linux/drivers/dma-buf/dma-fence.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Fence mechanism for dma-buf and to allow for asynchronous dma access
   4 *
   5 * Copyright (C) 2012 Canonical Ltd
   6 * Copyright (C) 2012 Texas Instruments
   7 *
   8 * Authors:
   9 * Rob Clark <robdclark@gmail.com>
  10 * Maarten Lankhorst <maarten.lankhorst@canonical.com>
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/atomic.h>
  16#include <linux/dma-fence.h>
  17#include <linux/sched/signal.h>
  18
  19#define CREATE_TRACE_POINTS
  20#include <trace/events/dma_fence.h>
  21
  22EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
  23EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
  24EXPORT_TRACEPOINT_SYMBOL(dma_fence_signaled);
  25
  26static DEFINE_SPINLOCK(dma_fence_stub_lock);
  27static struct dma_fence dma_fence_stub;
  28
  29/*
  30 * fence context counter: each execution context should have its own
  31 * fence context, this allows checking if fences belong to the same
  32 * context or not. One device can have multiple separate contexts,
  33 * and they're used if some engine can run independently of another.
  34 */
  35static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(1);
  36
  37/**
  38 * DOC: DMA fences overview
  39 *
  40 * DMA fences, represented by &struct dma_fence, are the kernel internal
  41 * synchronization primitive for DMA operations like GPU rendering, video
  42 * encoding/decoding, or displaying buffers on a screen.
  43 *
  44 * A fence is initialized using dma_fence_init() and completed using
  45 * dma_fence_signal(). Fences are associated with a context, allocated through
  46 * dma_fence_context_alloc(), and all fences on the same context are
  47 * fully ordered.
  48 *
  49 * Since the purposes of fences is to facilitate cross-device and
  50 * cross-application synchronization, there's multiple ways to use one:
  51 *
  52 * - Individual fences can be exposed as a &sync_file, accessed as a file
  53 *   descriptor from userspace, created by calling sync_file_create(). This is
  54 *   called explicit fencing, since userspace passes around explicit
  55 *   synchronization points.
  56 *
  57 * - Some subsystems also have their own explicit fencing primitives, like
  58 *   &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying
  59 *   fence to be updated.
  60 *
  61 * - Then there's also implicit fencing, where the synchronization points are
  62 *   implicitly passed around as part of shared &dma_buf instances. Such
  63 *   implicit fences are stored in &struct reservation_object through the
  64 *   &dma_buf.resv pointer.
  65 */
  66
  67static const char *dma_fence_stub_get_name(struct dma_fence *fence)
  68{
  69        return "stub";
  70}
  71
  72static const struct dma_fence_ops dma_fence_stub_ops = {
  73        .get_driver_name = dma_fence_stub_get_name,
  74        .get_timeline_name = dma_fence_stub_get_name,
  75};
  76
  77/**
  78 * dma_fence_get_stub - return a signaled fence
  79 *
  80 * Return a stub fence which is already signaled.
  81 */
  82struct dma_fence *dma_fence_get_stub(void)
  83{
  84        spin_lock(&dma_fence_stub_lock);
  85        if (!dma_fence_stub.ops) {
  86                dma_fence_init(&dma_fence_stub,
  87                               &dma_fence_stub_ops,
  88                               &dma_fence_stub_lock,
  89                               0, 0);
  90                dma_fence_signal_locked(&dma_fence_stub);
  91        }
  92        spin_unlock(&dma_fence_stub_lock);
  93
  94        return dma_fence_get(&dma_fence_stub);
  95}
  96EXPORT_SYMBOL(dma_fence_get_stub);
  97
  98/**
  99 * dma_fence_context_alloc - allocate an array of fence contexts
 100 * @num: amount of contexts to allocate
 101 *
 102 * This function will return the first index of the number of fence contexts
 103 * allocated.  The fence context is used for setting &dma_fence.context to a
 104 * unique number by passing the context to dma_fence_init().
 105 */
 106u64 dma_fence_context_alloc(unsigned num)
 107{
 108        WARN_ON(!num);
 109        return atomic64_add_return(num, &dma_fence_context_counter) - num;
 110}
 111EXPORT_SYMBOL(dma_fence_context_alloc);
 112
 113/**
 114 * dma_fence_signal_locked - signal completion of a fence
 115 * @fence: the fence to signal
 116 *
 117 * Signal completion for software callbacks on a fence, this will unblock
 118 * dma_fence_wait() calls and run all the callbacks added with
 119 * dma_fence_add_callback(). Can be called multiple times, but since a fence
 120 * can only go from the unsignaled to the signaled state and not back, it will
 121 * only be effective the first time.
 122 *
 123 * Unlike dma_fence_signal(), this function must be called with &dma_fence.lock
 124 * held.
 125 *
 126 * Returns 0 on success and a negative error value when @fence has been
 127 * signalled already.
 128 */
 129int dma_fence_signal_locked(struct dma_fence *fence)
 130{
 131        struct dma_fence_cb *cur, *tmp;
 132        int ret = 0;
 133
 134        lockdep_assert_held(fence->lock);
 135
 136        if (WARN_ON(!fence))
 137                return -EINVAL;
 138
 139        if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
 140                ret = -EINVAL;
 141
 142                /*
 143                 * we might have raced with the unlocked dma_fence_signal,
 144                 * still run through all callbacks
 145                 */
 146        } else {
 147                fence->timestamp = ktime_get();
 148                set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
 149                trace_dma_fence_signaled(fence);
 150        }
 151
 152        list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
 153                list_del_init(&cur->node);
 154                cur->func(fence, cur);
 155        }
 156        return ret;
 157}
 158EXPORT_SYMBOL(dma_fence_signal_locked);
 159
 160/**
 161 * dma_fence_signal - signal completion of a fence
 162 * @fence: the fence to signal
 163 *
 164 * Signal completion for software callbacks on a fence, this will unblock
 165 * dma_fence_wait() calls and run all the callbacks added with
 166 * dma_fence_add_callback(). Can be called multiple times, but since a fence
 167 * can only go from the unsignaled to the signaled state and not back, it will
 168 * only be effective the first time.
 169 *
 170 * Returns 0 on success and a negative error value when @fence has been
 171 * signalled already.
 172 */
 173int dma_fence_signal(struct dma_fence *fence)
 174{
 175        unsigned long flags;
 176
 177        if (!fence)
 178                return -EINVAL;
 179
 180        if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
 181                return -EINVAL;
 182
 183        fence->timestamp = ktime_get();
 184        set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
 185        trace_dma_fence_signaled(fence);
 186
 187        if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags)) {
 188                struct dma_fence_cb *cur, *tmp;
 189
 190                spin_lock_irqsave(fence->lock, flags);
 191                list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
 192                        list_del_init(&cur->node);
 193                        cur->func(fence, cur);
 194                }
 195                spin_unlock_irqrestore(fence->lock, flags);
 196        }
 197        return 0;
 198}
 199EXPORT_SYMBOL(dma_fence_signal);
 200
 201/**
 202 * dma_fence_wait_timeout - sleep until the fence gets signaled
 203 * or until timeout elapses
 204 * @fence: the fence to wait on
 205 * @intr: if true, do an interruptible wait
 206 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
 207 *
 208 * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
 209 * remaining timeout in jiffies on success. Other error values may be
 210 * returned on custom implementations.
 211 *
 212 * Performs a synchronous wait on this fence. It is assumed the caller
 213 * directly or indirectly (buf-mgr between reservation and committing)
 214 * holds a reference to the fence, otherwise the fence might be
 215 * freed before return, resulting in undefined behavior.
 216 *
 217 * See also dma_fence_wait() and dma_fence_wait_any_timeout().
 218 */
 219signed long
 220dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
 221{
 222        signed long ret;
 223
 224        if (WARN_ON(timeout < 0))
 225                return -EINVAL;
 226
 227        trace_dma_fence_wait_start(fence);
 228        if (fence->ops->wait)
 229                ret = fence->ops->wait(fence, intr, timeout);
 230        else
 231                ret = dma_fence_default_wait(fence, intr, timeout);
 232        trace_dma_fence_wait_end(fence);
 233        return ret;
 234}
 235EXPORT_SYMBOL(dma_fence_wait_timeout);
 236
 237/**
 238 * dma_fence_release - default relese function for fences
 239 * @kref: &dma_fence.recfount
 240 *
 241 * This is the default release functions for &dma_fence. Drivers shouldn't call
 242 * this directly, but instead call dma_fence_put().
 243 */
 244void dma_fence_release(struct kref *kref)
 245{
 246        struct dma_fence *fence =
 247                container_of(kref, struct dma_fence, refcount);
 248
 249        trace_dma_fence_destroy(fence);
 250
 251        if (WARN(!list_empty(&fence->cb_list),
 252                 "Fence %s:%s:%llx:%llx released with pending signals!\n",
 253                 fence->ops->get_driver_name(fence),
 254                 fence->ops->get_timeline_name(fence),
 255                 fence->context, fence->seqno)) {
 256                unsigned long flags;
 257
 258                /*
 259                 * Failed to signal before release, likely a refcounting issue.
 260                 *
 261                 * This should never happen, but if it does make sure that we
 262                 * don't leave chains dangling. We set the error flag first
 263                 * so that the callbacks know this signal is due to an error.
 264                 */
 265                spin_lock_irqsave(fence->lock, flags);
 266                fence->error = -EDEADLK;
 267                dma_fence_signal_locked(fence);
 268                spin_unlock_irqrestore(fence->lock, flags);
 269        }
 270
 271        if (fence->ops->release)
 272                fence->ops->release(fence);
 273        else
 274                dma_fence_free(fence);
 275}
 276EXPORT_SYMBOL(dma_fence_release);
 277
 278/**
 279 * dma_fence_free - default release function for &dma_fence.
 280 * @fence: fence to release
 281 *
 282 * This is the default implementation for &dma_fence_ops.release. It calls
 283 * kfree_rcu() on @fence.
 284 */
 285void dma_fence_free(struct dma_fence *fence)
 286{
 287        kfree_rcu(fence, rcu);
 288}
 289EXPORT_SYMBOL(dma_fence_free);
 290
 291/**
 292 * dma_fence_enable_sw_signaling - enable signaling on fence
 293 * @fence: the fence to enable
 294 *
 295 * This will request for sw signaling to be enabled, to make the fence
 296 * complete as soon as possible. This calls &dma_fence_ops.enable_signaling
 297 * internally.
 298 */
 299void dma_fence_enable_sw_signaling(struct dma_fence *fence)
 300{
 301        unsigned long flags;
 302
 303        if (!test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
 304                              &fence->flags) &&
 305            !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) &&
 306            fence->ops->enable_signaling) {
 307                trace_dma_fence_enable_signal(fence);
 308
 309                spin_lock_irqsave(fence->lock, flags);
 310
 311                if (!fence->ops->enable_signaling(fence))
 312                        dma_fence_signal_locked(fence);
 313
 314                spin_unlock_irqrestore(fence->lock, flags);
 315        }
 316}
 317EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
 318
 319/**
 320 * dma_fence_add_callback - add a callback to be called when the fence
 321 * is signaled
 322 * @fence: the fence to wait on
 323 * @cb: the callback to register
 324 * @func: the function to call
 325 *
 326 * @cb will be initialized by dma_fence_add_callback(), no initialization
 327 * by the caller is required. Any number of callbacks can be registered
 328 * to a fence, but a callback can only be registered to one fence at a time.
 329 *
 330 * Note that the callback can be called from an atomic context.  If
 331 * fence is already signaled, this function will return -ENOENT (and
 332 * *not* call the callback).
 333 *
 334 * Add a software callback to the fence. Same restrictions apply to
 335 * refcount as it does to dma_fence_wait(), however the caller doesn't need to
 336 * keep a refcount to fence afterward dma_fence_add_callback() has returned:
 337 * when software access is enabled, the creator of the fence is required to keep
 338 * the fence alive until after it signals with dma_fence_signal(). The callback
 339 * itself can be called from irq context.
 340 *
 341 * Returns 0 in case of success, -ENOENT if the fence is already signaled
 342 * and -EINVAL in case of error.
 343 */
 344int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
 345                           dma_fence_func_t func)
 346{
 347        unsigned long flags;
 348        int ret = 0;
 349        bool was_set;
 350
 351        if (WARN_ON(!fence || !func))
 352                return -EINVAL;
 353
 354        if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
 355                INIT_LIST_HEAD(&cb->node);
 356                return -ENOENT;
 357        }
 358
 359        spin_lock_irqsave(fence->lock, flags);
 360
 361        was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
 362                                   &fence->flags);
 363
 364        if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
 365                ret = -ENOENT;
 366        else if (!was_set && fence->ops->enable_signaling) {
 367                trace_dma_fence_enable_signal(fence);
 368
 369                if (!fence->ops->enable_signaling(fence)) {
 370                        dma_fence_signal_locked(fence);
 371                        ret = -ENOENT;
 372                }
 373        }
 374
 375        if (!ret) {
 376                cb->func = func;
 377                list_add_tail(&cb->node, &fence->cb_list);
 378        } else
 379                INIT_LIST_HEAD(&cb->node);
 380        spin_unlock_irqrestore(fence->lock, flags);
 381
 382        return ret;
 383}
 384EXPORT_SYMBOL(dma_fence_add_callback);
 385
 386/**
 387 * dma_fence_get_status - returns the status upon completion
 388 * @fence: the dma_fence to query
 389 *
 390 * This wraps dma_fence_get_status_locked() to return the error status
 391 * condition on a signaled fence. See dma_fence_get_status_locked() for more
 392 * details.
 393 *
 394 * Returns 0 if the fence has not yet been signaled, 1 if the fence has
 395 * been signaled without an error condition, or a negative error code
 396 * if the fence has been completed in err.
 397 */
 398int dma_fence_get_status(struct dma_fence *fence)
 399{
 400        unsigned long flags;
 401        int status;
 402
 403        spin_lock_irqsave(fence->lock, flags);
 404        status = dma_fence_get_status_locked(fence);
 405        spin_unlock_irqrestore(fence->lock, flags);
 406
 407        return status;
 408}
 409EXPORT_SYMBOL(dma_fence_get_status);
 410
 411/**
 412 * dma_fence_remove_callback - remove a callback from the signaling list
 413 * @fence: the fence to wait on
 414 * @cb: the callback to remove
 415 *
 416 * Remove a previously queued callback from the fence. This function returns
 417 * true if the callback is successfully removed, or false if the fence has
 418 * already been signaled.
 419 *
 420 * *WARNING*:
 421 * Cancelling a callback should only be done if you really know what you're
 422 * doing, since deadlocks and race conditions could occur all too easily. For
 423 * this reason, it should only ever be done on hardware lockup recovery,
 424 * with a reference held to the fence.
 425 *
 426 * Behaviour is undefined if @cb has not been added to @fence using
 427 * dma_fence_add_callback() beforehand.
 428 */
 429bool
 430dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
 431{
 432        unsigned long flags;
 433        bool ret;
 434
 435        spin_lock_irqsave(fence->lock, flags);
 436
 437        ret = !list_empty(&cb->node);
 438        if (ret)
 439                list_del_init(&cb->node);
 440
 441        spin_unlock_irqrestore(fence->lock, flags);
 442
 443        return ret;
 444}
 445EXPORT_SYMBOL(dma_fence_remove_callback);
 446
 447struct default_wait_cb {
 448        struct dma_fence_cb base;
 449        struct task_struct *task;
 450};
 451
 452static void
 453dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
 454{
 455        struct default_wait_cb *wait =
 456                container_of(cb, struct default_wait_cb, base);
 457
 458        wake_up_state(wait->task, TASK_NORMAL);
 459}
 460
 461/**
 462 * dma_fence_default_wait - default sleep until the fence gets signaled
 463 * or until timeout elapses
 464 * @fence: the fence to wait on
 465 * @intr: if true, do an interruptible wait
 466 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
 467 *
 468 * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
 469 * remaining timeout in jiffies on success. If timeout is zero the value one is
 470 * returned if the fence is already signaled for consistency with other
 471 * functions taking a jiffies timeout.
 472 */
 473signed long
 474dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
 475{
 476        struct default_wait_cb cb;
 477        unsigned long flags;
 478        signed long ret = timeout ? timeout : 1;
 479        bool was_set;
 480
 481        if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
 482                return ret;
 483
 484        spin_lock_irqsave(fence->lock, flags);
 485
 486        if (intr && signal_pending(current)) {
 487                ret = -ERESTARTSYS;
 488                goto out;
 489        }
 490
 491        was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
 492                                   &fence->flags);
 493
 494        if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
 495                goto out;
 496
 497        if (!was_set && fence->ops->enable_signaling) {
 498                trace_dma_fence_enable_signal(fence);
 499
 500                if (!fence->ops->enable_signaling(fence)) {
 501                        dma_fence_signal_locked(fence);
 502                        goto out;
 503                }
 504        }
 505
 506        if (!timeout) {
 507                ret = 0;
 508                goto out;
 509        }
 510
 511        cb.base.func = dma_fence_default_wait_cb;
 512        cb.task = current;
 513        list_add(&cb.base.node, &fence->cb_list);
 514
 515        while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
 516                if (intr)
 517                        __set_current_state(TASK_INTERRUPTIBLE);
 518                else
 519                        __set_current_state(TASK_UNINTERRUPTIBLE);
 520                spin_unlock_irqrestore(fence->lock, flags);
 521
 522                ret = schedule_timeout(ret);
 523
 524                spin_lock_irqsave(fence->lock, flags);
 525                if (ret > 0 && intr && signal_pending(current))
 526                        ret = -ERESTARTSYS;
 527        }
 528
 529        if (!list_empty(&cb.base.node))
 530                list_del(&cb.base.node);
 531        __set_current_state(TASK_RUNNING);
 532
 533out:
 534        spin_unlock_irqrestore(fence->lock, flags);
 535        return ret;
 536}
 537EXPORT_SYMBOL(dma_fence_default_wait);
 538
 539static bool
 540dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
 541                            uint32_t *idx)
 542{
 543        int i;
 544
 545        for (i = 0; i < count; ++i) {
 546                struct dma_fence *fence = fences[i];
 547                if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
 548                        if (idx)
 549                                *idx = i;
 550                        return true;
 551                }
 552        }
 553        return false;
 554}
 555
 556/**
 557 * dma_fence_wait_any_timeout - sleep until any fence gets signaled
 558 * or until timeout elapses
 559 * @fences: array of fences to wait on
 560 * @count: number of fences to wait on
 561 * @intr: if true, do an interruptible wait
 562 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
 563 * @idx: used to store the first signaled fence index, meaningful only on
 564 *      positive return
 565 *
 566 * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
 567 * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
 568 * on success.
 569 *
 570 * Synchronous waits for the first fence in the array to be signaled. The
 571 * caller needs to hold a reference to all fences in the array, otherwise a
 572 * fence might be freed before return, resulting in undefined behavior.
 573 *
 574 * See also dma_fence_wait() and dma_fence_wait_timeout().
 575 */
 576signed long
 577dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
 578                           bool intr, signed long timeout, uint32_t *idx)
 579{
 580        struct default_wait_cb *cb;
 581        signed long ret = timeout;
 582        unsigned i;
 583
 584        if (WARN_ON(!fences || !count || timeout < 0))
 585                return -EINVAL;
 586
 587        if (timeout == 0) {
 588                for (i = 0; i < count; ++i)
 589                        if (dma_fence_is_signaled(fences[i])) {
 590                                if (idx)
 591                                        *idx = i;
 592                                return 1;
 593                        }
 594
 595                return 0;
 596        }
 597
 598        cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
 599        if (cb == NULL) {
 600                ret = -ENOMEM;
 601                goto err_free_cb;
 602        }
 603
 604        for (i = 0; i < count; ++i) {
 605                struct dma_fence *fence = fences[i];
 606
 607                cb[i].task = current;
 608                if (dma_fence_add_callback(fence, &cb[i].base,
 609                                           dma_fence_default_wait_cb)) {
 610                        /* This fence is already signaled */
 611                        if (idx)
 612                                *idx = i;
 613                        goto fence_rm_cb;
 614                }
 615        }
 616
 617        while (ret > 0) {
 618                if (intr)
 619                        set_current_state(TASK_INTERRUPTIBLE);
 620                else
 621                        set_current_state(TASK_UNINTERRUPTIBLE);
 622
 623                if (dma_fence_test_signaled_any(fences, count, idx))
 624                        break;
 625
 626                ret = schedule_timeout(ret);
 627
 628                if (ret > 0 && intr && signal_pending(current))
 629                        ret = -ERESTARTSYS;
 630        }
 631
 632        __set_current_state(TASK_RUNNING);
 633
 634fence_rm_cb:
 635        while (i-- > 0)
 636                dma_fence_remove_callback(fences[i], &cb[i].base);
 637
 638err_free_cb:
 639        kfree(cb);
 640
 641        return ret;
 642}
 643EXPORT_SYMBOL(dma_fence_wait_any_timeout);
 644
 645/**
 646 * dma_fence_init - Initialize a custom fence.
 647 * @fence: the fence to initialize
 648 * @ops: the dma_fence_ops for operations on this fence
 649 * @lock: the irqsafe spinlock to use for locking this fence
 650 * @context: the execution context this fence is run on
 651 * @seqno: a linear increasing sequence number for this context
 652 *
 653 * Initializes an allocated fence, the caller doesn't have to keep its
 654 * refcount after committing with this fence, but it will need to hold a
 655 * refcount again if &dma_fence_ops.enable_signaling gets called.
 656 *
 657 * context and seqno are used for easy comparison between fences, allowing
 658 * to check which fence is later by simply using dma_fence_later().
 659 */
 660void
 661dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
 662               spinlock_t *lock, u64 context, u64 seqno)
 663{
 664        BUG_ON(!lock);
 665        BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name);
 666
 667        kref_init(&fence->refcount);
 668        fence->ops = ops;
 669        INIT_LIST_HEAD(&fence->cb_list);
 670        fence->lock = lock;
 671        fence->context = context;
 672        fence->seqno = seqno;
 673        fence->flags = 0UL;
 674        fence->error = 0;
 675
 676        trace_dma_fence_init(fence);
 677}
 678EXPORT_SYMBOL(dma_fence_init);
 679