linux/drivers/dma/at_hdmac.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
   4 *
   5 * Copyright (C) 2008 Atmel Corporation
   6 *
   7 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
   8 * The only Atmel DMA Controller that is not covered by this driver is the one
   9 * found on AT91SAM9263.
  10 */
  11
  12#include <dt-bindings/dma/at91.h>
  13#include <linux/clk.h>
  14#include <linux/dmaengine.h>
  15#include <linux/dma-mapping.h>
  16#include <linux/dmapool.h>
  17#include <linux/interrupt.h>
  18#include <linux/module.h>
  19#include <linux/platform_device.h>
  20#include <linux/slab.h>
  21#include <linux/of.h>
  22#include <linux/of_device.h>
  23#include <linux/of_dma.h>
  24
  25#include "at_hdmac_regs.h"
  26#include "dmaengine.h"
  27
  28/*
  29 * Glossary
  30 * --------
  31 *
  32 * at_hdmac             : Name of the ATmel AHB DMA Controller
  33 * at_dma_ / atdma      : ATmel DMA controller entity related
  34 * atc_ / atchan        : ATmel DMA Channel entity related
  35 */
  36
  37#define ATC_DEFAULT_CFG         (ATC_FIFOCFG_HALFFIFO)
  38#define ATC_DEFAULT_CTRLB       (ATC_SIF(AT_DMA_MEM_IF) \
  39                                |ATC_DIF(AT_DMA_MEM_IF))
  40#define ATC_DMA_BUSWIDTHS\
  41        (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
  42        BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
  43        BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
  44        BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
  45
  46#define ATC_MAX_DSCR_TRIALS     10
  47
  48/*
  49 * Initial number of descriptors to allocate for each channel. This could
  50 * be increased during dma usage.
  51 */
  52static unsigned int init_nr_desc_per_channel = 64;
  53module_param(init_nr_desc_per_channel, uint, 0644);
  54MODULE_PARM_DESC(init_nr_desc_per_channel,
  55                 "initial descriptors per channel (default: 64)");
  56
  57
  58/* prototypes */
  59static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
  60static void atc_issue_pending(struct dma_chan *chan);
  61
  62
  63/*----------------------------------------------------------------------*/
  64
  65static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
  66                                                size_t len)
  67{
  68        unsigned int width;
  69
  70        if (!((src | dst  | len) & 3))
  71                width = 2;
  72        else if (!((src | dst | len) & 1))
  73                width = 1;
  74        else
  75                width = 0;
  76
  77        return width;
  78}
  79
  80static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
  81{
  82        return list_first_entry(&atchan->active_list,
  83                                struct at_desc, desc_node);
  84}
  85
  86static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
  87{
  88        return list_first_entry(&atchan->queue,
  89                                struct at_desc, desc_node);
  90}
  91
  92/**
  93 * atc_alloc_descriptor - allocate and return an initialized descriptor
  94 * @chan: the channel to allocate descriptors for
  95 * @gfp_flags: GFP allocation flags
  96 *
  97 * Note: The ack-bit is positioned in the descriptor flag at creation time
  98 *       to make initial allocation more convenient. This bit will be cleared
  99 *       and control will be given to client at usage time (during
 100 *       preparation functions).
 101 */
 102static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
 103                                            gfp_t gfp_flags)
 104{
 105        struct at_desc  *desc = NULL;
 106        struct at_dma   *atdma = to_at_dma(chan->device);
 107        dma_addr_t phys;
 108
 109        desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
 110        if (desc) {
 111                INIT_LIST_HEAD(&desc->tx_list);
 112                dma_async_tx_descriptor_init(&desc->txd, chan);
 113                /* txd.flags will be overwritten in prep functions */
 114                desc->txd.flags = DMA_CTRL_ACK;
 115                desc->txd.tx_submit = atc_tx_submit;
 116                desc->txd.phys = phys;
 117        }
 118
 119        return desc;
 120}
 121
 122/**
 123 * atc_desc_get - get an unused descriptor from free_list
 124 * @atchan: channel we want a new descriptor for
 125 */
 126static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
 127{
 128        struct at_desc *desc, *_desc;
 129        struct at_desc *ret = NULL;
 130        unsigned long flags;
 131        unsigned int i = 0;
 132
 133        spin_lock_irqsave(&atchan->lock, flags);
 134        list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
 135                i++;
 136                if (async_tx_test_ack(&desc->txd)) {
 137                        list_del(&desc->desc_node);
 138                        ret = desc;
 139                        break;
 140                }
 141                dev_dbg(chan2dev(&atchan->chan_common),
 142                                "desc %p not ACKed\n", desc);
 143        }
 144        spin_unlock_irqrestore(&atchan->lock, flags);
 145        dev_vdbg(chan2dev(&atchan->chan_common),
 146                "scanned %u descriptors on freelist\n", i);
 147
 148        /* no more descriptor available in initial pool: create one more */
 149        if (!ret) {
 150                ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
 151                if (ret) {
 152                        spin_lock_irqsave(&atchan->lock, flags);
 153                        atchan->descs_allocated++;
 154                        spin_unlock_irqrestore(&atchan->lock, flags);
 155                } else {
 156                        dev_err(chan2dev(&atchan->chan_common),
 157                                        "not enough descriptors available\n");
 158                }
 159        }
 160
 161        return ret;
 162}
 163
 164/**
 165 * atc_desc_put - move a descriptor, including any children, to the free list
 166 * @atchan: channel we work on
 167 * @desc: descriptor, at the head of a chain, to move to free list
 168 */
 169static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
 170{
 171        if (desc) {
 172                struct at_desc *child;
 173                unsigned long flags;
 174
 175                spin_lock_irqsave(&atchan->lock, flags);
 176                list_for_each_entry(child, &desc->tx_list, desc_node)
 177                        dev_vdbg(chan2dev(&atchan->chan_common),
 178                                        "moving child desc %p to freelist\n",
 179                                        child);
 180                list_splice_init(&desc->tx_list, &atchan->free_list);
 181                dev_vdbg(chan2dev(&atchan->chan_common),
 182                         "moving desc %p to freelist\n", desc);
 183                list_add(&desc->desc_node, &atchan->free_list);
 184                spin_unlock_irqrestore(&atchan->lock, flags);
 185        }
 186}
 187
 188/**
 189 * atc_desc_chain - build chain adding a descriptor
 190 * @first: address of first descriptor of the chain
 191 * @prev: address of previous descriptor of the chain
 192 * @desc: descriptor to queue
 193 *
 194 * Called from prep_* functions
 195 */
 196static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
 197                           struct at_desc *desc)
 198{
 199        if (!(*first)) {
 200                *first = desc;
 201        } else {
 202                /* inform the HW lli about chaining */
 203                (*prev)->lli.dscr = desc->txd.phys;
 204                /* insert the link descriptor to the LD ring */
 205                list_add_tail(&desc->desc_node,
 206                                &(*first)->tx_list);
 207        }
 208        *prev = desc;
 209}
 210
 211/**
 212 * atc_dostart - starts the DMA engine for real
 213 * @atchan: the channel we want to start
 214 * @first: first descriptor in the list we want to begin with
 215 *
 216 * Called with atchan->lock held and bh disabled
 217 */
 218static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
 219{
 220        struct at_dma   *atdma = to_at_dma(atchan->chan_common.device);
 221
 222        /* ASSERT:  channel is idle */
 223        if (atc_chan_is_enabled(atchan)) {
 224                dev_err(chan2dev(&atchan->chan_common),
 225                        "BUG: Attempted to start non-idle channel\n");
 226                dev_err(chan2dev(&atchan->chan_common),
 227                        "  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
 228                        channel_readl(atchan, SADDR),
 229                        channel_readl(atchan, DADDR),
 230                        channel_readl(atchan, CTRLA),
 231                        channel_readl(atchan, CTRLB),
 232                        channel_readl(atchan, DSCR));
 233
 234                /* The tasklet will hopefully advance the queue... */
 235                return;
 236        }
 237
 238        vdbg_dump_regs(atchan);
 239
 240        channel_writel(atchan, SADDR, 0);
 241        channel_writel(atchan, DADDR, 0);
 242        channel_writel(atchan, CTRLA, 0);
 243        channel_writel(atchan, CTRLB, 0);
 244        channel_writel(atchan, DSCR, first->txd.phys);
 245        channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
 246                       ATC_SPIP_BOUNDARY(first->boundary));
 247        channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
 248                       ATC_DPIP_BOUNDARY(first->boundary));
 249        dma_writel(atdma, CHER, atchan->mask);
 250
 251        vdbg_dump_regs(atchan);
 252}
 253
 254/*
 255 * atc_get_desc_by_cookie - get the descriptor of a cookie
 256 * @atchan: the DMA channel
 257 * @cookie: the cookie to get the descriptor for
 258 */
 259static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
 260                                                dma_cookie_t cookie)
 261{
 262        struct at_desc *desc, *_desc;
 263
 264        list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
 265                if (desc->txd.cookie == cookie)
 266                        return desc;
 267        }
 268
 269        list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
 270                if (desc->txd.cookie == cookie)
 271                        return desc;
 272        }
 273
 274        return NULL;
 275}
 276
 277/**
 278 * atc_calc_bytes_left - calculates the number of bytes left according to the
 279 * value read from CTRLA.
 280 *
 281 * @current_len: the number of bytes left before reading CTRLA
 282 * @ctrla: the value of CTRLA
 283 */
 284static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
 285{
 286        u32 btsize = (ctrla & ATC_BTSIZE_MAX);
 287        u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
 288
 289        /*
 290         * According to the datasheet, when reading the Control A Register
 291         * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
 292         * number of transfers completed on the Source Interface.
 293         * So btsize is always a number of source width transfers.
 294         */
 295        return current_len - (btsize << src_width);
 296}
 297
 298/**
 299 * atc_get_bytes_left - get the number of bytes residue for a cookie
 300 * @chan: DMA channel
 301 * @cookie: transaction identifier to check status of
 302 */
 303static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
 304{
 305        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
 306        struct at_desc *desc_first = atc_first_active(atchan);
 307        struct at_desc *desc;
 308        int ret;
 309        u32 ctrla, dscr, trials;
 310
 311        /*
 312         * If the cookie doesn't match to the currently running transfer then
 313         * we can return the total length of the associated DMA transfer,
 314         * because it is still queued.
 315         */
 316        desc = atc_get_desc_by_cookie(atchan, cookie);
 317        if (desc == NULL)
 318                return -EINVAL;
 319        else if (desc != desc_first)
 320                return desc->total_len;
 321
 322        /* cookie matches to the currently running transfer */
 323        ret = desc_first->total_len;
 324
 325        if (desc_first->lli.dscr) {
 326                /* hardware linked list transfer */
 327
 328                /*
 329                 * Calculate the residue by removing the length of the child
 330                 * descriptors already transferred from the total length.
 331                 * To get the current child descriptor we can use the value of
 332                 * the channel's DSCR register and compare it against the value
 333                 * of the hardware linked list structure of each child
 334                 * descriptor.
 335                 *
 336                 * The CTRLA register provides us with the amount of data
 337                 * already read from the source for the current child
 338                 * descriptor. So we can compute a more accurate residue by also
 339                 * removing the number of bytes corresponding to this amount of
 340                 * data.
 341                 *
 342                 * However, the DSCR and CTRLA registers cannot be read both
 343                 * atomically. Hence a race condition may occur: the first read
 344                 * register may refer to one child descriptor whereas the second
 345                 * read may refer to a later child descriptor in the list
 346                 * because of the DMA transfer progression inbetween the two
 347                 * reads.
 348                 *
 349                 * One solution could have been to pause the DMA transfer, read
 350                 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
 351                 * this approach presents some drawbacks:
 352                 * - If the DMA transfer is paused, RX overruns or TX underruns
 353                 *   are more likey to occur depending on the system latency.
 354                 *   Taking the USART driver as an example, it uses a cyclic DMA
 355                 *   transfer to read data from the Receive Holding Register
 356                 *   (RHR) to avoid RX overruns since the RHR is not protected
 357                 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer
 358                 *   to compute the residue would break the USART driver design.
 359                 * - The atc_pause() function masks interrupts but we'd rather
 360                 *   avoid to do so for system latency purpose.
 361                 *
 362                 * Then we'd rather use another solution: the DSCR is read a
 363                 * first time, the CTRLA is read in turn, next the DSCR is read
 364                 * a second time. If the two consecutive read values of the DSCR
 365                 * are the same then we assume both refers to the very same
 366                 * child descriptor as well as the CTRLA value read inbetween
 367                 * does. For cyclic tranfers, the assumption is that a full loop
 368                 * is "not so fast".
 369                 * If the two DSCR values are different, we read again the CTRLA
 370                 * then the DSCR till two consecutive read values from DSCR are
 371                 * equal or till the maxium trials is reach.
 372                 * This algorithm is very unlikely not to find a stable value for
 373                 * DSCR.
 374                 */
 375
 376                dscr = channel_readl(atchan, DSCR);
 377                rmb(); /* ensure DSCR is read before CTRLA */
 378                ctrla = channel_readl(atchan, CTRLA);
 379                for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
 380                        u32 new_dscr;
 381
 382                        rmb(); /* ensure DSCR is read after CTRLA */
 383                        new_dscr = channel_readl(atchan, DSCR);
 384
 385                        /*
 386                         * If the DSCR register value has not changed inside the
 387                         * DMA controller since the previous read, we assume
 388                         * that both the dscr and ctrla values refers to the
 389                         * very same descriptor.
 390                         */
 391                        if (likely(new_dscr == dscr))
 392                                break;
 393
 394                        /*
 395                         * DSCR has changed inside the DMA controller, so the
 396                         * previouly read value of CTRLA may refer to an already
 397                         * processed descriptor hence could be outdated.
 398                         * We need to update ctrla to match the current
 399                         * descriptor.
 400                         */
 401                        dscr = new_dscr;
 402                        rmb(); /* ensure DSCR is read before CTRLA */
 403                        ctrla = channel_readl(atchan, CTRLA);
 404                }
 405                if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
 406                        return -ETIMEDOUT;
 407
 408                /* for the first descriptor we can be more accurate */
 409                if (desc_first->lli.dscr == dscr)
 410                        return atc_calc_bytes_left(ret, ctrla);
 411
 412                ret -= desc_first->len;
 413                list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
 414                        if (desc->lli.dscr == dscr)
 415                                break;
 416
 417                        ret -= desc->len;
 418                }
 419
 420                /*
 421                 * For the current descriptor in the chain we can calculate
 422                 * the remaining bytes using the channel's register.
 423                 */
 424                ret = atc_calc_bytes_left(ret, ctrla);
 425        } else {
 426                /* single transfer */
 427                ctrla = channel_readl(atchan, CTRLA);
 428                ret = atc_calc_bytes_left(ret, ctrla);
 429        }
 430
 431        return ret;
 432}
 433
 434/**
 435 * atc_chain_complete - finish work for one transaction chain
 436 * @atchan: channel we work on
 437 * @desc: descriptor at the head of the chain we want do complete
 438 *
 439 * Called with atchan->lock held and bh disabled */
 440static void
 441atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
 442{
 443        struct dma_async_tx_descriptor  *txd = &desc->txd;
 444        struct at_dma                   *atdma = to_at_dma(atchan->chan_common.device);
 445
 446        dev_vdbg(chan2dev(&atchan->chan_common),
 447                "descriptor %u complete\n", txd->cookie);
 448
 449        /* mark the descriptor as complete for non cyclic cases only */
 450        if (!atc_chan_is_cyclic(atchan))
 451                dma_cookie_complete(txd);
 452
 453        /* If the transfer was a memset, free our temporary buffer */
 454        if (desc->memset_buffer) {
 455                dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
 456                              desc->memset_paddr);
 457                desc->memset_buffer = false;
 458        }
 459
 460        /* move children to free_list */
 461        list_splice_init(&desc->tx_list, &atchan->free_list);
 462        /* move myself to free_list */
 463        list_move(&desc->desc_node, &atchan->free_list);
 464
 465        dma_descriptor_unmap(txd);
 466        /* for cyclic transfers,
 467         * no need to replay callback function while stopping */
 468        if (!atc_chan_is_cyclic(atchan)) {
 469                /*
 470                 * The API requires that no submissions are done from a
 471                 * callback, so we don't need to drop the lock here
 472                 */
 473                dmaengine_desc_get_callback_invoke(txd, NULL);
 474        }
 475
 476        dma_run_dependencies(txd);
 477}
 478
 479/**
 480 * atc_complete_all - finish work for all transactions
 481 * @atchan: channel to complete transactions for
 482 *
 483 * Eventually submit queued descriptors if any
 484 *
 485 * Assume channel is idle while calling this function
 486 * Called with atchan->lock held and bh disabled
 487 */
 488static void atc_complete_all(struct at_dma_chan *atchan)
 489{
 490        struct at_desc *desc, *_desc;
 491        LIST_HEAD(list);
 492
 493        dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
 494
 495        /*
 496         * Submit queued descriptors ASAP, i.e. before we go through
 497         * the completed ones.
 498         */
 499        if (!list_empty(&atchan->queue))
 500                atc_dostart(atchan, atc_first_queued(atchan));
 501        /* empty active_list now it is completed */
 502        list_splice_init(&atchan->active_list, &list);
 503        /* empty queue list by moving descriptors (if any) to active_list */
 504        list_splice_init(&atchan->queue, &atchan->active_list);
 505
 506        list_for_each_entry_safe(desc, _desc, &list, desc_node)
 507                atc_chain_complete(atchan, desc);
 508}
 509
 510/**
 511 * atc_advance_work - at the end of a transaction, move forward
 512 * @atchan: channel where the transaction ended
 513 *
 514 * Called with atchan->lock held and bh disabled
 515 */
 516static void atc_advance_work(struct at_dma_chan *atchan)
 517{
 518        dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
 519
 520        if (atc_chan_is_enabled(atchan))
 521                return;
 522
 523        if (list_empty(&atchan->active_list) ||
 524            list_is_singular(&atchan->active_list)) {
 525                atc_complete_all(atchan);
 526        } else {
 527                atc_chain_complete(atchan, atc_first_active(atchan));
 528                /* advance work */
 529                atc_dostart(atchan, atc_first_active(atchan));
 530        }
 531}
 532
 533
 534/**
 535 * atc_handle_error - handle errors reported by DMA controller
 536 * @atchan: channel where error occurs
 537 *
 538 * Called with atchan->lock held and bh disabled
 539 */
 540static void atc_handle_error(struct at_dma_chan *atchan)
 541{
 542        struct at_desc *bad_desc;
 543        struct at_desc *child;
 544
 545        /*
 546         * The descriptor currently at the head of the active list is
 547         * broked. Since we don't have any way to report errors, we'll
 548         * just have to scream loudly and try to carry on.
 549         */
 550        bad_desc = atc_first_active(atchan);
 551        list_del_init(&bad_desc->desc_node);
 552
 553        /* As we are stopped, take advantage to push queued descriptors
 554         * in active_list */
 555        list_splice_init(&atchan->queue, atchan->active_list.prev);
 556
 557        /* Try to restart the controller */
 558        if (!list_empty(&atchan->active_list))
 559                atc_dostart(atchan, atc_first_active(atchan));
 560
 561        /*
 562         * KERN_CRITICAL may seem harsh, but since this only happens
 563         * when someone submits a bad physical address in a
 564         * descriptor, we should consider ourselves lucky that the
 565         * controller flagged an error instead of scribbling over
 566         * random memory locations.
 567         */
 568        dev_crit(chan2dev(&atchan->chan_common),
 569                        "Bad descriptor submitted for DMA!\n");
 570        dev_crit(chan2dev(&atchan->chan_common),
 571                        "  cookie: %d\n", bad_desc->txd.cookie);
 572        atc_dump_lli(atchan, &bad_desc->lli);
 573        list_for_each_entry(child, &bad_desc->tx_list, desc_node)
 574                atc_dump_lli(atchan, &child->lli);
 575
 576        /* Pretend the descriptor completed successfully */
 577        atc_chain_complete(atchan, bad_desc);
 578}
 579
 580/**
 581 * atc_handle_cyclic - at the end of a period, run callback function
 582 * @atchan: channel used for cyclic operations
 583 *
 584 * Called with atchan->lock held and bh disabled
 585 */
 586static void atc_handle_cyclic(struct at_dma_chan *atchan)
 587{
 588        struct at_desc                  *first = atc_first_active(atchan);
 589        struct dma_async_tx_descriptor  *txd = &first->txd;
 590
 591        dev_vdbg(chan2dev(&atchan->chan_common),
 592                        "new cyclic period llp 0x%08x\n",
 593                        channel_readl(atchan, DSCR));
 594
 595        dmaengine_desc_get_callback_invoke(txd, NULL);
 596}
 597
 598/*--  IRQ & Tasklet  ---------------------------------------------------*/
 599
 600static void atc_tasklet(unsigned long data)
 601{
 602        struct at_dma_chan *atchan = (struct at_dma_chan *)data;
 603        unsigned long flags;
 604
 605        spin_lock_irqsave(&atchan->lock, flags);
 606        if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
 607                atc_handle_error(atchan);
 608        else if (atc_chan_is_cyclic(atchan))
 609                atc_handle_cyclic(atchan);
 610        else
 611                atc_advance_work(atchan);
 612
 613        spin_unlock_irqrestore(&atchan->lock, flags);
 614}
 615
 616static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
 617{
 618        struct at_dma           *atdma = (struct at_dma *)dev_id;
 619        struct at_dma_chan      *atchan;
 620        int                     i;
 621        u32                     status, pending, imr;
 622        int                     ret = IRQ_NONE;
 623
 624        do {
 625                imr = dma_readl(atdma, EBCIMR);
 626                status = dma_readl(atdma, EBCISR);
 627                pending = status & imr;
 628
 629                if (!pending)
 630                        break;
 631
 632                dev_vdbg(atdma->dma_common.dev,
 633                        "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
 634                         status, imr, pending);
 635
 636                for (i = 0; i < atdma->dma_common.chancnt; i++) {
 637                        atchan = &atdma->chan[i];
 638                        if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
 639                                if (pending & AT_DMA_ERR(i)) {
 640                                        /* Disable channel on AHB error */
 641                                        dma_writel(atdma, CHDR,
 642                                                AT_DMA_RES(i) | atchan->mask);
 643                                        /* Give information to tasklet */
 644                                        set_bit(ATC_IS_ERROR, &atchan->status);
 645                                }
 646                                tasklet_schedule(&atchan->tasklet);
 647                                ret = IRQ_HANDLED;
 648                        }
 649                }
 650
 651        } while (pending);
 652
 653        return ret;
 654}
 655
 656
 657/*--  DMA Engine API  --------------------------------------------------*/
 658
 659/**
 660 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
 661 * @desc: descriptor at the head of the transaction chain
 662 *
 663 * Queue chain if DMA engine is working already
 664 *
 665 * Cookie increment and adding to active_list or queue must be atomic
 666 */
 667static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
 668{
 669        struct at_desc          *desc = txd_to_at_desc(tx);
 670        struct at_dma_chan      *atchan = to_at_dma_chan(tx->chan);
 671        dma_cookie_t            cookie;
 672        unsigned long           flags;
 673
 674        spin_lock_irqsave(&atchan->lock, flags);
 675        cookie = dma_cookie_assign(tx);
 676
 677        if (list_empty(&atchan->active_list)) {
 678                dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
 679                                desc->txd.cookie);
 680                atc_dostart(atchan, desc);
 681                list_add_tail(&desc->desc_node, &atchan->active_list);
 682        } else {
 683                dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
 684                                desc->txd.cookie);
 685                list_add_tail(&desc->desc_node, &atchan->queue);
 686        }
 687
 688        spin_unlock_irqrestore(&atchan->lock, flags);
 689
 690        return cookie;
 691}
 692
 693/**
 694 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
 695 * @chan: the channel to prepare operation on
 696 * @xt: Interleaved transfer template
 697 * @flags: tx descriptor status flags
 698 */
 699static struct dma_async_tx_descriptor *
 700atc_prep_dma_interleaved(struct dma_chan *chan,
 701                         struct dma_interleaved_template *xt,
 702                         unsigned long flags)
 703{
 704        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
 705        struct data_chunk       *first;
 706        struct at_desc          *desc = NULL;
 707        size_t                  xfer_count;
 708        unsigned int            dwidth;
 709        u32                     ctrla;
 710        u32                     ctrlb;
 711        size_t                  len = 0;
 712        int                     i;
 713
 714        if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
 715                return NULL;
 716
 717        first = xt->sgl;
 718
 719        dev_info(chan2dev(chan),
 720                 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
 721                __func__, &xt->src_start, &xt->dst_start, xt->numf,
 722                xt->frame_size, flags);
 723
 724        /*
 725         * The controller can only "skip" X bytes every Y bytes, so we
 726         * need to make sure we are given a template that fit that
 727         * description, ie a template with chunks that always have the
 728         * same size, with the same ICGs.
 729         */
 730        for (i = 0; i < xt->frame_size; i++) {
 731                struct data_chunk *chunk = xt->sgl + i;
 732
 733                if ((chunk->size != xt->sgl->size) ||
 734                    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
 735                    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
 736                        dev_err(chan2dev(chan),
 737                                "%s: the controller can transfer only identical chunks\n",
 738                                __func__);
 739                        return NULL;
 740                }
 741
 742                len += chunk->size;
 743        }
 744
 745        dwidth = atc_get_xfer_width(xt->src_start,
 746                                    xt->dst_start, len);
 747
 748        xfer_count = len >> dwidth;
 749        if (xfer_count > ATC_BTSIZE_MAX) {
 750                dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
 751                return NULL;
 752        }
 753
 754        ctrla = ATC_SRC_WIDTH(dwidth) |
 755                ATC_DST_WIDTH(dwidth);
 756
 757        ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
 758                | ATC_SRC_ADDR_MODE_INCR
 759                | ATC_DST_ADDR_MODE_INCR
 760                | ATC_SRC_PIP
 761                | ATC_DST_PIP
 762                | ATC_FC_MEM2MEM;
 763
 764        /* create the transfer */
 765        desc = atc_desc_get(atchan);
 766        if (!desc) {
 767                dev_err(chan2dev(chan),
 768                        "%s: couldn't allocate our descriptor\n", __func__);
 769                return NULL;
 770        }
 771
 772        desc->lli.saddr = xt->src_start;
 773        desc->lli.daddr = xt->dst_start;
 774        desc->lli.ctrla = ctrla | xfer_count;
 775        desc->lli.ctrlb = ctrlb;
 776
 777        desc->boundary = first->size >> dwidth;
 778        desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
 779        desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
 780
 781        desc->txd.cookie = -EBUSY;
 782        desc->total_len = desc->len = len;
 783
 784        /* set end-of-link to the last link descriptor of list*/
 785        set_desc_eol(desc);
 786
 787        desc->txd.flags = flags; /* client is in control of this ack */
 788
 789        return &desc->txd;
 790}
 791
 792/**
 793 * atc_prep_dma_memcpy - prepare a memcpy operation
 794 * @chan: the channel to prepare operation on
 795 * @dest: operation virtual destination address
 796 * @src: operation virtual source address
 797 * @len: operation length
 798 * @flags: tx descriptor status flags
 799 */
 800static struct dma_async_tx_descriptor *
 801atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
 802                size_t len, unsigned long flags)
 803{
 804        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
 805        struct at_desc          *desc = NULL;
 806        struct at_desc          *first = NULL;
 807        struct at_desc          *prev = NULL;
 808        size_t                  xfer_count;
 809        size_t                  offset;
 810        unsigned int            src_width;
 811        unsigned int            dst_width;
 812        u32                     ctrla;
 813        u32                     ctrlb;
 814
 815        dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
 816                        &dest, &src, len, flags);
 817
 818        if (unlikely(!len)) {
 819                dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
 820                return NULL;
 821        }
 822
 823        ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
 824                | ATC_SRC_ADDR_MODE_INCR
 825                | ATC_DST_ADDR_MODE_INCR
 826                | ATC_FC_MEM2MEM;
 827
 828        /*
 829         * We can be a lot more clever here, but this should take care
 830         * of the most common optimization.
 831         */
 832        src_width = dst_width = atc_get_xfer_width(src, dest, len);
 833
 834        ctrla = ATC_SRC_WIDTH(src_width) |
 835                ATC_DST_WIDTH(dst_width);
 836
 837        for (offset = 0; offset < len; offset += xfer_count << src_width) {
 838                xfer_count = min_t(size_t, (len - offset) >> src_width,
 839                                ATC_BTSIZE_MAX);
 840
 841                desc = atc_desc_get(atchan);
 842                if (!desc)
 843                        goto err_desc_get;
 844
 845                desc->lli.saddr = src + offset;
 846                desc->lli.daddr = dest + offset;
 847                desc->lli.ctrla = ctrla | xfer_count;
 848                desc->lli.ctrlb = ctrlb;
 849
 850                desc->txd.cookie = 0;
 851                desc->len = xfer_count << src_width;
 852
 853                atc_desc_chain(&first, &prev, desc);
 854        }
 855
 856        /* First descriptor of the chain embedds additional information */
 857        first->txd.cookie = -EBUSY;
 858        first->total_len = len;
 859
 860        /* set end-of-link to the last link descriptor of list*/
 861        set_desc_eol(desc);
 862
 863        first->txd.flags = flags; /* client is in control of this ack */
 864
 865        return &first->txd;
 866
 867err_desc_get:
 868        atc_desc_put(atchan, first);
 869        return NULL;
 870}
 871
 872static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
 873                                              dma_addr_t psrc,
 874                                              dma_addr_t pdst,
 875                                              size_t len)
 876{
 877        struct at_dma_chan *atchan = to_at_dma_chan(chan);
 878        struct at_desc *desc;
 879        size_t xfer_count;
 880
 881        u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
 882        u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
 883                ATC_SRC_ADDR_MODE_FIXED |
 884                ATC_DST_ADDR_MODE_INCR |
 885                ATC_FC_MEM2MEM;
 886
 887        xfer_count = len >> 2;
 888        if (xfer_count > ATC_BTSIZE_MAX) {
 889                dev_err(chan2dev(chan), "%s: buffer is too big\n",
 890                        __func__);
 891                return NULL;
 892        }
 893
 894        desc = atc_desc_get(atchan);
 895        if (!desc) {
 896                dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
 897                        __func__);
 898                return NULL;
 899        }
 900
 901        desc->lli.saddr = psrc;
 902        desc->lli.daddr = pdst;
 903        desc->lli.ctrla = ctrla | xfer_count;
 904        desc->lli.ctrlb = ctrlb;
 905
 906        desc->txd.cookie = 0;
 907        desc->len = len;
 908
 909        return desc;
 910}
 911
 912/**
 913 * atc_prep_dma_memset - prepare a memcpy operation
 914 * @chan: the channel to prepare operation on
 915 * @dest: operation virtual destination address
 916 * @value: value to set memory buffer to
 917 * @len: operation length
 918 * @flags: tx descriptor status flags
 919 */
 920static struct dma_async_tx_descriptor *
 921atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
 922                    size_t len, unsigned long flags)
 923{
 924        struct at_dma           *atdma = to_at_dma(chan->device);
 925        struct at_desc          *desc;
 926        void __iomem            *vaddr;
 927        dma_addr_t              paddr;
 928
 929        dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
 930                &dest, value, len, flags);
 931
 932        if (unlikely(!len)) {
 933                dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
 934                return NULL;
 935        }
 936
 937        if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
 938                dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
 939                        __func__);
 940                return NULL;
 941        }
 942
 943        vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
 944        if (!vaddr) {
 945                dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
 946                        __func__);
 947                return NULL;
 948        }
 949        *(u32*)vaddr = value;
 950
 951        desc = atc_create_memset_desc(chan, paddr, dest, len);
 952        if (!desc) {
 953                dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
 954                        __func__);
 955                goto err_free_buffer;
 956        }
 957
 958        desc->memset_paddr = paddr;
 959        desc->memset_vaddr = vaddr;
 960        desc->memset_buffer = true;
 961
 962        desc->txd.cookie = -EBUSY;
 963        desc->total_len = len;
 964
 965        /* set end-of-link on the descriptor */
 966        set_desc_eol(desc);
 967
 968        desc->txd.flags = flags;
 969
 970        return &desc->txd;
 971
 972err_free_buffer:
 973        dma_pool_free(atdma->memset_pool, vaddr, paddr);
 974        return NULL;
 975}
 976
 977static struct dma_async_tx_descriptor *
 978atc_prep_dma_memset_sg(struct dma_chan *chan,
 979                       struct scatterlist *sgl,
 980                       unsigned int sg_len, int value,
 981                       unsigned long flags)
 982{
 983        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
 984        struct at_dma           *atdma = to_at_dma(chan->device);
 985        struct at_desc          *desc = NULL, *first = NULL, *prev = NULL;
 986        struct scatterlist      *sg;
 987        void __iomem            *vaddr;
 988        dma_addr_t              paddr;
 989        size_t                  total_len = 0;
 990        int                     i;
 991
 992        dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
 993                 value, sg_len, flags);
 994
 995        if (unlikely(!sgl || !sg_len)) {
 996                dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
 997                        __func__);
 998                return NULL;
 999        }
1000
1001        vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1002        if (!vaddr) {
1003                dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1004                        __func__);
1005                return NULL;
1006        }
1007        *(u32*)vaddr = value;
1008
1009        for_each_sg(sgl, sg, sg_len, i) {
1010                dma_addr_t dest = sg_dma_address(sg);
1011                size_t len = sg_dma_len(sg);
1012
1013                dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1014                         __func__, &dest, len);
1015
1016                if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1017                        dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1018                                __func__);
1019                        goto err_put_desc;
1020                }
1021
1022                desc = atc_create_memset_desc(chan, paddr, dest, len);
1023                if (!desc)
1024                        goto err_put_desc;
1025
1026                atc_desc_chain(&first, &prev, desc);
1027
1028                total_len += len;
1029        }
1030
1031        /*
1032         * Only set the buffer pointers on the last descriptor to
1033         * avoid free'ing while we have our transfer still going
1034         */
1035        desc->memset_paddr = paddr;
1036        desc->memset_vaddr = vaddr;
1037        desc->memset_buffer = true;
1038
1039        first->txd.cookie = -EBUSY;
1040        first->total_len = total_len;
1041
1042        /* set end-of-link on the descriptor */
1043        set_desc_eol(desc);
1044
1045        first->txd.flags = flags;
1046
1047        return &first->txd;
1048
1049err_put_desc:
1050        atc_desc_put(atchan, first);
1051        return NULL;
1052}
1053
1054/**
1055 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1056 * @chan: DMA channel
1057 * @sgl: scatterlist to transfer to/from
1058 * @sg_len: number of entries in @scatterlist
1059 * @direction: DMA direction
1060 * @flags: tx descriptor status flags
1061 * @context: transaction context (ignored)
1062 */
1063static struct dma_async_tx_descriptor *
1064atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1065                unsigned int sg_len, enum dma_transfer_direction direction,
1066                unsigned long flags, void *context)
1067{
1068        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1069        struct at_dma_slave     *atslave = chan->private;
1070        struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1071        struct at_desc          *first = NULL;
1072        struct at_desc          *prev = NULL;
1073        u32                     ctrla;
1074        u32                     ctrlb;
1075        dma_addr_t              reg;
1076        unsigned int            reg_width;
1077        unsigned int            mem_width;
1078        unsigned int            i;
1079        struct scatterlist      *sg;
1080        size_t                  total_len = 0;
1081
1082        dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1083                        sg_len,
1084                        direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1085                        flags);
1086
1087        if (unlikely(!atslave || !sg_len)) {
1088                dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1089                return NULL;
1090        }
1091
1092        ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1093                | ATC_DCSIZE(sconfig->dst_maxburst);
1094        ctrlb = ATC_IEN;
1095
1096        switch (direction) {
1097        case DMA_MEM_TO_DEV:
1098                reg_width = convert_buswidth(sconfig->dst_addr_width);
1099                ctrla |=  ATC_DST_WIDTH(reg_width);
1100                ctrlb |=  ATC_DST_ADDR_MODE_FIXED
1101                        | ATC_SRC_ADDR_MODE_INCR
1102                        | ATC_FC_MEM2PER
1103                        | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1104                reg = sconfig->dst_addr;
1105                for_each_sg(sgl, sg, sg_len, i) {
1106                        struct at_desc  *desc;
1107                        u32             len;
1108                        u32             mem;
1109
1110                        desc = atc_desc_get(atchan);
1111                        if (!desc)
1112                                goto err_desc_get;
1113
1114                        mem = sg_dma_address(sg);
1115                        len = sg_dma_len(sg);
1116                        if (unlikely(!len)) {
1117                                dev_dbg(chan2dev(chan),
1118                                        "prep_slave_sg: sg(%d) data length is zero\n", i);
1119                                goto err;
1120                        }
1121                        mem_width = 2;
1122                        if (unlikely(mem & 3 || len & 3))
1123                                mem_width = 0;
1124
1125                        desc->lli.saddr = mem;
1126                        desc->lli.daddr = reg;
1127                        desc->lli.ctrla = ctrla
1128                                        | ATC_SRC_WIDTH(mem_width)
1129                                        | len >> mem_width;
1130                        desc->lli.ctrlb = ctrlb;
1131                        desc->len = len;
1132
1133                        atc_desc_chain(&first, &prev, desc);
1134                        total_len += len;
1135                }
1136                break;
1137        case DMA_DEV_TO_MEM:
1138                reg_width = convert_buswidth(sconfig->src_addr_width);
1139                ctrla |=  ATC_SRC_WIDTH(reg_width);
1140                ctrlb |=  ATC_DST_ADDR_MODE_INCR
1141                        | ATC_SRC_ADDR_MODE_FIXED
1142                        | ATC_FC_PER2MEM
1143                        | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1144
1145                reg = sconfig->src_addr;
1146                for_each_sg(sgl, sg, sg_len, i) {
1147                        struct at_desc  *desc;
1148                        u32             len;
1149                        u32             mem;
1150
1151                        desc = atc_desc_get(atchan);
1152                        if (!desc)
1153                                goto err_desc_get;
1154
1155                        mem = sg_dma_address(sg);
1156                        len = sg_dma_len(sg);
1157                        if (unlikely(!len)) {
1158                                dev_dbg(chan2dev(chan),
1159                                        "prep_slave_sg: sg(%d) data length is zero\n", i);
1160                                goto err;
1161                        }
1162                        mem_width = 2;
1163                        if (unlikely(mem & 3 || len & 3))
1164                                mem_width = 0;
1165
1166                        desc->lli.saddr = reg;
1167                        desc->lli.daddr = mem;
1168                        desc->lli.ctrla = ctrla
1169                                        | ATC_DST_WIDTH(mem_width)
1170                                        | len >> reg_width;
1171                        desc->lli.ctrlb = ctrlb;
1172                        desc->len = len;
1173
1174                        atc_desc_chain(&first, &prev, desc);
1175                        total_len += len;
1176                }
1177                break;
1178        default:
1179                return NULL;
1180        }
1181
1182        /* set end-of-link to the last link descriptor of list*/
1183        set_desc_eol(prev);
1184
1185        /* First descriptor of the chain embedds additional information */
1186        first->txd.cookie = -EBUSY;
1187        first->total_len = total_len;
1188
1189        /* first link descriptor of list is responsible of flags */
1190        first->txd.flags = flags; /* client is in control of this ack */
1191
1192        return &first->txd;
1193
1194err_desc_get:
1195        dev_err(chan2dev(chan), "not enough descriptors available\n");
1196err:
1197        atc_desc_put(atchan, first);
1198        return NULL;
1199}
1200
1201/**
1202 * atc_dma_cyclic_check_values
1203 * Check for too big/unaligned periods and unaligned DMA buffer
1204 */
1205static int
1206atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1207                size_t period_len)
1208{
1209        if (period_len > (ATC_BTSIZE_MAX << reg_width))
1210                goto err_out;
1211        if (unlikely(period_len & ((1 << reg_width) - 1)))
1212                goto err_out;
1213        if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1214                goto err_out;
1215
1216        return 0;
1217
1218err_out:
1219        return -EINVAL;
1220}
1221
1222/**
1223 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1224 */
1225static int
1226atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1227                unsigned int period_index, dma_addr_t buf_addr,
1228                unsigned int reg_width, size_t period_len,
1229                enum dma_transfer_direction direction)
1230{
1231        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1232        struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1233        u32                     ctrla;
1234
1235        /* prepare common CRTLA value */
1236        ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1237                | ATC_DCSIZE(sconfig->dst_maxburst)
1238                | ATC_DST_WIDTH(reg_width)
1239                | ATC_SRC_WIDTH(reg_width)
1240                | period_len >> reg_width;
1241
1242        switch (direction) {
1243        case DMA_MEM_TO_DEV:
1244                desc->lli.saddr = buf_addr + (period_len * period_index);
1245                desc->lli.daddr = sconfig->dst_addr;
1246                desc->lli.ctrla = ctrla;
1247                desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1248                                | ATC_SRC_ADDR_MODE_INCR
1249                                | ATC_FC_MEM2PER
1250                                | ATC_SIF(atchan->mem_if)
1251                                | ATC_DIF(atchan->per_if);
1252                desc->len = period_len;
1253                break;
1254
1255        case DMA_DEV_TO_MEM:
1256                desc->lli.saddr = sconfig->src_addr;
1257                desc->lli.daddr = buf_addr + (period_len * period_index);
1258                desc->lli.ctrla = ctrla;
1259                desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1260                                | ATC_SRC_ADDR_MODE_FIXED
1261                                | ATC_FC_PER2MEM
1262                                | ATC_SIF(atchan->per_if)
1263                                | ATC_DIF(atchan->mem_if);
1264                desc->len = period_len;
1265                break;
1266
1267        default:
1268                return -EINVAL;
1269        }
1270
1271        return 0;
1272}
1273
1274/**
1275 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1276 * @chan: the DMA channel to prepare
1277 * @buf_addr: physical DMA address where the buffer starts
1278 * @buf_len: total number of bytes for the entire buffer
1279 * @period_len: number of bytes for each period
1280 * @direction: transfer direction, to or from device
1281 * @flags: tx descriptor status flags
1282 */
1283static struct dma_async_tx_descriptor *
1284atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1285                size_t period_len, enum dma_transfer_direction direction,
1286                unsigned long flags)
1287{
1288        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1289        struct at_dma_slave     *atslave = chan->private;
1290        struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1291        struct at_desc          *first = NULL;
1292        struct at_desc          *prev = NULL;
1293        unsigned long           was_cyclic;
1294        unsigned int            reg_width;
1295        unsigned int            periods = buf_len / period_len;
1296        unsigned int            i;
1297
1298        dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1299                        direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1300                        &buf_addr,
1301                        periods, buf_len, period_len);
1302
1303        if (unlikely(!atslave || !buf_len || !period_len)) {
1304                dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1305                return NULL;
1306        }
1307
1308        was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1309        if (was_cyclic) {
1310                dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1311                return NULL;
1312        }
1313
1314        if (unlikely(!is_slave_direction(direction)))
1315                goto err_out;
1316
1317        if (direction == DMA_MEM_TO_DEV)
1318                reg_width = convert_buswidth(sconfig->dst_addr_width);
1319        else
1320                reg_width = convert_buswidth(sconfig->src_addr_width);
1321
1322        /* Check for too big/unaligned periods and unaligned DMA buffer */
1323        if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1324                goto err_out;
1325
1326        /* build cyclic linked list */
1327        for (i = 0; i < periods; i++) {
1328                struct at_desc  *desc;
1329
1330                desc = atc_desc_get(atchan);
1331                if (!desc)
1332                        goto err_desc_get;
1333
1334                if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1335                                             reg_width, period_len, direction))
1336                        goto err_desc_get;
1337
1338                atc_desc_chain(&first, &prev, desc);
1339        }
1340
1341        /* lets make a cyclic list */
1342        prev->lli.dscr = first->txd.phys;
1343
1344        /* First descriptor of the chain embedds additional information */
1345        first->txd.cookie = -EBUSY;
1346        first->total_len = buf_len;
1347
1348        return &first->txd;
1349
1350err_desc_get:
1351        dev_err(chan2dev(chan), "not enough descriptors available\n");
1352        atc_desc_put(atchan, first);
1353err_out:
1354        clear_bit(ATC_IS_CYCLIC, &atchan->status);
1355        return NULL;
1356}
1357
1358static int atc_config(struct dma_chan *chan,
1359                      struct dma_slave_config *sconfig)
1360{
1361        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1362
1363        dev_vdbg(chan2dev(chan), "%s\n", __func__);
1364
1365        /* Check if it is chan is configured for slave transfers */
1366        if (!chan->private)
1367                return -EINVAL;
1368
1369        memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1370
1371        convert_burst(&atchan->dma_sconfig.src_maxburst);
1372        convert_burst(&atchan->dma_sconfig.dst_maxburst);
1373
1374        return 0;
1375}
1376
1377static int atc_pause(struct dma_chan *chan)
1378{
1379        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1380        struct at_dma           *atdma = to_at_dma(chan->device);
1381        int                     chan_id = atchan->chan_common.chan_id;
1382        unsigned long           flags;
1383
1384        dev_vdbg(chan2dev(chan), "%s\n", __func__);
1385
1386        spin_lock_irqsave(&atchan->lock, flags);
1387
1388        dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1389        set_bit(ATC_IS_PAUSED, &atchan->status);
1390
1391        spin_unlock_irqrestore(&atchan->lock, flags);
1392
1393        return 0;
1394}
1395
1396static int atc_resume(struct dma_chan *chan)
1397{
1398        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1399        struct at_dma           *atdma = to_at_dma(chan->device);
1400        int                     chan_id = atchan->chan_common.chan_id;
1401        unsigned long           flags;
1402
1403        dev_vdbg(chan2dev(chan), "%s\n", __func__);
1404
1405        if (!atc_chan_is_paused(atchan))
1406                return 0;
1407
1408        spin_lock_irqsave(&atchan->lock, flags);
1409
1410        dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1411        clear_bit(ATC_IS_PAUSED, &atchan->status);
1412
1413        spin_unlock_irqrestore(&atchan->lock, flags);
1414
1415        return 0;
1416}
1417
1418static int atc_terminate_all(struct dma_chan *chan)
1419{
1420        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1421        struct at_dma           *atdma = to_at_dma(chan->device);
1422        int                     chan_id = atchan->chan_common.chan_id;
1423        struct at_desc          *desc, *_desc;
1424        unsigned long           flags;
1425
1426        LIST_HEAD(list);
1427
1428        dev_vdbg(chan2dev(chan), "%s\n", __func__);
1429
1430        /*
1431         * This is only called when something went wrong elsewhere, so
1432         * we don't really care about the data. Just disable the
1433         * channel. We still have to poll the channel enable bit due
1434         * to AHB/HSB limitations.
1435         */
1436        spin_lock_irqsave(&atchan->lock, flags);
1437
1438        /* disabling channel: must also remove suspend state */
1439        dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1440
1441        /* confirm that this channel is disabled */
1442        while (dma_readl(atdma, CHSR) & atchan->mask)
1443                cpu_relax();
1444
1445        /* active_list entries will end up before queued entries */
1446        list_splice_init(&atchan->queue, &list);
1447        list_splice_init(&atchan->active_list, &list);
1448
1449        /* Flush all pending and queued descriptors */
1450        list_for_each_entry_safe(desc, _desc, &list, desc_node)
1451                atc_chain_complete(atchan, desc);
1452
1453        clear_bit(ATC_IS_PAUSED, &atchan->status);
1454        /* if channel dedicated to cyclic operations, free it */
1455        clear_bit(ATC_IS_CYCLIC, &atchan->status);
1456
1457        spin_unlock_irqrestore(&atchan->lock, flags);
1458
1459        return 0;
1460}
1461
1462/**
1463 * atc_tx_status - poll for transaction completion
1464 * @chan: DMA channel
1465 * @cookie: transaction identifier to check status of
1466 * @txstate: if not %NULL updated with transaction state
1467 *
1468 * If @txstate is passed in, upon return it reflect the driver
1469 * internal state and can be used with dma_async_is_complete() to check
1470 * the status of multiple cookies without re-checking hardware state.
1471 */
1472static enum dma_status
1473atc_tx_status(struct dma_chan *chan,
1474                dma_cookie_t cookie,
1475                struct dma_tx_state *txstate)
1476{
1477        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1478        unsigned long           flags;
1479        enum dma_status         ret;
1480        int bytes = 0;
1481
1482        ret = dma_cookie_status(chan, cookie, txstate);
1483        if (ret == DMA_COMPLETE)
1484                return ret;
1485        /*
1486         * There's no point calculating the residue if there's
1487         * no txstate to store the value.
1488         */
1489        if (!txstate)
1490                return DMA_ERROR;
1491
1492        spin_lock_irqsave(&atchan->lock, flags);
1493
1494        /*  Get number of bytes left in the active transactions */
1495        bytes = atc_get_bytes_left(chan, cookie);
1496
1497        spin_unlock_irqrestore(&atchan->lock, flags);
1498
1499        if (unlikely(bytes < 0)) {
1500                dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1501                return DMA_ERROR;
1502        } else {
1503                dma_set_residue(txstate, bytes);
1504        }
1505
1506        dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1507                 ret, cookie, bytes);
1508
1509        return ret;
1510}
1511
1512/**
1513 * atc_issue_pending - try to finish work
1514 * @chan: target DMA channel
1515 */
1516static void atc_issue_pending(struct dma_chan *chan)
1517{
1518        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1519        unsigned long           flags;
1520
1521        dev_vdbg(chan2dev(chan), "issue_pending\n");
1522
1523        /* Not needed for cyclic transfers */
1524        if (atc_chan_is_cyclic(atchan))
1525                return;
1526
1527        spin_lock_irqsave(&atchan->lock, flags);
1528        atc_advance_work(atchan);
1529        spin_unlock_irqrestore(&atchan->lock, flags);
1530}
1531
1532/**
1533 * atc_alloc_chan_resources - allocate resources for DMA channel
1534 * @chan: allocate descriptor resources for this channel
1535 * @client: current client requesting the channel be ready for requests
1536 *
1537 * return - the number of allocated descriptors
1538 */
1539static int atc_alloc_chan_resources(struct dma_chan *chan)
1540{
1541        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1542        struct at_dma           *atdma = to_at_dma(chan->device);
1543        struct at_desc          *desc;
1544        struct at_dma_slave     *atslave;
1545        unsigned long           flags;
1546        int                     i;
1547        u32                     cfg;
1548        LIST_HEAD(tmp_list);
1549
1550        dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1551
1552        /* ASSERT:  channel is idle */
1553        if (atc_chan_is_enabled(atchan)) {
1554                dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1555                return -EIO;
1556        }
1557
1558        cfg = ATC_DEFAULT_CFG;
1559
1560        atslave = chan->private;
1561        if (atslave) {
1562                /*
1563                 * We need controller-specific data to set up slave
1564                 * transfers.
1565                 */
1566                BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1567
1568                /* if cfg configuration specified take it instead of default */
1569                if (atslave->cfg)
1570                        cfg = atslave->cfg;
1571        }
1572
1573        /* have we already been set up?
1574         * reconfigure channel but no need to reallocate descriptors */
1575        if (!list_empty(&atchan->free_list))
1576                return atchan->descs_allocated;
1577
1578        /* Allocate initial pool of descriptors */
1579        for (i = 0; i < init_nr_desc_per_channel; i++) {
1580                desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1581                if (!desc) {
1582                        dev_err(atdma->dma_common.dev,
1583                                "Only %d initial descriptors\n", i);
1584                        break;
1585                }
1586                list_add_tail(&desc->desc_node, &tmp_list);
1587        }
1588
1589        spin_lock_irqsave(&atchan->lock, flags);
1590        atchan->descs_allocated = i;
1591        list_splice(&tmp_list, &atchan->free_list);
1592        dma_cookie_init(chan);
1593        spin_unlock_irqrestore(&atchan->lock, flags);
1594
1595        /* channel parameters */
1596        channel_writel(atchan, CFG, cfg);
1597
1598        dev_dbg(chan2dev(chan),
1599                "alloc_chan_resources: allocated %d descriptors\n",
1600                atchan->descs_allocated);
1601
1602        return atchan->descs_allocated;
1603}
1604
1605/**
1606 * atc_free_chan_resources - free all channel resources
1607 * @chan: DMA channel
1608 */
1609static void atc_free_chan_resources(struct dma_chan *chan)
1610{
1611        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1612        struct at_dma           *atdma = to_at_dma(chan->device);
1613        struct at_desc          *desc, *_desc;
1614        LIST_HEAD(list);
1615
1616        dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1617                atchan->descs_allocated);
1618
1619        /* ASSERT:  channel is idle */
1620        BUG_ON(!list_empty(&atchan->active_list));
1621        BUG_ON(!list_empty(&atchan->queue));
1622        BUG_ON(atc_chan_is_enabled(atchan));
1623
1624        list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1625                dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1626                list_del(&desc->desc_node);
1627                /* free link descriptor */
1628                dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1629        }
1630        list_splice_init(&atchan->free_list, &list);
1631        atchan->descs_allocated = 0;
1632        atchan->status = 0;
1633
1634        /*
1635         * Free atslave allocated in at_dma_xlate()
1636         */
1637        kfree(chan->private);
1638        chan->private = NULL;
1639
1640        dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1641}
1642
1643#ifdef CONFIG_OF
1644static bool at_dma_filter(struct dma_chan *chan, void *slave)
1645{
1646        struct at_dma_slave *atslave = slave;
1647
1648        if (atslave->dma_dev == chan->device->dev) {
1649                chan->private = atslave;
1650                return true;
1651        } else {
1652                return false;
1653        }
1654}
1655
1656static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1657                                     struct of_dma *of_dma)
1658{
1659        struct dma_chan *chan;
1660        struct at_dma_chan *atchan;
1661        struct at_dma_slave *atslave;
1662        dma_cap_mask_t mask;
1663        unsigned int per_id;
1664        struct platform_device *dmac_pdev;
1665
1666        if (dma_spec->args_count != 2)
1667                return NULL;
1668
1669        dmac_pdev = of_find_device_by_node(dma_spec->np);
1670
1671        dma_cap_zero(mask);
1672        dma_cap_set(DMA_SLAVE, mask);
1673
1674        atslave = kzalloc(sizeof(*atslave), GFP_KERNEL);
1675        if (!atslave)
1676                return NULL;
1677
1678        atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1679        /*
1680         * We can fill both SRC_PER and DST_PER, one of these fields will be
1681         * ignored depending on DMA transfer direction.
1682         */
1683        per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1684        atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1685                     | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1686        /*
1687         * We have to translate the value we get from the device tree since
1688         * the half FIFO configuration value had to be 0 to keep backward
1689         * compatibility.
1690         */
1691        switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1692        case AT91_DMA_CFG_FIFOCFG_ALAP:
1693                atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1694                break;
1695        case AT91_DMA_CFG_FIFOCFG_ASAP:
1696                atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1697                break;
1698        case AT91_DMA_CFG_FIFOCFG_HALF:
1699        default:
1700                atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1701        }
1702        atslave->dma_dev = &dmac_pdev->dev;
1703
1704        chan = dma_request_channel(mask, at_dma_filter, atslave);
1705        if (!chan)
1706                return NULL;
1707
1708        atchan = to_at_dma_chan(chan);
1709        atchan->per_if = dma_spec->args[0] & 0xff;
1710        atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1711
1712        return chan;
1713}
1714#else
1715static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1716                                     struct of_dma *of_dma)
1717{
1718        return NULL;
1719}
1720#endif
1721
1722/*--  Module Management  -----------------------------------------------*/
1723
1724/* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1725static struct at_dma_platform_data at91sam9rl_config = {
1726        .nr_channels = 2,
1727};
1728static struct at_dma_platform_data at91sam9g45_config = {
1729        .nr_channels = 8,
1730};
1731
1732#if defined(CONFIG_OF)
1733static const struct of_device_id atmel_dma_dt_ids[] = {
1734        {
1735                .compatible = "atmel,at91sam9rl-dma",
1736                .data = &at91sam9rl_config,
1737        }, {
1738                .compatible = "atmel,at91sam9g45-dma",
1739                .data = &at91sam9g45_config,
1740        }, {
1741                /* sentinel */
1742        }
1743};
1744
1745MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1746#endif
1747
1748static const struct platform_device_id atdma_devtypes[] = {
1749        {
1750                .name = "at91sam9rl_dma",
1751                .driver_data = (unsigned long) &at91sam9rl_config,
1752        }, {
1753                .name = "at91sam9g45_dma",
1754                .driver_data = (unsigned long) &at91sam9g45_config,
1755        }, {
1756                /* sentinel */
1757        }
1758};
1759
1760static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1761                                                struct platform_device *pdev)
1762{
1763        if (pdev->dev.of_node) {
1764                const struct of_device_id *match;
1765                match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1766                if (match == NULL)
1767                        return NULL;
1768                return match->data;
1769        }
1770        return (struct at_dma_platform_data *)
1771                        platform_get_device_id(pdev)->driver_data;
1772}
1773
1774/**
1775 * at_dma_off - disable DMA controller
1776 * @atdma: the Atmel HDAMC device
1777 */
1778static void at_dma_off(struct at_dma *atdma)
1779{
1780        dma_writel(atdma, EN, 0);
1781
1782        /* disable all interrupts */
1783        dma_writel(atdma, EBCIDR, -1L);
1784
1785        /* confirm that all channels are disabled */
1786        while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1787                cpu_relax();
1788}
1789
1790static int __init at_dma_probe(struct platform_device *pdev)
1791{
1792        struct resource         *io;
1793        struct at_dma           *atdma;
1794        size_t                  size;
1795        int                     irq;
1796        int                     err;
1797        int                     i;
1798        const struct at_dma_platform_data *plat_dat;
1799
1800        /* setup platform data for each SoC */
1801        dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1802        dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1803        dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1804        dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1805        dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1806        dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1807        dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1808
1809        /* get DMA parameters from controller type */
1810        plat_dat = at_dma_get_driver_data(pdev);
1811        if (!plat_dat)
1812                return -ENODEV;
1813
1814        io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1815        if (!io)
1816                return -EINVAL;
1817
1818        irq = platform_get_irq(pdev, 0);
1819        if (irq < 0)
1820                return irq;
1821
1822        size = sizeof(struct at_dma);
1823        size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1824        atdma = kzalloc(size, GFP_KERNEL);
1825        if (!atdma)
1826                return -ENOMEM;
1827
1828        /* discover transaction capabilities */
1829        atdma->dma_common.cap_mask = plat_dat->cap_mask;
1830        atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1831
1832        size = resource_size(io);
1833        if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1834                err = -EBUSY;
1835                goto err_kfree;
1836        }
1837
1838        atdma->regs = ioremap(io->start, size);
1839        if (!atdma->regs) {
1840                err = -ENOMEM;
1841                goto err_release_r;
1842        }
1843
1844        atdma->clk = clk_get(&pdev->dev, "dma_clk");
1845        if (IS_ERR(atdma->clk)) {
1846                err = PTR_ERR(atdma->clk);
1847                goto err_clk;
1848        }
1849        err = clk_prepare_enable(atdma->clk);
1850        if (err)
1851                goto err_clk_prepare;
1852
1853        /* force dma off, just in case */
1854        at_dma_off(atdma);
1855
1856        err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1857        if (err)
1858                goto err_irq;
1859
1860        platform_set_drvdata(pdev, atdma);
1861
1862        /* create a pool of consistent memory blocks for hardware descriptors */
1863        atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1864                        &pdev->dev, sizeof(struct at_desc),
1865                        4 /* word alignment */, 0);
1866        if (!atdma->dma_desc_pool) {
1867                dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1868                err = -ENOMEM;
1869                goto err_desc_pool_create;
1870        }
1871
1872        /* create a pool of consistent memory blocks for memset blocks */
1873        atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1874                                             &pdev->dev, sizeof(int), 4, 0);
1875        if (!atdma->memset_pool) {
1876                dev_err(&pdev->dev, "No memory for memset dma pool\n");
1877                err = -ENOMEM;
1878                goto err_memset_pool_create;
1879        }
1880
1881        /* clear any pending interrupt */
1882        while (dma_readl(atdma, EBCISR))
1883                cpu_relax();
1884
1885        /* initialize channels related values */
1886        INIT_LIST_HEAD(&atdma->dma_common.channels);
1887        for (i = 0; i < plat_dat->nr_channels; i++) {
1888                struct at_dma_chan      *atchan = &atdma->chan[i];
1889
1890                atchan->mem_if = AT_DMA_MEM_IF;
1891                atchan->per_if = AT_DMA_PER_IF;
1892                atchan->chan_common.device = &atdma->dma_common;
1893                dma_cookie_init(&atchan->chan_common);
1894                list_add_tail(&atchan->chan_common.device_node,
1895                                &atdma->dma_common.channels);
1896
1897                atchan->ch_regs = atdma->regs + ch_regs(i);
1898                spin_lock_init(&atchan->lock);
1899                atchan->mask = 1 << i;
1900
1901                INIT_LIST_HEAD(&atchan->active_list);
1902                INIT_LIST_HEAD(&atchan->queue);
1903                INIT_LIST_HEAD(&atchan->free_list);
1904
1905                tasklet_init(&atchan->tasklet, atc_tasklet,
1906                                (unsigned long)atchan);
1907                atc_enable_chan_irq(atdma, i);
1908        }
1909
1910        /* set base routines */
1911        atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1912        atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1913        atdma->dma_common.device_tx_status = atc_tx_status;
1914        atdma->dma_common.device_issue_pending = atc_issue_pending;
1915        atdma->dma_common.dev = &pdev->dev;
1916
1917        /* set prep routines based on capability */
1918        if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1919                atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1920
1921        if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1922                atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1923
1924        if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
1925                atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
1926                atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
1927                atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
1928        }
1929
1930        if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1931                atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1932                /* controller can do slave DMA: can trigger cyclic transfers */
1933                dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1934                atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1935                atdma->dma_common.device_config = atc_config;
1936                atdma->dma_common.device_pause = atc_pause;
1937                atdma->dma_common.device_resume = atc_resume;
1938                atdma->dma_common.device_terminate_all = atc_terminate_all;
1939                atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1940                atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1941                atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1942                atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1943        }
1944
1945        dma_writel(atdma, EN, AT_DMA_ENABLE);
1946
1947        dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
1948          dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1949          dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
1950          dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
1951          plat_dat->nr_channels);
1952
1953        dma_async_device_register(&atdma->dma_common);
1954
1955        /*
1956         * Do not return an error if the dmac node is not present in order to
1957         * not break the existing way of requesting channel with
1958         * dma_request_channel().
1959         */
1960        if (pdev->dev.of_node) {
1961                err = of_dma_controller_register(pdev->dev.of_node,
1962                                                 at_dma_xlate, atdma);
1963                if (err) {
1964                        dev_err(&pdev->dev, "could not register of_dma_controller\n");
1965                        goto err_of_dma_controller_register;
1966                }
1967        }
1968
1969        return 0;
1970
1971err_of_dma_controller_register:
1972        dma_async_device_unregister(&atdma->dma_common);
1973        dma_pool_destroy(atdma->memset_pool);
1974err_memset_pool_create:
1975        dma_pool_destroy(atdma->dma_desc_pool);
1976err_desc_pool_create:
1977        free_irq(platform_get_irq(pdev, 0), atdma);
1978err_irq:
1979        clk_disable_unprepare(atdma->clk);
1980err_clk_prepare:
1981        clk_put(atdma->clk);
1982err_clk:
1983        iounmap(atdma->regs);
1984        atdma->regs = NULL;
1985err_release_r:
1986        release_mem_region(io->start, size);
1987err_kfree:
1988        kfree(atdma);
1989        return err;
1990}
1991
1992static int at_dma_remove(struct platform_device *pdev)
1993{
1994        struct at_dma           *atdma = platform_get_drvdata(pdev);
1995        struct dma_chan         *chan, *_chan;
1996        struct resource         *io;
1997
1998        at_dma_off(atdma);
1999        if (pdev->dev.of_node)
2000                of_dma_controller_free(pdev->dev.of_node);
2001        dma_async_device_unregister(&atdma->dma_common);
2002
2003        dma_pool_destroy(atdma->memset_pool);
2004        dma_pool_destroy(atdma->dma_desc_pool);
2005        free_irq(platform_get_irq(pdev, 0), atdma);
2006
2007        list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2008                        device_node) {
2009                struct at_dma_chan      *atchan = to_at_dma_chan(chan);
2010
2011                /* Disable interrupts */
2012                atc_disable_chan_irq(atdma, chan->chan_id);
2013
2014                tasklet_kill(&atchan->tasklet);
2015                list_del(&chan->device_node);
2016        }
2017
2018        clk_disable_unprepare(atdma->clk);
2019        clk_put(atdma->clk);
2020
2021        iounmap(atdma->regs);
2022        atdma->regs = NULL;
2023
2024        io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2025        release_mem_region(io->start, resource_size(io));
2026
2027        kfree(atdma);
2028
2029        return 0;
2030}
2031
2032static void at_dma_shutdown(struct platform_device *pdev)
2033{
2034        struct at_dma   *atdma = platform_get_drvdata(pdev);
2035
2036        at_dma_off(platform_get_drvdata(pdev));
2037        clk_disable_unprepare(atdma->clk);
2038}
2039
2040static int at_dma_prepare(struct device *dev)
2041{
2042        struct at_dma *atdma = dev_get_drvdata(dev);
2043        struct dma_chan *chan, *_chan;
2044
2045        list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2046                        device_node) {
2047                struct at_dma_chan *atchan = to_at_dma_chan(chan);
2048                /* wait for transaction completion (except in cyclic case) */
2049                if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2050                        return -EAGAIN;
2051        }
2052        return 0;
2053}
2054
2055static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2056{
2057        struct dma_chan *chan = &atchan->chan_common;
2058
2059        /* Channel should be paused by user
2060         * do it anyway even if it is not done already */
2061        if (!atc_chan_is_paused(atchan)) {
2062                dev_warn(chan2dev(chan),
2063                "cyclic channel not paused, should be done by channel user\n");
2064                atc_pause(chan);
2065        }
2066
2067        /* now preserve additional data for cyclic operations */
2068        /* next descriptor address in the cyclic list */
2069        atchan->save_dscr = channel_readl(atchan, DSCR);
2070
2071        vdbg_dump_regs(atchan);
2072}
2073
2074static int at_dma_suspend_noirq(struct device *dev)
2075{
2076        struct at_dma *atdma = dev_get_drvdata(dev);
2077        struct dma_chan *chan, *_chan;
2078
2079        /* preserve data */
2080        list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2081                        device_node) {
2082                struct at_dma_chan *atchan = to_at_dma_chan(chan);
2083
2084                if (atc_chan_is_cyclic(atchan))
2085                        atc_suspend_cyclic(atchan);
2086                atchan->save_cfg = channel_readl(atchan, CFG);
2087        }
2088        atdma->save_imr = dma_readl(atdma, EBCIMR);
2089
2090        /* disable DMA controller */
2091        at_dma_off(atdma);
2092        clk_disable_unprepare(atdma->clk);
2093        return 0;
2094}
2095
2096static void atc_resume_cyclic(struct at_dma_chan *atchan)
2097{
2098        struct at_dma   *atdma = to_at_dma(atchan->chan_common.device);
2099
2100        /* restore channel status for cyclic descriptors list:
2101         * next descriptor in the cyclic list at the time of suspend */
2102        channel_writel(atchan, SADDR, 0);
2103        channel_writel(atchan, DADDR, 0);
2104        channel_writel(atchan, CTRLA, 0);
2105        channel_writel(atchan, CTRLB, 0);
2106        channel_writel(atchan, DSCR, atchan->save_dscr);
2107        dma_writel(atdma, CHER, atchan->mask);
2108
2109        /* channel pause status should be removed by channel user
2110         * We cannot take the initiative to do it here */
2111
2112        vdbg_dump_regs(atchan);
2113}
2114
2115static int at_dma_resume_noirq(struct device *dev)
2116{
2117        struct at_dma *atdma = dev_get_drvdata(dev);
2118        struct dma_chan *chan, *_chan;
2119
2120        /* bring back DMA controller */
2121        clk_prepare_enable(atdma->clk);
2122        dma_writel(atdma, EN, AT_DMA_ENABLE);
2123
2124        /* clear any pending interrupt */
2125        while (dma_readl(atdma, EBCISR))
2126                cpu_relax();
2127
2128        /* restore saved data */
2129        dma_writel(atdma, EBCIER, atdma->save_imr);
2130        list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2131                        device_node) {
2132                struct at_dma_chan *atchan = to_at_dma_chan(chan);
2133
2134                channel_writel(atchan, CFG, atchan->save_cfg);
2135                if (atc_chan_is_cyclic(atchan))
2136                        atc_resume_cyclic(atchan);
2137        }
2138        return 0;
2139}
2140
2141static const struct dev_pm_ops at_dma_dev_pm_ops = {
2142        .prepare = at_dma_prepare,
2143        .suspend_noirq = at_dma_suspend_noirq,
2144        .resume_noirq = at_dma_resume_noirq,
2145};
2146
2147static struct platform_driver at_dma_driver = {
2148        .remove         = at_dma_remove,
2149        .shutdown       = at_dma_shutdown,
2150        .id_table       = atdma_devtypes,
2151        .driver = {
2152                .name   = "at_hdmac",
2153                .pm     = &at_dma_dev_pm_ops,
2154                .of_match_table = of_match_ptr(atmel_dma_dt_ids),
2155        },
2156};
2157
2158static int __init at_dma_init(void)
2159{
2160        return platform_driver_probe(&at_dma_driver, at_dma_probe);
2161}
2162subsys_initcall(at_dma_init);
2163
2164static void __exit at_dma_exit(void)
2165{
2166        platform_driver_unregister(&at_dma_driver);
2167}
2168module_exit(at_dma_exit);
2169
2170MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2171MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2172MODULE_LICENSE("GPL");
2173MODULE_ALIAS("platform:at_hdmac");
2174