linux/drivers/crypto/padlock-aes.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* 
   3 * Cryptographic API.
   4 *
   5 * Support for VIA PadLock hardware crypto engine.
   6 *
   7 * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
   8 *
   9 */
  10
  11#include <crypto/algapi.h>
  12#include <crypto/aes.h>
  13#include <crypto/padlock.h>
  14#include <linux/module.h>
  15#include <linux/init.h>
  16#include <linux/types.h>
  17#include <linux/errno.h>
  18#include <linux/interrupt.h>
  19#include <linux/kernel.h>
  20#include <linux/percpu.h>
  21#include <linux/smp.h>
  22#include <linux/slab.h>
  23#include <asm/cpu_device_id.h>
  24#include <asm/byteorder.h>
  25#include <asm/processor.h>
  26#include <asm/fpu/api.h>
  27
  28/*
  29 * Number of data blocks actually fetched for each xcrypt insn.
  30 * Processors with prefetch errata will fetch extra blocks.
  31 */
  32static unsigned int ecb_fetch_blocks = 2;
  33#define MAX_ECB_FETCH_BLOCKS (8)
  34#define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
  35
  36static unsigned int cbc_fetch_blocks = 1;
  37#define MAX_CBC_FETCH_BLOCKS (4)
  38#define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
  39
  40/* Control word. */
  41struct cword {
  42        unsigned int __attribute__ ((__packed__))
  43                rounds:4,
  44                algo:3,
  45                keygen:1,
  46                interm:1,
  47                encdec:1,
  48                ksize:2;
  49} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
  50
  51/* Whenever making any changes to the following
  52 * structure *make sure* you keep E, d_data
  53 * and cword aligned on 16 Bytes boundaries and
  54 * the Hardware can access 16 * 16 bytes of E and d_data
  55 * (only the first 15 * 16 bytes matter but the HW reads
  56 * more).
  57 */
  58struct aes_ctx {
  59        u32 E[AES_MAX_KEYLENGTH_U32]
  60                __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
  61        u32 d_data[AES_MAX_KEYLENGTH_U32]
  62                __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
  63        struct {
  64                struct cword encrypt;
  65                struct cword decrypt;
  66        } cword;
  67        u32 *D;
  68};
  69
  70static DEFINE_PER_CPU(struct cword *, paes_last_cword);
  71
  72/* Tells whether the ACE is capable to generate
  73   the extended key for a given key_len. */
  74static inline int
  75aes_hw_extkey_available(uint8_t key_len)
  76{
  77        /* TODO: We should check the actual CPU model/stepping
  78                 as it's possible that the capability will be
  79                 added in the next CPU revisions. */
  80        if (key_len == 16)
  81                return 1;
  82        return 0;
  83}
  84
  85static inline struct aes_ctx *aes_ctx_common(void *ctx)
  86{
  87        unsigned long addr = (unsigned long)ctx;
  88        unsigned long align = PADLOCK_ALIGNMENT;
  89
  90        if (align <= crypto_tfm_ctx_alignment())
  91                align = 1;
  92        return (struct aes_ctx *)ALIGN(addr, align);
  93}
  94
  95static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
  96{
  97        return aes_ctx_common(crypto_tfm_ctx(tfm));
  98}
  99
 100static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
 101{
 102        return aes_ctx_common(crypto_blkcipher_ctx(tfm));
 103}
 104
 105static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
 106                       unsigned int key_len)
 107{
 108        struct aes_ctx *ctx = aes_ctx(tfm);
 109        const __le32 *key = (const __le32 *)in_key;
 110        u32 *flags = &tfm->crt_flags;
 111        struct crypto_aes_ctx gen_aes;
 112        int cpu;
 113
 114        if (key_len % 8) {
 115                *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
 116                return -EINVAL;
 117        }
 118
 119        /*
 120         * If the hardware is capable of generating the extended key
 121         * itself we must supply the plain key for both encryption
 122         * and decryption.
 123         */
 124        ctx->D = ctx->E;
 125
 126        ctx->E[0] = le32_to_cpu(key[0]);
 127        ctx->E[1] = le32_to_cpu(key[1]);
 128        ctx->E[2] = le32_to_cpu(key[2]);
 129        ctx->E[3] = le32_to_cpu(key[3]);
 130
 131        /* Prepare control words. */
 132        memset(&ctx->cword, 0, sizeof(ctx->cword));
 133
 134        ctx->cword.decrypt.encdec = 1;
 135        ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
 136        ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
 137        ctx->cword.encrypt.ksize = (key_len - 16) / 8;
 138        ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
 139
 140        /* Don't generate extended keys if the hardware can do it. */
 141        if (aes_hw_extkey_available(key_len))
 142                goto ok;
 143
 144        ctx->D = ctx->d_data;
 145        ctx->cword.encrypt.keygen = 1;
 146        ctx->cword.decrypt.keygen = 1;
 147
 148        if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) {
 149                *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
 150                return -EINVAL;
 151        }
 152
 153        memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
 154        memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
 155
 156ok:
 157        for_each_online_cpu(cpu)
 158                if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
 159                    &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
 160                        per_cpu(paes_last_cword, cpu) = NULL;
 161
 162        return 0;
 163}
 164
 165/* ====== Encryption/decryption routines ====== */
 166
 167/* These are the real call to PadLock. */
 168static inline void padlock_reset_key(struct cword *cword)
 169{
 170        int cpu = raw_smp_processor_id();
 171
 172        if (cword != per_cpu(paes_last_cword, cpu))
 173#ifndef CONFIG_X86_64
 174                asm volatile ("pushfl; popfl");
 175#else
 176                asm volatile ("pushfq; popfq");
 177#endif
 178}
 179
 180static inline void padlock_store_cword(struct cword *cword)
 181{
 182        per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
 183}
 184
 185/*
 186 * While the padlock instructions don't use FP/SSE registers, they
 187 * generate a spurious DNA fault when CR0.TS is '1'.  Fortunately,
 188 * the kernel doesn't use CR0.TS.
 189 */
 190
 191static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
 192                                  struct cword *control_word, int count)
 193{
 194        asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"       /* rep xcryptecb */
 195                      : "+S"(input), "+D"(output)
 196                      : "d"(control_word), "b"(key), "c"(count));
 197}
 198
 199static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
 200                                 u8 *iv, struct cword *control_word, int count)
 201{
 202        asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"       /* rep xcryptcbc */
 203                      : "+S" (input), "+D" (output), "+a" (iv)
 204                      : "d" (control_word), "b" (key), "c" (count));
 205        return iv;
 206}
 207
 208static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
 209                           struct cword *cword, int count)
 210{
 211        /*
 212         * Padlock prefetches extra data so we must provide mapped input buffers.
 213         * Assume there are at least 16 bytes of stack already in use.
 214         */
 215        u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
 216        u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
 217
 218        memcpy(tmp, in, count * AES_BLOCK_SIZE);
 219        rep_xcrypt_ecb(tmp, out, key, cword, count);
 220}
 221
 222static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
 223                           u8 *iv, struct cword *cword, int count)
 224{
 225        /*
 226         * Padlock prefetches extra data so we must provide mapped input buffers.
 227         * Assume there are at least 16 bytes of stack already in use.
 228         */
 229        u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
 230        u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
 231
 232        memcpy(tmp, in, count * AES_BLOCK_SIZE);
 233        return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
 234}
 235
 236static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
 237                             struct cword *cword, int count)
 238{
 239        /* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
 240         * We could avoid some copying here but it's probably not worth it.
 241         */
 242        if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) {
 243                ecb_crypt_copy(in, out, key, cword, count);
 244                return;
 245        }
 246
 247        rep_xcrypt_ecb(in, out, key, cword, count);
 248}
 249
 250static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
 251                            u8 *iv, struct cword *cword, int count)
 252{
 253        /* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
 254        if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE))
 255                return cbc_crypt_copy(in, out, key, iv, cword, count);
 256
 257        return rep_xcrypt_cbc(in, out, key, iv, cword, count);
 258}
 259
 260static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
 261                                      void *control_word, u32 count)
 262{
 263        u32 initial = count & (ecb_fetch_blocks - 1);
 264
 265        if (count < ecb_fetch_blocks) {
 266                ecb_crypt(input, output, key, control_word, count);
 267                return;
 268        }
 269
 270        count -= initial;
 271
 272        if (initial)
 273                asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"       /* rep xcryptecb */
 274                              : "+S"(input), "+D"(output)
 275                              : "d"(control_word), "b"(key), "c"(initial));
 276
 277        asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"       /* rep xcryptecb */
 278                      : "+S"(input), "+D"(output)
 279                      : "d"(control_word), "b"(key), "c"(count));
 280}
 281
 282static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
 283                                     u8 *iv, void *control_word, u32 count)
 284{
 285        u32 initial = count & (cbc_fetch_blocks - 1);
 286
 287        if (count < cbc_fetch_blocks)
 288                return cbc_crypt(input, output, key, iv, control_word, count);
 289
 290        count -= initial;
 291
 292        if (initial)
 293                asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"       /* rep xcryptcbc */
 294                              : "+S" (input), "+D" (output), "+a" (iv)
 295                              : "d" (control_word), "b" (key), "c" (initial));
 296
 297        asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"       /* rep xcryptcbc */
 298                      : "+S" (input), "+D" (output), "+a" (iv)
 299                      : "d" (control_word), "b" (key), "c" (count));
 300        return iv;
 301}
 302
 303static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
 304{
 305        struct aes_ctx *ctx = aes_ctx(tfm);
 306
 307        padlock_reset_key(&ctx->cword.encrypt);
 308        ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
 309        padlock_store_cword(&ctx->cword.encrypt);
 310}
 311
 312static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
 313{
 314        struct aes_ctx *ctx = aes_ctx(tfm);
 315
 316        padlock_reset_key(&ctx->cword.encrypt);
 317        ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
 318        padlock_store_cword(&ctx->cword.encrypt);
 319}
 320
 321static struct crypto_alg aes_alg = {
 322        .cra_name               =       "aes",
 323        .cra_driver_name        =       "aes-padlock",
 324        .cra_priority           =       PADLOCK_CRA_PRIORITY,
 325        .cra_flags              =       CRYPTO_ALG_TYPE_CIPHER,
 326        .cra_blocksize          =       AES_BLOCK_SIZE,
 327        .cra_ctxsize            =       sizeof(struct aes_ctx),
 328        .cra_alignmask          =       PADLOCK_ALIGNMENT - 1,
 329        .cra_module             =       THIS_MODULE,
 330        .cra_u                  =       {
 331                .cipher = {
 332                        .cia_min_keysize        =       AES_MIN_KEY_SIZE,
 333                        .cia_max_keysize        =       AES_MAX_KEY_SIZE,
 334                        .cia_setkey             =       aes_set_key,
 335                        .cia_encrypt            =       aes_encrypt,
 336                        .cia_decrypt            =       aes_decrypt,
 337                }
 338        }
 339};
 340
 341static int ecb_aes_encrypt(struct blkcipher_desc *desc,
 342                           struct scatterlist *dst, struct scatterlist *src,
 343                           unsigned int nbytes)
 344{
 345        struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
 346        struct blkcipher_walk walk;
 347        int err;
 348
 349        padlock_reset_key(&ctx->cword.encrypt);
 350
 351        blkcipher_walk_init(&walk, dst, src, nbytes);
 352        err = blkcipher_walk_virt(desc, &walk);
 353
 354        while ((nbytes = walk.nbytes)) {
 355                padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
 356                                   ctx->E, &ctx->cword.encrypt,
 357                                   nbytes / AES_BLOCK_SIZE);
 358                nbytes &= AES_BLOCK_SIZE - 1;
 359                err = blkcipher_walk_done(desc, &walk, nbytes);
 360        }
 361
 362        padlock_store_cword(&ctx->cword.encrypt);
 363
 364        return err;
 365}
 366
 367static int ecb_aes_decrypt(struct blkcipher_desc *desc,
 368                           struct scatterlist *dst, struct scatterlist *src,
 369                           unsigned int nbytes)
 370{
 371        struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
 372        struct blkcipher_walk walk;
 373        int err;
 374
 375        padlock_reset_key(&ctx->cword.decrypt);
 376
 377        blkcipher_walk_init(&walk, dst, src, nbytes);
 378        err = blkcipher_walk_virt(desc, &walk);
 379
 380        while ((nbytes = walk.nbytes)) {
 381                padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
 382                                   ctx->D, &ctx->cword.decrypt,
 383                                   nbytes / AES_BLOCK_SIZE);
 384                nbytes &= AES_BLOCK_SIZE - 1;
 385                err = blkcipher_walk_done(desc, &walk, nbytes);
 386        }
 387
 388        padlock_store_cword(&ctx->cword.encrypt);
 389
 390        return err;
 391}
 392
 393static struct crypto_alg ecb_aes_alg = {
 394        .cra_name               =       "ecb(aes)",
 395        .cra_driver_name        =       "ecb-aes-padlock",
 396        .cra_priority           =       PADLOCK_COMPOSITE_PRIORITY,
 397        .cra_flags              =       CRYPTO_ALG_TYPE_BLKCIPHER,
 398        .cra_blocksize          =       AES_BLOCK_SIZE,
 399        .cra_ctxsize            =       sizeof(struct aes_ctx),
 400        .cra_alignmask          =       PADLOCK_ALIGNMENT - 1,
 401        .cra_type               =       &crypto_blkcipher_type,
 402        .cra_module             =       THIS_MODULE,
 403        .cra_u                  =       {
 404                .blkcipher = {
 405                        .min_keysize            =       AES_MIN_KEY_SIZE,
 406                        .max_keysize            =       AES_MAX_KEY_SIZE,
 407                        .setkey                 =       aes_set_key,
 408                        .encrypt                =       ecb_aes_encrypt,
 409                        .decrypt                =       ecb_aes_decrypt,
 410                }
 411        }
 412};
 413
 414static int cbc_aes_encrypt(struct blkcipher_desc *desc,
 415                           struct scatterlist *dst, struct scatterlist *src,
 416                           unsigned int nbytes)
 417{
 418        struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
 419        struct blkcipher_walk walk;
 420        int err;
 421
 422        padlock_reset_key(&ctx->cword.encrypt);
 423
 424        blkcipher_walk_init(&walk, dst, src, nbytes);
 425        err = blkcipher_walk_virt(desc, &walk);
 426
 427        while ((nbytes = walk.nbytes)) {
 428                u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
 429                                            walk.dst.virt.addr, ctx->E,
 430                                            walk.iv, &ctx->cword.encrypt,
 431                                            nbytes / AES_BLOCK_SIZE);
 432                memcpy(walk.iv, iv, AES_BLOCK_SIZE);
 433                nbytes &= AES_BLOCK_SIZE - 1;
 434                err = blkcipher_walk_done(desc, &walk, nbytes);
 435        }
 436
 437        padlock_store_cword(&ctx->cword.decrypt);
 438
 439        return err;
 440}
 441
 442static int cbc_aes_decrypt(struct blkcipher_desc *desc,
 443                           struct scatterlist *dst, struct scatterlist *src,
 444                           unsigned int nbytes)
 445{
 446        struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
 447        struct blkcipher_walk walk;
 448        int err;
 449
 450        padlock_reset_key(&ctx->cword.encrypt);
 451
 452        blkcipher_walk_init(&walk, dst, src, nbytes);
 453        err = blkcipher_walk_virt(desc, &walk);
 454
 455        while ((nbytes = walk.nbytes)) {
 456                padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
 457                                   ctx->D, walk.iv, &ctx->cword.decrypt,
 458                                   nbytes / AES_BLOCK_SIZE);
 459                nbytes &= AES_BLOCK_SIZE - 1;
 460                err = blkcipher_walk_done(desc, &walk, nbytes);
 461        }
 462
 463        padlock_store_cword(&ctx->cword.encrypt);
 464
 465        return err;
 466}
 467
 468static struct crypto_alg cbc_aes_alg = {
 469        .cra_name               =       "cbc(aes)",
 470        .cra_driver_name        =       "cbc-aes-padlock",
 471        .cra_priority           =       PADLOCK_COMPOSITE_PRIORITY,
 472        .cra_flags              =       CRYPTO_ALG_TYPE_BLKCIPHER,
 473        .cra_blocksize          =       AES_BLOCK_SIZE,
 474        .cra_ctxsize            =       sizeof(struct aes_ctx),
 475        .cra_alignmask          =       PADLOCK_ALIGNMENT - 1,
 476        .cra_type               =       &crypto_blkcipher_type,
 477        .cra_module             =       THIS_MODULE,
 478        .cra_u                  =       {
 479                .blkcipher = {
 480                        .min_keysize            =       AES_MIN_KEY_SIZE,
 481                        .max_keysize            =       AES_MAX_KEY_SIZE,
 482                        .ivsize                 =       AES_BLOCK_SIZE,
 483                        .setkey                 =       aes_set_key,
 484                        .encrypt                =       cbc_aes_encrypt,
 485                        .decrypt                =       cbc_aes_decrypt,
 486                }
 487        }
 488};
 489
 490static const struct x86_cpu_id padlock_cpu_id[] = {
 491        X86_FEATURE_MATCH(X86_FEATURE_XCRYPT),
 492        {}
 493};
 494MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
 495
 496static int __init padlock_init(void)
 497{
 498        int ret;
 499        struct cpuinfo_x86 *c = &cpu_data(0);
 500
 501        if (!x86_match_cpu(padlock_cpu_id))
 502                return -ENODEV;
 503
 504        if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) {
 505                printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
 506                return -ENODEV;
 507        }
 508
 509        if ((ret = crypto_register_alg(&aes_alg)))
 510                goto aes_err;
 511
 512        if ((ret = crypto_register_alg(&ecb_aes_alg)))
 513                goto ecb_aes_err;
 514
 515        if ((ret = crypto_register_alg(&cbc_aes_alg)))
 516                goto cbc_aes_err;
 517
 518        printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
 519
 520        if (c->x86 == 6 && c->x86_model == 15 && c->x86_stepping == 2) {
 521                ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
 522                cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
 523                printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
 524        }
 525
 526out:
 527        return ret;
 528
 529cbc_aes_err:
 530        crypto_unregister_alg(&ecb_aes_alg);
 531ecb_aes_err:
 532        crypto_unregister_alg(&aes_alg);
 533aes_err:
 534        printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
 535        goto out;
 536}
 537
 538static void __exit padlock_fini(void)
 539{
 540        crypto_unregister_alg(&cbc_aes_alg);
 541        crypto_unregister_alg(&ecb_aes_alg);
 542        crypto_unregister_alg(&aes_alg);
 543}
 544
 545module_init(padlock_init);
 546module_exit(padlock_fini);
 547
 548MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
 549MODULE_LICENSE("GPL");
 550MODULE_AUTHOR("Michal Ludvig");
 551
 552MODULE_ALIAS_CRYPTO("aes");
 553