linux/drivers/dma-buf/dma-buf.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Framework for buffer objects that can be shared across devices/subsystems.
   4 *
   5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
   6 * Author: Sumit Semwal <sumit.semwal@ti.com>
   7 *
   8 * Many thanks to linaro-mm-sig list, and specially
   9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
  10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
  11 * refining of this idea.
  12 */
  13
  14#include <linux/fs.h>
  15#include <linux/slab.h>
  16#include <linux/dma-buf.h>
  17#include <linux/dma-fence.h>
  18#include <linux/anon_inodes.h>
  19#include <linux/export.h>
  20#include <linux/debugfs.h>
  21#include <linux/module.h>
  22#include <linux/seq_file.h>
  23#include <linux/poll.h>
  24#include <linux/reservation.h>
  25#include <linux/mm.h>
  26#include <linux/mount.h>
  27#include <linux/pseudo_fs.h>
  28
  29#include <uapi/linux/dma-buf.h>
  30#include <uapi/linux/magic.h>
  31
  32static inline int is_dma_buf_file(struct file *);
  33
  34struct dma_buf_list {
  35        struct list_head head;
  36        struct mutex lock;
  37};
  38
  39static struct dma_buf_list db_list;
  40
  41static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
  42{
  43        struct dma_buf *dmabuf;
  44        char name[DMA_BUF_NAME_LEN];
  45        size_t ret = 0;
  46
  47        dmabuf = dentry->d_fsdata;
  48        mutex_lock(&dmabuf->lock);
  49        if (dmabuf->name)
  50                ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
  51        mutex_unlock(&dmabuf->lock);
  52
  53        return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
  54                             dentry->d_name.name, ret > 0 ? name : "");
  55}
  56
  57static const struct dentry_operations dma_buf_dentry_ops = {
  58        .d_dname = dmabuffs_dname,
  59};
  60
  61static struct vfsmount *dma_buf_mnt;
  62
  63static int dma_buf_fs_init_context(struct fs_context *fc)
  64{
  65        struct pseudo_fs_context *ctx;
  66
  67        ctx = init_pseudo(fc, DMA_BUF_MAGIC);
  68        if (!ctx)
  69                return -ENOMEM;
  70        ctx->dops = &dma_buf_dentry_ops;
  71        return 0;
  72}
  73
  74static struct file_system_type dma_buf_fs_type = {
  75        .name = "dmabuf",
  76        .init_fs_context = dma_buf_fs_init_context,
  77        .kill_sb = kill_anon_super,
  78};
  79
  80static int dma_buf_release(struct inode *inode, struct file *file)
  81{
  82        struct dma_buf *dmabuf;
  83
  84        if (!is_dma_buf_file(file))
  85                return -EINVAL;
  86
  87        dmabuf = file->private_data;
  88
  89        BUG_ON(dmabuf->vmapping_counter);
  90
  91        /*
  92         * Any fences that a dma-buf poll can wait on should be signaled
  93         * before releasing dma-buf. This is the responsibility of each
  94         * driver that uses the reservation objects.
  95         *
  96         * If you hit this BUG() it means someone dropped their ref to the
  97         * dma-buf while still having pending operation to the buffer.
  98         */
  99        BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
 100
 101        dmabuf->ops->release(dmabuf);
 102
 103        mutex_lock(&db_list.lock);
 104        list_del(&dmabuf->list_node);
 105        mutex_unlock(&db_list.lock);
 106
 107        if (dmabuf->resv == (struct reservation_object *)&dmabuf[1])
 108                reservation_object_fini(dmabuf->resv);
 109
 110        module_put(dmabuf->owner);
 111        kfree(dmabuf);
 112        return 0;
 113}
 114
 115static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
 116{
 117        struct dma_buf *dmabuf;
 118
 119        if (!is_dma_buf_file(file))
 120                return -EINVAL;
 121
 122        dmabuf = file->private_data;
 123
 124        /* check if buffer supports mmap */
 125        if (!dmabuf->ops->mmap)
 126                return -EINVAL;
 127
 128        /* check for overflowing the buffer's size */
 129        if (vma->vm_pgoff + vma_pages(vma) >
 130            dmabuf->size >> PAGE_SHIFT)
 131                return -EINVAL;
 132
 133        return dmabuf->ops->mmap(dmabuf, vma);
 134}
 135
 136static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
 137{
 138        struct dma_buf *dmabuf;
 139        loff_t base;
 140
 141        if (!is_dma_buf_file(file))
 142                return -EBADF;
 143
 144        dmabuf = file->private_data;
 145
 146        /* only support discovering the end of the buffer,
 147           but also allow SEEK_SET to maintain the idiomatic
 148           SEEK_END(0), SEEK_CUR(0) pattern */
 149        if (whence == SEEK_END)
 150                base = dmabuf->size;
 151        else if (whence == SEEK_SET)
 152                base = 0;
 153        else
 154                return -EINVAL;
 155
 156        if (offset != 0)
 157                return -EINVAL;
 158
 159        return base + offset;
 160}
 161
 162/**
 163 * DOC: fence polling
 164 *
 165 * To support cross-device and cross-driver synchronization of buffer access
 166 * implicit fences (represented internally in the kernel with &struct fence) can
 167 * be attached to a &dma_buf. The glue for that and a few related things are
 168 * provided in the &reservation_object structure.
 169 *
 170 * Userspace can query the state of these implicitly tracked fences using poll()
 171 * and related system calls:
 172 *
 173 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
 174 *   most recent write or exclusive fence.
 175 *
 176 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
 177 *   all attached fences, shared and exclusive ones.
 178 *
 179 * Note that this only signals the completion of the respective fences, i.e. the
 180 * DMA transfers are complete. Cache flushing and any other necessary
 181 * preparations before CPU access can begin still need to happen.
 182 */
 183
 184static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
 185{
 186        struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
 187        unsigned long flags;
 188
 189        spin_lock_irqsave(&dcb->poll->lock, flags);
 190        wake_up_locked_poll(dcb->poll, dcb->active);
 191        dcb->active = 0;
 192        spin_unlock_irqrestore(&dcb->poll->lock, flags);
 193}
 194
 195static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
 196{
 197        struct dma_buf *dmabuf;
 198        struct reservation_object *resv;
 199        struct reservation_object_list *fobj;
 200        struct dma_fence *fence_excl;
 201        __poll_t events;
 202        unsigned shared_count, seq;
 203
 204        dmabuf = file->private_data;
 205        if (!dmabuf || !dmabuf->resv)
 206                return EPOLLERR;
 207
 208        resv = dmabuf->resv;
 209
 210        poll_wait(file, &dmabuf->poll, poll);
 211
 212        events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
 213        if (!events)
 214                return 0;
 215
 216retry:
 217        seq = read_seqcount_begin(&resv->seq);
 218        rcu_read_lock();
 219
 220        fobj = rcu_dereference(resv->fence);
 221        if (fobj)
 222                shared_count = fobj->shared_count;
 223        else
 224                shared_count = 0;
 225        fence_excl = rcu_dereference(resv->fence_excl);
 226        if (read_seqcount_retry(&resv->seq, seq)) {
 227                rcu_read_unlock();
 228                goto retry;
 229        }
 230
 231        if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
 232                struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
 233                __poll_t pevents = EPOLLIN;
 234
 235                if (shared_count == 0)
 236                        pevents |= EPOLLOUT;
 237
 238                spin_lock_irq(&dmabuf->poll.lock);
 239                if (dcb->active) {
 240                        dcb->active |= pevents;
 241                        events &= ~pevents;
 242                } else
 243                        dcb->active = pevents;
 244                spin_unlock_irq(&dmabuf->poll.lock);
 245
 246                if (events & pevents) {
 247                        if (!dma_fence_get_rcu(fence_excl)) {
 248                                /* force a recheck */
 249                                events &= ~pevents;
 250                                dma_buf_poll_cb(NULL, &dcb->cb);
 251                        } else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
 252                                                           dma_buf_poll_cb)) {
 253                                events &= ~pevents;
 254                                dma_fence_put(fence_excl);
 255                        } else {
 256                                /*
 257                                 * No callback queued, wake up any additional
 258                                 * waiters.
 259                                 */
 260                                dma_fence_put(fence_excl);
 261                                dma_buf_poll_cb(NULL, &dcb->cb);
 262                        }
 263                }
 264        }
 265
 266        if ((events & EPOLLOUT) && shared_count > 0) {
 267                struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
 268                int i;
 269
 270                /* Only queue a new callback if no event has fired yet */
 271                spin_lock_irq(&dmabuf->poll.lock);
 272                if (dcb->active)
 273                        events &= ~EPOLLOUT;
 274                else
 275                        dcb->active = EPOLLOUT;
 276                spin_unlock_irq(&dmabuf->poll.lock);
 277
 278                if (!(events & EPOLLOUT))
 279                        goto out;
 280
 281                for (i = 0; i < shared_count; ++i) {
 282                        struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
 283
 284                        if (!dma_fence_get_rcu(fence)) {
 285                                /*
 286                                 * fence refcount dropped to zero, this means
 287                                 * that fobj has been freed
 288                                 *
 289                                 * call dma_buf_poll_cb and force a recheck!
 290                                 */
 291                                events &= ~EPOLLOUT;
 292                                dma_buf_poll_cb(NULL, &dcb->cb);
 293                                break;
 294                        }
 295                        if (!dma_fence_add_callback(fence, &dcb->cb,
 296                                                    dma_buf_poll_cb)) {
 297                                dma_fence_put(fence);
 298                                events &= ~EPOLLOUT;
 299                                break;
 300                        }
 301                        dma_fence_put(fence);
 302                }
 303
 304                /* No callback queued, wake up any additional waiters. */
 305                if (i == shared_count)
 306                        dma_buf_poll_cb(NULL, &dcb->cb);
 307        }
 308
 309out:
 310        rcu_read_unlock();
 311        return events;
 312}
 313
 314/**
 315 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
 316 * The name of the dma-buf buffer can only be set when the dma-buf is not
 317 * attached to any devices. It could theoritically support changing the
 318 * name of the dma-buf if the same piece of memory is used for multiple
 319 * purpose between different devices.
 320 *
 321 * @dmabuf [in]     dmabuf buffer that will be renamed.
 322 * @buf:   [in]     A piece of userspace memory that contains the name of
 323 *                  the dma-buf.
 324 *
 325 * Returns 0 on success. If the dma-buf buffer is already attached to
 326 * devices, return -EBUSY.
 327 *
 328 */
 329static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
 330{
 331        char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
 332        long ret = 0;
 333
 334        if (IS_ERR(name))
 335                return PTR_ERR(name);
 336
 337        mutex_lock(&dmabuf->lock);
 338        if (!list_empty(&dmabuf->attachments)) {
 339                ret = -EBUSY;
 340                kfree(name);
 341                goto out_unlock;
 342        }
 343        kfree(dmabuf->name);
 344        dmabuf->name = name;
 345
 346out_unlock:
 347        mutex_unlock(&dmabuf->lock);
 348        return ret;
 349}
 350
 351static long dma_buf_ioctl(struct file *file,
 352                          unsigned int cmd, unsigned long arg)
 353{
 354        struct dma_buf *dmabuf;
 355        struct dma_buf_sync sync;
 356        enum dma_data_direction direction;
 357        int ret;
 358
 359        dmabuf = file->private_data;
 360
 361        switch (cmd) {
 362        case DMA_BUF_IOCTL_SYNC:
 363                if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
 364                        return -EFAULT;
 365
 366                if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
 367                        return -EINVAL;
 368
 369                switch (sync.flags & DMA_BUF_SYNC_RW) {
 370                case DMA_BUF_SYNC_READ:
 371                        direction = DMA_FROM_DEVICE;
 372                        break;
 373                case DMA_BUF_SYNC_WRITE:
 374                        direction = DMA_TO_DEVICE;
 375                        break;
 376                case DMA_BUF_SYNC_RW:
 377                        direction = DMA_BIDIRECTIONAL;
 378                        break;
 379                default:
 380                        return -EINVAL;
 381                }
 382
 383                if (sync.flags & DMA_BUF_SYNC_END)
 384                        ret = dma_buf_end_cpu_access(dmabuf, direction);
 385                else
 386                        ret = dma_buf_begin_cpu_access(dmabuf, direction);
 387
 388                return ret;
 389
 390        case DMA_BUF_SET_NAME:
 391                return dma_buf_set_name(dmabuf, (const char __user *)arg);
 392
 393        default:
 394                return -ENOTTY;
 395        }
 396}
 397
 398static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
 399{
 400        struct dma_buf *dmabuf = file->private_data;
 401
 402        seq_printf(m, "size:\t%zu\n", dmabuf->size);
 403        /* Don't count the temporary reference taken inside procfs seq_show */
 404        seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
 405        seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
 406        mutex_lock(&dmabuf->lock);
 407        if (dmabuf->name)
 408                seq_printf(m, "name:\t%s\n", dmabuf->name);
 409        mutex_unlock(&dmabuf->lock);
 410}
 411
 412static const struct file_operations dma_buf_fops = {
 413        .release        = dma_buf_release,
 414        .mmap           = dma_buf_mmap_internal,
 415        .llseek         = dma_buf_llseek,
 416        .poll           = dma_buf_poll,
 417        .unlocked_ioctl = dma_buf_ioctl,
 418#ifdef CONFIG_COMPAT
 419        .compat_ioctl   = dma_buf_ioctl,
 420#endif
 421        .show_fdinfo    = dma_buf_show_fdinfo,
 422};
 423
 424/*
 425 * is_dma_buf_file - Check if struct file* is associated with dma_buf
 426 */
 427static inline int is_dma_buf_file(struct file *file)
 428{
 429        return file->f_op == &dma_buf_fops;
 430}
 431
 432static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
 433{
 434        struct file *file;
 435        struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
 436
 437        if (IS_ERR(inode))
 438                return ERR_CAST(inode);
 439
 440        inode->i_size = dmabuf->size;
 441        inode_set_bytes(inode, dmabuf->size);
 442
 443        file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
 444                                 flags, &dma_buf_fops);
 445        if (IS_ERR(file))
 446                goto err_alloc_file;
 447        file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
 448        file->private_data = dmabuf;
 449        file->f_path.dentry->d_fsdata = dmabuf;
 450
 451        return file;
 452
 453err_alloc_file:
 454        iput(inode);
 455        return file;
 456}
 457
 458/**
 459 * DOC: dma buf device access
 460 *
 461 * For device DMA access to a shared DMA buffer the usual sequence of operations
 462 * is fairly simple:
 463 *
 464 * 1. The exporter defines his exporter instance using
 465 *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
 466 *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
 467 *    as a file descriptor by calling dma_buf_fd().
 468 *
 469 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
 470 *    to share with: First the filedescriptor is converted to a &dma_buf using
 471 *    dma_buf_get(). Then the buffer is attached to the device using
 472 *    dma_buf_attach().
 473 *
 474 *    Up to this stage the exporter is still free to migrate or reallocate the
 475 *    backing storage.
 476 *
 477 * 3. Once the buffer is attached to all devices userspace can initiate DMA
 478 *    access to the shared buffer. In the kernel this is done by calling
 479 *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
 480 *
 481 * 4. Once a driver is done with a shared buffer it needs to call
 482 *    dma_buf_detach() (after cleaning up any mappings) and then release the
 483 *    reference acquired with dma_buf_get by calling dma_buf_put().
 484 *
 485 * For the detailed semantics exporters are expected to implement see
 486 * &dma_buf_ops.
 487 */
 488
 489/**
 490 * dma_buf_export - Creates a new dma_buf, and associates an anon file
 491 * with this buffer, so it can be exported.
 492 * Also connect the allocator specific data and ops to the buffer.
 493 * Additionally, provide a name string for exporter; useful in debugging.
 494 *
 495 * @exp_info:   [in]    holds all the export related information provided
 496 *                      by the exporter. see &struct dma_buf_export_info
 497 *                      for further details.
 498 *
 499 * Returns, on success, a newly created dma_buf object, which wraps the
 500 * supplied private data and operations for dma_buf_ops. On either missing
 501 * ops, or error in allocating struct dma_buf, will return negative error.
 502 *
 503 * For most cases the easiest way to create @exp_info is through the
 504 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
 505 */
 506struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
 507{
 508        struct dma_buf *dmabuf;
 509        struct reservation_object *resv = exp_info->resv;
 510        struct file *file;
 511        size_t alloc_size = sizeof(struct dma_buf);
 512        int ret;
 513
 514        if (!exp_info->resv)
 515                alloc_size += sizeof(struct reservation_object);
 516        else
 517                /* prevent &dma_buf[1] == dma_buf->resv */
 518                alloc_size += 1;
 519
 520        if (WARN_ON(!exp_info->priv
 521                          || !exp_info->ops
 522                          || !exp_info->ops->map_dma_buf
 523                          || !exp_info->ops->unmap_dma_buf
 524                          || !exp_info->ops->release)) {
 525                return ERR_PTR(-EINVAL);
 526        }
 527
 528        if (!try_module_get(exp_info->owner))
 529                return ERR_PTR(-ENOENT);
 530
 531        dmabuf = kzalloc(alloc_size, GFP_KERNEL);
 532        if (!dmabuf) {
 533                ret = -ENOMEM;
 534                goto err_module;
 535        }
 536
 537        dmabuf->priv = exp_info->priv;
 538        dmabuf->ops = exp_info->ops;
 539        dmabuf->size = exp_info->size;
 540        dmabuf->exp_name = exp_info->exp_name;
 541        dmabuf->owner = exp_info->owner;
 542        init_waitqueue_head(&dmabuf->poll);
 543        dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
 544        dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
 545
 546        if (!resv) {
 547                resv = (struct reservation_object *)&dmabuf[1];
 548                reservation_object_init(resv);
 549        }
 550        dmabuf->resv = resv;
 551
 552        file = dma_buf_getfile(dmabuf, exp_info->flags);
 553        if (IS_ERR(file)) {
 554                ret = PTR_ERR(file);
 555                goto err_dmabuf;
 556        }
 557
 558        file->f_mode |= FMODE_LSEEK;
 559        dmabuf->file = file;
 560
 561        mutex_init(&dmabuf->lock);
 562        INIT_LIST_HEAD(&dmabuf->attachments);
 563
 564        mutex_lock(&db_list.lock);
 565        list_add(&dmabuf->list_node, &db_list.head);
 566        mutex_unlock(&db_list.lock);
 567
 568        return dmabuf;
 569
 570err_dmabuf:
 571        kfree(dmabuf);
 572err_module:
 573        module_put(exp_info->owner);
 574        return ERR_PTR(ret);
 575}
 576EXPORT_SYMBOL_GPL(dma_buf_export);
 577
 578/**
 579 * dma_buf_fd - returns a file descriptor for the given dma_buf
 580 * @dmabuf:     [in]    pointer to dma_buf for which fd is required.
 581 * @flags:      [in]    flags to give to fd
 582 *
 583 * On success, returns an associated 'fd'. Else, returns error.
 584 */
 585int dma_buf_fd(struct dma_buf *dmabuf, int flags)
 586{
 587        int fd;
 588
 589        if (!dmabuf || !dmabuf->file)
 590                return -EINVAL;
 591
 592        fd = get_unused_fd_flags(flags);
 593        if (fd < 0)
 594                return fd;
 595
 596        fd_install(fd, dmabuf->file);
 597
 598        return fd;
 599}
 600EXPORT_SYMBOL_GPL(dma_buf_fd);
 601
 602/**
 603 * dma_buf_get - returns the dma_buf structure related to an fd
 604 * @fd: [in]    fd associated with the dma_buf to be returned
 605 *
 606 * On success, returns the dma_buf structure associated with an fd; uses
 607 * file's refcounting done by fget to increase refcount. returns ERR_PTR
 608 * otherwise.
 609 */
 610struct dma_buf *dma_buf_get(int fd)
 611{
 612        struct file *file;
 613
 614        file = fget(fd);
 615
 616        if (!file)
 617                return ERR_PTR(-EBADF);
 618
 619        if (!is_dma_buf_file(file)) {
 620                fput(file);
 621                return ERR_PTR(-EINVAL);
 622        }
 623
 624        return file->private_data;
 625}
 626EXPORT_SYMBOL_GPL(dma_buf_get);
 627
 628/**
 629 * dma_buf_put - decreases refcount of the buffer
 630 * @dmabuf:     [in]    buffer to reduce refcount of
 631 *
 632 * Uses file's refcounting done implicitly by fput().
 633 *
 634 * If, as a result of this call, the refcount becomes 0, the 'release' file
 635 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
 636 * in turn, and frees the memory allocated for dmabuf when exported.
 637 */
 638void dma_buf_put(struct dma_buf *dmabuf)
 639{
 640        if (WARN_ON(!dmabuf || !dmabuf->file))
 641                return;
 642
 643        fput(dmabuf->file);
 644}
 645EXPORT_SYMBOL_GPL(dma_buf_put);
 646
 647/**
 648 * dma_buf_attach - Add the device to dma_buf's attachments list; optionally,
 649 * calls attach() of dma_buf_ops to allow device-specific attach functionality
 650 * @dmabuf:     [in]    buffer to attach device to.
 651 * @dev:        [in]    device to be attached.
 652 *
 653 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
 654 * must be cleaned up by calling dma_buf_detach().
 655 *
 656 * Returns:
 657 *
 658 * A pointer to newly created &dma_buf_attachment on success, or a negative
 659 * error code wrapped into a pointer on failure.
 660 *
 661 * Note that this can fail if the backing storage of @dmabuf is in a place not
 662 * accessible to @dev, and cannot be moved to a more suitable place. This is
 663 * indicated with the error code -EBUSY.
 664 */
 665struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
 666                                          struct device *dev)
 667{
 668        struct dma_buf_attachment *attach;
 669        int ret;
 670
 671        if (WARN_ON(!dmabuf || !dev))
 672                return ERR_PTR(-EINVAL);
 673
 674        attach = kzalloc(sizeof(*attach), GFP_KERNEL);
 675        if (!attach)
 676                return ERR_PTR(-ENOMEM);
 677
 678        attach->dev = dev;
 679        attach->dmabuf = dmabuf;
 680
 681        mutex_lock(&dmabuf->lock);
 682
 683        if (dmabuf->ops->attach) {
 684                ret = dmabuf->ops->attach(dmabuf, attach);
 685                if (ret)
 686                        goto err_attach;
 687        }
 688        list_add(&attach->node, &dmabuf->attachments);
 689
 690        mutex_unlock(&dmabuf->lock);
 691
 692        return attach;
 693
 694err_attach:
 695        kfree(attach);
 696        mutex_unlock(&dmabuf->lock);
 697        return ERR_PTR(ret);
 698}
 699EXPORT_SYMBOL_GPL(dma_buf_attach);
 700
 701/**
 702 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
 703 * optionally calls detach() of dma_buf_ops for device-specific detach
 704 * @dmabuf:     [in]    buffer to detach from.
 705 * @attach:     [in]    attachment to be detached; is free'd after this call.
 706 *
 707 * Clean up a device attachment obtained by calling dma_buf_attach().
 708 */
 709void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
 710{
 711        if (WARN_ON(!dmabuf || !attach))
 712                return;
 713
 714        if (attach->sgt)
 715                dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
 716
 717        mutex_lock(&dmabuf->lock);
 718        list_del(&attach->node);
 719        if (dmabuf->ops->detach)
 720                dmabuf->ops->detach(dmabuf, attach);
 721
 722        mutex_unlock(&dmabuf->lock);
 723        kfree(attach);
 724}
 725EXPORT_SYMBOL_GPL(dma_buf_detach);
 726
 727/**
 728 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
 729 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
 730 * dma_buf_ops.
 731 * @attach:     [in]    attachment whose scatterlist is to be returned
 732 * @direction:  [in]    direction of DMA transfer
 733 *
 734 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
 735 * on error. May return -EINTR if it is interrupted by a signal.
 736 *
 737 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
 738 * the underlying backing storage is pinned for as long as a mapping exists,
 739 * therefore users/importers should not hold onto a mapping for undue amounts of
 740 * time.
 741 */
 742struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
 743                                        enum dma_data_direction direction)
 744{
 745        struct sg_table *sg_table;
 746
 747        might_sleep();
 748
 749        if (WARN_ON(!attach || !attach->dmabuf))
 750                return ERR_PTR(-EINVAL);
 751
 752        if (attach->sgt) {
 753                /*
 754                 * Two mappings with different directions for the same
 755                 * attachment are not allowed.
 756                 */
 757                if (attach->dir != direction &&
 758                    attach->dir != DMA_BIDIRECTIONAL)
 759                        return ERR_PTR(-EBUSY);
 760
 761                return attach->sgt;
 762        }
 763
 764        sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
 765        if (!sg_table)
 766                sg_table = ERR_PTR(-ENOMEM);
 767
 768        if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
 769                attach->sgt = sg_table;
 770                attach->dir = direction;
 771        }
 772
 773        return sg_table;
 774}
 775EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
 776
 777/**
 778 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
 779 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
 780 * dma_buf_ops.
 781 * @attach:     [in]    attachment to unmap buffer from
 782 * @sg_table:   [in]    scatterlist info of the buffer to unmap
 783 * @direction:  [in]    direction of DMA transfer
 784 *
 785 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
 786 */
 787void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
 788                                struct sg_table *sg_table,
 789                                enum dma_data_direction direction)
 790{
 791        might_sleep();
 792
 793        if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
 794                return;
 795
 796        if (attach->sgt == sg_table)
 797                return;
 798
 799        attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
 800}
 801EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
 802
 803/**
 804 * DOC: cpu access
 805 *
 806 * There are mutliple reasons for supporting CPU access to a dma buffer object:
 807 *
 808 * - Fallback operations in the kernel, for example when a device is connected
 809 *   over USB and the kernel needs to shuffle the data around first before
 810 *   sending it away. Cache coherency is handled by braketing any transactions
 811 *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
 812 *   access.
 813 *
 814 *   To support dma_buf objects residing in highmem cpu access is page-based
 815 *   using an api similar to kmap. Accessing a dma_buf is done in aligned chunks
 816 *   of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which
 817 *   returns a pointer in kernel virtual address space. Afterwards the chunk
 818 *   needs to be unmapped again. There is no limit on how often a given chunk
 819 *   can be mapped and unmapped, i.e. the importer does not need to call
 820 *   begin_cpu_access again before mapping the same chunk again.
 821 *
 822 *   Interfaces::
 823 *      void \*dma_buf_kmap(struct dma_buf \*, unsigned long);
 824 *      void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*);
 825 *
 826 *   Implementing the functions is optional for exporters and for importers all
 827 *   the restrictions of using kmap apply.
 828 *
 829 *   dma_buf kmap calls outside of the range specified in begin_cpu_access are
 830 *   undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
 831 *   the partial chunks at the beginning and end but may return stale or bogus
 832 *   data outside of the range (in these partial chunks).
 833 *
 834 *   For some cases the overhead of kmap can be too high, a vmap interface
 835 *   is introduced. This interface should be used very carefully, as vmalloc
 836 *   space is a limited resources on many architectures.
 837 *
 838 *   Interfaces::
 839 *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
 840 *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
 841 *
 842 *   The vmap call can fail if there is no vmap support in the exporter, or if
 843 *   it runs out of vmalloc space. Fallback to kmap should be implemented. Note
 844 *   that the dma-buf layer keeps a reference count for all vmap access and
 845 *   calls down into the exporter's vmap function only when no vmapping exists,
 846 *   and only unmaps it once. Protection against concurrent vmap/vunmap calls is
 847 *   provided by taking the dma_buf->lock mutex.
 848 *
 849 * - For full compatibility on the importer side with existing userspace
 850 *   interfaces, which might already support mmap'ing buffers. This is needed in
 851 *   many processing pipelines (e.g. feeding a software rendered image into a
 852 *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
 853 *   framework already supported this and for DMA buffer file descriptors to
 854 *   replace ION buffers mmap support was needed.
 855 *
 856 *   There is no special interfaces, userspace simply calls mmap on the dma-buf
 857 *   fd. But like for CPU access there's a need to braket the actual access,
 858 *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
 859 *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
 860 *   be restarted.
 861 *
 862 *   Some systems might need some sort of cache coherency management e.g. when
 863 *   CPU and GPU domains are being accessed through dma-buf at the same time.
 864 *   To circumvent this problem there are begin/end coherency markers, that
 865 *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
 866 *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
 867 *   sequence would be used like following:
 868 *
 869 *     - mmap dma-buf fd
 870 *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
 871 *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
 872 *       want (with the new data being consumed by say the GPU or the scanout
 873 *       device)
 874 *     - munmap once you don't need the buffer any more
 875 *
 876 *    For correctness and optimal performance, it is always required to use
 877 *    SYNC_START and SYNC_END before and after, respectively, when accessing the
 878 *    mapped address. Userspace cannot rely on coherent access, even when there
 879 *    are systems where it just works without calling these ioctls.
 880 *
 881 * - And as a CPU fallback in userspace processing pipelines.
 882 *
 883 *   Similar to the motivation for kernel cpu access it is again important that
 884 *   the userspace code of a given importing subsystem can use the same
 885 *   interfaces with a imported dma-buf buffer object as with a native buffer
 886 *   object. This is especially important for drm where the userspace part of
 887 *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
 888 *   use a different way to mmap a buffer rather invasive.
 889 *
 890 *   The assumption in the current dma-buf interfaces is that redirecting the
 891 *   initial mmap is all that's needed. A survey of some of the existing
 892 *   subsystems shows that no driver seems to do any nefarious thing like
 893 *   syncing up with outstanding asynchronous processing on the device or
 894 *   allocating special resources at fault time. So hopefully this is good
 895 *   enough, since adding interfaces to intercept pagefaults and allow pte
 896 *   shootdowns would increase the complexity quite a bit.
 897 *
 898 *   Interface::
 899 *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
 900 *                     unsigned long);
 901 *
 902 *   If the importing subsystem simply provides a special-purpose mmap call to
 903 *   set up a mapping in userspace, calling do_mmap with dma_buf->file will
 904 *   equally achieve that for a dma-buf object.
 905 */
 906
 907static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
 908                                      enum dma_data_direction direction)
 909{
 910        bool write = (direction == DMA_BIDIRECTIONAL ||
 911                      direction == DMA_TO_DEVICE);
 912        struct reservation_object *resv = dmabuf->resv;
 913        long ret;
 914
 915        /* Wait on any implicit rendering fences */
 916        ret = reservation_object_wait_timeout_rcu(resv, write, true,
 917                                                  MAX_SCHEDULE_TIMEOUT);
 918        if (ret < 0)
 919                return ret;
 920
 921        return 0;
 922}
 923
 924/**
 925 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
 926 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
 927 * preparations. Coherency is only guaranteed in the specified range for the
 928 * specified access direction.
 929 * @dmabuf:     [in]    buffer to prepare cpu access for.
 930 * @direction:  [in]    length of range for cpu access.
 931 *
 932 * After the cpu access is complete the caller should call
 933 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
 934 * it guaranteed to be coherent with other DMA access.
 935 *
 936 * Can return negative error values, returns 0 on success.
 937 */
 938int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
 939                             enum dma_data_direction direction)
 940{
 941        int ret = 0;
 942
 943        if (WARN_ON(!dmabuf))
 944                return -EINVAL;
 945
 946        if (dmabuf->ops->begin_cpu_access)
 947                ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
 948
 949        /* Ensure that all fences are waited upon - but we first allow
 950         * the native handler the chance to do so more efficiently if it
 951         * chooses. A double invocation here will be reasonably cheap no-op.
 952         */
 953        if (ret == 0)
 954                ret = __dma_buf_begin_cpu_access(dmabuf, direction);
 955
 956        return ret;
 957}
 958EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
 959
 960/**
 961 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
 962 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
 963 * actions. Coherency is only guaranteed in the specified range for the
 964 * specified access direction.
 965 * @dmabuf:     [in]    buffer to complete cpu access for.
 966 * @direction:  [in]    length of range for cpu access.
 967 *
 968 * This terminates CPU access started with dma_buf_begin_cpu_access().
 969 *
 970 * Can return negative error values, returns 0 on success.
 971 */
 972int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
 973                           enum dma_data_direction direction)
 974{
 975        int ret = 0;
 976
 977        WARN_ON(!dmabuf);
 978
 979        if (dmabuf->ops->end_cpu_access)
 980                ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
 981
 982        return ret;
 983}
 984EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
 985
 986/**
 987 * dma_buf_kmap - Map a page of the buffer object into kernel address space. The
 988 * same restrictions as for kmap and friends apply.
 989 * @dmabuf:     [in]    buffer to map page from.
 990 * @page_num:   [in]    page in PAGE_SIZE units to map.
 991 *
 992 * This call must always succeed, any necessary preparations that might fail
 993 * need to be done in begin_cpu_access.
 994 */
 995void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num)
 996{
 997        WARN_ON(!dmabuf);
 998
 999        if (!dmabuf->ops->map)
1000                return NULL;
1001        return dmabuf->ops->map(dmabuf, page_num);
1002}
1003EXPORT_SYMBOL_GPL(dma_buf_kmap);
1004
1005/**
1006 * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap.
1007 * @dmabuf:     [in]    buffer to unmap page from.
1008 * @page_num:   [in]    page in PAGE_SIZE units to unmap.
1009 * @vaddr:      [in]    kernel space pointer obtained from dma_buf_kmap.
1010 *
1011 * This call must always succeed.
1012 */
1013void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num,
1014                    void *vaddr)
1015{
1016        WARN_ON(!dmabuf);
1017
1018        if (dmabuf->ops->unmap)
1019                dmabuf->ops->unmap(dmabuf, page_num, vaddr);
1020}
1021EXPORT_SYMBOL_GPL(dma_buf_kunmap);
1022
1023
1024/**
1025 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1026 * @dmabuf:     [in]    buffer that should back the vma
1027 * @vma:        [in]    vma for the mmap
1028 * @pgoff:      [in]    offset in pages where this mmap should start within the
1029 *                      dma-buf buffer.
1030 *
1031 * This function adjusts the passed in vma so that it points at the file of the
1032 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1033 * checking on the size of the vma. Then it calls the exporters mmap function to
1034 * set up the mapping.
1035 *
1036 * Can return negative error values, returns 0 on success.
1037 */
1038int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1039                 unsigned long pgoff)
1040{
1041        struct file *oldfile;
1042        int ret;
1043
1044        if (WARN_ON(!dmabuf || !vma))
1045                return -EINVAL;
1046
1047        /* check if buffer supports mmap */
1048        if (!dmabuf->ops->mmap)
1049                return -EINVAL;
1050
1051        /* check for offset overflow */
1052        if (pgoff + vma_pages(vma) < pgoff)
1053                return -EOVERFLOW;
1054
1055        /* check for overflowing the buffer's size */
1056        if (pgoff + vma_pages(vma) >
1057            dmabuf->size >> PAGE_SHIFT)
1058                return -EINVAL;
1059
1060        /* readjust the vma */
1061        get_file(dmabuf->file);
1062        oldfile = vma->vm_file;
1063        vma->vm_file = dmabuf->file;
1064        vma->vm_pgoff = pgoff;
1065
1066        ret = dmabuf->ops->mmap(dmabuf, vma);
1067        if (ret) {
1068                /* restore old parameters on failure */
1069                vma->vm_file = oldfile;
1070                fput(dmabuf->file);
1071        } else {
1072                if (oldfile)
1073                        fput(oldfile);
1074        }
1075        return ret;
1076
1077}
1078EXPORT_SYMBOL_GPL(dma_buf_mmap);
1079
1080/**
1081 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1082 * address space. Same restrictions as for vmap and friends apply.
1083 * @dmabuf:     [in]    buffer to vmap
1084 *
1085 * This call may fail due to lack of virtual mapping address space.
1086 * These calls are optional in drivers. The intended use for them
1087 * is for mapping objects linear in kernel space for high use objects.
1088 * Please attempt to use kmap/kunmap before thinking about these interfaces.
1089 *
1090 * Returns NULL on error.
1091 */
1092void *dma_buf_vmap(struct dma_buf *dmabuf)
1093{
1094        void *ptr;
1095
1096        if (WARN_ON(!dmabuf))
1097                return NULL;
1098
1099        if (!dmabuf->ops->vmap)
1100                return NULL;
1101
1102        mutex_lock(&dmabuf->lock);
1103        if (dmabuf->vmapping_counter) {
1104                dmabuf->vmapping_counter++;
1105                BUG_ON(!dmabuf->vmap_ptr);
1106                ptr = dmabuf->vmap_ptr;
1107                goto out_unlock;
1108        }
1109
1110        BUG_ON(dmabuf->vmap_ptr);
1111
1112        ptr = dmabuf->ops->vmap(dmabuf);
1113        if (WARN_ON_ONCE(IS_ERR(ptr)))
1114                ptr = NULL;
1115        if (!ptr)
1116                goto out_unlock;
1117
1118        dmabuf->vmap_ptr = ptr;
1119        dmabuf->vmapping_counter = 1;
1120
1121out_unlock:
1122        mutex_unlock(&dmabuf->lock);
1123        return ptr;
1124}
1125EXPORT_SYMBOL_GPL(dma_buf_vmap);
1126
1127/**
1128 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1129 * @dmabuf:     [in]    buffer to vunmap
1130 * @vaddr:      [in]    vmap to vunmap
1131 */
1132void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1133{
1134        if (WARN_ON(!dmabuf))
1135                return;
1136
1137        BUG_ON(!dmabuf->vmap_ptr);
1138        BUG_ON(dmabuf->vmapping_counter == 0);
1139        BUG_ON(dmabuf->vmap_ptr != vaddr);
1140
1141        mutex_lock(&dmabuf->lock);
1142        if (--dmabuf->vmapping_counter == 0) {
1143                if (dmabuf->ops->vunmap)
1144                        dmabuf->ops->vunmap(dmabuf, vaddr);
1145                dmabuf->vmap_ptr = NULL;
1146        }
1147        mutex_unlock(&dmabuf->lock);
1148}
1149EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1150
1151#ifdef CONFIG_DEBUG_FS
1152static int dma_buf_debug_show(struct seq_file *s, void *unused)
1153{
1154        int ret;
1155        struct dma_buf *buf_obj;
1156        struct dma_buf_attachment *attach_obj;
1157        struct reservation_object *robj;
1158        struct reservation_object_list *fobj;
1159        struct dma_fence *fence;
1160        unsigned seq;
1161        int count = 0, attach_count, shared_count, i;
1162        size_t size = 0;
1163
1164        ret = mutex_lock_interruptible(&db_list.lock);
1165
1166        if (ret)
1167                return ret;
1168
1169        seq_puts(s, "\nDma-buf Objects:\n");
1170        seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1171                   "size", "flags", "mode", "count", "ino");
1172
1173        list_for_each_entry(buf_obj, &db_list.head, list_node) {
1174                ret = mutex_lock_interruptible(&buf_obj->lock);
1175
1176                if (ret) {
1177                        seq_puts(s,
1178                                 "\tERROR locking buffer object: skipping\n");
1179                        continue;
1180                }
1181
1182                seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1183                                buf_obj->size,
1184                                buf_obj->file->f_flags, buf_obj->file->f_mode,
1185                                file_count(buf_obj->file),
1186                                buf_obj->exp_name,
1187                                file_inode(buf_obj->file)->i_ino,
1188                                buf_obj->name ?: "");
1189
1190                robj = buf_obj->resv;
1191                while (true) {
1192                        seq = read_seqcount_begin(&robj->seq);
1193                        rcu_read_lock();
1194                        fobj = rcu_dereference(robj->fence);
1195                        shared_count = fobj ? fobj->shared_count : 0;
1196                        fence = rcu_dereference(robj->fence_excl);
1197                        if (!read_seqcount_retry(&robj->seq, seq))
1198                                break;
1199                        rcu_read_unlock();
1200                }
1201
1202                if (fence)
1203                        seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1204                                   fence->ops->get_driver_name(fence),
1205                                   fence->ops->get_timeline_name(fence),
1206                                   dma_fence_is_signaled(fence) ? "" : "un");
1207                for (i = 0; i < shared_count; i++) {
1208                        fence = rcu_dereference(fobj->shared[i]);
1209                        if (!dma_fence_get_rcu(fence))
1210                                continue;
1211                        seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1212                                   fence->ops->get_driver_name(fence),
1213                                   fence->ops->get_timeline_name(fence),
1214                                   dma_fence_is_signaled(fence) ? "" : "un");
1215                        dma_fence_put(fence);
1216                }
1217                rcu_read_unlock();
1218
1219                seq_puts(s, "\tAttached Devices:\n");
1220                attach_count = 0;
1221
1222                list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1223                        seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1224                        attach_count++;
1225                }
1226
1227                seq_printf(s, "Total %d devices attached\n\n",
1228                                attach_count);
1229
1230                count++;
1231                size += buf_obj->size;
1232                mutex_unlock(&buf_obj->lock);
1233        }
1234
1235        seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1236
1237        mutex_unlock(&db_list.lock);
1238        return 0;
1239}
1240
1241DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1242
1243static struct dentry *dma_buf_debugfs_dir;
1244
1245static int dma_buf_init_debugfs(void)
1246{
1247        struct dentry *d;
1248        int err = 0;
1249
1250        d = debugfs_create_dir("dma_buf", NULL);
1251        if (IS_ERR(d))
1252                return PTR_ERR(d);
1253
1254        dma_buf_debugfs_dir = d;
1255
1256        d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1257                                NULL, &dma_buf_debug_fops);
1258        if (IS_ERR(d)) {
1259                pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1260                debugfs_remove_recursive(dma_buf_debugfs_dir);
1261                dma_buf_debugfs_dir = NULL;
1262                err = PTR_ERR(d);
1263        }
1264
1265        return err;
1266}
1267
1268static void dma_buf_uninit_debugfs(void)
1269{
1270        debugfs_remove_recursive(dma_buf_debugfs_dir);
1271}
1272#else
1273static inline int dma_buf_init_debugfs(void)
1274{
1275        return 0;
1276}
1277static inline void dma_buf_uninit_debugfs(void)
1278{
1279}
1280#endif
1281
1282static int __init dma_buf_init(void)
1283{
1284        dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1285        if (IS_ERR(dma_buf_mnt))
1286                return PTR_ERR(dma_buf_mnt);
1287
1288        mutex_init(&db_list.lock);
1289        INIT_LIST_HEAD(&db_list.head);
1290        dma_buf_init_debugfs();
1291        return 0;
1292}
1293subsys_initcall(dma_buf_init);
1294
1295static void __exit dma_buf_deinit(void)
1296{
1297        dma_buf_uninit_debugfs();
1298        kern_unmount(dma_buf_mnt);
1299}
1300__exitcall(dma_buf_deinit);
1301