linux/drivers/crypto/bcm/util.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright 2016 Broadcom
   4 */
   5
   6#include <linux/debugfs.h>
   7
   8#include "cipher.h"
   9#include "util.h"
  10
  11/* offset of SPU_OFIFO_CTRL register */
  12#define SPU_OFIFO_CTRL      0x40
  13#define SPU_FIFO_WATERMARK  0x1FF
  14
  15/**
  16 * spu_sg_at_offset() - Find the scatterlist entry at a given distance from the
  17 * start of a scatterlist.
  18 * @sg:         [in]  Start of a scatterlist
  19 * @skip:       [in]  Distance from the start of the scatterlist, in bytes
  20 * @sge:        [out] Scatterlist entry at skip bytes from start
  21 * @sge_offset: [out] Number of bytes from start of sge buffer to get to
  22 *                    requested distance.
  23 *
  24 * Return: 0 if entry found at requested distance
  25 *         < 0 otherwise
  26 */
  27int spu_sg_at_offset(struct scatterlist *sg, unsigned int skip,
  28                     struct scatterlist **sge, unsigned int *sge_offset)
  29{
  30        /* byte index from start of sg to the end of the previous entry */
  31        unsigned int index = 0;
  32        /* byte index from start of sg to the end of the current entry */
  33        unsigned int next_index;
  34
  35        next_index = sg->length;
  36        while (next_index <= skip) {
  37                sg = sg_next(sg);
  38                index = next_index;
  39                if (!sg)
  40                        return -EINVAL;
  41                next_index += sg->length;
  42        }
  43
  44        *sge_offset = skip - index;
  45        *sge = sg;
  46        return 0;
  47}
  48
  49/* Copy len bytes of sg data, starting at offset skip, to a dest buffer */
  50void sg_copy_part_to_buf(struct scatterlist *src, u8 *dest,
  51                         unsigned int len, unsigned int skip)
  52{
  53        size_t copied;
  54        unsigned int nents = sg_nents(src);
  55
  56        copied = sg_pcopy_to_buffer(src, nents, dest, len, skip);
  57        if (copied != len) {
  58                flow_log("%s copied %u bytes of %u requested. ",
  59                         __func__, (u32)copied, len);
  60                flow_log("sg with %u entries and skip %u\n", nents, skip);
  61        }
  62}
  63
  64/*
  65 * Copy data into a scatterlist starting at a specified offset in the
  66 * scatterlist. Specifically, copy len bytes of data in the buffer src
  67 * into the scatterlist dest, starting skip bytes into the scatterlist.
  68 */
  69void sg_copy_part_from_buf(struct scatterlist *dest, u8 *src,
  70                           unsigned int len, unsigned int skip)
  71{
  72        size_t copied;
  73        unsigned int nents = sg_nents(dest);
  74
  75        copied = sg_pcopy_from_buffer(dest, nents, src, len, skip);
  76        if (copied != len) {
  77                flow_log("%s copied %u bytes of %u requested. ",
  78                         __func__, (u32)copied, len);
  79                flow_log("sg with %u entries and skip %u\n", nents, skip);
  80        }
  81}
  82
  83/**
  84 * spu_sg_count() - Determine number of elements in scatterlist to provide a
  85 * specified number of bytes.
  86 * @sg_list:  scatterlist to examine
  87 * @skip:     index of starting point
  88 * @nbytes:   consider elements of scatterlist until reaching this number of
  89 *            bytes
  90 *
  91 * Return: the number of sg entries contributing to nbytes of data
  92 */
  93int spu_sg_count(struct scatterlist *sg_list, unsigned int skip, int nbytes)
  94{
  95        struct scatterlist *sg;
  96        int sg_nents = 0;
  97        unsigned int offset;
  98
  99        if (!sg_list)
 100                return 0;
 101
 102        if (spu_sg_at_offset(sg_list, skip, &sg, &offset) < 0)
 103                return 0;
 104
 105        while (sg && (nbytes > 0)) {
 106                sg_nents++;
 107                nbytes -= (sg->length - offset);
 108                offset = 0;
 109                sg = sg_next(sg);
 110        }
 111        return sg_nents;
 112}
 113
 114/**
 115 * spu_msg_sg_add() - Copy scatterlist entries from one sg to another, up to a
 116 * given length.
 117 * @to_sg:       scatterlist to copy to
 118 * @from_sg:     scatterlist to copy from
 119 * @from_skip:   number of bytes to skip in from_sg. Non-zero when previous
 120 *               request included part of the buffer in entry in from_sg.
 121 *               Assumes from_skip < from_sg->length.
 122 * @from_nents   number of entries in from_sg
 123 * @length       number of bytes to copy. may reach this limit before exhausting
 124 *               from_sg.
 125 *
 126 * Copies the entries themselves, not the data in the entries. Assumes to_sg has
 127 * enough entries. Does not limit the size of an individual buffer in to_sg.
 128 *
 129 * to_sg, from_sg, skip are all updated to end of copy
 130 *
 131 * Return: Number of bytes copied
 132 */
 133u32 spu_msg_sg_add(struct scatterlist **to_sg,
 134                   struct scatterlist **from_sg, u32 *from_skip,
 135                   u8 from_nents, u32 length)
 136{
 137        struct scatterlist *sg; /* an entry in from_sg */
 138        struct scatterlist *to = *to_sg;
 139        struct scatterlist *from = *from_sg;
 140        u32 skip = *from_skip;
 141        u32 offset;
 142        int i;
 143        u32 entry_len = 0;
 144        u32 frag_len = 0;       /* length of entry added to to_sg */
 145        u32 copied = 0;         /* number of bytes copied so far */
 146
 147        if (length == 0)
 148                return 0;
 149
 150        for_each_sg(from, sg, from_nents, i) {
 151                /* number of bytes in this from entry not yet used */
 152                entry_len = sg->length - skip;
 153                frag_len = min(entry_len, length - copied);
 154                offset = sg->offset + skip;
 155                if (frag_len)
 156                        sg_set_page(to++, sg_page(sg), frag_len, offset);
 157                copied += frag_len;
 158                if (copied == entry_len) {
 159                        /* used up all of from entry */
 160                        skip = 0;       /* start at beginning of next entry */
 161                }
 162                if (copied == length)
 163                        break;
 164        }
 165        *to_sg = to;
 166        *from_sg = sg;
 167        if (frag_len < entry_len)
 168                *from_skip = skip + frag_len;
 169        else
 170                *from_skip = 0;
 171
 172        return copied;
 173}
 174
 175void add_to_ctr(u8 *ctr_pos, unsigned int increment)
 176{
 177        __be64 *high_be = (__be64 *)ctr_pos;
 178        __be64 *low_be = high_be + 1;
 179        u64 orig_low = __be64_to_cpu(*low_be);
 180        u64 new_low = orig_low + (u64)increment;
 181
 182        *low_be = __cpu_to_be64(new_low);
 183        if (new_low < orig_low)
 184                /* there was a carry from the low 8 bytes */
 185                *high_be = __cpu_to_be64(__be64_to_cpu(*high_be) + 1);
 186}
 187
 188struct sdesc {
 189        struct shash_desc shash;
 190        char ctx[];
 191};
 192
 193/**
 194 * do_shash() - Do a synchronous hash operation in software
 195 * @name:       The name of the hash algorithm
 196 * @result:     Buffer where digest is to be written
 197 * @data1:      First part of data to hash. May be NULL.
 198 * @data1_len:  Length of data1, in bytes
 199 * @data2:      Second part of data to hash. May be NULL.
 200 * @data2_len:  Length of data2, in bytes
 201 * @key:        Key (if keyed hash)
 202 * @key_len:    Length of key, in bytes (or 0 if non-keyed hash)
 203 *
 204 * Note that the crypto API will not select this driver's own transform because
 205 * this driver only registers asynchronous algos.
 206 *
 207 * Return: 0 if hash successfully stored in result
 208 *         < 0 otherwise
 209 */
 210int do_shash(unsigned char *name, unsigned char *result,
 211             const u8 *data1, unsigned int data1_len,
 212             const u8 *data2, unsigned int data2_len,
 213             const u8 *key, unsigned int key_len)
 214{
 215        int rc;
 216        unsigned int size;
 217        struct crypto_shash *hash;
 218        struct sdesc *sdesc;
 219
 220        hash = crypto_alloc_shash(name, 0, 0);
 221        if (IS_ERR(hash)) {
 222                rc = PTR_ERR(hash);
 223                pr_err("%s: Crypto %s allocation error %d\n", __func__, name, rc);
 224                return rc;
 225        }
 226
 227        size = sizeof(struct shash_desc) + crypto_shash_descsize(hash);
 228        sdesc = kmalloc(size, GFP_KERNEL);
 229        if (!sdesc) {
 230                rc = -ENOMEM;
 231                goto do_shash_err;
 232        }
 233        sdesc->shash.tfm = hash;
 234
 235        if (key_len > 0) {
 236                rc = crypto_shash_setkey(hash, key, key_len);
 237                if (rc) {
 238                        pr_err("%s: Could not setkey %s shash\n", __func__, name);
 239                        goto do_shash_err;
 240                }
 241        }
 242
 243        rc = crypto_shash_init(&sdesc->shash);
 244        if (rc) {
 245                pr_err("%s: Could not init %s shash\n", __func__, name);
 246                goto do_shash_err;
 247        }
 248        rc = crypto_shash_update(&sdesc->shash, data1, data1_len);
 249        if (rc) {
 250                pr_err("%s: Could not update1\n", __func__);
 251                goto do_shash_err;
 252        }
 253        if (data2 && data2_len) {
 254                rc = crypto_shash_update(&sdesc->shash, data2, data2_len);
 255                if (rc) {
 256                        pr_err("%s: Could not update2\n", __func__);
 257                        goto do_shash_err;
 258                }
 259        }
 260        rc = crypto_shash_final(&sdesc->shash, result);
 261        if (rc)
 262                pr_err("%s: Could not generate %s hash\n", __func__, name);
 263
 264do_shash_err:
 265        crypto_free_shash(hash);
 266        kfree(sdesc);
 267
 268        return rc;
 269}
 270
 271/* Dump len bytes of a scatterlist starting at skip bytes into the sg */
 272void __dump_sg(struct scatterlist *sg, unsigned int skip, unsigned int len)
 273{
 274        u8 dbuf[16];
 275        unsigned int idx = skip;
 276        unsigned int num_out = 0;       /* number of bytes dumped so far */
 277        unsigned int count;
 278
 279        if (packet_debug_logging) {
 280                while (num_out < len) {
 281                        count = (len - num_out > 16) ? 16 : len - num_out;
 282                        sg_copy_part_to_buf(sg, dbuf, count, idx);
 283                        num_out += count;
 284                        print_hex_dump(KERN_ALERT, "  sg: ", DUMP_PREFIX_NONE,
 285                                       4, 1, dbuf, count, false);
 286                        idx += 16;
 287                }
 288        }
 289        if (debug_logging_sleep)
 290                msleep(debug_logging_sleep);
 291}
 292
 293/* Returns the name for a given cipher alg/mode */
 294char *spu_alg_name(enum spu_cipher_alg alg, enum spu_cipher_mode mode)
 295{
 296        switch (alg) {
 297        case CIPHER_ALG_RC4:
 298                return "rc4";
 299        case CIPHER_ALG_AES:
 300                switch (mode) {
 301                case CIPHER_MODE_CBC:
 302                        return "cbc(aes)";
 303                case CIPHER_MODE_ECB:
 304                        return "ecb(aes)";
 305                case CIPHER_MODE_OFB:
 306                        return "ofb(aes)";
 307                case CIPHER_MODE_CFB:
 308                        return "cfb(aes)";
 309                case CIPHER_MODE_CTR:
 310                        return "ctr(aes)";
 311                case CIPHER_MODE_XTS:
 312                        return "xts(aes)";
 313                case CIPHER_MODE_GCM:
 314                        return "gcm(aes)";
 315                default:
 316                        return "aes";
 317                }
 318                break;
 319        case CIPHER_ALG_DES:
 320                switch (mode) {
 321                case CIPHER_MODE_CBC:
 322                        return "cbc(des)";
 323                case CIPHER_MODE_ECB:
 324                        return "ecb(des)";
 325                case CIPHER_MODE_CTR:
 326                        return "ctr(des)";
 327                default:
 328                        return "des";
 329                }
 330                break;
 331        case CIPHER_ALG_3DES:
 332                switch (mode) {
 333                case CIPHER_MODE_CBC:
 334                        return "cbc(des3_ede)";
 335                case CIPHER_MODE_ECB:
 336                        return "ecb(des3_ede)";
 337                case CIPHER_MODE_CTR:
 338                        return "ctr(des3_ede)";
 339                default:
 340                        return "3des";
 341                }
 342                break;
 343        default:
 344                return "other";
 345        }
 346}
 347
 348static ssize_t spu_debugfs_read(struct file *filp, char __user *ubuf,
 349                                size_t count, loff_t *offp)
 350{
 351        struct device_private *ipriv;
 352        char *buf;
 353        ssize_t ret, out_offset, out_count;
 354        int i;
 355        u32 fifo_len;
 356        u32 spu_ofifo_ctrl;
 357        u32 alg;
 358        u32 mode;
 359        u32 op_cnt;
 360
 361        out_count = 2048;
 362
 363        buf = kmalloc(out_count, GFP_KERNEL);
 364        if (!buf)
 365                return -ENOMEM;
 366
 367        ipriv = filp->private_data;
 368        out_offset = 0;
 369        out_offset += snprintf(buf + out_offset, out_count - out_offset,
 370                               "Number of SPUs.........%u\n",
 371                               ipriv->spu.num_spu);
 372        out_offset += snprintf(buf + out_offset, out_count - out_offset,
 373                               "Current sessions.......%u\n",
 374                               atomic_read(&ipriv->session_count));
 375        out_offset += snprintf(buf + out_offset, out_count - out_offset,
 376                               "Session count..........%u\n",
 377                               atomic_read(&ipriv->stream_count));
 378        out_offset += snprintf(buf + out_offset, out_count - out_offset,
 379                               "Cipher setkey..........%u\n",
 380                               atomic_read(&ipriv->setkey_cnt[SPU_OP_CIPHER]));
 381        out_offset += snprintf(buf + out_offset, out_count - out_offset,
 382                               "Cipher Ops.............%u\n",
 383                               atomic_read(&ipriv->op_counts[SPU_OP_CIPHER]));
 384        for (alg = 0; alg < CIPHER_ALG_LAST; alg++) {
 385                for (mode = 0; mode < CIPHER_MODE_LAST; mode++) {
 386                        op_cnt = atomic_read(&ipriv->cipher_cnt[alg][mode]);
 387                        if (op_cnt) {
 388                                out_offset += snprintf(buf + out_offset,
 389                                                       out_count - out_offset,
 390                               "  %-13s%11u\n",
 391                               spu_alg_name(alg, mode), op_cnt);
 392                        }
 393                }
 394        }
 395        out_offset += snprintf(buf + out_offset, out_count - out_offset,
 396                               "Hash Ops...............%u\n",
 397                               atomic_read(&ipriv->op_counts[SPU_OP_HASH]));
 398        for (alg = 0; alg < HASH_ALG_LAST; alg++) {
 399                op_cnt = atomic_read(&ipriv->hash_cnt[alg]);
 400                if (op_cnt) {
 401                        out_offset += snprintf(buf + out_offset,
 402                                               out_count - out_offset,
 403                       "  %-13s%11u\n",
 404                       hash_alg_name[alg], op_cnt);
 405                }
 406        }
 407        out_offset += snprintf(buf + out_offset, out_count - out_offset,
 408                               "HMAC setkey............%u\n",
 409                               atomic_read(&ipriv->setkey_cnt[SPU_OP_HMAC]));
 410        out_offset += snprintf(buf + out_offset, out_count - out_offset,
 411                               "HMAC Ops...............%u\n",
 412                               atomic_read(&ipriv->op_counts[SPU_OP_HMAC]));
 413        for (alg = 0; alg < HASH_ALG_LAST; alg++) {
 414                op_cnt = atomic_read(&ipriv->hmac_cnt[alg]);
 415                if (op_cnt) {
 416                        out_offset += snprintf(buf + out_offset,
 417                                               out_count - out_offset,
 418                       "  %-13s%11u\n",
 419                       hash_alg_name[alg], op_cnt);
 420                }
 421        }
 422        out_offset += snprintf(buf + out_offset, out_count - out_offset,
 423                               "AEAD setkey............%u\n",
 424                               atomic_read(&ipriv->setkey_cnt[SPU_OP_AEAD]));
 425
 426        out_offset += snprintf(buf + out_offset, out_count - out_offset,
 427                               "AEAD Ops...............%u\n",
 428                               atomic_read(&ipriv->op_counts[SPU_OP_AEAD]));
 429        for (alg = 0; alg < AEAD_TYPE_LAST; alg++) {
 430                op_cnt = atomic_read(&ipriv->aead_cnt[alg]);
 431                if (op_cnt) {
 432                        out_offset += snprintf(buf + out_offset,
 433                                               out_count - out_offset,
 434                       "  %-13s%11u\n",
 435                       aead_alg_name[alg], op_cnt);
 436                }
 437        }
 438        out_offset += snprintf(buf + out_offset, out_count - out_offset,
 439                               "Bytes of req data......%llu\n",
 440                               (u64)atomic64_read(&ipriv->bytes_out));
 441        out_offset += snprintf(buf + out_offset, out_count - out_offset,
 442                               "Bytes of resp data.....%llu\n",
 443                               (u64)atomic64_read(&ipriv->bytes_in));
 444        out_offset += snprintf(buf + out_offset, out_count - out_offset,
 445                               "Mailbox full...........%u\n",
 446                               atomic_read(&ipriv->mb_no_spc));
 447        out_offset += snprintf(buf + out_offset, out_count - out_offset,
 448                               "Mailbox send failures..%u\n",
 449                               atomic_read(&ipriv->mb_send_fail));
 450        out_offset += snprintf(buf + out_offset, out_count - out_offset,
 451                               "Check ICV errors.......%u\n",
 452                               atomic_read(&ipriv->bad_icv));
 453        if (ipriv->spu.spu_type == SPU_TYPE_SPUM)
 454                for (i = 0; i < ipriv->spu.num_spu; i++) {
 455                        spu_ofifo_ctrl = ioread32(ipriv->spu.reg_vbase[i] +
 456                                                  SPU_OFIFO_CTRL);
 457                        fifo_len = spu_ofifo_ctrl & SPU_FIFO_WATERMARK;
 458                        out_offset += snprintf(buf + out_offset,
 459                                               out_count - out_offset,
 460                                       "SPU %d output FIFO high water.....%u\n",
 461                                       i, fifo_len);
 462                }
 463
 464        if (out_offset > out_count)
 465                out_offset = out_count;
 466
 467        ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
 468        kfree(buf);
 469        return ret;
 470}
 471
 472static const struct file_operations spu_debugfs_stats = {
 473        .owner = THIS_MODULE,
 474        .open = simple_open,
 475        .read = spu_debugfs_read,
 476};
 477
 478/*
 479 * Create the debug FS directories. If the top-level directory has not yet
 480 * been created, create it now. Create a stats file in this directory for
 481 * a SPU.
 482 */
 483void spu_setup_debugfs(void)
 484{
 485        if (!debugfs_initialized())
 486                return;
 487
 488        if (!iproc_priv.debugfs_dir)
 489                iproc_priv.debugfs_dir = debugfs_create_dir(KBUILD_MODNAME,
 490                                                            NULL);
 491
 492        if (!iproc_priv.debugfs_stats)
 493                /* Create file with permissions S_IRUSR */
 494                debugfs_create_file("stats", 0400, iproc_priv.debugfs_dir,
 495                                    &iproc_priv, &spu_debugfs_stats);
 496}
 497
 498void spu_free_debugfs(void)
 499{
 500        debugfs_remove_recursive(iproc_priv.debugfs_dir);
 501        iproc_priv.debugfs_dir = NULL;
 502}
 503
 504/**
 505 * format_value_ccm() - Format a value into a buffer, using a specified number
 506 *                      of bytes (i.e. maybe writing value X into a 4 byte
 507 *                      buffer, or maybe into a 12 byte buffer), as per the
 508 *                      SPU CCM spec.
 509 *
 510 * @val:                value to write (up to max of unsigned int)
 511 * @buf:                (pointer to) buffer to write the value
 512 * @len:                number of bytes to use (0 to 255)
 513 *
 514 */
 515void format_value_ccm(unsigned int val, u8 *buf, u8 len)
 516{
 517        int i;
 518
 519        /* First clear full output buffer */
 520        memset(buf, 0, len);
 521
 522        /* Then, starting from right side, fill in with data */
 523        for (i = 0; i < len; i++) {
 524                buf[len - i - 1] = (val >> (8 * i)) & 0xff;
 525                if (i >= 3)
 526                        break;  /* Only handle up to 32 bits of 'val' */
 527        }
 528}
 529