linux/drivers/crypto/ux500/hash/hash_core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Cryptographic API.
   4 * Support for Nomadik hardware crypto engine.
   5
   6 * Copyright (C) ST-Ericsson SA 2010
   7 * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
   8 * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
   9 * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
  10 * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
  11 * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
  12 */
  13
  14#define pr_fmt(fmt) "hashX hashX: " fmt
  15
  16#include <linux/clk.h>
  17#include <linux/device.h>
  18#include <linux/err.h>
  19#include <linux/init.h>
  20#include <linux/io.h>
  21#include <linux/klist.h>
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/mod_devicetable.h>
  25#include <linux/platform_device.h>
  26#include <linux/crypto.h>
  27
  28#include <linux/regulator/consumer.h>
  29#include <linux/dmaengine.h>
  30#include <linux/bitops.h>
  31
  32#include <crypto/internal/hash.h>
  33#include <crypto/sha.h>
  34#include <crypto/scatterwalk.h>
  35#include <crypto/algapi.h>
  36
  37#include <linux/platform_data/crypto-ux500.h>
  38
  39#include "hash_alg.h"
  40
  41static int hash_mode;
  42module_param(hash_mode, int, 0);
  43MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
  44
  45/* HMAC-SHA1, no key */
  46static const u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
  47        0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
  48        0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
  49        0x70, 0x69, 0x0e, 0x1d
  50};
  51
  52/* HMAC-SHA256, no key */
  53static const u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
  54        0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
  55        0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
  56        0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
  57        0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
  58};
  59
  60/**
  61 * struct hash_driver_data - data specific to the driver.
  62 *
  63 * @device_list:        A list of registered devices to choose from.
  64 * @device_allocation:  A semaphore initialized with number of devices.
  65 */
  66struct hash_driver_data {
  67        struct klist            device_list;
  68        struct semaphore        device_allocation;
  69};
  70
  71static struct hash_driver_data  driver_data;
  72
  73/* Declaration of functions */
  74/**
  75 * hash_messagepad - Pads a message and write the nblw bits.
  76 * @device_data:        Structure for the hash device.
  77 * @message:            Last word of a message
  78 * @index_bytes:        The number of bytes in the last message
  79 *
  80 * This function manages the final part of the digest calculation, when less
  81 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
  82 *
  83 */
  84static void hash_messagepad(struct hash_device_data *device_data,
  85                            const u32 *message, u8 index_bytes);
  86
  87/**
  88 * release_hash_device - Releases a previously allocated hash device.
  89 * @device_data:        Structure for the hash device.
  90 *
  91 */
  92static void release_hash_device(struct hash_device_data *device_data)
  93{
  94        spin_lock(&device_data->ctx_lock);
  95        device_data->current_ctx->device = NULL;
  96        device_data->current_ctx = NULL;
  97        spin_unlock(&device_data->ctx_lock);
  98
  99        /*
 100         * The down_interruptible part for this semaphore is called in
 101         * cryp_get_device_data.
 102         */
 103        up(&driver_data.device_allocation);
 104}
 105
 106static void hash_dma_setup_channel(struct hash_device_data *device_data,
 107                                   struct device *dev)
 108{
 109        struct hash_platform_data *platform_data = dev->platform_data;
 110        struct dma_slave_config conf = {
 111                .direction = DMA_MEM_TO_DEV,
 112                .dst_addr = device_data->phybase + HASH_DMA_FIFO,
 113                .dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
 114                .dst_maxburst = 16,
 115        };
 116
 117        dma_cap_zero(device_data->dma.mask);
 118        dma_cap_set(DMA_SLAVE, device_data->dma.mask);
 119
 120        device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
 121        device_data->dma.chan_mem2hash =
 122                dma_request_channel(device_data->dma.mask,
 123                                    platform_data->dma_filter,
 124                                    device_data->dma.cfg_mem2hash);
 125
 126        dmaengine_slave_config(device_data->dma.chan_mem2hash, &conf);
 127
 128        init_completion(&device_data->dma.complete);
 129}
 130
 131static void hash_dma_callback(void *data)
 132{
 133        struct hash_ctx *ctx = data;
 134
 135        complete(&ctx->device->dma.complete);
 136}
 137
 138static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
 139                                 int len, enum dma_data_direction direction)
 140{
 141        struct dma_async_tx_descriptor *desc = NULL;
 142        struct dma_chan *channel = NULL;
 143        dma_cookie_t cookie;
 144
 145        if (direction != DMA_TO_DEVICE) {
 146                dev_err(ctx->device->dev, "%s: Invalid DMA direction\n",
 147                        __func__);
 148                return -EFAULT;
 149        }
 150
 151        sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
 152
 153        channel = ctx->device->dma.chan_mem2hash;
 154        ctx->device->dma.sg = sg;
 155        ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
 156                        ctx->device->dma.sg, ctx->device->dma.nents,
 157                        direction);
 158
 159        if (!ctx->device->dma.sg_len) {
 160                dev_err(ctx->device->dev, "%s: Could not map the sg list (TO_DEVICE)\n",
 161                        __func__);
 162                return -EFAULT;
 163        }
 164
 165        dev_dbg(ctx->device->dev, "%s: Setting up DMA for buffer (TO_DEVICE)\n",
 166                __func__);
 167        desc = dmaengine_prep_slave_sg(channel,
 168                        ctx->device->dma.sg, ctx->device->dma.sg_len,
 169                        DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
 170        if (!desc) {
 171                dev_err(ctx->device->dev,
 172                        "%s: dmaengine_prep_slave_sg() failed!\n", __func__);
 173                return -EFAULT;
 174        }
 175
 176        desc->callback = hash_dma_callback;
 177        desc->callback_param = ctx;
 178
 179        cookie = dmaengine_submit(desc);
 180        dma_async_issue_pending(channel);
 181
 182        return 0;
 183}
 184
 185static void hash_dma_done(struct hash_ctx *ctx)
 186{
 187        struct dma_chan *chan;
 188
 189        chan = ctx->device->dma.chan_mem2hash;
 190        dmaengine_terminate_all(chan);
 191        dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
 192                     ctx->device->dma.sg_len, DMA_TO_DEVICE);
 193}
 194
 195static int hash_dma_write(struct hash_ctx *ctx,
 196                          struct scatterlist *sg, int len)
 197{
 198        int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
 199        if (error) {
 200                dev_dbg(ctx->device->dev,
 201                        "%s: hash_set_dma_transfer() failed\n", __func__);
 202                return error;
 203        }
 204
 205        return len;
 206}
 207
 208/**
 209 * get_empty_message_digest - Returns a pre-calculated digest for
 210 * the empty message.
 211 * @device_data:        Structure for the hash device.
 212 * @zero_hash:          Buffer to return the empty message digest.
 213 * @zero_hash_size:     Hash size of the empty message digest.
 214 * @zero_digest:        True if zero_digest returned.
 215 */
 216static int get_empty_message_digest(
 217                struct hash_device_data *device_data,
 218                u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
 219{
 220        int ret = 0;
 221        struct hash_ctx *ctx = device_data->current_ctx;
 222        *zero_digest = false;
 223
 224        /**
 225         * Caller responsible for ctx != NULL.
 226         */
 227
 228        if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
 229                if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
 230                        memcpy(zero_hash, &sha1_zero_message_hash[0],
 231                               SHA1_DIGEST_SIZE);
 232                        *zero_hash_size = SHA1_DIGEST_SIZE;
 233                        *zero_digest = true;
 234                } else if (HASH_ALGO_SHA256 ==
 235                                ctx->config.algorithm) {
 236                        memcpy(zero_hash, &sha256_zero_message_hash[0],
 237                               SHA256_DIGEST_SIZE);
 238                        *zero_hash_size = SHA256_DIGEST_SIZE;
 239                        *zero_digest = true;
 240                } else {
 241                        dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
 242                                __func__);
 243                        ret = -EINVAL;
 244                        goto out;
 245                }
 246        } else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
 247                if (!ctx->keylen) {
 248                        if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
 249                                memcpy(zero_hash, &zero_message_hmac_sha1[0],
 250                                       SHA1_DIGEST_SIZE);
 251                                *zero_hash_size = SHA1_DIGEST_SIZE;
 252                                *zero_digest = true;
 253                        } else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
 254                                memcpy(zero_hash, &zero_message_hmac_sha256[0],
 255                                       SHA256_DIGEST_SIZE);
 256                                *zero_hash_size = SHA256_DIGEST_SIZE;
 257                                *zero_digest = true;
 258                        } else {
 259                                dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
 260                                        __func__);
 261                                ret = -EINVAL;
 262                                goto out;
 263                        }
 264                } else {
 265                        dev_dbg(device_data->dev,
 266                                "%s: Continue hash calculation, since hmac key available\n",
 267                                __func__);
 268                }
 269        }
 270out:
 271
 272        return ret;
 273}
 274
 275/**
 276 * hash_disable_power - Request to disable power and clock.
 277 * @device_data:        Structure for the hash device.
 278 * @save_device_state:  If true, saves the current hw state.
 279 *
 280 * This function request for disabling power (regulator) and clock,
 281 * and could also save current hw state.
 282 */
 283static int hash_disable_power(struct hash_device_data *device_data,
 284                              bool save_device_state)
 285{
 286        int ret = 0;
 287        struct device *dev = device_data->dev;
 288
 289        spin_lock(&device_data->power_state_lock);
 290        if (!device_data->power_state)
 291                goto out;
 292
 293        if (save_device_state) {
 294                hash_save_state(device_data,
 295                                &device_data->state);
 296                device_data->restore_dev_state = true;
 297        }
 298
 299        clk_disable(device_data->clk);
 300        ret = regulator_disable(device_data->regulator);
 301        if (ret)
 302                dev_err(dev, "%s: regulator_disable() failed!\n", __func__);
 303
 304        device_data->power_state = false;
 305
 306out:
 307        spin_unlock(&device_data->power_state_lock);
 308
 309        return ret;
 310}
 311
 312/**
 313 * hash_enable_power - Request to enable power and clock.
 314 * @device_data:                Structure for the hash device.
 315 * @restore_device_state:       If true, restores a previous saved hw state.
 316 *
 317 * This function request for enabling power (regulator) and clock,
 318 * and could also restore a previously saved hw state.
 319 */
 320static int hash_enable_power(struct hash_device_data *device_data,
 321                             bool restore_device_state)
 322{
 323        int ret = 0;
 324        struct device *dev = device_data->dev;
 325
 326        spin_lock(&device_data->power_state_lock);
 327        if (!device_data->power_state) {
 328                ret = regulator_enable(device_data->regulator);
 329                if (ret) {
 330                        dev_err(dev, "%s: regulator_enable() failed!\n",
 331                                __func__);
 332                        goto out;
 333                }
 334                ret = clk_enable(device_data->clk);
 335                if (ret) {
 336                        dev_err(dev, "%s: clk_enable() failed!\n", __func__);
 337                        ret = regulator_disable(
 338                                        device_data->regulator);
 339                        goto out;
 340                }
 341                device_data->power_state = true;
 342        }
 343
 344        if (device_data->restore_dev_state) {
 345                if (restore_device_state) {
 346                        device_data->restore_dev_state = false;
 347                        hash_resume_state(device_data, &device_data->state);
 348                }
 349        }
 350out:
 351        spin_unlock(&device_data->power_state_lock);
 352
 353        return ret;
 354}
 355
 356/**
 357 * hash_get_device_data - Checks for an available hash device and return it.
 358 * @hash_ctx:           Structure for the hash context.
 359 * @device_data:        Structure for the hash device.
 360 *
 361 * This function check for an available hash device and return it to
 362 * the caller.
 363 * Note! Caller need to release the device, calling up().
 364 */
 365static int hash_get_device_data(struct hash_ctx *ctx,
 366                                struct hash_device_data **device_data)
 367{
 368        int                     ret;
 369        struct klist_iter       device_iterator;
 370        struct klist_node       *device_node;
 371        struct hash_device_data *local_device_data = NULL;
 372
 373        /* Wait until a device is available */
 374        ret = down_interruptible(&driver_data.device_allocation);
 375        if (ret)
 376                return ret;  /* Interrupted */
 377
 378        /* Select a device */
 379        klist_iter_init(&driver_data.device_list, &device_iterator);
 380        device_node = klist_next(&device_iterator);
 381        while (device_node) {
 382                local_device_data = container_of(device_node,
 383                                           struct hash_device_data, list_node);
 384                spin_lock(&local_device_data->ctx_lock);
 385                /* current_ctx allocates a device, NULL = unallocated */
 386                if (local_device_data->current_ctx) {
 387                        device_node = klist_next(&device_iterator);
 388                } else {
 389                        local_device_data->current_ctx = ctx;
 390                        ctx->device = local_device_data;
 391                        spin_unlock(&local_device_data->ctx_lock);
 392                        break;
 393                }
 394                spin_unlock(&local_device_data->ctx_lock);
 395        }
 396        klist_iter_exit(&device_iterator);
 397
 398        if (!device_node) {
 399                /**
 400                 * No free device found.
 401                 * Since we allocated a device with down_interruptible, this
 402                 * should not be able to happen.
 403                 * Number of available devices, which are contained in
 404                 * device_allocation, is therefore decremented by not doing
 405                 * an up(device_allocation).
 406                 */
 407                return -EBUSY;
 408        }
 409
 410        *device_data = local_device_data;
 411
 412        return 0;
 413}
 414
 415/**
 416 * hash_hw_write_key - Writes the key to the hardware registries.
 417 *
 418 * @device_data:        Structure for the hash device.
 419 * @key:                Key to be written.
 420 * @keylen:             The lengt of the key.
 421 *
 422 * Note! This function DOES NOT write to the NBLW registry, even though
 423 * specified in the the hw design spec. Either due to incorrect info in the
 424 * spec or due to a bug in the hw.
 425 */
 426static void hash_hw_write_key(struct hash_device_data *device_data,
 427                              const u8 *key, unsigned int keylen)
 428{
 429        u32 word = 0;
 430        int nwords = 1;
 431
 432        HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
 433
 434        while (keylen >= 4) {
 435                u32 *key_word = (u32 *)key;
 436
 437                HASH_SET_DIN(key_word, nwords);
 438                keylen -= 4;
 439                key += 4;
 440        }
 441
 442        /* Take care of the remaining bytes in the last word */
 443        if (keylen) {
 444                word = 0;
 445                while (keylen) {
 446                        word |= (key[keylen - 1] << (8 * (keylen - 1)));
 447                        keylen--;
 448                }
 449
 450                HASH_SET_DIN(&word, nwords);
 451        }
 452
 453        while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
 454                cpu_relax();
 455
 456        HASH_SET_DCAL;
 457
 458        while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
 459                cpu_relax();
 460}
 461
 462/**
 463 * init_hash_hw - Initialise the hash hardware for a new calculation.
 464 * @device_data:        Structure for the hash device.
 465 * @ctx:                The hash context.
 466 *
 467 * This function will enable the bits needed to clear and start a new
 468 * calculation.
 469 */
 470static int init_hash_hw(struct hash_device_data *device_data,
 471                        struct hash_ctx *ctx)
 472{
 473        int ret = 0;
 474
 475        ret = hash_setconfiguration(device_data, &ctx->config);
 476        if (ret) {
 477                dev_err(device_data->dev, "%s: hash_setconfiguration() failed!\n",
 478                        __func__);
 479                return ret;
 480        }
 481
 482        hash_begin(device_data, ctx);
 483
 484        if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
 485                hash_hw_write_key(device_data, ctx->key, ctx->keylen);
 486
 487        return ret;
 488}
 489
 490/**
 491 * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
 492 *
 493 * @sg:         Scatterlist.
 494 * @size:       Size in bytes.
 495 * @aligned:    True if sg data aligned to work in DMA mode.
 496 *
 497 */
 498static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
 499{
 500        int nents = 0;
 501        bool aligned_data = true;
 502
 503        while (size > 0 && sg) {
 504                nents++;
 505                size -= sg->length;
 506
 507                /* hash_set_dma_transfer will align last nent */
 508                if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE)) ||
 509                    (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) && size > 0))
 510                        aligned_data = false;
 511
 512                sg = sg_next(sg);
 513        }
 514
 515        if (aligned)
 516                *aligned = aligned_data;
 517
 518        if (size != 0)
 519                return -EFAULT;
 520
 521        return nents;
 522}
 523
 524/**
 525 * hash_dma_valid_data - checks for dma valid sg data.
 526 * @sg:         Scatterlist.
 527 * @datasize:   Datasize in bytes.
 528 *
 529 * NOTE! This function checks for dma valid sg data, since dma
 530 * only accept datasizes of even wordsize.
 531 */
 532static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
 533{
 534        bool aligned;
 535
 536        /* Need to include at least one nent, else error */
 537        if (hash_get_nents(sg, datasize, &aligned) < 1)
 538                return false;
 539
 540        return aligned;
 541}
 542
 543/**
 544 * hash_init - Common hash init function for SHA1/SHA2 (SHA256).
 545 * @req: The hash request for the job.
 546 *
 547 * Initialize structures.
 548 */
 549static int hash_init(struct ahash_request *req)
 550{
 551        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 552        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
 553        struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
 554
 555        if (!ctx->key)
 556                ctx->keylen = 0;
 557
 558        memset(&req_ctx->state, 0, sizeof(struct hash_state));
 559        req_ctx->updated = 0;
 560        if (hash_mode == HASH_MODE_DMA) {
 561                if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
 562                        req_ctx->dma_mode = false; /* Don't use DMA */
 563
 564                        pr_debug("%s: DMA mode, but direct to CPU mode for data size < %d\n",
 565                                 __func__, HASH_DMA_ALIGN_SIZE);
 566                } else {
 567                        if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
 568                            hash_dma_valid_data(req->src, req->nbytes)) {
 569                                req_ctx->dma_mode = true;
 570                        } else {
 571                                req_ctx->dma_mode = false;
 572                                pr_debug("%s: DMA mode, but use CPU mode for datalength < %d or non-aligned data, except in last nent\n",
 573                                         __func__,
 574                                         HASH_DMA_PERFORMANCE_MIN_SIZE);
 575                        }
 576                }
 577        }
 578        return 0;
 579}
 580
 581/**
 582 * hash_processblock - This function processes a single block of 512 bits (64
 583 *                     bytes), word aligned, starting at message.
 584 * @device_data:        Structure for the hash device.
 585 * @message:            Block (512 bits) of message to be written to
 586 *                      the HASH hardware.
 587 *
 588 */
 589static void hash_processblock(struct hash_device_data *device_data,
 590                              const u32 *message, int length)
 591{
 592        int len = length / HASH_BYTES_PER_WORD;
 593        /*
 594         * NBLW bits. Reset the number of bits in last word (NBLW).
 595         */
 596        HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
 597
 598        /*
 599         * Write message data to the HASH_DIN register.
 600         */
 601        HASH_SET_DIN(message, len);
 602}
 603
 604/**
 605 * hash_messagepad - Pads a message and write the nblw bits.
 606 * @device_data:        Structure for the hash device.
 607 * @message:            Last word of a message.
 608 * @index_bytes:        The number of bytes in the last message.
 609 *
 610 * This function manages the final part of the digest calculation, when less
 611 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
 612 *
 613 */
 614static void hash_messagepad(struct hash_device_data *device_data,
 615                            const u32 *message, u8 index_bytes)
 616{
 617        int nwords = 1;
 618
 619        /*
 620         * Clear hash str register, only clear NBLW
 621         * since DCAL will be reset by hardware.
 622         */
 623        HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
 624
 625        /* Main loop */
 626        while (index_bytes >= 4) {
 627                HASH_SET_DIN(message, nwords);
 628                index_bytes -= 4;
 629                message++;
 630        }
 631
 632        if (index_bytes)
 633                HASH_SET_DIN(message, nwords);
 634
 635        while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
 636                cpu_relax();
 637
 638        /* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
 639        HASH_SET_NBLW(index_bytes * 8);
 640        dev_dbg(device_data->dev, "%s: DIN=0x%08x NBLW=%lu\n",
 641                __func__, readl_relaxed(&device_data->base->din),
 642                readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
 643        HASH_SET_DCAL;
 644        dev_dbg(device_data->dev, "%s: after dcal -> DIN=0x%08x NBLW=%lu\n",
 645                __func__, readl_relaxed(&device_data->base->din),
 646                readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
 647
 648        while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
 649                cpu_relax();
 650}
 651
 652/**
 653 * hash_incrementlength - Increments the length of the current message.
 654 * @ctx: Hash context
 655 * @incr: Length of message processed already
 656 *
 657 * Overflow cannot occur, because conditions for overflow are checked in
 658 * hash_hw_update.
 659 */
 660static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
 661{
 662        ctx->state.length.low_word += incr;
 663
 664        /* Check for wrap-around */
 665        if (ctx->state.length.low_word < incr)
 666                ctx->state.length.high_word++;
 667}
 668
 669/**
 670 * hash_setconfiguration - Sets the required configuration for the hash
 671 *                         hardware.
 672 * @device_data:        Structure for the hash device.
 673 * @config:             Pointer to a configuration structure.
 674 */
 675int hash_setconfiguration(struct hash_device_data *device_data,
 676                          struct hash_config *config)
 677{
 678        int ret = 0;
 679
 680        if (config->algorithm != HASH_ALGO_SHA1 &&
 681            config->algorithm != HASH_ALGO_SHA256)
 682                return -EPERM;
 683
 684        /*
 685         * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
 686         * to be written to HASH_DIN is considered as 32 bits.
 687         */
 688        HASH_SET_DATA_FORMAT(config->data_format);
 689
 690        /*
 691         * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
 692         */
 693        switch (config->algorithm) {
 694        case HASH_ALGO_SHA1:
 695                HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
 696                break;
 697
 698        case HASH_ALGO_SHA256:
 699                HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
 700                break;
 701
 702        default:
 703                dev_err(device_data->dev, "%s: Incorrect algorithm\n",
 704                        __func__);
 705                return -EPERM;
 706        }
 707
 708        /*
 709         * MODE bit. This bit selects between HASH or HMAC mode for the
 710         * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
 711         */
 712        if (HASH_OPER_MODE_HASH == config->oper_mode)
 713                HASH_CLEAR_BITS(&device_data->base->cr,
 714                                HASH_CR_MODE_MASK);
 715        else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
 716                HASH_SET_BITS(&device_data->base->cr, HASH_CR_MODE_MASK);
 717                if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
 718                        /* Truncate key to blocksize */
 719                        dev_dbg(device_data->dev, "%s: LKEY set\n", __func__);
 720                        HASH_SET_BITS(&device_data->base->cr,
 721                                      HASH_CR_LKEY_MASK);
 722                } else {
 723                        dev_dbg(device_data->dev, "%s: LKEY cleared\n",
 724                                __func__);
 725                        HASH_CLEAR_BITS(&device_data->base->cr,
 726                                        HASH_CR_LKEY_MASK);
 727                }
 728        } else {        /* Wrong hash mode */
 729                ret = -EPERM;
 730                dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
 731                        __func__);
 732        }
 733        return ret;
 734}
 735
 736/**
 737 * hash_begin - This routine resets some globals and initializes the hash
 738 *              hardware.
 739 * @device_data:        Structure for the hash device.
 740 * @ctx:                Hash context.
 741 */
 742void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
 743{
 744        /* HW and SW initializations */
 745        /* Note: there is no need to initialize buffer and digest members */
 746
 747        while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
 748                cpu_relax();
 749
 750        /*
 751         * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
 752         * prepare the initialize the HASH accelerator to compute the message
 753         * digest of a new message.
 754         */
 755        HASH_INITIALIZE;
 756
 757        /*
 758         * NBLW bits. Reset the number of bits in last word (NBLW).
 759         */
 760        HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
 761}
 762
 763static int hash_process_data(struct hash_device_data *device_data,
 764                             struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
 765                             int msg_length, u8 *data_buffer, u8 *buffer,
 766                             u8 *index)
 767{
 768        int ret = 0;
 769        u32 count;
 770
 771        do {
 772                if ((*index + msg_length) < HASH_BLOCK_SIZE) {
 773                        for (count = 0; count < msg_length; count++) {
 774                                buffer[*index + count] =
 775                                        *(data_buffer + count);
 776                        }
 777                        *index += msg_length;
 778                        msg_length = 0;
 779                } else {
 780                        if (req_ctx->updated) {
 781                                ret = hash_resume_state(device_data,
 782                                                &device_data->state);
 783                                memmove(req_ctx->state.buffer,
 784                                        device_data->state.buffer,
 785                                        HASH_BLOCK_SIZE);
 786                                if (ret) {
 787                                        dev_err(device_data->dev,
 788                                                "%s: hash_resume_state() failed!\n",
 789                                                __func__);
 790                                        goto out;
 791                                }
 792                        } else {
 793                                ret = init_hash_hw(device_data, ctx);
 794                                if (ret) {
 795                                        dev_err(device_data->dev,
 796                                                "%s: init_hash_hw() failed!\n",
 797                                                __func__);
 798                                        goto out;
 799                                }
 800                                req_ctx->updated = 1;
 801                        }
 802                        /*
 803                         * If 'data_buffer' is four byte aligned and
 804                         * local buffer does not have any data, we can
 805                         * write data directly from 'data_buffer' to
 806                         * HW peripheral, otherwise we first copy data
 807                         * to a local buffer
 808                         */
 809                        if ((0 == (((u32)data_buffer) % 4)) &&
 810                            (0 == *index))
 811                                hash_processblock(device_data,
 812                                                  (const u32 *)data_buffer,
 813                                                  HASH_BLOCK_SIZE);
 814                        else {
 815                                for (count = 0;
 816                                     count < (u32)(HASH_BLOCK_SIZE - *index);
 817                                     count++) {
 818                                        buffer[*index + count] =
 819                                                *(data_buffer + count);
 820                                }
 821                                hash_processblock(device_data,
 822                                                  (const u32 *)buffer,
 823                                                  HASH_BLOCK_SIZE);
 824                        }
 825                        hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
 826                        data_buffer += (HASH_BLOCK_SIZE - *index);
 827
 828                        msg_length -= (HASH_BLOCK_SIZE - *index);
 829                        *index = 0;
 830
 831                        ret = hash_save_state(device_data,
 832                                        &device_data->state);
 833
 834                        memmove(device_data->state.buffer,
 835                                req_ctx->state.buffer,
 836                                HASH_BLOCK_SIZE);
 837                        if (ret) {
 838                                dev_err(device_data->dev, "%s: hash_save_state() failed!\n",
 839                                        __func__);
 840                                goto out;
 841                        }
 842                }
 843        } while (msg_length != 0);
 844out:
 845
 846        return ret;
 847}
 848
 849/**
 850 * hash_dma_final - The hash dma final function for SHA1/SHA256.
 851 * @req:        The hash request for the job.
 852 */
 853static int hash_dma_final(struct ahash_request *req)
 854{
 855        int ret = 0;
 856        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 857        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
 858        struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
 859        struct hash_device_data *device_data;
 860        u8 digest[SHA256_DIGEST_SIZE];
 861        int bytes_written = 0;
 862
 863        ret = hash_get_device_data(ctx, &device_data);
 864        if (ret)
 865                return ret;
 866
 867        dev_dbg(device_data->dev, "%s: (ctx=0x%x)!\n", __func__, (u32) ctx);
 868
 869        if (req_ctx->updated) {
 870                ret = hash_resume_state(device_data, &device_data->state);
 871
 872                if (ret) {
 873                        dev_err(device_data->dev, "%s: hash_resume_state() failed!\n",
 874                                __func__);
 875                        goto out;
 876                }
 877        }
 878
 879        if (!req_ctx->updated) {
 880                ret = hash_setconfiguration(device_data, &ctx->config);
 881                if (ret) {
 882                        dev_err(device_data->dev,
 883                                "%s: hash_setconfiguration() failed!\n",
 884                                __func__);
 885                        goto out;
 886                }
 887
 888                /* Enable DMA input */
 889                if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
 890                        HASH_CLEAR_BITS(&device_data->base->cr,
 891                                        HASH_CR_DMAE_MASK);
 892                } else {
 893                        HASH_SET_BITS(&device_data->base->cr,
 894                                      HASH_CR_DMAE_MASK);
 895                        HASH_SET_BITS(&device_data->base->cr,
 896                                      HASH_CR_PRIVN_MASK);
 897                }
 898
 899                HASH_INITIALIZE;
 900
 901                if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
 902                        hash_hw_write_key(device_data, ctx->key, ctx->keylen);
 903
 904                /* Number of bits in last word = (nbytes * 8) % 32 */
 905                HASH_SET_NBLW((req->nbytes * 8) % 32);
 906                req_ctx->updated = 1;
 907        }
 908
 909        /* Store the nents in the dma struct. */
 910        ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
 911        if (!ctx->device->dma.nents) {
 912                dev_err(device_data->dev, "%s: ctx->device->dma.nents = 0\n",
 913                        __func__);
 914                ret = ctx->device->dma.nents;
 915                goto out;
 916        }
 917
 918        bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
 919        if (bytes_written != req->nbytes) {
 920                dev_err(device_data->dev, "%s: hash_dma_write() failed!\n",
 921                        __func__);
 922                ret = bytes_written;
 923                goto out;
 924        }
 925
 926        wait_for_completion(&ctx->device->dma.complete);
 927        hash_dma_done(ctx);
 928
 929        while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
 930                cpu_relax();
 931
 932        if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
 933                unsigned int keylen = ctx->keylen;
 934                u8 *key = ctx->key;
 935
 936                dev_dbg(device_data->dev, "%s: keylen: %d\n",
 937                        __func__, ctx->keylen);
 938                hash_hw_write_key(device_data, key, keylen);
 939        }
 940
 941        hash_get_digest(device_data, digest, ctx->config.algorithm);
 942        memcpy(req->result, digest, ctx->digestsize);
 943
 944out:
 945        release_hash_device(device_data);
 946
 947        /**
 948         * Allocated in setkey, and only used in HMAC.
 949         */
 950        kfree(ctx->key);
 951
 952        return ret;
 953}
 954
 955/**
 956 * hash_hw_final - The final hash calculation function
 957 * @req:        The hash request for the job.
 958 */
 959static int hash_hw_final(struct ahash_request *req)
 960{
 961        int ret = 0;
 962        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 963        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
 964        struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
 965        struct hash_device_data *device_data;
 966        u8 digest[SHA256_DIGEST_SIZE];
 967
 968        ret = hash_get_device_data(ctx, &device_data);
 969        if (ret)
 970                return ret;
 971
 972        dev_dbg(device_data->dev, "%s: (ctx=0x%x)!\n", __func__, (u32) ctx);
 973
 974        if (req_ctx->updated) {
 975                ret = hash_resume_state(device_data, &device_data->state);
 976
 977                if (ret) {
 978                        dev_err(device_data->dev,
 979                                "%s: hash_resume_state() failed!\n", __func__);
 980                        goto out;
 981                }
 982        } else if (req->nbytes == 0 && ctx->keylen == 0) {
 983                u8 zero_hash[SHA256_DIGEST_SIZE];
 984                u32 zero_hash_size = 0;
 985                bool zero_digest = false;
 986                /**
 987                 * Use a pre-calculated empty message digest
 988                 * (workaround since hw return zeroes, hw bug!?)
 989                 */
 990                ret = get_empty_message_digest(device_data, &zero_hash[0],
 991                                &zero_hash_size, &zero_digest);
 992                if (!ret && likely(zero_hash_size == ctx->digestsize) &&
 993                    zero_digest) {
 994                        memcpy(req->result, &zero_hash[0], ctx->digestsize);
 995                        goto out;
 996                } else if (!ret && !zero_digest) {
 997                        dev_dbg(device_data->dev,
 998                                "%s: HMAC zero msg with key, continue...\n",
 999                                __func__);
1000                } else {
1001                        dev_err(device_data->dev,
1002                                "%s: ret=%d, or wrong digest size? %s\n",
1003                                __func__, ret,
1004                                zero_hash_size == ctx->digestsize ?
1005                                "true" : "false");
1006                        /* Return error */
1007                        goto out;
1008                }
1009        } else if (req->nbytes == 0 && ctx->keylen > 0) {
1010                dev_err(device_data->dev, "%s: Empty message with keylength > 0, NOT supported\n",
1011                        __func__);
1012                goto out;
1013        }
1014
1015        if (!req_ctx->updated) {
1016                ret = init_hash_hw(device_data, ctx);
1017                if (ret) {
1018                        dev_err(device_data->dev,
1019                                "%s: init_hash_hw() failed!\n", __func__);
1020                        goto out;
1021                }
1022        }
1023
1024        if (req_ctx->state.index) {
1025                hash_messagepad(device_data, req_ctx->state.buffer,
1026                                req_ctx->state.index);
1027        } else {
1028                HASH_SET_DCAL;
1029                while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1030                        cpu_relax();
1031        }
1032
1033        if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
1034                unsigned int keylen = ctx->keylen;
1035                u8 *key = ctx->key;
1036
1037                dev_dbg(device_data->dev, "%s: keylen: %d\n",
1038                        __func__, ctx->keylen);
1039                hash_hw_write_key(device_data, key, keylen);
1040        }
1041
1042        hash_get_digest(device_data, digest, ctx->config.algorithm);
1043        memcpy(req->result, digest, ctx->digestsize);
1044
1045out:
1046        release_hash_device(device_data);
1047
1048        /**
1049         * Allocated in setkey, and only used in HMAC.
1050         */
1051        kfree(ctx->key);
1052
1053        return ret;
1054}
1055
1056/**
1057 * hash_hw_update - Updates current HASH computation hashing another part of
1058 *                  the message.
1059 * @req:        Byte array containing the message to be hashed (caller
1060 *              allocated).
1061 */
1062int hash_hw_update(struct ahash_request *req)
1063{
1064        int ret = 0;
1065        u8 index = 0;
1066        u8 *buffer;
1067        struct hash_device_data *device_data;
1068        u8 *data_buffer;
1069        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1070        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1071        struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1072        struct crypto_hash_walk walk;
1073        int msg_length = crypto_hash_walk_first(req, &walk);
1074
1075        /* Empty message ("") is correct indata */
1076        if (msg_length == 0)
1077                return ret;
1078
1079        index = req_ctx->state.index;
1080        buffer = (u8 *)req_ctx->state.buffer;
1081
1082        /* Check if ctx->state.length + msg_length
1083           overflows */
1084        if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
1085            HASH_HIGH_WORD_MAX_VAL == req_ctx->state.length.high_word) {
1086                pr_err("%s: HASH_MSG_LENGTH_OVERFLOW!\n", __func__);
1087                return -EPERM;
1088        }
1089
1090        ret = hash_get_device_data(ctx, &device_data);
1091        if (ret)
1092                return ret;
1093
1094        /* Main loop */
1095        while (0 != msg_length) {
1096                data_buffer = walk.data;
1097                ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
1098                                data_buffer, buffer, &index);
1099
1100                if (ret) {
1101                        dev_err(device_data->dev, "%s: hash_internal_hw_update() failed!\n",
1102                                __func__);
1103                        goto out;
1104                }
1105
1106                msg_length = crypto_hash_walk_done(&walk, 0);
1107        }
1108
1109        req_ctx->state.index = index;
1110        dev_dbg(device_data->dev, "%s: indata length=%d, bin=%d\n",
1111                __func__, req_ctx->state.index, req_ctx->state.bit_index);
1112
1113out:
1114        release_hash_device(device_data);
1115
1116        return ret;
1117}
1118
1119/**
1120 * hash_resume_state - Function that resumes the state of an calculation.
1121 * @device_data:        Pointer to the device structure.
1122 * @device_state:       The state to be restored in the hash hardware
1123 */
1124int hash_resume_state(struct hash_device_data *device_data,
1125                      const struct hash_state *device_state)
1126{
1127        u32 temp_cr;
1128        s32 count;
1129        int hash_mode = HASH_OPER_MODE_HASH;
1130
1131        if (NULL == device_state) {
1132                dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1133                        __func__);
1134                return -EPERM;
1135        }
1136
1137        /* Check correctness of index and length members */
1138        if (device_state->index > HASH_BLOCK_SIZE ||
1139            (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
1140                dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1141                        __func__);
1142                return -EPERM;
1143        }
1144
1145        /*
1146         * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
1147         * prepare the initialize the HASH accelerator to compute the message
1148         * digest of a new message.
1149         */
1150        HASH_INITIALIZE;
1151
1152        temp_cr = device_state->temp_cr;
1153        writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
1154
1155        if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1156                hash_mode = HASH_OPER_MODE_HMAC;
1157        else
1158                hash_mode = HASH_OPER_MODE_HASH;
1159
1160        for (count = 0; count < HASH_CSR_COUNT; count++) {
1161                if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1162                        break;
1163
1164                writel_relaxed(device_state->csr[count],
1165                               &device_data->base->csrx[count]);
1166        }
1167
1168        writel_relaxed(device_state->csfull, &device_data->base->csfull);
1169        writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
1170
1171        writel_relaxed(device_state->str_reg, &device_data->base->str);
1172        writel_relaxed(temp_cr, &device_data->base->cr);
1173
1174        return 0;
1175}
1176
1177/**
1178 * hash_save_state - Function that saves the state of hardware.
1179 * @device_data:        Pointer to the device structure.
1180 * @device_state:       The strucure where the hardware state should be saved.
1181 */
1182int hash_save_state(struct hash_device_data *device_data,
1183                    struct hash_state *device_state)
1184{
1185        u32 temp_cr;
1186        u32 count;
1187        int hash_mode = HASH_OPER_MODE_HASH;
1188
1189        if (NULL == device_state) {
1190                dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1191                        __func__);
1192                return -ENOTSUPP;
1193        }
1194
1195        /* Write dummy value to force digest intermediate calculation. This
1196         * actually makes sure that there isn't any ongoing calculation in the
1197         * hardware.
1198         */
1199        while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1200                cpu_relax();
1201
1202        temp_cr = readl_relaxed(&device_data->base->cr);
1203
1204        device_state->str_reg = readl_relaxed(&device_data->base->str);
1205
1206        device_state->din_reg = readl_relaxed(&device_data->base->din);
1207
1208        if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1209                hash_mode = HASH_OPER_MODE_HMAC;
1210        else
1211                hash_mode = HASH_OPER_MODE_HASH;
1212
1213        for (count = 0; count < HASH_CSR_COUNT; count++) {
1214                if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1215                        break;
1216
1217                device_state->csr[count] =
1218                        readl_relaxed(&device_data->base->csrx[count]);
1219        }
1220
1221        device_state->csfull = readl_relaxed(&device_data->base->csfull);
1222        device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
1223
1224        device_state->temp_cr = temp_cr;
1225
1226        return 0;
1227}
1228
1229/**
1230 * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
1231 * @device_data:
1232 *
1233 */
1234int hash_check_hw(struct hash_device_data *device_data)
1235{
1236        /* Checking Peripheral Ids  */
1237        if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0) &&
1238            HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1) &&
1239            HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2) &&
1240            HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3) &&
1241            HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0) &&
1242            HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1) &&
1243            HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2) &&
1244            HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)) {
1245                return 0;
1246        }
1247
1248        dev_err(device_data->dev, "%s: HASH_UNSUPPORTED_HW!\n", __func__);
1249        return -ENOTSUPP;
1250}
1251
1252/**
1253 * hash_get_digest - Gets the digest.
1254 * @device_data:        Pointer to the device structure.
1255 * @digest:             User allocated byte array for the calculated digest.
1256 * @algorithm:          The algorithm in use.
1257 */
1258void hash_get_digest(struct hash_device_data *device_data,
1259                     u8 *digest, int algorithm)
1260{
1261        u32 temp_hx_val, count;
1262        int loop_ctr;
1263
1264        if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
1265                dev_err(device_data->dev, "%s: Incorrect algorithm %d\n",
1266                        __func__, algorithm);
1267                return;
1268        }
1269
1270        if (algorithm == HASH_ALGO_SHA1)
1271                loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
1272        else
1273                loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
1274
1275        dev_dbg(device_data->dev, "%s: digest array:(0x%x)\n",
1276                __func__, (u32) digest);
1277
1278        /* Copy result into digest array */
1279        for (count = 0; count < loop_ctr; count++) {
1280                temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
1281                digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
1282                digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
1283                digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
1284                digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
1285        }
1286}
1287
1288/**
1289 * hash_update - The hash update function for SHA1/SHA2 (SHA256).
1290 * @req: The hash request for the job.
1291 */
1292static int ahash_update(struct ahash_request *req)
1293{
1294        int ret = 0;
1295        struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1296
1297        if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
1298                ret = hash_hw_update(req);
1299        /* Skip update for DMA, all data will be passed to DMA in final */
1300
1301        if (ret) {
1302                pr_err("%s: hash_hw_update() failed!\n", __func__);
1303        }
1304
1305        return ret;
1306}
1307
1308/**
1309 * hash_final - The hash final function for SHA1/SHA2 (SHA256).
1310 * @req:        The hash request for the job.
1311 */
1312static int ahash_final(struct ahash_request *req)
1313{
1314        int ret = 0;
1315        struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1316
1317        pr_debug("%s: data size: %d\n", __func__, req->nbytes);
1318
1319        if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
1320                ret = hash_dma_final(req);
1321        else
1322                ret = hash_hw_final(req);
1323
1324        if (ret) {
1325                pr_err("%s: hash_hw/dma_final() failed\n", __func__);
1326        }
1327
1328        return ret;
1329}
1330
1331static int hash_setkey(struct crypto_ahash *tfm,
1332                       const u8 *key, unsigned int keylen, int alg)
1333{
1334        int ret = 0;
1335        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1336
1337        /**
1338         * Freed in final.
1339         */
1340        ctx->key = kmemdup(key, keylen, GFP_KERNEL);
1341        if (!ctx->key) {
1342                pr_err("%s: Failed to allocate ctx->key for %d\n",
1343                       __func__, alg);
1344                return -ENOMEM;
1345        }
1346        ctx->keylen = keylen;
1347
1348        return ret;
1349}
1350
1351static int ahash_sha1_init(struct ahash_request *req)
1352{
1353        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1354        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1355
1356        ctx->config.data_format = HASH_DATA_8_BITS;
1357        ctx->config.algorithm = HASH_ALGO_SHA1;
1358        ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1359        ctx->digestsize = SHA1_DIGEST_SIZE;
1360
1361        return hash_init(req);
1362}
1363
1364static int ahash_sha256_init(struct ahash_request *req)
1365{
1366        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1367        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1368
1369        ctx->config.data_format = HASH_DATA_8_BITS;
1370        ctx->config.algorithm = HASH_ALGO_SHA256;
1371        ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1372        ctx->digestsize = SHA256_DIGEST_SIZE;
1373
1374        return hash_init(req);
1375}
1376
1377static int ahash_sha1_digest(struct ahash_request *req)
1378{
1379        int ret2, ret1;
1380
1381        ret1 = ahash_sha1_init(req);
1382        if (ret1)
1383                goto out;
1384
1385        ret1 = ahash_update(req);
1386        ret2 = ahash_final(req);
1387
1388out:
1389        return ret1 ? ret1 : ret2;
1390}
1391
1392static int ahash_sha256_digest(struct ahash_request *req)
1393{
1394        int ret2, ret1;
1395
1396        ret1 = ahash_sha256_init(req);
1397        if (ret1)
1398                goto out;
1399
1400        ret1 = ahash_update(req);
1401        ret2 = ahash_final(req);
1402
1403out:
1404        return ret1 ? ret1 : ret2;
1405}
1406
1407static int ahash_noimport(struct ahash_request *req, const void *in)
1408{
1409        return -ENOSYS;
1410}
1411
1412static int ahash_noexport(struct ahash_request *req, void *out)
1413{
1414        return -ENOSYS;
1415}
1416
1417static int hmac_sha1_init(struct ahash_request *req)
1418{
1419        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1420        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1421
1422        ctx->config.data_format = HASH_DATA_8_BITS;
1423        ctx->config.algorithm   = HASH_ALGO_SHA1;
1424        ctx->config.oper_mode   = HASH_OPER_MODE_HMAC;
1425        ctx->digestsize         = SHA1_DIGEST_SIZE;
1426
1427        return hash_init(req);
1428}
1429
1430static int hmac_sha256_init(struct ahash_request *req)
1431{
1432        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1433        struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1434
1435        ctx->config.data_format = HASH_DATA_8_BITS;
1436        ctx->config.algorithm   = HASH_ALGO_SHA256;
1437        ctx->config.oper_mode   = HASH_OPER_MODE_HMAC;
1438        ctx->digestsize         = SHA256_DIGEST_SIZE;
1439
1440        return hash_init(req);
1441}
1442
1443static int hmac_sha1_digest(struct ahash_request *req)
1444{
1445        int ret2, ret1;
1446
1447        ret1 = hmac_sha1_init(req);
1448        if (ret1)
1449                goto out;
1450
1451        ret1 = ahash_update(req);
1452        ret2 = ahash_final(req);
1453
1454out:
1455        return ret1 ? ret1 : ret2;
1456}
1457
1458static int hmac_sha256_digest(struct ahash_request *req)
1459{
1460        int ret2, ret1;
1461
1462        ret1 = hmac_sha256_init(req);
1463        if (ret1)
1464                goto out;
1465
1466        ret1 = ahash_update(req);
1467        ret2 = ahash_final(req);
1468
1469out:
1470        return ret1 ? ret1 : ret2;
1471}
1472
1473static int hmac_sha1_setkey(struct crypto_ahash *tfm,
1474                            const u8 *key, unsigned int keylen)
1475{
1476        return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
1477}
1478
1479static int hmac_sha256_setkey(struct crypto_ahash *tfm,
1480                              const u8 *key, unsigned int keylen)
1481{
1482        return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
1483}
1484
1485struct hash_algo_template {
1486        struct hash_config conf;
1487        struct ahash_alg hash;
1488};
1489
1490static int hash_cra_init(struct crypto_tfm *tfm)
1491{
1492        struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
1493        struct crypto_alg *alg = tfm->__crt_alg;
1494        struct hash_algo_template *hash_alg;
1495
1496        hash_alg = container_of(__crypto_ahash_alg(alg),
1497                        struct hash_algo_template,
1498                        hash);
1499
1500        crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1501                                 sizeof(struct hash_req_ctx));
1502
1503        ctx->config.data_format = HASH_DATA_8_BITS;
1504        ctx->config.algorithm = hash_alg->conf.algorithm;
1505        ctx->config.oper_mode = hash_alg->conf.oper_mode;
1506
1507        ctx->digestsize = hash_alg->hash.halg.digestsize;
1508
1509        return 0;
1510}
1511
1512static struct hash_algo_template hash_algs[] = {
1513        {
1514                .conf.algorithm = HASH_ALGO_SHA1,
1515                .conf.oper_mode = HASH_OPER_MODE_HASH,
1516                .hash = {
1517                        .init = hash_init,
1518                        .update = ahash_update,
1519                        .final = ahash_final,
1520                        .digest = ahash_sha1_digest,
1521                        .export = ahash_noexport,
1522                        .import = ahash_noimport,
1523                        .halg.digestsize = SHA1_DIGEST_SIZE,
1524                        .halg.statesize = sizeof(struct hash_ctx),
1525                        .halg.base = {
1526                                .cra_name = "sha1",
1527                                .cra_driver_name = "sha1-ux500",
1528                                .cra_flags = CRYPTO_ALG_ASYNC,
1529                                .cra_blocksize = SHA1_BLOCK_SIZE,
1530                                .cra_ctxsize = sizeof(struct hash_ctx),
1531                                .cra_init = hash_cra_init,
1532                                .cra_module = THIS_MODULE,
1533                        }
1534                }
1535        },
1536        {
1537                .conf.algorithm = HASH_ALGO_SHA256,
1538                .conf.oper_mode = HASH_OPER_MODE_HASH,
1539                .hash = {
1540                        .init = hash_init,
1541                        .update = ahash_update,
1542                        .final = ahash_final,
1543                        .digest = ahash_sha256_digest,
1544                        .export = ahash_noexport,
1545                        .import = ahash_noimport,
1546                        .halg.digestsize = SHA256_DIGEST_SIZE,
1547                        .halg.statesize = sizeof(struct hash_ctx),
1548                        .halg.base = {
1549                                .cra_name = "sha256",
1550                                .cra_driver_name = "sha256-ux500",
1551                                .cra_flags = CRYPTO_ALG_ASYNC,
1552                                .cra_blocksize = SHA256_BLOCK_SIZE,
1553                                .cra_ctxsize = sizeof(struct hash_ctx),
1554                                .cra_init = hash_cra_init,
1555                                .cra_module = THIS_MODULE,
1556                        }
1557                }
1558        },
1559        {
1560                .conf.algorithm = HASH_ALGO_SHA1,
1561                .conf.oper_mode = HASH_OPER_MODE_HMAC,
1562                        .hash = {
1563                        .init = hash_init,
1564                        .update = ahash_update,
1565                        .final = ahash_final,
1566                        .digest = hmac_sha1_digest,
1567                        .setkey = hmac_sha1_setkey,
1568                        .export = ahash_noexport,
1569                        .import = ahash_noimport,
1570                        .halg.digestsize = SHA1_DIGEST_SIZE,
1571                        .halg.statesize = sizeof(struct hash_ctx),
1572                        .halg.base = {
1573                                .cra_name = "hmac(sha1)",
1574                                .cra_driver_name = "hmac-sha1-ux500",
1575                                .cra_flags = CRYPTO_ALG_ASYNC,
1576                                .cra_blocksize = SHA1_BLOCK_SIZE,
1577                                .cra_ctxsize = sizeof(struct hash_ctx),
1578                                .cra_init = hash_cra_init,
1579                                .cra_module = THIS_MODULE,
1580                        }
1581                }
1582        },
1583        {
1584                .conf.algorithm = HASH_ALGO_SHA256,
1585                .conf.oper_mode = HASH_OPER_MODE_HMAC,
1586                .hash = {
1587                        .init = hash_init,
1588                        .update = ahash_update,
1589                        .final = ahash_final,
1590                        .digest = hmac_sha256_digest,
1591                        .setkey = hmac_sha256_setkey,
1592                        .export = ahash_noexport,
1593                        .import = ahash_noimport,
1594                        .halg.digestsize = SHA256_DIGEST_SIZE,
1595                        .halg.statesize = sizeof(struct hash_ctx),
1596                        .halg.base = {
1597                                .cra_name = "hmac(sha256)",
1598                                .cra_driver_name = "hmac-sha256-ux500",
1599                                .cra_flags = CRYPTO_ALG_ASYNC,
1600                                .cra_blocksize = SHA256_BLOCK_SIZE,
1601                                .cra_ctxsize = sizeof(struct hash_ctx),
1602                                .cra_init = hash_cra_init,
1603                                .cra_module = THIS_MODULE,
1604                        }
1605                }
1606        }
1607};
1608
1609/**
1610 * hash_algs_register_all -
1611 */
1612static int ahash_algs_register_all(struct hash_device_data *device_data)
1613{
1614        int ret;
1615        int i;
1616        int count;
1617
1618        for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
1619                ret = crypto_register_ahash(&hash_algs[i].hash);
1620                if (ret) {
1621                        count = i;
1622                        dev_err(device_data->dev, "%s: alg registration failed\n",
1623                                hash_algs[i].hash.halg.base.cra_driver_name);
1624                        goto unreg;
1625                }
1626        }
1627        return 0;
1628unreg:
1629        for (i = 0; i < count; i++)
1630                crypto_unregister_ahash(&hash_algs[i].hash);
1631        return ret;
1632}
1633
1634/**
1635 * hash_algs_unregister_all -
1636 */
1637static void ahash_algs_unregister_all(struct hash_device_data *device_data)
1638{
1639        int i;
1640
1641        for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
1642                crypto_unregister_ahash(&hash_algs[i].hash);
1643}
1644
1645/**
1646 * ux500_hash_probe - Function that probes the hash hardware.
1647 * @pdev: The platform device.
1648 */
1649static int ux500_hash_probe(struct platform_device *pdev)
1650{
1651        int                     ret = 0;
1652        struct resource         *res = NULL;
1653        struct hash_device_data *device_data;
1654        struct device           *dev = &pdev->dev;
1655
1656        device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_ATOMIC);
1657        if (!device_data) {
1658                ret = -ENOMEM;
1659                goto out;
1660        }
1661
1662        device_data->dev = dev;
1663        device_data->current_ctx = NULL;
1664
1665        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1666        if (!res) {
1667                dev_dbg(dev, "%s: platform_get_resource() failed!\n", __func__);
1668                ret = -ENODEV;
1669                goto out;
1670        }
1671
1672        device_data->phybase = res->start;
1673        device_data->base = devm_ioremap_resource(dev, res);
1674        if (IS_ERR(device_data->base)) {
1675                dev_err(dev, "%s: ioremap() failed!\n", __func__);
1676                ret = PTR_ERR(device_data->base);
1677                goto out;
1678        }
1679        spin_lock_init(&device_data->ctx_lock);
1680        spin_lock_init(&device_data->power_state_lock);
1681
1682        /* Enable power for HASH1 hardware block */
1683        device_data->regulator = regulator_get(dev, "v-ape");
1684        if (IS_ERR(device_data->regulator)) {
1685                dev_err(dev, "%s: regulator_get() failed!\n", __func__);
1686                ret = PTR_ERR(device_data->regulator);
1687                device_data->regulator = NULL;
1688                goto out;
1689        }
1690
1691        /* Enable the clock for HASH1 hardware block */
1692        device_data->clk = devm_clk_get(dev, NULL);
1693        if (IS_ERR(device_data->clk)) {
1694                dev_err(dev, "%s: clk_get() failed!\n", __func__);
1695                ret = PTR_ERR(device_data->clk);
1696                goto out_regulator;
1697        }
1698
1699        ret = clk_prepare(device_data->clk);
1700        if (ret) {
1701                dev_err(dev, "%s: clk_prepare() failed!\n", __func__);
1702                goto out_regulator;
1703        }
1704
1705        /* Enable device power (and clock) */
1706        ret = hash_enable_power(device_data, false);
1707        if (ret) {
1708                dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1709                goto out_clk_unprepare;
1710        }
1711
1712        ret = hash_check_hw(device_data);
1713        if (ret) {
1714                dev_err(dev, "%s: hash_check_hw() failed!\n", __func__);
1715                goto out_power;
1716        }
1717
1718        if (hash_mode == HASH_MODE_DMA)
1719                hash_dma_setup_channel(device_data, dev);
1720
1721        platform_set_drvdata(pdev, device_data);
1722
1723        /* Put the new device into the device list... */
1724        klist_add_tail(&device_data->list_node, &driver_data.device_list);
1725        /* ... and signal that a new device is available. */
1726        up(&driver_data.device_allocation);
1727
1728        ret = ahash_algs_register_all(device_data);
1729        if (ret) {
1730                dev_err(dev, "%s: ahash_algs_register_all() failed!\n",
1731                        __func__);
1732                goto out_power;
1733        }
1734
1735        dev_info(dev, "successfully registered\n");
1736        return 0;
1737
1738out_power:
1739        hash_disable_power(device_data, false);
1740
1741out_clk_unprepare:
1742        clk_unprepare(device_data->clk);
1743
1744out_regulator:
1745        regulator_put(device_data->regulator);
1746
1747out:
1748        return ret;
1749}
1750
1751/**
1752 * ux500_hash_remove - Function that removes the hash device from the platform.
1753 * @pdev: The platform device.
1754 */
1755static int ux500_hash_remove(struct platform_device *pdev)
1756{
1757        struct hash_device_data *device_data;
1758        struct device           *dev = &pdev->dev;
1759
1760        device_data = platform_get_drvdata(pdev);
1761        if (!device_data) {
1762                dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1763                return -ENOMEM;
1764        }
1765
1766        /* Try to decrease the number of available devices. */
1767        if (down_trylock(&driver_data.device_allocation))
1768                return -EBUSY;
1769
1770        /* Check that the device is free */
1771        spin_lock(&device_data->ctx_lock);
1772        /* current_ctx allocates a device, NULL = unallocated */
1773        if (device_data->current_ctx) {
1774                /* The device is busy */
1775                spin_unlock(&device_data->ctx_lock);
1776                /* Return the device to the pool. */
1777                up(&driver_data.device_allocation);
1778                return -EBUSY;
1779        }
1780
1781        spin_unlock(&device_data->ctx_lock);
1782
1783        /* Remove the device from the list */
1784        if (klist_node_attached(&device_data->list_node))
1785                klist_remove(&device_data->list_node);
1786
1787        /* If this was the last device, remove the services */
1788        if (list_empty(&driver_data.device_list.k_list))
1789                ahash_algs_unregister_all(device_data);
1790
1791        if (hash_disable_power(device_data, false))
1792                dev_err(dev, "%s: hash_disable_power() failed\n",
1793                        __func__);
1794
1795        clk_unprepare(device_data->clk);
1796        regulator_put(device_data->regulator);
1797
1798        return 0;
1799}
1800
1801/**
1802 * ux500_hash_shutdown - Function that shutdown the hash device.
1803 * @pdev: The platform device
1804 */
1805static void ux500_hash_shutdown(struct platform_device *pdev)
1806{
1807        struct hash_device_data *device_data;
1808
1809        device_data = platform_get_drvdata(pdev);
1810        if (!device_data) {
1811                dev_err(&pdev->dev, "%s: platform_get_drvdata() failed!\n",
1812                        __func__);
1813                return;
1814        }
1815
1816        /* Check that the device is free */
1817        spin_lock(&device_data->ctx_lock);
1818        /* current_ctx allocates a device, NULL = unallocated */
1819        if (!device_data->current_ctx) {
1820                if (down_trylock(&driver_data.device_allocation))
1821                        dev_dbg(&pdev->dev, "%s: Cryp still in use! Shutting down anyway...\n",
1822                                __func__);
1823                /**
1824                 * (Allocate the device)
1825                 * Need to set this to non-null (dummy) value,
1826                 * to avoid usage if context switching.
1827                 */
1828                device_data->current_ctx++;
1829        }
1830        spin_unlock(&device_data->ctx_lock);
1831
1832        /* Remove the device from the list */
1833        if (klist_node_attached(&device_data->list_node))
1834                klist_remove(&device_data->list_node);
1835
1836        /* If this was the last device, remove the services */
1837        if (list_empty(&driver_data.device_list.k_list))
1838                ahash_algs_unregister_all(device_data);
1839
1840        if (hash_disable_power(device_data, false))
1841                dev_err(&pdev->dev, "%s: hash_disable_power() failed\n",
1842                        __func__);
1843}
1844
1845#ifdef CONFIG_PM_SLEEP
1846/**
1847 * ux500_hash_suspend - Function that suspends the hash device.
1848 * @dev:        Device to suspend.
1849 */
1850static int ux500_hash_suspend(struct device *dev)
1851{
1852        int ret;
1853        struct hash_device_data *device_data;
1854        struct hash_ctx *temp_ctx = NULL;
1855
1856        device_data = dev_get_drvdata(dev);
1857        if (!device_data) {
1858                dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1859                return -ENOMEM;
1860        }
1861
1862        spin_lock(&device_data->ctx_lock);
1863        if (!device_data->current_ctx)
1864                device_data->current_ctx++;
1865        spin_unlock(&device_data->ctx_lock);
1866
1867        if (device_data->current_ctx == ++temp_ctx) {
1868                if (down_interruptible(&driver_data.device_allocation))
1869                        dev_dbg(dev, "%s: down_interruptible() failed\n",
1870                                __func__);
1871                ret = hash_disable_power(device_data, false);
1872
1873        } else {
1874                ret = hash_disable_power(device_data, true);
1875        }
1876
1877        if (ret)
1878                dev_err(dev, "%s: hash_disable_power()\n", __func__);
1879
1880        return ret;
1881}
1882
1883/**
1884 * ux500_hash_resume - Function that resume the hash device.
1885 * @dev:        Device to resume.
1886 */
1887static int ux500_hash_resume(struct device *dev)
1888{
1889        int ret = 0;
1890        struct hash_device_data *device_data;
1891        struct hash_ctx *temp_ctx = NULL;
1892
1893        device_data = dev_get_drvdata(dev);
1894        if (!device_data) {
1895                dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1896                return -ENOMEM;
1897        }
1898
1899        spin_lock(&device_data->ctx_lock);
1900        if (device_data->current_ctx == ++temp_ctx)
1901                device_data->current_ctx = NULL;
1902        spin_unlock(&device_data->ctx_lock);
1903
1904        if (!device_data->current_ctx)
1905                up(&driver_data.device_allocation);
1906        else
1907                ret = hash_enable_power(device_data, true);
1908
1909        if (ret)
1910                dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1911
1912        return ret;
1913}
1914#endif
1915
1916static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
1917
1918static const struct of_device_id ux500_hash_match[] = {
1919        { .compatible = "stericsson,ux500-hash" },
1920        { },
1921};
1922MODULE_DEVICE_TABLE(of, ux500_hash_match);
1923
1924static struct platform_driver hash_driver = {
1925        .probe  = ux500_hash_probe,
1926        .remove = ux500_hash_remove,
1927        .shutdown = ux500_hash_shutdown,
1928        .driver = {
1929                .name  = "hash1",
1930                .of_match_table = ux500_hash_match,
1931                .pm    = &ux500_hash_pm,
1932        }
1933};
1934
1935/**
1936 * ux500_hash_mod_init - The kernel module init function.
1937 */
1938static int __init ux500_hash_mod_init(void)
1939{
1940        klist_init(&driver_data.device_list, NULL, NULL);
1941        /* Initialize the semaphore to 0 devices (locked state) */
1942        sema_init(&driver_data.device_allocation, 0);
1943
1944        return platform_driver_register(&hash_driver);
1945}
1946
1947/**
1948 * ux500_hash_mod_fini - The kernel module exit function.
1949 */
1950static void __exit ux500_hash_mod_fini(void)
1951{
1952        platform_driver_unregister(&hash_driver);
1953}
1954
1955module_init(ux500_hash_mod_init);
1956module_exit(ux500_hash_mod_fini);
1957
1958MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
1959MODULE_LICENSE("GPL");
1960
1961MODULE_ALIAS_CRYPTO("sha1-all");
1962MODULE_ALIAS_CRYPTO("sha256-all");
1963MODULE_ALIAS_CRYPTO("hmac-sha1-all");
1964MODULE_ALIAS_CRYPTO("hmac-sha256-all");
1965