linux/drivers/crypto/s5p-sss.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Cryptographic API.
   4//
   5// Support for Samsung S5PV210 and Exynos HW acceleration.
   6//
   7// Copyright (C) 2011 NetUP Inc. All rights reserved.
   8// Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
   9//
  10// Hash part based on omap-sham.c driver.
  11
  12#include <linux/clk.h>
  13#include <linux/crypto.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/err.h>
  16#include <linux/errno.h>
  17#include <linux/init.h>
  18#include <linux/interrupt.h>
  19#include <linux/io.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/of.h>
  23#include <linux/platform_device.h>
  24#include <linux/scatterlist.h>
  25
  26#include <crypto/ctr.h>
  27#include <crypto/aes.h>
  28#include <crypto/algapi.h>
  29#include <crypto/scatterwalk.h>
  30
  31#include <crypto/hash.h>
  32#include <crypto/md5.h>
  33#include <crypto/sha.h>
  34#include <crypto/internal/hash.h>
  35
  36#define _SBF(s, v)                      ((v) << (s))
  37
  38/* Feed control registers */
  39#define SSS_REG_FCINTSTAT               0x0000
  40#define SSS_FCINTSTAT_HPARTINT          BIT(7)
  41#define SSS_FCINTSTAT_HDONEINT          BIT(5)
  42#define SSS_FCINTSTAT_BRDMAINT          BIT(3)
  43#define SSS_FCINTSTAT_BTDMAINT          BIT(2)
  44#define SSS_FCINTSTAT_HRDMAINT          BIT(1)
  45#define SSS_FCINTSTAT_PKDMAINT          BIT(0)
  46
  47#define SSS_REG_FCINTENSET              0x0004
  48#define SSS_FCINTENSET_HPARTINTENSET    BIT(7)
  49#define SSS_FCINTENSET_HDONEINTENSET    BIT(5)
  50#define SSS_FCINTENSET_BRDMAINTENSET    BIT(3)
  51#define SSS_FCINTENSET_BTDMAINTENSET    BIT(2)
  52#define SSS_FCINTENSET_HRDMAINTENSET    BIT(1)
  53#define SSS_FCINTENSET_PKDMAINTENSET    BIT(0)
  54
  55#define SSS_REG_FCINTENCLR              0x0008
  56#define SSS_FCINTENCLR_HPARTINTENCLR    BIT(7)
  57#define SSS_FCINTENCLR_HDONEINTENCLR    BIT(5)
  58#define SSS_FCINTENCLR_BRDMAINTENCLR    BIT(3)
  59#define SSS_FCINTENCLR_BTDMAINTENCLR    BIT(2)
  60#define SSS_FCINTENCLR_HRDMAINTENCLR    BIT(1)
  61#define SSS_FCINTENCLR_PKDMAINTENCLR    BIT(0)
  62
  63#define SSS_REG_FCINTPEND               0x000C
  64#define SSS_FCINTPEND_HPARTINTP         BIT(7)
  65#define SSS_FCINTPEND_HDONEINTP         BIT(5)
  66#define SSS_FCINTPEND_BRDMAINTP         BIT(3)
  67#define SSS_FCINTPEND_BTDMAINTP         BIT(2)
  68#define SSS_FCINTPEND_HRDMAINTP         BIT(1)
  69#define SSS_FCINTPEND_PKDMAINTP         BIT(0)
  70
  71#define SSS_REG_FCFIFOSTAT              0x0010
  72#define SSS_FCFIFOSTAT_BRFIFOFUL        BIT(7)
  73#define SSS_FCFIFOSTAT_BRFIFOEMP        BIT(6)
  74#define SSS_FCFIFOSTAT_BTFIFOFUL        BIT(5)
  75#define SSS_FCFIFOSTAT_BTFIFOEMP        BIT(4)
  76#define SSS_FCFIFOSTAT_HRFIFOFUL        BIT(3)
  77#define SSS_FCFIFOSTAT_HRFIFOEMP        BIT(2)
  78#define SSS_FCFIFOSTAT_PKFIFOFUL        BIT(1)
  79#define SSS_FCFIFOSTAT_PKFIFOEMP        BIT(0)
  80
  81#define SSS_REG_FCFIFOCTRL              0x0014
  82#define SSS_FCFIFOCTRL_DESSEL           BIT(2)
  83#define SSS_HASHIN_INDEPENDENT          _SBF(0, 0x00)
  84#define SSS_HASHIN_CIPHER_INPUT         _SBF(0, 0x01)
  85#define SSS_HASHIN_CIPHER_OUTPUT        _SBF(0, 0x02)
  86#define SSS_HASHIN_MASK                 _SBF(0, 0x03)
  87
  88#define SSS_REG_FCBRDMAS                0x0020
  89#define SSS_REG_FCBRDMAL                0x0024
  90#define SSS_REG_FCBRDMAC                0x0028
  91#define SSS_FCBRDMAC_BYTESWAP           BIT(1)
  92#define SSS_FCBRDMAC_FLUSH              BIT(0)
  93
  94#define SSS_REG_FCBTDMAS                0x0030
  95#define SSS_REG_FCBTDMAL                0x0034
  96#define SSS_REG_FCBTDMAC                0x0038
  97#define SSS_FCBTDMAC_BYTESWAP           BIT(1)
  98#define SSS_FCBTDMAC_FLUSH              BIT(0)
  99
 100#define SSS_REG_FCHRDMAS                0x0040
 101#define SSS_REG_FCHRDMAL                0x0044
 102#define SSS_REG_FCHRDMAC                0x0048
 103#define SSS_FCHRDMAC_BYTESWAP           BIT(1)
 104#define SSS_FCHRDMAC_FLUSH              BIT(0)
 105
 106#define SSS_REG_FCPKDMAS                0x0050
 107#define SSS_REG_FCPKDMAL                0x0054
 108#define SSS_REG_FCPKDMAC                0x0058
 109#define SSS_FCPKDMAC_BYTESWAP           BIT(3)
 110#define SSS_FCPKDMAC_DESCEND            BIT(2)
 111#define SSS_FCPKDMAC_TRANSMIT           BIT(1)
 112#define SSS_FCPKDMAC_FLUSH              BIT(0)
 113
 114#define SSS_REG_FCPKDMAO                0x005C
 115
 116/* AES registers */
 117#define SSS_REG_AES_CONTROL             0x00
 118#define SSS_AES_BYTESWAP_DI             BIT(11)
 119#define SSS_AES_BYTESWAP_DO             BIT(10)
 120#define SSS_AES_BYTESWAP_IV             BIT(9)
 121#define SSS_AES_BYTESWAP_CNT            BIT(8)
 122#define SSS_AES_BYTESWAP_KEY            BIT(7)
 123#define SSS_AES_KEY_CHANGE_MODE         BIT(6)
 124#define SSS_AES_KEY_SIZE_128            _SBF(4, 0x00)
 125#define SSS_AES_KEY_SIZE_192            _SBF(4, 0x01)
 126#define SSS_AES_KEY_SIZE_256            _SBF(4, 0x02)
 127#define SSS_AES_FIFO_MODE               BIT(3)
 128#define SSS_AES_CHAIN_MODE_ECB          _SBF(1, 0x00)
 129#define SSS_AES_CHAIN_MODE_CBC          _SBF(1, 0x01)
 130#define SSS_AES_CHAIN_MODE_CTR          _SBF(1, 0x02)
 131#define SSS_AES_MODE_DECRYPT            BIT(0)
 132
 133#define SSS_REG_AES_STATUS              0x04
 134#define SSS_AES_BUSY                    BIT(2)
 135#define SSS_AES_INPUT_READY             BIT(1)
 136#define SSS_AES_OUTPUT_READY            BIT(0)
 137
 138#define SSS_REG_AES_IN_DATA(s)          (0x10 + (s << 2))
 139#define SSS_REG_AES_OUT_DATA(s)         (0x20 + (s << 2))
 140#define SSS_REG_AES_IV_DATA(s)          (0x30 + (s << 2))
 141#define SSS_REG_AES_CNT_DATA(s)         (0x40 + (s << 2))
 142#define SSS_REG_AES_KEY_DATA(s)         (0x80 + (s << 2))
 143
 144#define SSS_REG(dev, reg)               ((dev)->ioaddr + (SSS_REG_##reg))
 145#define SSS_READ(dev, reg)              __raw_readl(SSS_REG(dev, reg))
 146#define SSS_WRITE(dev, reg, val)        __raw_writel((val), SSS_REG(dev, reg))
 147
 148#define SSS_AES_REG(dev, reg)           ((dev)->aes_ioaddr + SSS_REG_##reg)
 149#define SSS_AES_WRITE(dev, reg, val)    __raw_writel((val), \
 150                                                SSS_AES_REG(dev, reg))
 151
 152/* HW engine modes */
 153#define FLAGS_AES_DECRYPT               BIT(0)
 154#define FLAGS_AES_MODE_MASK             _SBF(1, 0x03)
 155#define FLAGS_AES_CBC                   _SBF(1, 0x01)
 156#define FLAGS_AES_CTR                   _SBF(1, 0x02)
 157
 158#define AES_KEY_LEN                     16
 159#define CRYPTO_QUEUE_LEN                1
 160
 161/* HASH registers */
 162#define SSS_REG_HASH_CTRL               0x00
 163
 164#define SSS_HASH_USER_IV_EN             BIT(5)
 165#define SSS_HASH_INIT_BIT               BIT(4)
 166#define SSS_HASH_ENGINE_SHA1            _SBF(1, 0x00)
 167#define SSS_HASH_ENGINE_MD5             _SBF(1, 0x01)
 168#define SSS_HASH_ENGINE_SHA256          _SBF(1, 0x02)
 169
 170#define SSS_HASH_ENGINE_MASK            _SBF(1, 0x03)
 171
 172#define SSS_REG_HASH_CTRL_PAUSE         0x04
 173
 174#define SSS_HASH_PAUSE                  BIT(0)
 175
 176#define SSS_REG_HASH_CTRL_FIFO          0x08
 177
 178#define SSS_HASH_FIFO_MODE_DMA          BIT(0)
 179#define SSS_HASH_FIFO_MODE_CPU          0
 180
 181#define SSS_REG_HASH_CTRL_SWAP          0x0C
 182
 183#define SSS_HASH_BYTESWAP_DI            BIT(3)
 184#define SSS_HASH_BYTESWAP_DO            BIT(2)
 185#define SSS_HASH_BYTESWAP_IV            BIT(1)
 186#define SSS_HASH_BYTESWAP_KEY           BIT(0)
 187
 188#define SSS_REG_HASH_STATUS             0x10
 189
 190#define SSS_HASH_STATUS_MSG_DONE        BIT(6)
 191#define SSS_HASH_STATUS_PARTIAL_DONE    BIT(4)
 192#define SSS_HASH_STATUS_BUFFER_READY    BIT(0)
 193
 194#define SSS_REG_HASH_MSG_SIZE_LOW       0x20
 195#define SSS_REG_HASH_MSG_SIZE_HIGH      0x24
 196
 197#define SSS_REG_HASH_PRE_MSG_SIZE_LOW   0x28
 198#define SSS_REG_HASH_PRE_MSG_SIZE_HIGH  0x2C
 199
 200#define SSS_REG_HASH_IV(s)              (0xB0 + ((s) << 2))
 201#define SSS_REG_HASH_OUT(s)             (0x100 + ((s) << 2))
 202
 203#define HASH_BLOCK_SIZE                 64
 204#define HASH_REG_SIZEOF                 4
 205#define HASH_MD5_MAX_REG                (MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
 206#define HASH_SHA1_MAX_REG               (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
 207#define HASH_SHA256_MAX_REG             (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
 208
 209/*
 210 * HASH bit numbers, used by device, setting in dev->hash_flags with
 211 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
 212 * to keep HASH state BUSY or FREE, or to signal state from irq_handler
 213 * to hash_tasklet. SGS keep track of allocated memory for scatterlist
 214 */
 215#define HASH_FLAGS_BUSY         0
 216#define HASH_FLAGS_FINAL        1
 217#define HASH_FLAGS_DMA_ACTIVE   2
 218#define HASH_FLAGS_OUTPUT_READY 3
 219#define HASH_FLAGS_DMA_READY    4
 220#define HASH_FLAGS_SGS_COPIED   5
 221#define HASH_FLAGS_SGS_ALLOCED  6
 222
 223/* HASH HW constants */
 224#define BUFLEN                  HASH_BLOCK_SIZE
 225
 226#define SSS_HASH_DMA_LEN_ALIGN  8
 227#define SSS_HASH_DMA_ALIGN_MASK (SSS_HASH_DMA_LEN_ALIGN - 1)
 228
 229#define SSS_HASH_QUEUE_LENGTH   10
 230
 231/**
 232 * struct samsung_aes_variant - platform specific SSS driver data
 233 * @aes_offset: AES register offset from SSS module's base.
 234 * @hash_offset: HASH register offset from SSS module's base.
 235 * @clk_names: names of clocks needed to run SSS IP
 236 *
 237 * Specifies platform specific configuration of SSS module.
 238 * Note: A structure for driver specific platform data is used for future
 239 * expansion of its usage.
 240 */
 241struct samsung_aes_variant {
 242        unsigned int                    aes_offset;
 243        unsigned int                    hash_offset;
 244        const char                      *clk_names[2];
 245};
 246
 247struct s5p_aes_reqctx {
 248        unsigned long                   mode;
 249};
 250
 251struct s5p_aes_ctx {
 252        struct s5p_aes_dev              *dev;
 253
 254        u8                              aes_key[AES_MAX_KEY_SIZE];
 255        u8                              nonce[CTR_RFC3686_NONCE_SIZE];
 256        int                             keylen;
 257};
 258
 259/**
 260 * struct s5p_aes_dev - Crypto device state container
 261 * @dev:        Associated device
 262 * @clk:        Clock for accessing hardware
 263 * @ioaddr:     Mapped IO memory region
 264 * @aes_ioaddr: Per-varian offset for AES block IO memory
 265 * @irq_fc:     Feed control interrupt line
 266 * @req:        Crypto request currently handled by the device
 267 * @ctx:        Configuration for currently handled crypto request
 268 * @sg_src:     Scatter list with source data for currently handled block
 269 *              in device.  This is DMA-mapped into device.
 270 * @sg_dst:     Scatter list with destination data for currently handled block
 271 *              in device. This is DMA-mapped into device.
 272 * @sg_src_cpy: In case of unaligned access, copied scatter list
 273 *              with source data.
 274 * @sg_dst_cpy: In case of unaligned access, copied scatter list
 275 *              with destination data.
 276 * @tasklet:    New request scheduling jib
 277 * @queue:      Crypto queue
 278 * @busy:       Indicates whether the device is currently handling some request
 279 *              thus it uses some of the fields from this state, like:
 280 *              req, ctx, sg_src/dst (and copies).  This essentially
 281 *              protects against concurrent access to these fields.
 282 * @lock:       Lock for protecting both access to device hardware registers
 283 *              and fields related to current request (including the busy field).
 284 * @res:        Resources for hash.
 285 * @io_hash_base: Per-variant offset for HASH block IO memory.
 286 * @hash_lock:  Lock for protecting hash_req, hash_queue and hash_flags
 287 *              variable.
 288 * @hash_flags: Flags for current HASH op.
 289 * @hash_queue: Async hash queue.
 290 * @hash_tasklet: New HASH request scheduling job.
 291 * @xmit_buf:   Buffer for current HASH request transfer into SSS block.
 292 * @hash_req:   Current request sending to SSS HASH block.
 293 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
 294 * @hash_sg_cnt: Counter for hash_sg_iter.
 295 *
 296 * @use_hash:   true if HASH algs enabled
 297 */
 298struct s5p_aes_dev {
 299        struct device                   *dev;
 300        struct clk                      *clk;
 301        struct clk                      *pclk;
 302        void __iomem                    *ioaddr;
 303        void __iomem                    *aes_ioaddr;
 304        int                             irq_fc;
 305
 306        struct ablkcipher_request       *req;
 307        struct s5p_aes_ctx              *ctx;
 308        struct scatterlist              *sg_src;
 309        struct scatterlist              *sg_dst;
 310
 311        struct scatterlist              *sg_src_cpy;
 312        struct scatterlist              *sg_dst_cpy;
 313
 314        struct tasklet_struct           tasklet;
 315        struct crypto_queue             queue;
 316        bool                            busy;
 317        spinlock_t                      lock;
 318
 319        struct resource                 *res;
 320        void __iomem                    *io_hash_base;
 321
 322        spinlock_t                      hash_lock; /* protect hash_ vars */
 323        unsigned long                   hash_flags;
 324        struct crypto_queue             hash_queue;
 325        struct tasklet_struct           hash_tasklet;
 326
 327        u8                              xmit_buf[BUFLEN];
 328        struct ahash_request            *hash_req;
 329        struct scatterlist              *hash_sg_iter;
 330        unsigned int                    hash_sg_cnt;
 331
 332        bool                            use_hash;
 333};
 334
 335/**
 336 * struct s5p_hash_reqctx - HASH request context
 337 * @dd:         Associated device
 338 * @op_update:  Current request operation (OP_UPDATE or OP_FINAL)
 339 * @digcnt:     Number of bytes processed by HW (without buffer[] ones)
 340 * @digest:     Digest message or IV for partial result
 341 * @nregs:      Number of HW registers for digest or IV read/write
 342 * @engine:     Bits for selecting type of HASH in SSS block
 343 * @sg:         sg for DMA transfer
 344 * @sg_len:     Length of sg for DMA transfer
 345 * @sgl[]:      sg for joining buffer and req->src scatterlist
 346 * @skip:       Skip offset in req->src for current op
 347 * @total:      Total number of bytes for current request
 348 * @finup:      Keep state for finup or final.
 349 * @error:      Keep track of error.
 350 * @bufcnt:     Number of bytes holded in buffer[]
 351 * @buffer[]:   For byte(s) from end of req->src in UPDATE op
 352 */
 353struct s5p_hash_reqctx {
 354        struct s5p_aes_dev      *dd;
 355        bool                    op_update;
 356
 357        u64                     digcnt;
 358        u8                      digest[SHA256_DIGEST_SIZE];
 359
 360        unsigned int            nregs; /* digest_size / sizeof(reg) */
 361        u32                     engine;
 362
 363        struct scatterlist      *sg;
 364        unsigned int            sg_len;
 365        struct scatterlist      sgl[2];
 366        unsigned int            skip;
 367        unsigned int            total;
 368        bool                    finup;
 369        bool                    error;
 370
 371        u32                     bufcnt;
 372        u8                      buffer[0];
 373};
 374
 375/**
 376 * struct s5p_hash_ctx - HASH transformation context
 377 * @dd:         Associated device
 378 * @flags:      Bits for algorithm HASH.
 379 * @fallback:   Software transformation for zero message or size < BUFLEN.
 380 */
 381struct s5p_hash_ctx {
 382        struct s5p_aes_dev      *dd;
 383        unsigned long           flags;
 384        struct crypto_shash     *fallback;
 385};
 386
 387static const struct samsung_aes_variant s5p_aes_data = {
 388        .aes_offset     = 0x4000,
 389        .hash_offset    = 0x6000,
 390        .clk_names      = { "secss", },
 391};
 392
 393static const struct samsung_aes_variant exynos_aes_data = {
 394        .aes_offset     = 0x200,
 395        .hash_offset    = 0x400,
 396        .clk_names      = { "secss", },
 397};
 398
 399static const struct samsung_aes_variant exynos5433_slim_aes_data = {
 400        .aes_offset     = 0x400,
 401        .hash_offset    = 0x800,
 402        .clk_names      = { "pclk", "aclk", },
 403};
 404
 405static const struct of_device_id s5p_sss_dt_match[] = {
 406        {
 407                .compatible = "samsung,s5pv210-secss",
 408                .data = &s5p_aes_data,
 409        },
 410        {
 411                .compatible = "samsung,exynos4210-secss",
 412                .data = &exynos_aes_data,
 413        },
 414        {
 415                .compatible = "samsung,exynos5433-slim-sss",
 416                .data = &exynos5433_slim_aes_data,
 417        },
 418        { },
 419};
 420MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
 421
 422static inline const struct samsung_aes_variant *find_s5p_sss_version
 423                                   (const struct platform_device *pdev)
 424{
 425        if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) {
 426                const struct of_device_id *match;
 427
 428                match = of_match_node(s5p_sss_dt_match,
 429                                        pdev->dev.of_node);
 430                return (const struct samsung_aes_variant *)match->data;
 431        }
 432        return (const struct samsung_aes_variant *)
 433                        platform_get_device_id(pdev)->driver_data;
 434}
 435
 436static struct s5p_aes_dev *s5p_dev;
 437
 438static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
 439                               const struct scatterlist *sg)
 440{
 441        SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
 442        SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
 443}
 444
 445static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
 446                                const struct scatterlist *sg)
 447{
 448        SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
 449        SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
 450}
 451
 452static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
 453{
 454        int len;
 455
 456        if (!*sg)
 457                return;
 458
 459        len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
 460        free_pages((unsigned long)sg_virt(*sg), get_order(len));
 461
 462        kfree(*sg);
 463        *sg = NULL;
 464}
 465
 466static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
 467                            unsigned int nbytes, int out)
 468{
 469        struct scatter_walk walk;
 470
 471        if (!nbytes)
 472                return;
 473
 474        scatterwalk_start(&walk, sg);
 475        scatterwalk_copychunks(buf, &walk, nbytes, out);
 476        scatterwalk_done(&walk, out, 0);
 477}
 478
 479static void s5p_sg_done(struct s5p_aes_dev *dev)
 480{
 481        struct ablkcipher_request *req = dev->req;
 482        struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req);
 483
 484        if (dev->sg_dst_cpy) {
 485                dev_dbg(dev->dev,
 486                        "Copying %d bytes of output data back to original place\n",
 487                        dev->req->nbytes);
 488                s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
 489                                dev->req->nbytes, 1);
 490        }
 491        s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
 492        s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
 493        if (reqctx->mode & FLAGS_AES_CBC)
 494                memcpy_fromio(req->info, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
 495
 496        else if (reqctx->mode & FLAGS_AES_CTR)
 497                memcpy_fromio(req->info, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
 498}
 499
 500/* Calls the completion. Cannot be called with dev->lock hold. */
 501static void s5p_aes_complete(struct ablkcipher_request *req, int err)
 502{
 503        req->base.complete(&req->base, err);
 504}
 505
 506static void s5p_unset_outdata(struct s5p_aes_dev *dev)
 507{
 508        dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
 509}
 510
 511static void s5p_unset_indata(struct s5p_aes_dev *dev)
 512{
 513        dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
 514}
 515
 516static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
 517                           struct scatterlist **dst)
 518{
 519        void *pages;
 520        int len;
 521
 522        *dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
 523        if (!*dst)
 524                return -ENOMEM;
 525
 526        len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
 527        pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
 528        if (!pages) {
 529                kfree(*dst);
 530                *dst = NULL;
 531                return -ENOMEM;
 532        }
 533
 534        s5p_sg_copy_buf(pages, src, dev->req->nbytes, 0);
 535
 536        sg_init_table(*dst, 1);
 537        sg_set_buf(*dst, pages, len);
 538
 539        return 0;
 540}
 541
 542static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
 543{
 544        if (!sg->length)
 545                return -EINVAL;
 546
 547        if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
 548                return -ENOMEM;
 549
 550        dev->sg_dst = sg;
 551
 552        return 0;
 553}
 554
 555static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
 556{
 557        if (!sg->length)
 558                return -EINVAL;
 559
 560        if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
 561                return -ENOMEM;
 562
 563        dev->sg_src = sg;
 564
 565        return 0;
 566}
 567
 568/*
 569 * Returns -ERRNO on error (mapping of new data failed).
 570 * On success returns:
 571 *  - 0 if there is no more data,
 572 *  - 1 if new transmitting (output) data is ready and its address+length
 573 *     have to be written to device (by calling s5p_set_dma_outdata()).
 574 */
 575static int s5p_aes_tx(struct s5p_aes_dev *dev)
 576{
 577        int ret = 0;
 578
 579        s5p_unset_outdata(dev);
 580
 581        if (!sg_is_last(dev->sg_dst)) {
 582                ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
 583                if (!ret)
 584                        ret = 1;
 585        }
 586
 587        return ret;
 588}
 589
 590/*
 591 * Returns -ERRNO on error (mapping of new data failed).
 592 * On success returns:
 593 *  - 0 if there is no more data,
 594 *  - 1 if new receiving (input) data is ready and its address+length
 595 *     have to be written to device (by calling s5p_set_dma_indata()).
 596 */
 597static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
 598{
 599        int ret = 0;
 600
 601        s5p_unset_indata(dev);
 602
 603        if (!sg_is_last(dev->sg_src)) {
 604                ret = s5p_set_indata(dev, sg_next(dev->sg_src));
 605                if (!ret)
 606                        ret = 1;
 607        }
 608
 609        return ret;
 610}
 611
 612static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
 613{
 614        return __raw_readl(dd->io_hash_base + offset);
 615}
 616
 617static inline void s5p_hash_write(struct s5p_aes_dev *dd,
 618                                  u32 offset, u32 value)
 619{
 620        __raw_writel(value, dd->io_hash_base + offset);
 621}
 622
 623/**
 624 * s5p_set_dma_hashdata() - start DMA with sg
 625 * @dev:        device
 626 * @sg:         scatterlist ready to DMA transmit
 627 */
 628static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
 629                                 const struct scatterlist *sg)
 630{
 631        dev->hash_sg_cnt--;
 632        SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
 633        SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
 634}
 635
 636/**
 637 * s5p_hash_rx() - get next hash_sg_iter
 638 * @dev:        device
 639 *
 640 * Return:
 641 * 2    if there is no more data and it is UPDATE op
 642 * 1    if new receiving (input) data is ready and can be written to device
 643 * 0    if there is no more data and it is FINAL op
 644 */
 645static int s5p_hash_rx(struct s5p_aes_dev *dev)
 646{
 647        if (dev->hash_sg_cnt > 0) {
 648                dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
 649                return 1;
 650        }
 651
 652        set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
 653        if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
 654                return 0;
 655
 656        return 2;
 657}
 658
 659static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
 660{
 661        struct platform_device *pdev = dev_id;
 662        struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
 663        struct ablkcipher_request *req;
 664        int err_dma_tx = 0;
 665        int err_dma_rx = 0;
 666        int err_dma_hx = 0;
 667        bool tx_end = false;
 668        bool hx_end = false;
 669        unsigned long flags;
 670        u32 status, st_bits;
 671        int err;
 672
 673        spin_lock_irqsave(&dev->lock, flags);
 674
 675        /*
 676         * Handle rx or tx interrupt. If there is still data (scatterlist did not
 677         * reach end), then map next scatterlist entry.
 678         * In case of such mapping error, s5p_aes_complete() should be called.
 679         *
 680         * If there is no more data in tx scatter list, call s5p_aes_complete()
 681         * and schedule new tasklet.
 682         *
 683         * Handle hx interrupt. If there is still data map next entry.
 684         */
 685        status = SSS_READ(dev, FCINTSTAT);
 686        if (status & SSS_FCINTSTAT_BRDMAINT)
 687                err_dma_rx = s5p_aes_rx(dev);
 688
 689        if (status & SSS_FCINTSTAT_BTDMAINT) {
 690                if (sg_is_last(dev->sg_dst))
 691                        tx_end = true;
 692                err_dma_tx = s5p_aes_tx(dev);
 693        }
 694
 695        if (status & SSS_FCINTSTAT_HRDMAINT)
 696                err_dma_hx = s5p_hash_rx(dev);
 697
 698        st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
 699                                SSS_FCINTSTAT_HRDMAINT);
 700        /* clear DMA bits */
 701        SSS_WRITE(dev, FCINTPEND, st_bits);
 702
 703        /* clear HASH irq bits */
 704        if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
 705                /* cannot have both HPART and HDONE */
 706                if (status & SSS_FCINTSTAT_HPARTINT)
 707                        st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
 708
 709                if (status & SSS_FCINTSTAT_HDONEINT)
 710                        st_bits = SSS_HASH_STATUS_MSG_DONE;
 711
 712                set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
 713                s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
 714                hx_end = true;
 715                /* when DONE or PART, do not handle HASH DMA */
 716                err_dma_hx = 0;
 717        }
 718
 719        if (err_dma_rx < 0) {
 720                err = err_dma_rx;
 721                goto error;
 722        }
 723        if (err_dma_tx < 0) {
 724                err = err_dma_tx;
 725                goto error;
 726        }
 727
 728        if (tx_end) {
 729                s5p_sg_done(dev);
 730                if (err_dma_hx == 1)
 731                        s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
 732
 733                spin_unlock_irqrestore(&dev->lock, flags);
 734
 735                s5p_aes_complete(dev->req, 0);
 736                /* Device is still busy */
 737                tasklet_schedule(&dev->tasklet);
 738        } else {
 739                /*
 740                 * Writing length of DMA block (either receiving or
 741                 * transmitting) will start the operation immediately, so this
 742                 * should be done at the end (even after clearing pending
 743                 * interrupts to not miss the interrupt).
 744                 */
 745                if (err_dma_tx == 1)
 746                        s5p_set_dma_outdata(dev, dev->sg_dst);
 747                if (err_dma_rx == 1)
 748                        s5p_set_dma_indata(dev, dev->sg_src);
 749                if (err_dma_hx == 1)
 750                        s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
 751
 752                spin_unlock_irqrestore(&dev->lock, flags);
 753        }
 754
 755        goto hash_irq_end;
 756
 757error:
 758        s5p_sg_done(dev);
 759        dev->busy = false;
 760        req = dev->req;
 761        if (err_dma_hx == 1)
 762                s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
 763
 764        spin_unlock_irqrestore(&dev->lock, flags);
 765        s5p_aes_complete(req, err);
 766
 767hash_irq_end:
 768        /*
 769         * Note about else if:
 770         *   when hash_sg_iter reaches end and its UPDATE op,
 771         *   issue SSS_HASH_PAUSE and wait for HPART irq
 772         */
 773        if (hx_end)
 774                tasklet_schedule(&dev->hash_tasklet);
 775        else if (err_dma_hx == 2)
 776                s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
 777                               SSS_HASH_PAUSE);
 778
 779        return IRQ_HANDLED;
 780}
 781
 782/**
 783 * s5p_hash_read_msg() - read message or IV from HW
 784 * @req:        AHASH request
 785 */
 786static void s5p_hash_read_msg(struct ahash_request *req)
 787{
 788        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
 789        struct s5p_aes_dev *dd = ctx->dd;
 790        u32 *hash = (u32 *)ctx->digest;
 791        unsigned int i;
 792
 793        for (i = 0; i < ctx->nregs; i++)
 794                hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
 795}
 796
 797/**
 798 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
 799 * @dd:         device
 800 * @ctx:        request context
 801 */
 802static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
 803                                  const struct s5p_hash_reqctx *ctx)
 804{
 805        const u32 *hash = (const u32 *)ctx->digest;
 806        unsigned int i;
 807
 808        for (i = 0; i < ctx->nregs; i++)
 809                s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
 810}
 811
 812/**
 813 * s5p_hash_write_iv() - write IV for next partial/finup op.
 814 * @req:        AHASH request
 815 */
 816static void s5p_hash_write_iv(struct ahash_request *req)
 817{
 818        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
 819
 820        s5p_hash_write_ctx_iv(ctx->dd, ctx);
 821}
 822
 823/**
 824 * s5p_hash_copy_result() - copy digest into req->result
 825 * @req:        AHASH request
 826 */
 827static void s5p_hash_copy_result(struct ahash_request *req)
 828{
 829        const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
 830
 831        if (!req->result)
 832                return;
 833
 834        memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
 835}
 836
 837/**
 838 * s5p_hash_dma_flush() - flush HASH DMA
 839 * @dev:        secss device
 840 */
 841static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
 842{
 843        SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
 844}
 845
 846/**
 847 * s5p_hash_dma_enable() - enable DMA mode for HASH
 848 * @dev:        secss device
 849 *
 850 * enable DMA mode for HASH
 851 */
 852static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
 853{
 854        s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
 855}
 856
 857/**
 858 * s5p_hash_irq_disable() - disable irq HASH signals
 859 * @dev:        secss device
 860 * @flags:      bitfield with irq's to be disabled
 861 */
 862static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
 863{
 864        SSS_WRITE(dev, FCINTENCLR, flags);
 865}
 866
 867/**
 868 * s5p_hash_irq_enable() - enable irq signals
 869 * @dev:        secss device
 870 * @flags:      bitfield with irq's to be enabled
 871 */
 872static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
 873{
 874        SSS_WRITE(dev, FCINTENSET, flags);
 875}
 876
 877/**
 878 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
 879 * @dev:        secss device
 880 * @hashflow:   HASH stream flow with/without crypto AES/DES
 881 */
 882static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
 883{
 884        unsigned long flags;
 885        u32 flow;
 886
 887        spin_lock_irqsave(&dev->lock, flags);
 888
 889        flow = SSS_READ(dev, FCFIFOCTRL);
 890        flow &= ~SSS_HASHIN_MASK;
 891        flow |= hashflow;
 892        SSS_WRITE(dev, FCFIFOCTRL, flow);
 893
 894        spin_unlock_irqrestore(&dev->lock, flags);
 895}
 896
 897/**
 898 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
 899 * @dev:        secss device
 900 * @hashflow:   HASH stream flow with/without AES/DES
 901 *
 902 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
 903 * enable HASH irq's HRDMA, HDONE, HPART
 904 */
 905static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
 906{
 907        s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
 908                             SSS_FCINTENCLR_HDONEINTENCLR |
 909                             SSS_FCINTENCLR_HPARTINTENCLR);
 910        s5p_hash_dma_flush(dev);
 911
 912        s5p_hash_dma_enable(dev);
 913        s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
 914        s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
 915                            SSS_FCINTENSET_HDONEINTENSET |
 916                            SSS_FCINTENSET_HPARTINTENSET);
 917}
 918
 919/**
 920 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
 921 * @dd:         secss device
 922 * @length:     length for request
 923 * @final:      true if final op
 924 *
 925 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
 926 * after previous updates, fill up IV words. For final, calculate and set
 927 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
 928 * length as 2^63 so it will be never reached and set to zero prelow and
 929 * prehigh.
 930 *
 931 * This function does not start DMA transfer.
 932 */
 933static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
 934                                bool final)
 935{
 936        struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
 937        u32 prelow, prehigh, low, high;
 938        u32 configflags, swapflags;
 939        u64 tmplen;
 940
 941        configflags = ctx->engine | SSS_HASH_INIT_BIT;
 942
 943        if (likely(ctx->digcnt)) {
 944                s5p_hash_write_ctx_iv(dd, ctx);
 945                configflags |= SSS_HASH_USER_IV_EN;
 946        }
 947
 948        if (final) {
 949                /* number of bytes for last part */
 950                low = length;
 951                high = 0;
 952                /* total number of bits prev hashed */
 953                tmplen = ctx->digcnt * 8;
 954                prelow = (u32)tmplen;
 955                prehigh = (u32)(tmplen >> 32);
 956        } else {
 957                prelow = 0;
 958                prehigh = 0;
 959                low = 0;
 960                high = BIT(31);
 961        }
 962
 963        swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
 964                    SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
 965
 966        s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
 967        s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
 968        s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
 969        s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
 970
 971        s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
 972        s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
 973}
 974
 975/**
 976 * s5p_hash_xmit_dma() - start DMA hash processing
 977 * @dd:         secss device
 978 * @length:     length for request
 979 * @final:      true if final op
 980 *
 981 * Update digcnt here, as it is needed for finup/final op.
 982 */
 983static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
 984                             bool final)
 985{
 986        struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
 987        unsigned int cnt;
 988
 989        cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
 990        if (!cnt) {
 991                dev_err(dd->dev, "dma_map_sg error\n");
 992                ctx->error = true;
 993                return -EINVAL;
 994        }
 995
 996        set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
 997        dd->hash_sg_iter = ctx->sg;
 998        dd->hash_sg_cnt = cnt;
 999        s5p_hash_write_ctrl(dd, length, final);
1000        ctx->digcnt += length;
1001        ctx->total -= length;
1002
1003        /* catch last interrupt */
1004        if (final)
1005                set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
1006
1007        s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1008
1009        return -EINPROGRESS;
1010}
1011
1012/**
1013 * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1014 * @ctx:        request context
1015 * @sg:         source scatterlist request
1016 * @new_len:    number of bytes to process from sg
1017 *
1018 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1019 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1020 * with allocated buffer.
1021 *
1022 * Set bit in dd->hash_flag so we can free it after irq ends processing.
1023 */
1024static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1025                             struct scatterlist *sg, unsigned int new_len)
1026{
1027        unsigned int pages, len;
1028        void *buf;
1029
1030        len = new_len + ctx->bufcnt;
1031        pages = get_order(len);
1032
1033        buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1034        if (!buf) {
1035                dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1036                ctx->error = true;
1037                return -ENOMEM;
1038        }
1039
1040        if (ctx->bufcnt)
1041                memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1042
1043        scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1044                                 new_len, 0);
1045        sg_init_table(ctx->sgl, 1);
1046        sg_set_buf(ctx->sgl, buf, len);
1047        ctx->sg = ctx->sgl;
1048        ctx->sg_len = 1;
1049        ctx->bufcnt = 0;
1050        ctx->skip = 0;
1051        set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1052
1053        return 0;
1054}
1055
1056/**
1057 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1058 * @ctx:        request context
1059 * @sg:         source scatterlist request
1060 * @new_len:    number of bytes to process from sg
1061 *
1062 * Allocate new scatterlist table, copy data for HASH into it. If there was
1063 * xmit_buf filled, prepare it first, then copy page, length and offset from
1064 * source sg into it, adjusting begin and/or end for skip offset and
1065 * hash_later value.
1066 *
1067 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1068 * it after irq ends processing.
1069 */
1070static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1071                                  struct scatterlist *sg, unsigned int new_len)
1072{
1073        unsigned int skip = ctx->skip, n = sg_nents(sg);
1074        struct scatterlist *tmp;
1075        unsigned int len;
1076
1077        if (ctx->bufcnt)
1078                n++;
1079
1080        ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1081        if (!ctx->sg) {
1082                ctx->error = true;
1083                return -ENOMEM;
1084        }
1085
1086        sg_init_table(ctx->sg, n);
1087
1088        tmp = ctx->sg;
1089
1090        ctx->sg_len = 0;
1091
1092        if (ctx->bufcnt) {
1093                sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1094                tmp = sg_next(tmp);
1095                ctx->sg_len++;
1096        }
1097
1098        while (sg && skip >= sg->length) {
1099                skip -= sg->length;
1100                sg = sg_next(sg);
1101        }
1102
1103        while (sg && new_len) {
1104                len = sg->length - skip;
1105                if (new_len < len)
1106                        len = new_len;
1107
1108                new_len -= len;
1109                sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1110                skip = 0;
1111                if (new_len <= 0)
1112                        sg_mark_end(tmp);
1113
1114                tmp = sg_next(tmp);
1115                ctx->sg_len++;
1116                sg = sg_next(sg);
1117        }
1118
1119        set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1120
1121        return 0;
1122}
1123
1124/**
1125 * s5p_hash_prepare_sgs() - prepare sg for processing
1126 * @ctx:        request context
1127 * @sg:         source scatterlist request
1128 * @nbytes:     number of bytes to process from sg
1129 * @final:      final flag
1130 *
1131 * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1132 * sg table have good aligned elements (list_ok). If one of this checks fails,
1133 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1134 * data into this buffer and prepare request in sgl, or (2) allocates new sg
1135 * table and prepare sg elements.
1136 *
1137 * For digest or finup all conditions can be good, and we may not need any
1138 * fixes.
1139 */
1140static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1141                                struct scatterlist *sg,
1142                                unsigned int new_len, bool final)
1143{
1144        unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1145        bool aligned = true, list_ok = true;
1146        struct scatterlist *sg_tmp = sg;
1147
1148        if (!sg || !sg->length || !new_len)
1149                return 0;
1150
1151        if (skip || !final)
1152                list_ok = false;
1153
1154        while (nbytes > 0 && sg_tmp) {
1155                n++;
1156                if (skip >= sg_tmp->length) {
1157                        skip -= sg_tmp->length;
1158                        if (!sg_tmp->length) {
1159                                aligned = false;
1160                                break;
1161                        }
1162                } else {
1163                        if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1164                                aligned = false;
1165                                break;
1166                        }
1167
1168                        if (nbytes < sg_tmp->length - skip) {
1169                                list_ok = false;
1170                                break;
1171                        }
1172
1173                        nbytes -= sg_tmp->length - skip;
1174                        skip = 0;
1175                }
1176
1177                sg_tmp = sg_next(sg_tmp);
1178        }
1179
1180        if (!aligned)
1181                return s5p_hash_copy_sgs(ctx, sg, new_len);
1182        else if (!list_ok)
1183                return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1184
1185        /*
1186         * Have aligned data from previous operation and/or current
1187         * Note: will enter here only if (digest or finup) and aligned
1188         */
1189        if (ctx->bufcnt) {
1190                ctx->sg_len = n;
1191                sg_init_table(ctx->sgl, 2);
1192                sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1193                sg_chain(ctx->sgl, 2, sg);
1194                ctx->sg = ctx->sgl;
1195                ctx->sg_len++;
1196        } else {
1197                ctx->sg = sg;
1198                ctx->sg_len = n;
1199        }
1200
1201        return 0;
1202}
1203
1204/**
1205 * s5p_hash_prepare_request() - prepare request for processing
1206 * @req:        AHASH request
1207 * @update:     true if UPDATE op
1208 *
1209 * Note 1: we can have update flag _and_ final flag at the same time.
1210 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1211 *         either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1212 *         we have final op
1213 */
1214static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1215{
1216        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1217        bool final = ctx->finup;
1218        int xmit_len, hash_later, nbytes;
1219        int ret;
1220
1221        if (update)
1222                nbytes = req->nbytes;
1223        else
1224                nbytes = 0;
1225
1226        ctx->total = nbytes + ctx->bufcnt;
1227        if (!ctx->total)
1228                return 0;
1229
1230        if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1231                /* bytes left from previous request, so fill up to BUFLEN */
1232                int len = BUFLEN - ctx->bufcnt % BUFLEN;
1233
1234                if (len > nbytes)
1235                        len = nbytes;
1236
1237                scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1238                                         0, len, 0);
1239                ctx->bufcnt += len;
1240                nbytes -= len;
1241                ctx->skip = len;
1242        } else {
1243                ctx->skip = 0;
1244        }
1245
1246        if (ctx->bufcnt)
1247                memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1248
1249        xmit_len = ctx->total;
1250        if (final) {
1251                hash_later = 0;
1252        } else {
1253                if (IS_ALIGNED(xmit_len, BUFLEN))
1254                        xmit_len -= BUFLEN;
1255                else
1256                        xmit_len -= xmit_len & (BUFLEN - 1);
1257
1258                hash_later = ctx->total - xmit_len;
1259                /* copy hash_later bytes from end of req->src */
1260                /* previous bytes are in xmit_buf, so no overwrite */
1261                scatterwalk_map_and_copy(ctx->buffer, req->src,
1262                                         req->nbytes - hash_later,
1263                                         hash_later, 0);
1264        }
1265
1266        if (xmit_len > BUFLEN) {
1267                ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1268                                           final);
1269                if (ret)
1270                        return ret;
1271        } else {
1272                /* have buffered data only */
1273                if (unlikely(!ctx->bufcnt)) {
1274                        /* first update didn't fill up buffer */
1275                        scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1276                                                 0, xmit_len, 0);
1277                }
1278
1279                sg_init_table(ctx->sgl, 1);
1280                sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1281
1282                ctx->sg = ctx->sgl;
1283                ctx->sg_len = 1;
1284        }
1285
1286        ctx->bufcnt = hash_later;
1287        if (!final)
1288                ctx->total = xmit_len;
1289
1290        return 0;
1291}
1292
1293/**
1294 * s5p_hash_update_dma_stop() - unmap DMA
1295 * @dd:         secss device
1296 *
1297 * Unmap scatterlist ctx->sg.
1298 */
1299static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1300{
1301        const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1302
1303        dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1304        clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1305}
1306
1307/**
1308 * s5p_hash_finish() - copy calculated digest to crypto layer
1309 * @req:        AHASH request
1310 */
1311static void s5p_hash_finish(struct ahash_request *req)
1312{
1313        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1314        struct s5p_aes_dev *dd = ctx->dd;
1315
1316        if (ctx->digcnt)
1317                s5p_hash_copy_result(req);
1318
1319        dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1320}
1321
1322/**
1323 * s5p_hash_finish_req() - finish request
1324 * @req:        AHASH request
1325 * @err:        error
1326 */
1327static void s5p_hash_finish_req(struct ahash_request *req, int err)
1328{
1329        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1330        struct s5p_aes_dev *dd = ctx->dd;
1331        unsigned long flags;
1332
1333        if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1334                free_pages((unsigned long)sg_virt(ctx->sg),
1335                           get_order(ctx->sg->length));
1336
1337        if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1338                kfree(ctx->sg);
1339
1340        ctx->sg = NULL;
1341        dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1342                            BIT(HASH_FLAGS_SGS_COPIED));
1343
1344        if (!err && !ctx->error) {
1345                s5p_hash_read_msg(req);
1346                if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1347                        s5p_hash_finish(req);
1348        } else {
1349                ctx->error = true;
1350        }
1351
1352        spin_lock_irqsave(&dd->hash_lock, flags);
1353        dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1354                            BIT(HASH_FLAGS_DMA_READY) |
1355                            BIT(HASH_FLAGS_OUTPUT_READY));
1356        spin_unlock_irqrestore(&dd->hash_lock, flags);
1357
1358        if (req->base.complete)
1359                req->base.complete(&req->base, err);
1360}
1361
1362/**
1363 * s5p_hash_handle_queue() - handle hash queue
1364 * @dd:         device s5p_aes_dev
1365 * @req:        AHASH request
1366 *
1367 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1368 * device then processes the first request from the dd->queue
1369 *
1370 * Returns: see s5p_hash_final below.
1371 */
1372static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1373                                 struct ahash_request *req)
1374{
1375        struct crypto_async_request *async_req, *backlog;
1376        struct s5p_hash_reqctx *ctx;
1377        unsigned long flags;
1378        int err = 0, ret = 0;
1379
1380retry:
1381        spin_lock_irqsave(&dd->hash_lock, flags);
1382        if (req)
1383                ret = ahash_enqueue_request(&dd->hash_queue, req);
1384
1385        if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1386                spin_unlock_irqrestore(&dd->hash_lock, flags);
1387                return ret;
1388        }
1389
1390        backlog = crypto_get_backlog(&dd->hash_queue);
1391        async_req = crypto_dequeue_request(&dd->hash_queue);
1392        if (async_req)
1393                set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1394
1395        spin_unlock_irqrestore(&dd->hash_lock, flags);
1396
1397        if (!async_req)
1398                return ret;
1399
1400        if (backlog)
1401                backlog->complete(backlog, -EINPROGRESS);
1402
1403        req = ahash_request_cast(async_req);
1404        dd->hash_req = req;
1405        ctx = ahash_request_ctx(req);
1406
1407        err = s5p_hash_prepare_request(req, ctx->op_update);
1408        if (err || !ctx->total)
1409                goto out;
1410
1411        dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1412                ctx->op_update, req->nbytes);
1413
1414        s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1415        if (ctx->digcnt)
1416                s5p_hash_write_iv(req); /* restore hash IV */
1417
1418        if (ctx->op_update) { /* HASH_OP_UPDATE */
1419                err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1420                if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1421                        /* no final() after finup() */
1422                        err = s5p_hash_xmit_dma(dd, ctx->total, true);
1423        } else { /* HASH_OP_FINAL */
1424                err = s5p_hash_xmit_dma(dd, ctx->total, true);
1425        }
1426out:
1427        if (err != -EINPROGRESS) {
1428                /* hash_tasklet_cb will not finish it, so do it here */
1429                s5p_hash_finish_req(req, err);
1430                req = NULL;
1431
1432                /*
1433                 * Execute next request immediately if there is anything
1434                 * in queue.
1435                 */
1436                goto retry;
1437        }
1438
1439        return ret;
1440}
1441
1442/**
1443 * s5p_hash_tasklet_cb() - hash tasklet
1444 * @data:       ptr to s5p_aes_dev
1445 */
1446static void s5p_hash_tasklet_cb(unsigned long data)
1447{
1448        struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1449
1450        if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1451                s5p_hash_handle_queue(dd, NULL);
1452                return;
1453        }
1454
1455        if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1456                if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1457                                       &dd->hash_flags)) {
1458                        s5p_hash_update_dma_stop(dd);
1459                }
1460
1461                if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1462                                       &dd->hash_flags)) {
1463                        /* hash or semi-hash ready */
1464                        clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1465                        goto finish;
1466                }
1467        }
1468
1469        return;
1470
1471finish:
1472        /* finish curent request */
1473        s5p_hash_finish_req(dd->hash_req, 0);
1474
1475        /* If we are not busy, process next req */
1476        if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1477                s5p_hash_handle_queue(dd, NULL);
1478}
1479
1480/**
1481 * s5p_hash_enqueue() - enqueue request
1482 * @req:        AHASH request
1483 * @op:         operation UPDATE (true) or FINAL (false)
1484 *
1485 * Returns: see s5p_hash_final below.
1486 */
1487static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1488{
1489        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1490        struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1491
1492        ctx->op_update = op;
1493
1494        return s5p_hash_handle_queue(tctx->dd, req);
1495}
1496
1497/**
1498 * s5p_hash_update() - process the hash input data
1499 * @req:        AHASH request
1500 *
1501 * If request will fit in buffer, copy it and return immediately
1502 * else enqueue it with OP_UPDATE.
1503 *
1504 * Returns: see s5p_hash_final below.
1505 */
1506static int s5p_hash_update(struct ahash_request *req)
1507{
1508        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1509
1510        if (!req->nbytes)
1511                return 0;
1512
1513        if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1514                scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1515                                         0, req->nbytes, 0);
1516                ctx->bufcnt += req->nbytes;
1517                return 0;
1518        }
1519
1520        return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1521}
1522
1523/**
1524 * s5p_hash_shash_digest() - calculate shash digest
1525 * @tfm:        crypto transformation
1526 * @flags:      tfm flags
1527 * @data:       input data
1528 * @len:        length of data
1529 * @out:        output buffer
1530 */
1531static int s5p_hash_shash_digest(struct crypto_shash *tfm, u32 flags,
1532                                 const u8 *data, unsigned int len, u8 *out)
1533{
1534        SHASH_DESC_ON_STACK(shash, tfm);
1535
1536        shash->tfm = tfm;
1537
1538        return crypto_shash_digest(shash, data, len, out);
1539}
1540
1541/**
1542 * s5p_hash_final_shash() - calculate shash digest
1543 * @req:        AHASH request
1544 */
1545static int s5p_hash_final_shash(struct ahash_request *req)
1546{
1547        struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1548        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1549
1550        return s5p_hash_shash_digest(tctx->fallback, req->base.flags,
1551                                     ctx->buffer, ctx->bufcnt, req->result);
1552}
1553
1554/**
1555 * s5p_hash_final() - close up hash and calculate digest
1556 * @req:        AHASH request
1557 *
1558 * Note: in final req->src do not have any data, and req->nbytes can be
1559 * non-zero.
1560 *
1561 * If there were no input data processed yet and the buffered hash data is
1562 * less than BUFLEN (64) then calculate the final hash immediately by using
1563 * SW algorithm fallback.
1564 *
1565 * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1566 * and finalize hash message in HW. Note that if digcnt!=0 then there were
1567 * previous update op, so there are always some buffered bytes in ctx->buffer,
1568 * which means that ctx->bufcnt!=0
1569 *
1570 * Returns:
1571 * 0 if the request has been processed immediately,
1572 * -EINPROGRESS if the operation has been queued for later execution or is set
1573 *              to processing by HW,
1574 * -EBUSY if queue is full and request should be resubmitted later,
1575 * other negative values denotes an error.
1576 */
1577static int s5p_hash_final(struct ahash_request *req)
1578{
1579        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1580
1581        ctx->finup = true;
1582        if (ctx->error)
1583                return -EINVAL; /* uncompleted hash is not needed */
1584
1585        if (!ctx->digcnt && ctx->bufcnt < BUFLEN)
1586                return s5p_hash_final_shash(req);
1587
1588        return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1589}
1590
1591/**
1592 * s5p_hash_finup() - process last req->src and calculate digest
1593 * @req:        AHASH request containing the last update data
1594 *
1595 * Return values: see s5p_hash_final above.
1596 */
1597static int s5p_hash_finup(struct ahash_request *req)
1598{
1599        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1600        int err1, err2;
1601
1602        ctx->finup = true;
1603
1604        err1 = s5p_hash_update(req);
1605        if (err1 == -EINPROGRESS || err1 == -EBUSY)
1606                return err1;
1607
1608        /*
1609         * final() has to be always called to cleanup resources even if
1610         * update() failed, except EINPROGRESS or calculate digest for small
1611         * size
1612         */
1613        err2 = s5p_hash_final(req);
1614
1615        return err1 ?: err2;
1616}
1617
1618/**
1619 * s5p_hash_init() - initialize AHASH request contex
1620 * @req:        AHASH request
1621 *
1622 * Init async hash request context.
1623 */
1624static int s5p_hash_init(struct ahash_request *req)
1625{
1626        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1627        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1628        struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1629
1630        ctx->dd = tctx->dd;
1631        ctx->error = false;
1632        ctx->finup = false;
1633        ctx->bufcnt = 0;
1634        ctx->digcnt = 0;
1635        ctx->total = 0;
1636        ctx->skip = 0;
1637
1638        dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1639                crypto_ahash_digestsize(tfm));
1640
1641        switch (crypto_ahash_digestsize(tfm)) {
1642        case MD5_DIGEST_SIZE:
1643                ctx->engine = SSS_HASH_ENGINE_MD5;
1644                ctx->nregs = HASH_MD5_MAX_REG;
1645                break;
1646        case SHA1_DIGEST_SIZE:
1647                ctx->engine = SSS_HASH_ENGINE_SHA1;
1648                ctx->nregs = HASH_SHA1_MAX_REG;
1649                break;
1650        case SHA256_DIGEST_SIZE:
1651                ctx->engine = SSS_HASH_ENGINE_SHA256;
1652                ctx->nregs = HASH_SHA256_MAX_REG;
1653                break;
1654        default:
1655                ctx->error = true;
1656                return -EINVAL;
1657        }
1658
1659        return 0;
1660}
1661
1662/**
1663 * s5p_hash_digest - calculate digest from req->src
1664 * @req:        AHASH request
1665 *
1666 * Return values: see s5p_hash_final above.
1667 */
1668static int s5p_hash_digest(struct ahash_request *req)
1669{
1670        return s5p_hash_init(req) ?: s5p_hash_finup(req);
1671}
1672
1673/**
1674 * s5p_hash_cra_init_alg - init crypto alg transformation
1675 * @tfm:        crypto transformation
1676 */
1677static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1678{
1679        struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1680        const char *alg_name = crypto_tfm_alg_name(tfm);
1681
1682        tctx->dd = s5p_dev;
1683        /* Allocate a fallback and abort if it failed. */
1684        tctx->fallback = crypto_alloc_shash(alg_name, 0,
1685                                            CRYPTO_ALG_NEED_FALLBACK);
1686        if (IS_ERR(tctx->fallback)) {
1687                pr_err("fallback alloc fails for '%s'\n", alg_name);
1688                return PTR_ERR(tctx->fallback);
1689        }
1690
1691        crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1692                                 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1693
1694        return 0;
1695}
1696
1697/**
1698 * s5p_hash_cra_init - init crypto tfm
1699 * @tfm:        crypto transformation
1700 */
1701static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1702{
1703        return s5p_hash_cra_init_alg(tfm);
1704}
1705
1706/**
1707 * s5p_hash_cra_exit - exit crypto tfm
1708 * @tfm:        crypto transformation
1709 *
1710 * free allocated fallback
1711 */
1712static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1713{
1714        struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1715
1716        crypto_free_shash(tctx->fallback);
1717        tctx->fallback = NULL;
1718}
1719
1720/**
1721 * s5p_hash_export - export hash state
1722 * @req:        AHASH request
1723 * @out:        buffer for exported state
1724 */
1725static int s5p_hash_export(struct ahash_request *req, void *out)
1726{
1727        const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1728
1729        memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1730
1731        return 0;
1732}
1733
1734/**
1735 * s5p_hash_import - import hash state
1736 * @req:        AHASH request
1737 * @in:         buffer with state to be imported from
1738 */
1739static int s5p_hash_import(struct ahash_request *req, const void *in)
1740{
1741        struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1742        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1743        struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1744        const struct s5p_hash_reqctx *ctx_in = in;
1745
1746        memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1747        if (ctx_in->bufcnt > BUFLEN) {
1748                ctx->error = true;
1749                return -EINVAL;
1750        }
1751
1752        ctx->dd = tctx->dd;
1753        ctx->error = false;
1754
1755        return 0;
1756}
1757
1758static struct ahash_alg algs_sha1_md5_sha256[] = {
1759{
1760        .init           = s5p_hash_init,
1761        .update         = s5p_hash_update,
1762        .final          = s5p_hash_final,
1763        .finup          = s5p_hash_finup,
1764        .digest         = s5p_hash_digest,
1765        .export         = s5p_hash_export,
1766        .import         = s5p_hash_import,
1767        .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1768        .halg.digestsize        = SHA1_DIGEST_SIZE,
1769        .halg.base      = {
1770                .cra_name               = "sha1",
1771                .cra_driver_name        = "exynos-sha1",
1772                .cra_priority           = 100,
1773                .cra_flags              = CRYPTO_ALG_KERN_DRIVER_ONLY |
1774                                          CRYPTO_ALG_ASYNC |
1775                                          CRYPTO_ALG_NEED_FALLBACK,
1776                .cra_blocksize          = HASH_BLOCK_SIZE,
1777                .cra_ctxsize            = sizeof(struct s5p_hash_ctx),
1778                .cra_alignmask          = SSS_HASH_DMA_ALIGN_MASK,
1779                .cra_module             = THIS_MODULE,
1780                .cra_init               = s5p_hash_cra_init,
1781                .cra_exit               = s5p_hash_cra_exit,
1782        }
1783},
1784{
1785        .init           = s5p_hash_init,
1786        .update         = s5p_hash_update,
1787        .final          = s5p_hash_final,
1788        .finup          = s5p_hash_finup,
1789        .digest         = s5p_hash_digest,
1790        .export         = s5p_hash_export,
1791        .import         = s5p_hash_import,
1792        .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1793        .halg.digestsize        = MD5_DIGEST_SIZE,
1794        .halg.base      = {
1795                .cra_name               = "md5",
1796                .cra_driver_name        = "exynos-md5",
1797                .cra_priority           = 100,
1798                .cra_flags              = CRYPTO_ALG_KERN_DRIVER_ONLY |
1799                                          CRYPTO_ALG_ASYNC |
1800                                          CRYPTO_ALG_NEED_FALLBACK,
1801                .cra_blocksize          = HASH_BLOCK_SIZE,
1802                .cra_ctxsize            = sizeof(struct s5p_hash_ctx),
1803                .cra_alignmask          = SSS_HASH_DMA_ALIGN_MASK,
1804                .cra_module             = THIS_MODULE,
1805                .cra_init               = s5p_hash_cra_init,
1806                .cra_exit               = s5p_hash_cra_exit,
1807        }
1808},
1809{
1810        .init           = s5p_hash_init,
1811        .update         = s5p_hash_update,
1812        .final          = s5p_hash_final,
1813        .finup          = s5p_hash_finup,
1814        .digest         = s5p_hash_digest,
1815        .export         = s5p_hash_export,
1816        .import         = s5p_hash_import,
1817        .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1818        .halg.digestsize        = SHA256_DIGEST_SIZE,
1819        .halg.base      = {
1820                .cra_name               = "sha256",
1821                .cra_driver_name        = "exynos-sha256",
1822                .cra_priority           = 100,
1823                .cra_flags              = CRYPTO_ALG_KERN_DRIVER_ONLY |
1824                                          CRYPTO_ALG_ASYNC |
1825                                          CRYPTO_ALG_NEED_FALLBACK,
1826                .cra_blocksize          = HASH_BLOCK_SIZE,
1827                .cra_ctxsize            = sizeof(struct s5p_hash_ctx),
1828                .cra_alignmask          = SSS_HASH_DMA_ALIGN_MASK,
1829                .cra_module             = THIS_MODULE,
1830                .cra_init               = s5p_hash_cra_init,
1831                .cra_exit               = s5p_hash_cra_exit,
1832        }
1833}
1834
1835};
1836
1837static void s5p_set_aes(struct s5p_aes_dev *dev,
1838                        const u8 *key, const u8 *iv, const u8 *ctr,
1839                        unsigned int keylen)
1840{
1841        void __iomem *keystart;
1842
1843        if (iv)
1844                memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
1845                            AES_BLOCK_SIZE);
1846
1847        if (ctr)
1848                memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
1849                            AES_BLOCK_SIZE);
1850
1851        if (keylen == AES_KEYSIZE_256)
1852                keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1853        else if (keylen == AES_KEYSIZE_192)
1854                keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1855        else
1856                keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1857
1858        memcpy_toio(keystart, key, keylen);
1859}
1860
1861static bool s5p_is_sg_aligned(struct scatterlist *sg)
1862{
1863        while (sg) {
1864                if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1865                        return false;
1866                sg = sg_next(sg);
1867        }
1868
1869        return true;
1870}
1871
1872static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1873                                struct ablkcipher_request *req)
1874{
1875        struct scatterlist *sg;
1876        int err;
1877
1878        dev->sg_src_cpy = NULL;
1879        sg = req->src;
1880        if (!s5p_is_sg_aligned(sg)) {
1881                dev_dbg(dev->dev,
1882                        "At least one unaligned source scatter list, making a copy\n");
1883                err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1884                if (err)
1885                        return err;
1886
1887                sg = dev->sg_src_cpy;
1888        }
1889
1890        err = s5p_set_indata(dev, sg);
1891        if (err) {
1892                s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1893                return err;
1894        }
1895
1896        return 0;
1897}
1898
1899static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1900                                 struct ablkcipher_request *req)
1901{
1902        struct scatterlist *sg;
1903        int err;
1904
1905        dev->sg_dst_cpy = NULL;
1906        sg = req->dst;
1907        if (!s5p_is_sg_aligned(sg)) {
1908                dev_dbg(dev->dev,
1909                        "At least one unaligned dest scatter list, making a copy\n");
1910                err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1911                if (err)
1912                        return err;
1913
1914                sg = dev->sg_dst_cpy;
1915        }
1916
1917        err = s5p_set_outdata(dev, sg);
1918        if (err) {
1919                s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1920                return err;
1921        }
1922
1923        return 0;
1924}
1925
1926static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1927{
1928        struct ablkcipher_request *req = dev->req;
1929        u32 aes_control;
1930        unsigned long flags;
1931        int err;
1932        u8 *iv, *ctr;
1933
1934        /* This sets bit [13:12] to 00, which selects 128-bit counter */
1935        aes_control = SSS_AES_KEY_CHANGE_MODE;
1936        if (mode & FLAGS_AES_DECRYPT)
1937                aes_control |= SSS_AES_MODE_DECRYPT;
1938
1939        if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1940                aes_control |= SSS_AES_CHAIN_MODE_CBC;
1941                iv = req->info;
1942                ctr = NULL;
1943        } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1944                aes_control |= SSS_AES_CHAIN_MODE_CTR;
1945                iv = NULL;
1946                ctr = req->info;
1947        } else {
1948                iv = NULL; /* AES_ECB */
1949                ctr = NULL;
1950        }
1951
1952        if (dev->ctx->keylen == AES_KEYSIZE_192)
1953                aes_control |= SSS_AES_KEY_SIZE_192;
1954        else if (dev->ctx->keylen == AES_KEYSIZE_256)
1955                aes_control |= SSS_AES_KEY_SIZE_256;
1956
1957        aes_control |= SSS_AES_FIFO_MODE;
1958
1959        /* as a variant it is possible to use byte swapping on DMA side */
1960        aes_control |= SSS_AES_BYTESWAP_DI
1961                    |  SSS_AES_BYTESWAP_DO
1962                    |  SSS_AES_BYTESWAP_IV
1963                    |  SSS_AES_BYTESWAP_KEY
1964                    |  SSS_AES_BYTESWAP_CNT;
1965
1966        spin_lock_irqsave(&dev->lock, flags);
1967
1968        SSS_WRITE(dev, FCINTENCLR,
1969                  SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1970        SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1971
1972        err = s5p_set_indata_start(dev, req);
1973        if (err)
1974                goto indata_error;
1975
1976        err = s5p_set_outdata_start(dev, req);
1977        if (err)
1978                goto outdata_error;
1979
1980        SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1981        s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
1982
1983        s5p_set_dma_indata(dev,  dev->sg_src);
1984        s5p_set_dma_outdata(dev, dev->sg_dst);
1985
1986        SSS_WRITE(dev, FCINTENSET,
1987                  SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1988
1989        spin_unlock_irqrestore(&dev->lock, flags);
1990
1991        return;
1992
1993outdata_error:
1994        s5p_unset_indata(dev);
1995
1996indata_error:
1997        s5p_sg_done(dev);
1998        dev->busy = false;
1999        spin_unlock_irqrestore(&dev->lock, flags);
2000        s5p_aes_complete(req, err);
2001}
2002
2003static void s5p_tasklet_cb(unsigned long data)
2004{
2005        struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
2006        struct crypto_async_request *async_req, *backlog;
2007        struct s5p_aes_reqctx *reqctx;
2008        unsigned long flags;
2009
2010        spin_lock_irqsave(&dev->lock, flags);
2011        backlog   = crypto_get_backlog(&dev->queue);
2012        async_req = crypto_dequeue_request(&dev->queue);
2013
2014        if (!async_req) {
2015                dev->busy = false;
2016                spin_unlock_irqrestore(&dev->lock, flags);
2017                return;
2018        }
2019        spin_unlock_irqrestore(&dev->lock, flags);
2020
2021        if (backlog)
2022                backlog->complete(backlog, -EINPROGRESS);
2023
2024        dev->req = ablkcipher_request_cast(async_req);
2025        dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
2026        reqctx   = ablkcipher_request_ctx(dev->req);
2027
2028        s5p_aes_crypt_start(dev, reqctx->mode);
2029}
2030
2031static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
2032                              struct ablkcipher_request *req)
2033{
2034        unsigned long flags;
2035        int err;
2036
2037        spin_lock_irqsave(&dev->lock, flags);
2038        err = ablkcipher_enqueue_request(&dev->queue, req);
2039        if (dev->busy) {
2040                spin_unlock_irqrestore(&dev->lock, flags);
2041                return err;
2042        }
2043        dev->busy = true;
2044
2045        spin_unlock_irqrestore(&dev->lock, flags);
2046
2047        tasklet_schedule(&dev->tasklet);
2048
2049        return err;
2050}
2051
2052static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
2053{
2054        struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
2055        struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req);
2056        struct s5p_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
2057        struct s5p_aes_dev *dev = ctx->dev;
2058
2059        if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE) &&
2060                        ((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
2061                dev_err(dev->dev, "request size is not exact amount of AES blocks\n");
2062                return -EINVAL;
2063        }
2064
2065        reqctx->mode = mode;
2066
2067        return s5p_aes_handle_req(dev, req);
2068}
2069
2070static int s5p_aes_setkey(struct crypto_ablkcipher *cipher,
2071                          const u8 *key, unsigned int keylen)
2072{
2073        struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2074        struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2075
2076        if (keylen != AES_KEYSIZE_128 &&
2077            keylen != AES_KEYSIZE_192 &&
2078            keylen != AES_KEYSIZE_256)
2079                return -EINVAL;
2080
2081        memcpy(ctx->aes_key, key, keylen);
2082        ctx->keylen = keylen;
2083
2084        return 0;
2085}
2086
2087static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req)
2088{
2089        return s5p_aes_crypt(req, 0);
2090}
2091
2092static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req)
2093{
2094        return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2095}
2096
2097static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req)
2098{
2099        return s5p_aes_crypt(req, FLAGS_AES_CBC);
2100}
2101
2102static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req)
2103{
2104        return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2105}
2106
2107static int s5p_aes_ctr_crypt(struct ablkcipher_request *req)
2108{
2109        return s5p_aes_crypt(req, FLAGS_AES_CTR);
2110}
2111
2112static int s5p_aes_cra_init(struct crypto_tfm *tfm)
2113{
2114        struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2115
2116        ctx->dev = s5p_dev;
2117        tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx);
2118
2119        return 0;
2120}
2121
2122static struct crypto_alg algs[] = {
2123        {
2124                .cra_name               = "ecb(aes)",
2125                .cra_driver_name        = "ecb-aes-s5p",
2126                .cra_priority           = 100,
2127                .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
2128                                          CRYPTO_ALG_ASYNC |
2129                                          CRYPTO_ALG_KERN_DRIVER_ONLY,
2130                .cra_blocksize          = AES_BLOCK_SIZE,
2131                .cra_ctxsize            = sizeof(struct s5p_aes_ctx),
2132                .cra_alignmask          = 0x0f,
2133                .cra_type               = &crypto_ablkcipher_type,
2134                .cra_module             = THIS_MODULE,
2135                .cra_init               = s5p_aes_cra_init,
2136                .cra_u.ablkcipher = {
2137                        .min_keysize    = AES_MIN_KEY_SIZE,
2138                        .max_keysize    = AES_MAX_KEY_SIZE,
2139                        .setkey         = s5p_aes_setkey,
2140                        .encrypt        = s5p_aes_ecb_encrypt,
2141                        .decrypt        = s5p_aes_ecb_decrypt,
2142                }
2143        },
2144        {
2145                .cra_name               = "cbc(aes)",
2146                .cra_driver_name        = "cbc-aes-s5p",
2147                .cra_priority           = 100,
2148                .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
2149                                          CRYPTO_ALG_ASYNC |
2150                                          CRYPTO_ALG_KERN_DRIVER_ONLY,
2151                .cra_blocksize          = AES_BLOCK_SIZE,
2152                .cra_ctxsize            = sizeof(struct s5p_aes_ctx),
2153                .cra_alignmask          = 0x0f,
2154                .cra_type               = &crypto_ablkcipher_type,
2155                .cra_module             = THIS_MODULE,
2156                .cra_init               = s5p_aes_cra_init,
2157                .cra_u.ablkcipher = {
2158                        .min_keysize    = AES_MIN_KEY_SIZE,
2159                        .max_keysize    = AES_MAX_KEY_SIZE,
2160                        .ivsize         = AES_BLOCK_SIZE,
2161                        .setkey         = s5p_aes_setkey,
2162                        .encrypt        = s5p_aes_cbc_encrypt,
2163                        .decrypt        = s5p_aes_cbc_decrypt,
2164                }
2165        },
2166        {
2167                .cra_name               = "ctr(aes)",
2168                .cra_driver_name        = "ctr-aes-s5p",
2169                .cra_priority           = 100,
2170                .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
2171                                          CRYPTO_ALG_ASYNC |
2172                                          CRYPTO_ALG_KERN_DRIVER_ONLY,
2173                .cra_blocksize          = AES_BLOCK_SIZE,
2174                .cra_ctxsize            = sizeof(struct s5p_aes_ctx),
2175                .cra_alignmask          = 0x0f,
2176                .cra_type               = &crypto_ablkcipher_type,
2177                .cra_module             = THIS_MODULE,
2178                .cra_init               = s5p_aes_cra_init,
2179                .cra_u.ablkcipher = {
2180                        .min_keysize    = AES_MIN_KEY_SIZE,
2181                        .max_keysize    = AES_MAX_KEY_SIZE,
2182                        .ivsize         = AES_BLOCK_SIZE,
2183                        .setkey         = s5p_aes_setkey,
2184                        .encrypt        = s5p_aes_ctr_crypt,
2185                        .decrypt        = s5p_aes_ctr_crypt,
2186                }
2187        },
2188};
2189
2190static int s5p_aes_probe(struct platform_device *pdev)
2191{
2192        struct device *dev = &pdev->dev;
2193        int i, j, err = -ENODEV;
2194        const struct samsung_aes_variant *variant;
2195        struct s5p_aes_dev *pdata;
2196        struct resource *res;
2197        unsigned int hash_i;
2198
2199        if (s5p_dev)
2200                return -EEXIST;
2201
2202        pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2203        if (!pdata)
2204                return -ENOMEM;
2205
2206        variant = find_s5p_sss_version(pdev);
2207        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2208
2209        /*
2210         * Note: HASH and PRNG uses the same registers in secss, avoid
2211         * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2212         * is enabled in config. We need larger size for HASH registers in
2213         * secss, current describe only AES/DES
2214         */
2215        if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2216                if (variant == &exynos_aes_data) {
2217                        res->end += 0x300;
2218                        pdata->use_hash = true;
2219                }
2220        }
2221
2222        pdata->res = res;
2223        pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2224        if (IS_ERR(pdata->ioaddr)) {
2225                if (!pdata->use_hash)
2226                        return PTR_ERR(pdata->ioaddr);
2227                /* try AES without HASH */
2228                res->end -= 0x300;
2229                pdata->use_hash = false;
2230                pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2231                if (IS_ERR(pdata->ioaddr))
2232                        return PTR_ERR(pdata->ioaddr);
2233        }
2234
2235        pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
2236        if (IS_ERR(pdata->clk)) {
2237                dev_err(dev, "failed to find secss clock %s\n",
2238                        variant->clk_names[0]);
2239                return -ENOENT;
2240        }
2241
2242        err = clk_prepare_enable(pdata->clk);
2243        if (err < 0) {
2244                dev_err(dev, "Enabling clock %s failed, err %d\n",
2245                        variant->clk_names[0], err);
2246                return err;
2247        }
2248
2249        if (variant->clk_names[1]) {
2250                pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
2251                if (IS_ERR(pdata->pclk)) {
2252                        dev_err(dev, "failed to find clock %s\n",
2253                                variant->clk_names[1]);
2254                        err = -ENOENT;
2255                        goto err_clk;
2256                }
2257
2258                err = clk_prepare_enable(pdata->pclk);
2259                if (err < 0) {
2260                        dev_err(dev, "Enabling clock %s failed, err %d\n",
2261                                variant->clk_names[0], err);
2262                        goto err_clk;
2263                }
2264        } else {
2265                pdata->pclk = NULL;
2266        }
2267
2268        spin_lock_init(&pdata->lock);
2269        spin_lock_init(&pdata->hash_lock);
2270
2271        pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2272        pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2273
2274        pdata->irq_fc = platform_get_irq(pdev, 0);
2275        if (pdata->irq_fc < 0) {
2276                err = pdata->irq_fc;
2277                dev_warn(dev, "feed control interrupt is not available.\n");
2278                goto err_irq;
2279        }
2280        err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2281                                        s5p_aes_interrupt, IRQF_ONESHOT,
2282                                        pdev->name, pdev);
2283        if (err < 0) {
2284                dev_warn(dev, "feed control interrupt is not available.\n");
2285                goto err_irq;
2286        }
2287
2288        pdata->busy = false;
2289        pdata->dev = dev;
2290        platform_set_drvdata(pdev, pdata);
2291        s5p_dev = pdata;
2292
2293        tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2294        crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2295
2296        for (i = 0; i < ARRAY_SIZE(algs); i++) {
2297                err = crypto_register_alg(&algs[i]);
2298                if (err)
2299                        goto err_algs;
2300        }
2301
2302        if (pdata->use_hash) {
2303                tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2304                             (unsigned long)pdata);
2305                crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2306
2307                for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2308                     hash_i++) {
2309                        struct ahash_alg *alg;
2310
2311                        alg = &algs_sha1_md5_sha256[hash_i];
2312                        err = crypto_register_ahash(alg);
2313                        if (err) {
2314                                dev_err(dev, "can't register '%s': %d\n",
2315                                        alg->halg.base.cra_driver_name, err);
2316                                goto err_hash;
2317                        }
2318                }
2319        }
2320
2321        dev_info(dev, "s5p-sss driver registered\n");
2322
2323        return 0;
2324
2325err_hash:
2326        for (j = hash_i - 1; j >= 0; j--)
2327                crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2328
2329        tasklet_kill(&pdata->hash_tasklet);
2330        res->end -= 0x300;
2331
2332err_algs:
2333        if (i < ARRAY_SIZE(algs))
2334                dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name,
2335                        err);
2336
2337        for (j = 0; j < i; j++)
2338                crypto_unregister_alg(&algs[j]);
2339
2340        tasklet_kill(&pdata->tasklet);
2341
2342err_irq:
2343        if (pdata->pclk)
2344                clk_disable_unprepare(pdata->pclk);
2345
2346err_clk:
2347        clk_disable_unprepare(pdata->clk);
2348        s5p_dev = NULL;
2349
2350        return err;
2351}
2352
2353static int s5p_aes_remove(struct platform_device *pdev)
2354{
2355        struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2356        int i;
2357
2358        if (!pdata)
2359                return -ENODEV;
2360
2361        for (i = 0; i < ARRAY_SIZE(algs); i++)
2362                crypto_unregister_alg(&algs[i]);
2363
2364        tasklet_kill(&pdata->tasklet);
2365        if (pdata->use_hash) {
2366                for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2367                        crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2368
2369                pdata->res->end -= 0x300;
2370                tasklet_kill(&pdata->hash_tasklet);
2371                pdata->use_hash = false;
2372        }
2373
2374        if (pdata->pclk)
2375                clk_disable_unprepare(pdata->pclk);
2376
2377        clk_disable_unprepare(pdata->clk);
2378        s5p_dev = NULL;
2379
2380        return 0;
2381}
2382
2383static struct platform_driver s5p_aes_crypto = {
2384        .probe  = s5p_aes_probe,
2385        .remove = s5p_aes_remove,
2386        .driver = {
2387                .name   = "s5p-secss",
2388                .of_match_table = s5p_sss_dt_match,
2389        },
2390};
2391
2392module_platform_driver(s5p_aes_crypto);
2393
2394MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2395MODULE_LICENSE("GPL v2");
2396MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2397MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2398