *pd)
 577{
 578        struct aead_request *aead_req = container_of(pd_uinfo->async_req,
 579                struct aead_request, base);
 580        struct scatterlist *dst = pd_uinfo->dest_va;
 581        size_t cp_len = crypto_aead_authsize(
 582                crypto_aead_reqtfm(aead_req));
 583        u32 icv[AES_BLOCK_SIZE];
 584        int err = 0;
 585
 586        if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
 587                crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
 588                                          pd->pd_ctl_len.bf.pkt_len,
 589                                          dst);
 590        } else {
 591                dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
 592                                DMA_FROM_DEVICE);
 593        }
 594
 595        if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
 596                /* append icv at the end */
 597                crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
 598                                           sizeof(icv));
 599
 600                scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
 601                                         cp_len, 1);
 602        } else {
 603                /* check icv at the end */
 604                scatterwalk_map_and_copy(icv, aead_req->src,
 605                        aead_req->assoclen + aead_req->cryptlen -
 606                        cp_len, cp_len, 0);
 607
 608                crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
 609
 610                if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
 611                        err = -EBADMSG;
 612        }
 613
 614        crypto4xx_ret_sg_desc(dev, pd_uinfo);
 615
 616        if (pd->pd_ctl.bf.status & 0xff) {
 617                if (!__ratelimit(&dev->aead_ratelimit)) {
 618                        if (pd->pd_ctl.bf.status & 2)
 619                                pr_err("pad fail error\n");
 620                        if (pd->pd_ctl.bf.status & 4)
 621                                pr_err("seqnum fail\n");
 622                        if (pd->pd_ctl.bf.status & 8)
 623                                pr_err("error _notify\n");
 624                        pr_err("aead return err status = 0x%02x\n",
 625                                pd->pd_ctl.bf.status & 0xff);
 626                        pr_err("pd pad_ctl = 0x%08x\n",
 627                                pd->pd_ctl.bf.pd_pad_ctl);
 628                }
 629                err = -EINVAL;
 630        }
 631
 632        if (pd_uinfo->state & PD_ENTRY_BUSY)
 633                aead_request_complete(aead_req, -EINPROGRESS);
 634
 635        aead_request_complete(aead_req, err);
 636}
 637
 638static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
 639{
 640        struct ce_pd *pd = &dev->pdr[idx];
 641        struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
 642
 643        switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
 644        case CRYPTO_ALG_TYPE_SKCIPHER:
 645                crypto4xx_cipher_done(dev, pd_uinfo, pd);
 646                break;
 647        case CRYPTO_ALG_TYPE_AEAD:
 648                crypto4xx_aead_done(dev, pd_uinfo, pd);
 649                break;
 650        case CRYPTO_ALG_TYPE_AHASH:
 651                crypto4xx_ahash_done(dev, pd_uinfo);
 652                break;
 653        }
 654}
 655
 656static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
 657{
 658        crypto4xx_destroy_pdr(core_dev->dev);
 659        crypto4xx_destroy_gdr(core_dev->dev);
 660        crypto4xx_destroy_sdr(core_dev->dev);
 661        iounmap(core_dev->dev->ce_base);
 662        kfree(core_dev->dev);
 663        kfree(core_dev);
 664}
 665
 666static u32 get_next_gd(u32 current)
 667{
 668        if (current != PPC4XX_LAST_GD)
 669                return current + 1;
 670        else
 671                return 0;
 672}
 673
 674static u32 get_next_sd(u32 current)
 675{
 676        if (current != PPC4XX_LAST_SD)
 677                return current + 1;
 678        else
 679                return 0;
 680}
 681
 682int crypto4xx_build_pd(struct crypto_async_request *req,
 683                       struct crypto4xx_ctx *ctx,
 684                       struct scatterlist *src,
 685                       struct scatterlist *dst,
 686                       const unsigned int datalen,
 687                       const __le32 *iv, const u32 iv_len,
 688                       const struct dynamic_sa_ctl *req_sa,
 689                       const unsigned int sa_len,
 690                       const unsigned int assoclen,
 691                       struct scatterlist *_dst)
 692{
 693        struct crypto4xx_device *dev = ctx->dev;
 694        struct dynamic_sa_ctl *sa;
 695        struct ce_gd *gd;
 696        struct ce_pd *pd;
 697        u32 num_gd, num_sd;
 698        u32 fst_gd = 0xffffffff;
 699        u32 fst_sd = 0xffffffff;
 700        u32 pd_entry;
 701        unsigned long flags;
 702        struct pd_uinfo *pd_uinfo;
 703        unsigned int nbytes = datalen;
 704        size_t offset_to_sr_ptr;
 705        u32 gd_idx = 0;
 706        int tmp;
 707        bool is_busy, force_sd;
 708
 709        /*
 710         * There's a very subtile/disguised "bug" in the hardware that
 711         * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
 712         * of the hardware spec:
 713         * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
 714         * operation modes for >>> "Block ciphers" <<<.
 715         *
 716         * To workaround this issue and stop the hardware from causing
 717         * "overran dst buffer" on crypttexts that are not a multiple
 718         * of 16 (AES_BLOCK_SIZE), we force the driver to use the
 719         * scatter buffers.
 720         */
 721        force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
 722                || req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
 723                && (datalen % AES_BLOCK_SIZE);
 724
 725        /* figure how many gd are needed */
 726        tmp = sg_nents_for_len(src, assoclen + datalen);
 727        if (tmp < 0) {
 728                dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
 729                return tmp;
 730        }
 731        if (tmp == 1)
 732                tmp = 0;
 733        num_gd = tmp;
 734
 735        if (assoclen) {
 736                nbytes += assoclen;
 737                dst = scatterwalk_ffwd(_dst, dst, assoclen);
 738        }
 739
 740        /* figure how many sd are needed */
 741        if (sg_is_last(dst) && force_sd == false) {
 742                num_sd = 0;
 743        } else {
 744                if (datalen > PPC4XX_SD_BUFFER_SIZE) {
 745                        num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
 746                        if (datalen % PPC4XX_SD_BUFFER_SIZE)
 747                                num_sd++;
 748                } else {
 749                        num_sd = 1;
 750                }
 751        }
 752
 753        /*
 754         * The follow section of code needs to be protected
 755         * The gather ring and scatter ring needs to be consecutive
 756         * In case of run out of any kind of descriptor, the descriptor
 757         * already got must be return the original place.
 758         */
 759        spin_lock_irqsave(&dev->core_dev->lock, flags);
 760        /*
 761         * Let the caller know to slow down, once more than 13/16ths = 81%
 762         * of the available data contexts are being used simultaneously.
 763         *
 764         * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
 765         * 31 more contexts. Before new requests have to be rejected.
 766         */
 767        if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
 768                is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
 769                        ((PPC4XX_NUM_PD * 13) / 16);
 770        } else {
 771                /*
 772                 * To fix contention issues between ipsec (no blacklog) and
 773                 * dm-crypto (backlog) reserve 32 entries for "no backlog"
 774                 * data contexts.
 775                 */
 776                is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
 777                        ((PPC4XX_NUM_PD * 15) / 16);
 778
 779                if (is_busy) {
 780                        spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 781                        return -EBUSY;
 782                }
 783        }
 784
 785        if (num_gd) {
 786                fst_gd = crypto4xx_get_n_gd(dev, num_gd);
 787                if (fst_gd == ERING_WAS_FULL) {
 788                        spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 789                        return -EAGAIN;
 790                }
 791        }
 792        if (num_sd) {
 793                fst_sd = crypto4xx_get_n_sd(dev, num_sd);
 794                if (fst_sd == ERING_WAS_FULL) {
 795                        if (num_gd)
 796                                dev->gdr_head = fst_gd;
 797                        spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 798                        return -EAGAIN;
 799                }
 800        }
 801        pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
 802        if (pd_entry == ERING_WAS_FULL) {
 803                if (num_gd)
 804                        dev->gdr_head = fst_gd;
 805                if (num_sd)
 806                        dev->sdr_head = fst_sd;
 807                spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 808                return -EAGAIN;
 809        }
 810        spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 811
 812        pd = &dev->pdr[pd_entry];
 813        pd->sa_len = sa_len;
 814
 815        pd_uinfo = &dev->pdr_uinfo[pd_entry];
 816        pd_uinfo->num_gd = num_gd;
 817        pd_uinfo->num_sd = num_sd;
 818        pd_uinfo->dest_va = dst;
 819        pd_uinfo->async_req = req;
 820
 821        if (iv_len)
 822                memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
 823
 824        sa = pd_uinfo->sa_va;
 825        memcpy(sa, req_sa, sa_len * 4);
 826
 827        sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
 828        offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
 829        *(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
 830
 831        if (num_gd) {
 832                dma_addr_t gd_dma;
 833                struct scatterlist *sg;
 834
 835                /* get first gd we are going to use */
 836                gd_idx = fst_gd;
 837                pd_uinfo->first_gd = fst_gd;
 838                gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
 839                pd->src = gd_dma;
 840                /* enable gather */
 841                sa->sa_command_0.bf.gather = 1;
 842                /* walk the sg, and setup gather array */
 843
 844                sg = src;
 845                while (nbytes) {
 846                        size_t len;
 847
 848                        len = min(sg->length, nbytes);
 849                        gd->ptr = dma_map_page(dev->core_dev->device,
 850                                sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
 851                        gd->ctl_len.len = len;
 852                        gd->ctl_len.done = 0;
 853                        gd->ctl_len.ready = 1;
 854                        if (len >= nbytes)
 855                                break;
 856
 857                        nbytes -= sg->length;
 858                        gd_idx = get_next_gd(gd_idx);
 859                        gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
 860                        sg = sg_next(sg);
 861                }
 862        } else {
 863                pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
 864                                src->offset, min(nbytes, src->length),
 865                                DMA_TO_DEVICE);
 866                /*
 867                 * Disable gather in sa command
 868                 */
 869                sa->sa_command_0.bf.gather = 0;
 870                /*
 871                 * Indicate gather array is not used
 872                 */
 873                pd_uinfo->first_gd = 0xffffffff;
 874        }
 875        if (!num_sd) {
 876                /*
 877                 * we know application give us dst a whole piece of memory
 878                 * no need to use scatter ring.
 879                 */
 880                pd_uinfo->first_sd = 0xffffffff;
 881                sa->sa_command_0.bf.scatter = 0;
 882                pd->dest = (u32)dma_map_page(dev->core_dev->device,
 883                                             sg_page(dst), dst->offset,
 884                                             min(datalen, dst->length),
 885                                             DMA_TO_DEVICE);
 886        } else {
 887                dma_addr_t sd_dma;
 888                struct ce_sd *sd = NULL;
 889
 890                u32 sd_idx = fst_sd;
 891                nbytes = datalen;
 892                sa->sa_command_0.bf.scatter = 1;
 893                pd_uinfo->first_sd = fst_sd;
 894                sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
 895                pd->dest = sd_dma;
 896                /* setup scatter descriptor */
 897                sd->ctl.done = 0;
 898                sd->ctl.rdy = 1;
 899                /* sd->ptr should be setup by sd_init routine*/
 900                if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
 901                        nbytes -= PPC4XX_SD_BUFFER_SIZE;
 902                else
 903                        nbytes = 0;
 904                while (nbytes) {
 905                        sd_idx = get_next_sd(sd_idx);
 906                        sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
 907                        /* setup scatter descriptor */
 908                        sd->ctl.done = 0;
 909                        sd->ctl.rdy = 1;
 910                        if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
 911                                nbytes -= PPC4XX_SD_BUFFER_SIZE;
 912                        } else {
 913                                /*
 914                                 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
 915                                 * which is more than nbytes, so done.
 916                                 */
 917                                nbytes = 0;
 918                        }
 919                }
 920        }
 921
 922        pd->pd_ctl.w = PD_CTL_HOST_READY |
 923                ((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) |
 924                 (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
 925                        PD_CTL_HASH_FINAL : 0);
 926        pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
 927        pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
 928
 929        wmb();
 930        /* write any value to push engine to read a pd */
 931        writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
 932        writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
 933        return is_busy ? -EBUSY : -EINPROGRESS;
 934}
 935
 936/**
 937 * Algorithm Registration Functions
 938 */
 939static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
 940                               struct crypto4xx_ctx *ctx)
 941{
 942        ctx->dev = amcc_alg->dev;
 943        ctx->sa_in = NULL;
 944        ctx->sa_out = NULL;
 945        ctx->sa_len = 0;
 946}
 947
 948static int crypto4xx_sk_init(struct crypto_skcipher *sk)
 949{
 950        struct skcipher_alg *alg = crypto_skcipher_alg(sk);
 951        struct crypto4xx_alg *amcc_alg;
 952        struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
 953
 954        if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
 955                ctx->sw_cipher.cipher =
 956                        crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
 957                                              CRYPTO_ALG_NEED_FALLBACK);
 958                if (IS_ERR(ctx->sw_cipher.cipher))
 959                        return PTR_ERR(ctx->sw_cipher.cipher);
 960        }
 961
 962        amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
 963        crypto4xx_ctx_init(amcc_alg, ctx);
 964        return 0;
 965}
 966
 967static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
 968{
 969        crypto4xx_free_sa(ctx);
 970}
 971
 972static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
 973{
 974        struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
 975
 976        crypto4xx_common_exit(ctx);
 977        if (ctx->sw_cipher.cipher)
 978                crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
 979}
 980
 981static int crypto4xx_aead_init(struct crypto_aead *tfm)
 982{
 983        struct aead_alg *alg = crypto_aead_alg(tfm);
 984        struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
 985        struct crypto4xx_alg *amcc_alg;
 986
 987        ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
 988                                                CRYPTO_ALG_NEED_FALLBACK |
 989                                                CRYPTO_ALG_ASYNC);
 990        if (IS_ERR(ctx->sw_cipher.aead))
 991                return PTR_ERR(ctx->sw_cipher.aead);
 992
 993        amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
 994        crypto4xx_ctx_init(amcc_alg, ctx);
 995        crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
 996                                crypto_aead_reqsize(ctx->sw_cipher.aead),
 997                                sizeof(struct crypto4xx_aead_reqctx)));
 998        return 0;
 999}
1000
1001static void crypto4xx_aead_exit(struct crypto_aead *tfm)
1002{
1003        struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
1004
1005        crypto4xx_common_exit(ctx);
1006        crypto_free_aead(ctx->sw_cipher.aead);
1007}
1008
1009static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1010                                  struct crypto4xx_alg_common *crypto_alg,
1011                                  int array_size)
1012{
1013        struct crypto4xx_alg *alg;
1014        int i;
1015        int rc = 0;
1016
1017        for (i = 0; i < array_size; i++) {
1018                alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1019                if (!alg)
1020                        return -ENOMEM;
1021
1022                alg->alg = crypto_alg[i];
1023                alg->dev = sec_dev;
1024
1025                switch (alg->alg.type) {
1026                case CRYPTO_ALG_TYPE_AEAD:
1027                        rc = crypto_register_aead(&alg->alg.u.aead);
1028                        break;
1029
1030                case CRYPTO_ALG_TYPE_AHASH:
1031                        rc = crypto_register_ahash(&alg->alg.u.hash);
1032                        break;
1033
1034                case CRYPTO_ALG_TYPE_RNG:
1035                        rc = crypto_register_rng(&alg->alg.u.rng);
1036                        break;
1037
1038                default:
1039                        rc = crypto_register_skcipher(&alg->alg.u.cipher);
1040                        break;
1041                }
1042
1043                if (rc)
1044                        kfree(alg);
1045                else
1046                        list_add_tail(&alg->entry, &sec_dev->alg_list);
1047        }
1048
1049        return 0;
1050}
1051
1052static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1053{
1054        struct crypto4xx_alg *alg, *tmp;
1055
1056        list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1057                list_del(&alg->entry);
1058                switch (alg->alg.type) {
1059                case CRYPTO_ALG_TYPE_AHASH:
1060                        crypto_unregister_ahash(&alg->alg.u.hash);
1061                        break;
1062
1063                case CRYPTO_ALG_TYPE_AEAD:
1064                        crypto_unregister_aead(&alg->alg.u.aead);
1065                        break;
1066
1067                case CRYPTO_ALG_TYPE_RNG:
1068                        crypto_unregister_rng(&alg->alg.u.rng);
1069                        break;
1070
1071                default:
1072                        crypto_unregister_skcipher(&alg->alg.u.cipher);
1073                }
1074                kfree(alg);
1075        }
1076}
1077
1078static void crypto4xx_bh_tasklet_cb(unsigned long data)
1079{
1080        struct device *dev = (struct device *)data;
1081        struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1082        struct pd_uinfo *pd_uinfo;
1083        struct ce_pd *pd;
1084        u32 tail = core_dev->dev->pdr_tail;
1085        u32 head = core_dev->dev->pdr_head;
1086
1087        do {
1088                pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1089                pd = &core_dev->dev->pdr[tail];
1090                if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1091                     ((READ_ONCE(pd->pd_ctl.w) &
1092                       (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1093                       PD_CTL_PE_DONE)) {
1094                        crypto4xx_pd_done(core_dev->dev, tail);
1095                        tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1096                } else {
1097                        /* if tail not done, break */
1098                        break;
1099                }
1100        } while (head != tail);
1101}
1102
1103/**
1104 * Top Half of isr.
1105 */
1106static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1107                                                      u32 clr_val)
1108{
1109        struct device *dev = (struct device *)data;
1110        struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1111
1112        writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1113        tasklet_schedule(&core_dev->tasklet);
1114
1115        return IRQ_HANDLED;
1116}
1117
1118static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1119{
1120        return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1121}
1122
1123static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1124{
1125        return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1126                PPC4XX_TMO_ERR_INT);
1127}
1128
1129static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
1130                                 u8 *data, unsigned int max)
1131{
1132        unsigned int i, curr = 0;
1133        u32 val[2];
1134
1135        do {
1136                /* trigger PRN generation */
1137                writel(PPC4XX_PRNG_CTRL_AUTO_EN,
1138                       dev->ce_base + CRYPTO4XX_PRNG_CTRL);
1139
1140                for (i = 0; i < 1024; i++) {
1141                        /* usually 19 iterations are enough */
1142                        if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
1143                             CRYPTO4XX_PRNG_STAT_BUSY))
1144                                continue;
1145
1146                        val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
1147                        val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
1148                        break;
1149                }
1150                if (i == 1024)
1151                        return -ETIMEDOUT;
1152
1153                if ((max - curr) >= 8) {
1154                        memcpy(data, &val, 8);
1155                        data += 8;
1156                        curr += 8;
1157                } else {
1158                        /* copy only remaining bytes */
1159                        memcpy(data, &val, max - curr);
1160                        break;
1161                }
1162        } while (curr < max);
1163
1164        return curr;
1165}
1166
1167static int crypto4xx_prng_generate(struct crypto_rng *tfm,
1168                                   const u8 *src, unsigned int slen,
1169                                   u8 *dstn, unsigned int dlen)
1170{
1171        struct rng_alg *alg = crypto_rng_alg(tfm);
1172        struct crypto4xx_alg *amcc_alg;
1173        struct crypto4xx_device *dev;
1174        int ret;
1175
1176        amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
1177        dev = amcc_alg->dev;
1178
1179        mutex_lock(&dev->core_dev->rng_lock);
1180        ret = ppc4xx_prng_data_read(dev, dstn, dlen);
1181        mutex_unlock(&dev->core_dev->rng_lock);
1182        return ret;
1183}
1184
1185
1186static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
1187                        unsigned int slen)
1188{
1189        return 0;
1190}
1191
1192/**
1193 * Supported Crypto Algorithms
1194 */
1195static struct crypto4xx_alg_common crypto4xx_alg[] = {
1196        /* Crypto AES modes */
1197        { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1198                .base = {
1199                        .cra_name = "cbc(aes)",
1200                        .cra_driver_name = "cbc-aes-ppc4xx",
1201                        .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1202                        .cra_flags = CRYPTO_ALG_ASYNC |
1203                                CRYPTO_ALG_KERN_DRIVER_ONLY,
1204                        .cra_blocksize = AES_BLOCK_SIZE,
1205                        .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1206                        .cra_module = THIS_MODULE,
1207                },
1208                .min_keysize = AES_MIN_KEY_SIZE,
1209                .max_keysize = AES_MAX_KEY_SIZE,
1210                .ivsize = AES_IV_SIZE,
1211                .setkey = crypto4xx_setkey_aes_cbc,
1212                .encrypt = crypto4xx_encrypt_iv_block,
1213                .decrypt = crypto4xx_decrypt_iv_block,
1214                .init = crypto4xx_sk_init,
1215                .exit = crypto4xx_sk_exit,
1216        } },
1217        { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1218                .base = {
1219                        .cra_name = "cfb(aes)",
1220                        .cra_driver_name = "cfb-aes-ppc4xx",
1221                        .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1222                        .cra_flags = CRYPTO_ALG_ASYNC |
1223                                CRYPTO_ALG_KERN_DRIVER_ONLY,
1224                        .cra_blocksize = 1,
1225                        .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1226                        .cra_module = THIS_MODULE,
1227                },
1228                .min_keysize = AES_MIN_KEY_SIZE,
1229                .max_keysize = AES_MAX_KEY_SIZE,
1230                .ivsize = AES_IV_SIZE,
1231                .setkey = crypto4xx_setkey_aes_cfb,
1232                .encrypt = crypto4xx_encrypt_iv_stream,
1233                .decrypt = crypto4xx_decrypt_iv_stream,
1234                .init = crypto4xx_sk_init,
1235                .exit = crypto4xx_sk_exit,
1236        } },
1237        { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1238                .base = {
1239                        .cra_name = "ctr(aes)",
1240                        .cra_driver_name = "ctr-aes-ppc4xx",
1241                        .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1242                        .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
1243                                CRYPTO_ALG_ASYNC |
1244                                CRYPTO_ALG_KERN_DRIVER_ONLY,
1245                        .cra_blocksize = 1,
1246                        .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1247                        .cra_module = THIS_MODULE,
1248                },
1249                .min_keysize = AES_MIN_KEY_SIZE,
1250                .max_keysize = AES_MAX_KEY_SIZE,
1251                .ivsize = AES_IV_SIZE,
1252                .setkey = crypto4xx_setkey_aes_ctr,
1253                .encrypt = crypto4xx_encrypt_ctr,
1254                .decrypt = crypto4xx_decrypt_ctr,
1255                .init = crypto4xx_sk_init,
1256                .exit = crypto4xx_sk_exit,
1257        } },
1258        { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1259                .base = {
1260                        .cra_name = "rfc3686(ctr(aes))",
1261                        .cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1262                        .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1263                        .cra_flags = CRYPTO_ALG_ASYNC |
1264                                CRYPTO_ALG_KERN_DRIVER_ONLY,
1265                        .cra_blocksize = 1,
1266                        .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1267                        .cra_module = THIS_MODULE,
1268                },
1269                .min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1270                .max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1271                .ivsize = CTR_RFC3686_IV_SIZE,
1272                .setkey = crypto4xx_setkey_rfc3686,
1273                .encrypt = crypto4xx_rfc3686_encrypt,
1274                .decrypt = crypto4xx_rfc3686_decrypt,
1275                .init = crypto4xx_sk_init,
1276                .exit = crypto4xx_sk_exit,
1277        } },
1278        { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1279                .base = {
1280                        .cra_name = "ecb(aes)",
1281                        .cra_driver_name = "ecb-aes-ppc4xx",
1282                        .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1283                        .cra_flags = CRYPTO_ALG_ASYNC |
1284                                CRYPTO_ALG_KERN_DRIVER_ONLY,
1285                        .cra_blocksize = AES_BLOCK_SIZE,
1286                        .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1287                        .cra_module = THIS_MODULE,
1288                },
1289                .min_keysize = AES_MIN_KEY_SIZE,
1290                .max_keysize = AES_MAX_KEY_SIZE,
1291                .setkey = crypto4xx_setkey_aes_ecb,
1292                .encrypt = crypto4xx_encrypt_noiv_block,
1293                .decrypt = crypto4xx_decrypt_noiv_block,
1294                .init = crypto4xx_sk_init,
1295                .exit = crypto4xx_sk_exit,
1296        } },
1297        { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1298                .base = {
1299                        .cra_name = "ofb(aes)",
1300                        .cra_driver_name = "ofb-aes-ppc4xx",
1301                        .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1302                        .cra_flags = CRYPTO_ALG_ASYNC |
1303                                CRYPTO_ALG_KERN_DRIVER_ONLY,
1304                        .cra_blocksize = 1,
1305                        .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1306                        .cra_module = THIS_MODULE,
1307                },
1308                .min_keysize = AES_MIN_KEY_SIZE,
1309                .max_keysize = AES_MAX_KEY_SIZE,
1310                .ivsize = AES_IV_SIZE,
1311                .setkey = crypto4xx_setkey_aes_ofb,
1312                .encrypt = crypto4xx_encrypt_iv_stream,
1313                .decrypt = crypto4xx_decrypt_iv_stream,
1314                .init = crypto4xx_sk_init,
1315                .exit = crypto4xx_sk_exit,
1316        } },
1317
1318        /* AEAD */
1319        { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1320                .setkey         = crypto4xx_setkey_aes_ccm,
1321                .setauthsize    = crypto4xx_setauthsize_aead,
1322                .encrypt        = crypto4xx_encrypt_aes_ccm,
1323                .decrypt        = crypto4xx_decrypt_aes_ccm,
1324                .init           = crypto4xx_aead_init,
1325                .exit           = crypto4xx_aead_exit,
1326                .ivsize         = AES_BLOCK_SIZE,
1327                .maxauthsize    = 16,
1328                .base = {
1329                        .cra_name       = "ccm(aes)",
1330                        .cra_driver_name = "ccm-aes-ppc4xx",
1331                        .cra_priority   = CRYPTO4XX_CRYPTO_PRIORITY,
1332                        .cra_flags      = CRYPTO_ALG_ASYNC |
1333                                          CRYPTO_ALG_NEED_FALLBACK |
1334                                          CRYPTO_ALG_KERN_DRIVER_ONLY,
1335                        .cra_blocksize  = 1,
1336                        .cra_ctxsize    = sizeof(struct crypto4xx_ctx),
1337                        .cra_module     = THIS_MODULE,
1338                },
1339        } },
1340        { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1341                .setkey         = crypto4xx_setkey_aes_gcm,
1342                .setauthsize    = crypto4xx_setauthsize_aead,
1343                .encrypt        = crypto4xx_encrypt_aes_gcm,
1344                .decrypt        = crypto4xx_decrypt_aes_gcm,
1345                .init           = crypto4xx_aead_init,
1346                .exit           = crypto4xx_aead_exit,
1347                .ivsize         = GCM_AES_IV_SIZE,
1348                .maxauthsize    = 16,
1349                .base = {
1350                        .cra_name       = "gcm(aes)",
1351                        .cra_driver_name = "gcm-aes-ppc4xx",
1352                        .cra_priority   = CRYPTO4XX_CRYPTO_PRIORITY,
1353                        .cra_flags      = CRYPTO_ALG_ASYNC |
1354                                          CRYPTO_ALG_NEED_FALLBACK |
1355                                          CRYPTO_ALG_KERN_DRIVER_ONLY,
1356                        .cra_blocksize  = 1,
1357                        .cra_ctxsize    = sizeof(struct crypto4xx_ctx),
1358                        .cra_module     = THIS_MODULE,
1359                },
1360        } },
1361        { .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
1362                .base = {
1363                        .cra_name               = "stdrng",
1364                        .cra_driver_name        = "crypto4xx_rng",
1365                        .cra_priority           = 300,
1366                        .cra_ctxsize            = 0,
1367                        .cra_module             = THIS_MODULE,
1368                },
1369                .generate               = crypto4xx_prng_generate,
1370                .seed                   = crypto4xx_prng_seed,
1371                .seedsize               = 0,
1372        } },
1373};
1374
1375/**
1376 * Module Initialization Routine
1377 */
1378static int crypto4xx_probe(struct platform_device *ofdev)
1379{
1380        int rc;
1381        struct resource res;
1382        struct device *dev = &ofdev->dev;
1383        struct crypto4xx_core_device *core_dev;
1384        u32 pvr;
1385        bool is_revb = true;
1386
1387        rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1388        if (rc)
1389                return -ENODEV;
1390
1391        if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1392                mtdcri(SDR0, PPC460EX_SDR0_SRST,
1393                       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1394                mtdcri(SDR0, PPC460EX_SDR0_SRST,
1395                       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1396        } else if (of_find_compatible_node(NULL, NULL,
1397                        "amcc,ppc405ex-crypto")) {
1398                mtdcri(SDR0, PPC405EX_SDR0_SRST,
1399                       mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1400                mtdcri(SDR0, PPC405EX_SDR0_SRST,
1401                       mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1402                is_revb = false;
1403        } else if (of_find_compatible_node(NULL, NULL,
1404                        "amcc,ppc460sx-crypto")) {
1405                mtdcri(SDR0, PPC460SX_SDR0_SRST,
1406                       mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1407                mtdcri(SDR0, PPC460SX_SDR0_SRST,
1408                       mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1409        } else {
1410                printk(KERN_ERR "Crypto Function Not supported!\n");
1411                return -EINVAL;
1412        }
1413
1414        core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1415        if (!core_dev)
1416                return -ENOMEM;
1417
1418        dev_set_drvdata(dev, core_dev);
1419        core_dev->ofdev = ofdev;
1420        core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1421        rc = -ENOMEM;
1422        if (!core_dev->dev)
1423                goto err_alloc_dev;
1424
1425        /*
1426         * Older version of 460EX/GT have a hardware bug.
1427         * Hence they do not support H/W based security intr coalescing
1428         */
1429        pvr = mfspr(SPRN_PVR);
1430        if (is_revb && ((pvr >> 4) == 0x130218A)) {
1431                u32 min = PVR_MIN(pvr);
1432
1433                if (min < 4) {
1434                        dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1435                        is_revb = false;
1436                }
1437        }
1438
1439        core_dev->dev->core_dev = core_dev;
1440        core_dev->dev->is_revb = is_revb;
1441        core_dev->device = dev;
1442        mutex_init(&core_dev->rng_lock);
1443        spin_lock_init(&core_dev->lock);
1444        INIT_LIST_HEAD(&core_dev->dev->alg_list);
1445        ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1446        rc = crypto4xx_build_pdr(core_dev->dev);
1447        if (rc)
1448                goto err_build_pdr;
1449
1450        rc = crypto4xx_build_gdr(core_dev->dev);
1451        if (rc)
1452                goto err_build_pdr;
1453
1454        rc = crypto4xx_build_sdr(core_dev->dev);
1455        if (rc)
1456                goto err_build_sdr;
1457
1458        /* Init tasklet for bottom half processing */
1459        tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1460                     (unsigned long) dev);
1461
1462        core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1463        if (!core_dev->dev->ce_base) {
1464                dev_err(dev, "failed to of_iomap\n");
1465                rc = -ENOMEM;
1466                goto err_iomap;
1467        }
1468
1469        /* Register for Crypto isr, Crypto Engine IRQ */
1470        core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1471        rc = request_irq(core_dev->irq, is_revb ?
1472                         crypto4xx_ce_interrupt_handler_revb :
1473                         crypto4xx_ce_interrupt_handler, 0,
1474                         KBUILD_MODNAME, dev);
1475        if (rc)
1476                goto err_request_irq;
1477
1478        /* need to setup pdr, rdr, gdr and sdr before this */
1479        crypto4xx_hw_init(core_dev->dev);
1480
1481        /* Register security algorithms with Linux CryptoAPI */
1482        rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1483                               ARRAY_SIZE(crypto4xx_alg));
1484        if (rc)
1485                goto err_start_dev;
1486
1487        ppc4xx_trng_probe(core_dev);
1488        return 0;
1489
1490err_start_dev:
1491        free_irq(core_dev->irq, dev);
1492err_request_irq:
1493        irq_dispose_mapping(core_dev->irq);
1494        iounmap(core_dev->dev->ce_base);
1495err_iomap:
1496        tasklet_kill(&core_dev->tasklet);
1497err_build_sdr:
1498        crypto4xx_destroy_sdr(core_dev->dev);
1499        crypto4xx_destroy_gdr(core_dev->dev);
1500err_build_pdr:
1501        crypto4xx_destroy_pdr(core_dev->dev);
1502        kfree(core_dev->dev);
1503err_alloc_dev:
1504        kfree(core_dev);
1505
1506        return rc;
1507}
1508
1509static int crypto4xx_remove(struct platform_device *ofdev)
1510{
1511        struct device *dev = &ofdev->dev;
1512        struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1513
1514        ppc4xx_trng_remove(core_dev);
1515
1516        free_irq(core_dev->irq, dev);
1517        irq_dispose_mapping(core_dev->irq);
1518
1519        tasklet_kill(&core_dev->tasklet);
1520        /* Un-register with Linux CryptoAPI */
1521        crypto4xx_unregister_alg(core_dev->dev);
1522        mutex_destroy(&core_dev->rng_lock);
1523        /* Free all allocated memory */
1524        crypto4xx_stop_all(core_dev);
1525
1526        return 0;
1527}
1528
1529static const struct of_device_id crypto4xx_match[] = {
1530        { .compatible      = "amcc,ppc4xx-crypto",},
1531        { },
1532};
1533MODULE_DEVICE_TABLE(of, crypto4xx_match);
1534
1535static struct platform_driver crypto4xx_driver = {
1536        .driver = {
1537                .name = KBUILD_MODNAME,
1538                .of_match_table = crypto4xx_match,
1539        },
1540        .probe          = crypto4xx_probe,
1541        .remove         = crypto4xx_remove,
1542};
1543
1544module_platform_driver(crypto4xx_driver);
1545
1546MODULE_LICENSE("GPL");
1547MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1548MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1549