linux/drivers/dma/imx-sdma.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2//
   3// drivers/dma/imx-sdma.c
   4//
   5// This file contains a driver for the Freescale Smart DMA engine
   6//
   7// Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
   8//
   9// Based on code from Freescale:
  10//
  11// Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
  12
  13#include <linux/init.h>
  14#include <linux/iopoll.h>
  15#include <linux/module.h>
  16#include <linux/types.h>
  17#include <linux/bitops.h>
  18#include <linux/mm.h>
  19#include <linux/interrupt.h>
  20#include <linux/clk.h>
  21#include <linux/delay.h>
  22#include <linux/sched.h>
  23#include <linux/semaphore.h>
  24#include <linux/spinlock.h>
  25#include <linux/device.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/firmware.h>
  28#include <linux/slab.h>
  29#include <linux/platform_device.h>
  30#include <linux/dmaengine.h>
  31#include <linux/of.h>
  32#include <linux/of_address.h>
  33#include <linux/of_device.h>
  34#include <linux/of_dma.h>
  35#include <linux/workqueue.h>
  36
  37#include <asm/irq.h>
  38#include <linux/platform_data/dma-imx-sdma.h>
  39#include <linux/platform_data/dma-imx.h>
  40#include <linux/regmap.h>
  41#include <linux/mfd/syscon.h>
  42#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
  43
  44#include "dmaengine.h"
  45#include "virt-dma.h"
  46
  47/* SDMA registers */
  48#define SDMA_H_C0PTR            0x000
  49#define SDMA_H_INTR             0x004
  50#define SDMA_H_STATSTOP         0x008
  51#define SDMA_H_START            0x00c
  52#define SDMA_H_EVTOVR           0x010
  53#define SDMA_H_DSPOVR           0x014
  54#define SDMA_H_HOSTOVR          0x018
  55#define SDMA_H_EVTPEND          0x01c
  56#define SDMA_H_DSPENBL          0x020
  57#define SDMA_H_RESET            0x024
  58#define SDMA_H_EVTERR           0x028
  59#define SDMA_H_INTRMSK          0x02c
  60#define SDMA_H_PSW              0x030
  61#define SDMA_H_EVTERRDBG        0x034
  62#define SDMA_H_CONFIG           0x038
  63#define SDMA_ONCE_ENB           0x040
  64#define SDMA_ONCE_DATA          0x044
  65#define SDMA_ONCE_INSTR         0x048
  66#define SDMA_ONCE_STAT          0x04c
  67#define SDMA_ONCE_CMD           0x050
  68#define SDMA_EVT_MIRROR         0x054
  69#define SDMA_ILLINSTADDR        0x058
  70#define SDMA_CHN0ADDR           0x05c
  71#define SDMA_ONCE_RTB           0x060
  72#define SDMA_XTRIG_CONF1        0x070
  73#define SDMA_XTRIG_CONF2        0x074
  74#define SDMA_CHNENBL0_IMX35     0x200
  75#define SDMA_CHNENBL0_IMX31     0x080
  76#define SDMA_CHNPRI_0           0x100
  77
  78/*
  79 * Buffer descriptor status values.
  80 */
  81#define BD_DONE  0x01
  82#define BD_WRAP  0x02
  83#define BD_CONT  0x04
  84#define BD_INTR  0x08
  85#define BD_RROR  0x10
  86#define BD_LAST  0x20
  87#define BD_EXTD  0x80
  88
  89/*
  90 * Data Node descriptor status values.
  91 */
  92#define DND_END_OF_FRAME  0x80
  93#define DND_END_OF_XFER   0x40
  94#define DND_DONE          0x20
  95#define DND_UNUSED        0x01
  96
  97/*
  98 * IPCV2 descriptor status values.
  99 */
 100#define BD_IPCV2_END_OF_FRAME  0x40
 101
 102#define IPCV2_MAX_NODES        50
 103/*
 104 * Error bit set in the CCB status field by the SDMA,
 105 * in setbd routine, in case of a transfer error
 106 */
 107#define DATA_ERROR  0x10000000
 108
 109/*
 110 * Buffer descriptor commands.
 111 */
 112#define C0_ADDR             0x01
 113#define C0_LOAD             0x02
 114#define C0_DUMP             0x03
 115#define C0_SETCTX           0x07
 116#define C0_GETCTX           0x03
 117#define C0_SETDM            0x01
 118#define C0_SETPM            0x04
 119#define C0_GETDM            0x02
 120#define C0_GETPM            0x08
 121/*
 122 * Change endianness indicator in the BD command field
 123 */
 124#define CHANGE_ENDIANNESS   0x80
 125
 126/*
 127 *  p_2_p watermark_level description
 128 *      Bits            Name                    Description
 129 *      0-7             Lower WML               Lower watermark level
 130 *      8               PS                      1: Pad Swallowing
 131 *                                              0: No Pad Swallowing
 132 *      9               PA                      1: Pad Adding
 133 *                                              0: No Pad Adding
 134 *      10              SPDIF                   If this bit is set both source
 135 *                                              and destination are on SPBA
 136 *      11              Source Bit(SP)          1: Source on SPBA
 137 *                                              0: Source on AIPS
 138 *      12              Destination Bit(DP)     1: Destination on SPBA
 139 *                                              0: Destination on AIPS
 140 *      13-15           ---------               MUST BE 0
 141 *      16-23           Higher WML              HWML
 142 *      24-27           N                       Total number of samples after
 143 *                                              which Pad adding/Swallowing
 144 *                                              must be done. It must be odd.
 145 *      28              Lower WML Event(LWE)    SDMA events reg to check for
 146 *                                              LWML event mask
 147 *                                              0: LWE in EVENTS register
 148 *                                              1: LWE in EVENTS2 register
 149 *      29              Higher WML Event(HWE)   SDMA events reg to check for
 150 *                                              HWML event mask
 151 *                                              0: HWE in EVENTS register
 152 *                                              1: HWE in EVENTS2 register
 153 *      30              ---------               MUST BE 0
 154 *      31              CONT                    1: Amount of samples to be
 155 *                                              transferred is unknown and
 156 *                                              script will keep on
 157 *                                              transferring samples as long as
 158 *                                              both events are detected and
 159 *                                              script must be manually stopped
 160 *                                              by the application
 161 *                                              0: The amount of samples to be
 162 *                                              transferred is equal to the
 163 *                                              count field of mode word
 164 */
 165#define SDMA_WATERMARK_LEVEL_LWML       0xFF
 166#define SDMA_WATERMARK_LEVEL_PS         BIT(8)
 167#define SDMA_WATERMARK_LEVEL_PA         BIT(9)
 168#define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
 169#define SDMA_WATERMARK_LEVEL_SP         BIT(11)
 170#define SDMA_WATERMARK_LEVEL_DP         BIT(12)
 171#define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
 172#define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
 173#define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
 174#define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
 175
 176#define SDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
 177                                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
 178                                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
 179
 180#define SDMA_DMA_DIRECTIONS     (BIT(DMA_DEV_TO_MEM) | \
 181                                 BIT(DMA_MEM_TO_DEV) | \
 182                                 BIT(DMA_DEV_TO_DEV))
 183
 184/*
 185 * Mode/Count of data node descriptors - IPCv2
 186 */
 187struct sdma_mode_count {
 188#define SDMA_BD_MAX_CNT 0xffff
 189        u32 count   : 16; /* size of the buffer pointed by this BD */
 190        u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
 191        u32 command :  8; /* command mostly used for channel 0 */
 192};
 193
 194/*
 195 * Buffer descriptor
 196 */
 197struct sdma_buffer_descriptor {
 198        struct sdma_mode_count  mode;
 199        u32 buffer_addr;        /* address of the buffer described */
 200        u32 ext_buffer_addr;    /* extended buffer address */
 201} __attribute__ ((packed));
 202
 203/**
 204 * struct sdma_channel_control - Channel control Block
 205 *
 206 * @current_bd_ptr:     current buffer descriptor processed
 207 * @base_bd_ptr:        first element of buffer descriptor array
 208 * @unused:             padding. The SDMA engine expects an array of 128 byte
 209 *                      control blocks
 210 */
 211struct sdma_channel_control {
 212        u32 current_bd_ptr;
 213        u32 base_bd_ptr;
 214        u32 unused[2];
 215} __attribute__ ((packed));
 216
 217/**
 218 * struct sdma_state_registers - SDMA context for a channel
 219 *
 220 * @pc:         program counter
 221 * @unused1:    unused
 222 * @t:          test bit: status of arithmetic & test instruction
 223 * @rpc:        return program counter
 224 * @unused0:    unused
 225 * @sf:         source fault while loading data
 226 * @spc:        loop start program counter
 227 * @unused2:    unused
 228 * @df:         destination fault while storing data
 229 * @epc:        loop end program counter
 230 * @lm:         loop mode
 231 */
 232struct sdma_state_registers {
 233        u32 pc     :14;
 234        u32 unused1: 1;
 235        u32 t      : 1;
 236        u32 rpc    :14;
 237        u32 unused0: 1;
 238        u32 sf     : 1;
 239        u32 spc    :14;
 240        u32 unused2: 1;
 241        u32 df     : 1;
 242        u32 epc    :14;
 243        u32 lm     : 2;
 244} __attribute__ ((packed));
 245
 246/**
 247 * struct sdma_context_data - sdma context specific to a channel
 248 *
 249 * @channel_state:      channel state bits
 250 * @gReg:               general registers
 251 * @mda:                burst dma destination address register
 252 * @msa:                burst dma source address register
 253 * @ms:                 burst dma status register
 254 * @md:                 burst dma data register
 255 * @pda:                peripheral dma destination address register
 256 * @psa:                peripheral dma source address register
 257 * @ps:                 peripheral dma status register
 258 * @pd:                 peripheral dma data register
 259 * @ca:                 CRC polynomial register
 260 * @cs:                 CRC accumulator register
 261 * @dda:                dedicated core destination address register
 262 * @dsa:                dedicated core source address register
 263 * @ds:                 dedicated core status register
 264 * @dd:                 dedicated core data register
 265 * @scratch0:           1st word of dedicated ram for context switch
 266 * @scratch1:           2nd word of dedicated ram for context switch
 267 * @scratch2:           3rd word of dedicated ram for context switch
 268 * @scratch3:           4th word of dedicated ram for context switch
 269 * @scratch4:           5th word of dedicated ram for context switch
 270 * @scratch5:           6th word of dedicated ram for context switch
 271 * @scratch6:           7th word of dedicated ram for context switch
 272 * @scratch7:           8th word of dedicated ram for context switch
 273 */
 274struct sdma_context_data {
 275        struct sdma_state_registers  channel_state;
 276        u32  gReg[8];
 277        u32  mda;
 278        u32  msa;
 279        u32  ms;
 280        u32  md;
 281        u32  pda;
 282        u32  psa;
 283        u32  ps;
 284        u32  pd;
 285        u32  ca;
 286        u32  cs;
 287        u32  dda;
 288        u32  dsa;
 289        u32  ds;
 290        u32  dd;
 291        u32  scratch0;
 292        u32  scratch1;
 293        u32  scratch2;
 294        u32  scratch3;
 295        u32  scratch4;
 296        u32  scratch5;
 297        u32  scratch6;
 298        u32  scratch7;
 299} __attribute__ ((packed));
 300
 301
 302struct sdma_engine;
 303
 304/**
 305 * struct sdma_desc - descriptor structor for one transfer
 306 * @vd:                 descriptor for virt dma
 307 * @num_bd:             number of descriptors currently handling
 308 * @bd_phys:            physical address of bd
 309 * @buf_tail:           ID of the buffer that was processed
 310 * @buf_ptail:          ID of the previous buffer that was processed
 311 * @period_len:         period length, used in cyclic.
 312 * @chn_real_count:     the real count updated from bd->mode.count
 313 * @chn_count:          the transfer count set
 314 * @sdmac:              sdma_channel pointer
 315 * @bd:                 pointer of allocate bd
 316 */
 317struct sdma_desc {
 318        struct virt_dma_desc    vd;
 319        unsigned int            num_bd;
 320        dma_addr_t              bd_phys;
 321        unsigned int            buf_tail;
 322        unsigned int            buf_ptail;
 323        unsigned int            period_len;
 324        unsigned int            chn_real_count;
 325        unsigned int            chn_count;
 326        struct sdma_channel     *sdmac;
 327        struct sdma_buffer_descriptor *bd;
 328};
 329
 330/**
 331 * struct sdma_channel - housekeeping for a SDMA channel
 332 *
 333 * @vc:                 virt_dma base structure
 334 * @desc:               sdma description including vd and other special member
 335 * @sdma:               pointer to the SDMA engine for this channel
 336 * @channel:            the channel number, matches dmaengine chan_id + 1
 337 * @direction:          transfer type. Needed for setting SDMA script
 338 * @slave_config        Slave configuration
 339 * @peripheral_type:    Peripheral type. Needed for setting SDMA script
 340 * @event_id0:          aka dma request line
 341 * @event_id1:          for channels that use 2 events
 342 * @word_size:          peripheral access size
 343 * @pc_from_device:     script address for those device_2_memory
 344 * @pc_to_device:       script address for those memory_2_device
 345 * @device_to_device:   script address for those device_2_device
 346 * @pc_to_pc:           script address for those memory_2_memory
 347 * @flags:              loop mode or not
 348 * @per_address:        peripheral source or destination address in common case
 349 *                      destination address in p_2_p case
 350 * @per_address2:       peripheral source address in p_2_p case
 351 * @event_mask:         event mask used in p_2_p script
 352 * @watermark_level:    value for gReg[7], some script will extend it from
 353 *                      basic watermark such as p_2_p
 354 * @shp_addr:           value for gReg[6]
 355 * @per_addr:           value for gReg[2]
 356 * @status:             status of dma channel
 357 * @data:               specific sdma interface structure
 358 * @bd_pool:            dma_pool for bd
 359 */
 360struct sdma_channel {
 361        struct virt_dma_chan            vc;
 362        struct sdma_desc                *desc;
 363        struct sdma_engine              *sdma;
 364        unsigned int                    channel;
 365        enum dma_transfer_direction             direction;
 366        struct dma_slave_config         slave_config;
 367        enum sdma_peripheral_type       peripheral_type;
 368        unsigned int                    event_id0;
 369        unsigned int                    event_id1;
 370        enum dma_slave_buswidth         word_size;
 371        unsigned int                    pc_from_device, pc_to_device;
 372        unsigned int                    device_to_device;
 373        unsigned int                    pc_to_pc;
 374        unsigned long                   flags;
 375        dma_addr_t                      per_address, per_address2;
 376        unsigned long                   event_mask[2];
 377        unsigned long                   watermark_level;
 378        u32                             shp_addr, per_addr;
 379        enum dma_status                 status;
 380        bool                            context_loaded;
 381        struct imx_dma_data             data;
 382        struct work_struct              terminate_worker;
 383};
 384
 385#define IMX_DMA_SG_LOOP         BIT(0)
 386
 387#define MAX_DMA_CHANNELS 32
 388#define MXC_SDMA_DEFAULT_PRIORITY 1
 389#define MXC_SDMA_MIN_PRIORITY 1
 390#define MXC_SDMA_MAX_PRIORITY 7
 391
 392#define SDMA_FIRMWARE_MAGIC 0x414d4453
 393
 394/**
 395 * struct sdma_firmware_header - Layout of the firmware image
 396 *
 397 * @magic:              "SDMA"
 398 * @version_major:      increased whenever layout of struct
 399 *                      sdma_script_start_addrs changes.
 400 * @version_minor:      firmware minor version (for binary compatible changes)
 401 * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
 402 * @num_script_addrs:   Number of script addresses in this image
 403 * @ram_code_start:     offset of SDMA ram image in this firmware image
 404 * @ram_code_size:      size of SDMA ram image
 405 * @script_addrs:       Stores the start address of the SDMA scripts
 406 *                      (in SDMA memory space)
 407 */
 408struct sdma_firmware_header {
 409        u32     magic;
 410        u32     version_major;
 411        u32     version_minor;
 412        u32     script_addrs_start;
 413        u32     num_script_addrs;
 414        u32     ram_code_start;
 415        u32     ram_code_size;
 416};
 417
 418struct sdma_driver_data {
 419        int chnenbl0;
 420        int num_events;
 421        struct sdma_script_start_addrs  *script_addrs;
 422        bool check_ratio;
 423};
 424
 425struct sdma_engine {
 426        struct device                   *dev;
 427        struct device_dma_parameters    dma_parms;
 428        struct sdma_channel             channel[MAX_DMA_CHANNELS];
 429        struct sdma_channel_control     *channel_control;
 430        void __iomem                    *regs;
 431        struct sdma_context_data        *context;
 432        dma_addr_t                      context_phys;
 433        struct dma_device               dma_device;
 434        struct clk                      *clk_ipg;
 435        struct clk                      *clk_ahb;
 436        spinlock_t                      channel_0_lock;
 437        u32                             script_number;
 438        struct sdma_script_start_addrs  *script_addrs;
 439        const struct sdma_driver_data   *drvdata;
 440        u32                             spba_start_addr;
 441        u32                             spba_end_addr;
 442        unsigned int                    irq;
 443        dma_addr_t                      bd0_phys;
 444        struct sdma_buffer_descriptor   *bd0;
 445        /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
 446        bool                            clk_ratio;
 447};
 448
 449static int sdma_config_write(struct dma_chan *chan,
 450                       struct dma_slave_config *dmaengine_cfg,
 451                       enum dma_transfer_direction direction);
 452
 453static struct sdma_driver_data sdma_imx31 = {
 454        .chnenbl0 = SDMA_CHNENBL0_IMX31,
 455        .num_events = 32,
 456};
 457
 458static struct sdma_script_start_addrs sdma_script_imx25 = {
 459        .ap_2_ap_addr = 729,
 460        .uart_2_mcu_addr = 904,
 461        .per_2_app_addr = 1255,
 462        .mcu_2_app_addr = 834,
 463        .uartsh_2_mcu_addr = 1120,
 464        .per_2_shp_addr = 1329,
 465        .mcu_2_shp_addr = 1048,
 466        .ata_2_mcu_addr = 1560,
 467        .mcu_2_ata_addr = 1479,
 468        .app_2_per_addr = 1189,
 469        .app_2_mcu_addr = 770,
 470        .shp_2_per_addr = 1407,
 471        .shp_2_mcu_addr = 979,
 472};
 473
 474static struct sdma_driver_data sdma_imx25 = {
 475        .chnenbl0 = SDMA_CHNENBL0_IMX35,
 476        .num_events = 48,
 477        .script_addrs = &sdma_script_imx25,
 478};
 479
 480static struct sdma_driver_data sdma_imx35 = {
 481        .chnenbl0 = SDMA_CHNENBL0_IMX35,
 482        .num_events = 48,
 483};
 484
 485static struct sdma_script_start_addrs sdma_script_imx51 = {
 486        .ap_2_ap_addr = 642,
 487        .uart_2_mcu_addr = 817,
 488        .mcu_2_app_addr = 747,
 489        .mcu_2_shp_addr = 961,
 490        .ata_2_mcu_addr = 1473,
 491        .mcu_2_ata_addr = 1392,
 492        .app_2_per_addr = 1033,
 493        .app_2_mcu_addr = 683,
 494        .shp_2_per_addr = 1251,
 495        .shp_2_mcu_addr = 892,
 496};
 497
 498static struct sdma_driver_data sdma_imx51 = {
 499        .chnenbl0 = SDMA_CHNENBL0_IMX35,
 500        .num_events = 48,
 501        .script_addrs = &sdma_script_imx51,
 502};
 503
 504static struct sdma_script_start_addrs sdma_script_imx53 = {
 505        .ap_2_ap_addr = 642,
 506        .app_2_mcu_addr = 683,
 507        .mcu_2_app_addr = 747,
 508        .uart_2_mcu_addr = 817,
 509        .shp_2_mcu_addr = 891,
 510        .mcu_2_shp_addr = 960,
 511        .uartsh_2_mcu_addr = 1032,
 512        .spdif_2_mcu_addr = 1100,
 513        .mcu_2_spdif_addr = 1134,
 514        .firi_2_mcu_addr = 1193,
 515        .mcu_2_firi_addr = 1290,
 516};
 517
 518static struct sdma_driver_data sdma_imx53 = {
 519        .chnenbl0 = SDMA_CHNENBL0_IMX35,
 520        .num_events = 48,
 521        .script_addrs = &sdma_script_imx53,
 522};
 523
 524static struct sdma_script_start_addrs sdma_script_imx6q = {
 525        .ap_2_ap_addr = 642,
 526        .uart_2_mcu_addr = 817,
 527        .mcu_2_app_addr = 747,
 528        .per_2_per_addr = 6331,
 529        .uartsh_2_mcu_addr = 1032,
 530        .mcu_2_shp_addr = 960,
 531        .app_2_mcu_addr = 683,
 532        .shp_2_mcu_addr = 891,
 533        .spdif_2_mcu_addr = 1100,
 534        .mcu_2_spdif_addr = 1134,
 535};
 536
 537static struct sdma_driver_data sdma_imx6q = {
 538        .chnenbl0 = SDMA_CHNENBL0_IMX35,
 539        .num_events = 48,
 540        .script_addrs = &sdma_script_imx6q,
 541};
 542
 543static struct sdma_script_start_addrs sdma_script_imx7d = {
 544        .ap_2_ap_addr = 644,
 545        .uart_2_mcu_addr = 819,
 546        .mcu_2_app_addr = 749,
 547        .uartsh_2_mcu_addr = 1034,
 548        .mcu_2_shp_addr = 962,
 549        .app_2_mcu_addr = 685,
 550        .shp_2_mcu_addr = 893,
 551        .spdif_2_mcu_addr = 1102,
 552        .mcu_2_spdif_addr = 1136,
 553};
 554
 555static struct sdma_driver_data sdma_imx7d = {
 556        .chnenbl0 = SDMA_CHNENBL0_IMX35,
 557        .num_events = 48,
 558        .script_addrs = &sdma_script_imx7d,
 559};
 560
 561static struct sdma_driver_data sdma_imx8mq = {
 562        .chnenbl0 = SDMA_CHNENBL0_IMX35,
 563        .num_events = 48,
 564        .script_addrs = &sdma_script_imx7d,
 565        .check_ratio = 1,
 566};
 567
 568static const struct platform_device_id sdma_devtypes[] = {
 569        {
 570                .name = "imx25-sdma",
 571                .driver_data = (unsigned long)&sdma_imx25,
 572        }, {
 573                .name = "imx31-sdma",
 574                .driver_data = (unsigned long)&sdma_imx31,
 575        }, {
 576                .name = "imx35-sdma",
 577                .driver_data = (unsigned long)&sdma_imx35,
 578        }, {
 579                .name = "imx51-sdma",
 580                .driver_data = (unsigned long)&sdma_imx51,
 581        }, {
 582                .name = "imx53-sdma",
 583                .driver_data = (unsigned long)&sdma_imx53,
 584        }, {
 585                .name = "imx6q-sdma",
 586                .driver_data = (unsigned long)&sdma_imx6q,
 587        }, {
 588                .name = "imx7d-sdma",
 589                .driver_data = (unsigned long)&sdma_imx7d,
 590        }, {
 591                .name = "imx8mq-sdma",
 592                .driver_data = (unsigned long)&sdma_imx8mq,
 593        }, {
 594                /* sentinel */
 595        }
 596};
 597MODULE_DEVICE_TABLE(platform, sdma_devtypes);
 598
 599static const struct of_device_id sdma_dt_ids[] = {
 600        { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
 601        { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
 602        { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
 603        { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
 604        { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
 605        { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
 606        { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
 607        { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
 608        { /* sentinel */ }
 609};
 610MODULE_DEVICE_TABLE(of, sdma_dt_ids);
 611
 612#define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
 613#define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
 614#define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
 615#define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
 616
 617static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
 618{
 619        u32 chnenbl0 = sdma->drvdata->chnenbl0;
 620        return chnenbl0 + event * 4;
 621}
 622
 623static int sdma_config_ownership(struct sdma_channel *sdmac,
 624                bool event_override, bool mcu_override, bool dsp_override)
 625{
 626        struct sdma_engine *sdma = sdmac->sdma;
 627        int channel = sdmac->channel;
 628        unsigned long evt, mcu, dsp;
 629
 630        if (event_override && mcu_override && dsp_override)
 631                return -EINVAL;
 632
 633        evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
 634        mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
 635        dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
 636
 637        if (dsp_override)
 638                __clear_bit(channel, &dsp);
 639        else
 640                __set_bit(channel, &dsp);
 641
 642        if (event_override)
 643                __clear_bit(channel, &evt);
 644        else
 645                __set_bit(channel, &evt);
 646
 647        if (mcu_override)
 648                __clear_bit(channel, &mcu);
 649        else
 650                __set_bit(channel, &mcu);
 651
 652        writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
 653        writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
 654        writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
 655
 656        return 0;
 657}
 658
 659static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
 660{
 661        writel(BIT(channel), sdma->regs + SDMA_H_START);
 662}
 663
 664/*
 665 * sdma_run_channel0 - run a channel and wait till it's done
 666 */
 667static int sdma_run_channel0(struct sdma_engine *sdma)
 668{
 669        int ret;
 670        u32 reg;
 671
 672        sdma_enable_channel(sdma, 0);
 673
 674        ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
 675                                                reg, !(reg & 1), 1, 500);
 676        if (ret)
 677                dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
 678
 679        /* Set bits of CONFIG register with dynamic context switching */
 680        reg = readl(sdma->regs + SDMA_H_CONFIG);
 681        if ((reg & SDMA_H_CONFIG_CSM) == 0) {
 682                reg |= SDMA_H_CONFIG_CSM;
 683                writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
 684        }
 685
 686        return ret;
 687}
 688
 689static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
 690                u32 address)
 691{
 692        struct sdma_buffer_descriptor *bd0 = sdma->bd0;
 693        void *buf_virt;
 694        dma_addr_t buf_phys;
 695        int ret;
 696        unsigned long flags;
 697
 698        buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
 699        if (!buf_virt) {
 700                return -ENOMEM;
 701        }
 702
 703        spin_lock_irqsave(&sdma->channel_0_lock, flags);
 704
 705        bd0->mode.command = C0_SETPM;
 706        bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
 707        bd0->mode.count = size / 2;
 708        bd0->buffer_addr = buf_phys;
 709        bd0->ext_buffer_addr = address;
 710
 711        memcpy(buf_virt, buf, size);
 712
 713        ret = sdma_run_channel0(sdma);
 714
 715        spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
 716
 717        dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
 718
 719        return ret;
 720}
 721
 722static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
 723{
 724        struct sdma_engine *sdma = sdmac->sdma;
 725        int channel = sdmac->channel;
 726        unsigned long val;
 727        u32 chnenbl = chnenbl_ofs(sdma, event);
 728
 729        val = readl_relaxed(sdma->regs + chnenbl);
 730        __set_bit(channel, &val);
 731        writel_relaxed(val, sdma->regs + chnenbl);
 732}
 733
 734static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
 735{
 736        struct sdma_engine *sdma = sdmac->sdma;
 737        int channel = sdmac->channel;
 738        u32 chnenbl = chnenbl_ofs(sdma, event);
 739        unsigned long val;
 740
 741        val = readl_relaxed(sdma->regs + chnenbl);
 742        __clear_bit(channel, &val);
 743        writel_relaxed(val, sdma->regs + chnenbl);
 744}
 745
 746static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
 747{
 748        return container_of(t, struct sdma_desc, vd.tx);
 749}
 750
 751static void sdma_start_desc(struct sdma_channel *sdmac)
 752{
 753        struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
 754        struct sdma_desc *desc;
 755        struct sdma_engine *sdma = sdmac->sdma;
 756        int channel = sdmac->channel;
 757
 758        if (!vd) {
 759                sdmac->desc = NULL;
 760                return;
 761        }
 762        sdmac->desc = desc = to_sdma_desc(&vd->tx);
 763        /*
 764         * Do not delete the node in desc_issued list in cyclic mode, otherwise
 765         * the desc allocated will never be freed in vchan_dma_desc_free_list
 766         */
 767        if (!(sdmac->flags & IMX_DMA_SG_LOOP))
 768                list_del(&vd->node);
 769
 770        sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
 771        sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
 772        sdma_enable_channel(sdma, sdmac->channel);
 773}
 774
 775static void sdma_update_channel_loop(struct sdma_channel *sdmac)
 776{
 777        struct sdma_buffer_descriptor *bd;
 778        int error = 0;
 779        enum dma_status old_status = sdmac->status;
 780
 781        /*
 782         * loop mode. Iterate over descriptors, re-setup them and
 783         * call callback function.
 784         */
 785        while (sdmac->desc) {
 786                struct sdma_desc *desc = sdmac->desc;
 787
 788                bd = &desc->bd[desc->buf_tail];
 789
 790                if (bd->mode.status & BD_DONE)
 791                        break;
 792
 793                if (bd->mode.status & BD_RROR) {
 794                        bd->mode.status &= ~BD_RROR;
 795                        sdmac->status = DMA_ERROR;
 796                        error = -EIO;
 797                }
 798
 799               /*
 800                * We use bd->mode.count to calculate the residue, since contains
 801                * the number of bytes present in the current buffer descriptor.
 802                */
 803
 804                desc->chn_real_count = bd->mode.count;
 805                bd->mode.status |= BD_DONE;
 806                bd->mode.count = desc->period_len;
 807                desc->buf_ptail = desc->buf_tail;
 808                desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
 809
 810                /*
 811                 * The callback is called from the interrupt context in order
 812                 * to reduce latency and to avoid the risk of altering the
 813                 * SDMA transaction status by the time the client tasklet is
 814                 * executed.
 815                 */
 816                spin_unlock(&sdmac->vc.lock);
 817                dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
 818                spin_lock(&sdmac->vc.lock);
 819
 820                if (error)
 821                        sdmac->status = old_status;
 822        }
 823}
 824
 825static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
 826{
 827        struct sdma_channel *sdmac = (struct sdma_channel *) data;
 828        struct sdma_buffer_descriptor *bd;
 829        int i, error = 0;
 830
 831        sdmac->desc->chn_real_count = 0;
 832        /*
 833         * non loop mode. Iterate over all descriptors, collect
 834         * errors and call callback function
 835         */
 836        for (i = 0; i < sdmac->desc->num_bd; i++) {
 837                bd = &sdmac->desc->bd[i];
 838
 839                 if (bd->mode.status & (BD_DONE | BD_RROR))
 840                        error = -EIO;
 841                 sdmac->desc->chn_real_count += bd->mode.count;
 842        }
 843
 844        if (error)
 845                sdmac->status = DMA_ERROR;
 846        else
 847                sdmac->status = DMA_COMPLETE;
 848}
 849
 850static irqreturn_t sdma_int_handler(int irq, void *dev_id)
 851{
 852        struct sdma_engine *sdma = dev_id;
 853        unsigned long stat;
 854
 855        stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
 856        writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
 857        /* channel 0 is special and not handled here, see run_channel0() */
 858        stat &= ~1;
 859
 860        while (stat) {
 861                int channel = fls(stat) - 1;
 862                struct sdma_channel *sdmac = &sdma->channel[channel];
 863                struct sdma_desc *desc;
 864
 865                spin_lock(&sdmac->vc.lock);
 866                desc = sdmac->desc;
 867                if (desc) {
 868                        if (sdmac->flags & IMX_DMA_SG_LOOP) {
 869                                sdma_update_channel_loop(sdmac);
 870                        } else {
 871                                mxc_sdma_handle_channel_normal(sdmac);
 872                                vchan_cookie_complete(&desc->vd);
 873                                sdma_start_desc(sdmac);
 874                        }
 875                }
 876
 877                spin_unlock(&sdmac->vc.lock);
 878                __clear_bit(channel, &stat);
 879        }
 880
 881        return IRQ_HANDLED;
 882}
 883
 884/*
 885 * sets the pc of SDMA script according to the peripheral type
 886 */
 887static void sdma_get_pc(struct sdma_channel *sdmac,
 888                enum sdma_peripheral_type peripheral_type)
 889{
 890        struct sdma_engine *sdma = sdmac->sdma;
 891        int per_2_emi = 0, emi_2_per = 0;
 892        /*
 893         * These are needed once we start to support transfers between
 894         * two peripherals or memory-to-memory transfers
 895         */
 896        int per_2_per = 0, emi_2_emi = 0;
 897
 898        sdmac->pc_from_device = 0;
 899        sdmac->pc_to_device = 0;
 900        sdmac->device_to_device = 0;
 901        sdmac->pc_to_pc = 0;
 902
 903        switch (peripheral_type) {
 904        case IMX_DMATYPE_MEMORY:
 905                emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
 906                break;
 907        case IMX_DMATYPE_DSP:
 908                emi_2_per = sdma->script_addrs->bp_2_ap_addr;
 909                per_2_emi = sdma->script_addrs->ap_2_bp_addr;
 910                break;
 911        case IMX_DMATYPE_FIRI:
 912                per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
 913                emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
 914                break;
 915        case IMX_DMATYPE_UART:
 916                per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
 917                emi_2_per = sdma->script_addrs->mcu_2_app_addr;
 918                break;
 919        case IMX_DMATYPE_UART_SP:
 920                per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
 921                emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
 922                break;
 923        case IMX_DMATYPE_ATA:
 924                per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
 925                emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
 926                break;
 927        case IMX_DMATYPE_CSPI:
 928        case IMX_DMATYPE_EXT:
 929        case IMX_DMATYPE_SSI:
 930        case IMX_DMATYPE_SAI:
 931                per_2_emi = sdma->script_addrs->app_2_mcu_addr;
 932                emi_2_per = sdma->script_addrs->mcu_2_app_addr;
 933                break;
 934        case IMX_DMATYPE_SSI_DUAL:
 935                per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
 936                emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
 937                break;
 938        case IMX_DMATYPE_SSI_SP:
 939        case IMX_DMATYPE_MMC:
 940        case IMX_DMATYPE_SDHC:
 941        case IMX_DMATYPE_CSPI_SP:
 942        case IMX_DMATYPE_ESAI:
 943        case IMX_DMATYPE_MSHC_SP:
 944                per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
 945                emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
 946                break;
 947        case IMX_DMATYPE_ASRC:
 948                per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
 949                emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
 950                per_2_per = sdma->script_addrs->per_2_per_addr;
 951                break;
 952        case IMX_DMATYPE_ASRC_SP:
 953                per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
 954                emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
 955                per_2_per = sdma->script_addrs->per_2_per_addr;
 956                break;
 957        case IMX_DMATYPE_MSHC:
 958                per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
 959                emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
 960                break;
 961        case IMX_DMATYPE_CCM:
 962                per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
 963                break;
 964        case IMX_DMATYPE_SPDIF:
 965                per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
 966                emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
 967                break;
 968        case IMX_DMATYPE_IPU_MEMORY:
 969                emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
 970                break;
 971        default:
 972                break;
 973        }
 974
 975        sdmac->pc_from_device = per_2_emi;
 976        sdmac->pc_to_device = emi_2_per;
 977        sdmac->device_to_device = per_2_per;
 978        sdmac->pc_to_pc = emi_2_emi;
 979}
 980
 981static int sdma_load_context(struct sdma_channel *sdmac)
 982{
 983        struct sdma_engine *sdma = sdmac->sdma;
 984        int channel = sdmac->channel;
 985        int load_address;
 986        struct sdma_context_data *context = sdma->context;
 987        struct sdma_buffer_descriptor *bd0 = sdma->bd0;
 988        int ret;
 989        unsigned long flags;
 990
 991        if (sdmac->context_loaded)
 992                return 0;
 993
 994        if (sdmac->direction == DMA_DEV_TO_MEM)
 995                load_address = sdmac->pc_from_device;
 996        else if (sdmac->direction == DMA_DEV_TO_DEV)
 997                load_address = sdmac->device_to_device;
 998        else if (sdmac->direction == DMA_MEM_TO_MEM)
 999                load_address = sdmac->pc_to_pc;
1000        else
1001                load_address = sdmac->pc_to_device;
1002
1003        if (load_address < 0)
1004                return load_address;
1005
1006        dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1007        dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1008        dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1009        dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1010        dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1011        dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1012
1013        spin_lock_irqsave(&sdma->channel_0_lock, flags);
1014
1015        memset(context, 0, sizeof(*context));
1016        context->channel_state.pc = load_address;
1017
1018        /* Send by context the event mask,base address for peripheral
1019         * and watermark level
1020         */
1021        context->gReg[0] = sdmac->event_mask[1];
1022        context->gReg[1] = sdmac->event_mask[0];
1023        context->gReg[2] = sdmac->per_addr;
1024        context->gReg[6] = sdmac->shp_addr;
1025        context->gReg[7] = sdmac->watermark_level;
1026
1027        bd0->mode.command = C0_SETDM;
1028        bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1029        bd0->mode.count = sizeof(*context) / 4;
1030        bd0->buffer_addr = sdma->context_phys;
1031        bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1032        ret = sdma_run_channel0(sdma);
1033
1034        spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1035
1036        sdmac->context_loaded = true;
1037
1038        return ret;
1039}
1040
1041static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1042{
1043        return container_of(chan, struct sdma_channel, vc.chan);
1044}
1045
1046static int sdma_disable_channel(struct dma_chan *chan)
1047{
1048        struct sdma_channel *sdmac = to_sdma_chan(chan);
1049        struct sdma_engine *sdma = sdmac->sdma;
1050        int channel = sdmac->channel;
1051
1052        writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1053        sdmac->status = DMA_ERROR;
1054
1055        return 0;
1056}
1057static void sdma_channel_terminate_work(struct work_struct *work)
1058{
1059        struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1060                                                  terminate_worker);
1061        unsigned long flags;
1062        LIST_HEAD(head);
1063
1064        /*
1065         * According to NXP R&D team a delay of one BD SDMA cost time
1066         * (maximum is 1ms) should be added after disable of the channel
1067         * bit, to ensure SDMA core has really been stopped after SDMA
1068         * clients call .device_terminate_all.
1069         */
1070        usleep_range(1000, 2000);
1071
1072        spin_lock_irqsave(&sdmac->vc.lock, flags);
1073        vchan_get_all_descriptors(&sdmac->vc, &head);
1074        sdmac->desc = NULL;
1075        spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1076        vchan_dma_desc_free_list(&sdmac->vc, &head);
1077        sdmac->context_loaded = false;
1078}
1079
1080static int sdma_disable_channel_async(struct dma_chan *chan)
1081{
1082        struct sdma_channel *sdmac = to_sdma_chan(chan);
1083
1084        sdma_disable_channel(chan);
1085
1086        if (sdmac->desc)
1087                schedule_work(&sdmac->terminate_worker);
1088
1089        return 0;
1090}
1091
1092static void sdma_channel_synchronize(struct dma_chan *chan)
1093{
1094        struct sdma_channel *sdmac = to_sdma_chan(chan);
1095
1096        vchan_synchronize(&sdmac->vc);
1097
1098        flush_work(&sdmac->terminate_worker);
1099}
1100
1101static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1102{
1103        struct sdma_engine *sdma = sdmac->sdma;
1104
1105        int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1106        int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1107
1108        set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1109        set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1110
1111        if (sdmac->event_id0 > 31)
1112                sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1113
1114        if (sdmac->event_id1 > 31)
1115                sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1116
1117        /*
1118         * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1119         * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1120         * r0(event_mask[1]) and r1(event_mask[0]).
1121         */
1122        if (lwml > hwml) {
1123                sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1124                                                SDMA_WATERMARK_LEVEL_HWML);
1125                sdmac->watermark_level |= hwml;
1126                sdmac->watermark_level |= lwml << 16;
1127                swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1128        }
1129
1130        if (sdmac->per_address2 >= sdma->spba_start_addr &&
1131                        sdmac->per_address2 <= sdma->spba_end_addr)
1132                sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1133
1134        if (sdmac->per_address >= sdma->spba_start_addr &&
1135                        sdmac->per_address <= sdma->spba_end_addr)
1136                sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1137
1138        sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1139}
1140
1141static int sdma_config_channel(struct dma_chan *chan)
1142{
1143        struct sdma_channel *sdmac = to_sdma_chan(chan);
1144        int ret;
1145
1146        sdma_disable_channel(chan);
1147
1148        sdmac->event_mask[0] = 0;
1149        sdmac->event_mask[1] = 0;
1150        sdmac->shp_addr = 0;
1151        sdmac->per_addr = 0;
1152
1153        switch (sdmac->peripheral_type) {
1154        case IMX_DMATYPE_DSP:
1155                sdma_config_ownership(sdmac, false, true, true);
1156                break;
1157        case IMX_DMATYPE_MEMORY:
1158                sdma_config_ownership(sdmac, false, true, false);
1159                break;
1160        default:
1161                sdma_config_ownership(sdmac, true, true, false);
1162                break;
1163        }
1164
1165        sdma_get_pc(sdmac, sdmac->peripheral_type);
1166
1167        if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1168                        (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1169                /* Handle multiple event channels differently */
1170                if (sdmac->event_id1) {
1171                        if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1172                            sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1173                                sdma_set_watermarklevel_for_p2p(sdmac);
1174                } else
1175                        __set_bit(sdmac->event_id0, sdmac->event_mask);
1176
1177                /* Address */
1178                sdmac->shp_addr = sdmac->per_address;
1179                sdmac->per_addr = sdmac->per_address2;
1180        } else {
1181                sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1182        }
1183
1184        ret = sdma_load_context(sdmac);
1185
1186        return ret;
1187}
1188
1189static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1190                unsigned int priority)
1191{
1192        struct sdma_engine *sdma = sdmac->sdma;
1193        int channel = sdmac->channel;
1194
1195        if (priority < MXC_SDMA_MIN_PRIORITY
1196            || priority > MXC_SDMA_MAX_PRIORITY) {
1197                return -EINVAL;
1198        }
1199
1200        writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1201
1202        return 0;
1203}
1204
1205static int sdma_request_channel0(struct sdma_engine *sdma)
1206{
1207        int ret = -EBUSY;
1208
1209        sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1210                                        GFP_NOWAIT);
1211        if (!sdma->bd0) {
1212                ret = -ENOMEM;
1213                goto out;
1214        }
1215
1216        sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1217        sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1218
1219        sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1220        return 0;
1221out:
1222
1223        return ret;
1224}
1225
1226
1227static int sdma_alloc_bd(struct sdma_desc *desc)
1228{
1229        u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1230        int ret = 0;
1231
1232        desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1233                                       &desc->bd_phys, GFP_NOWAIT);
1234        if (!desc->bd) {
1235                ret = -ENOMEM;
1236                goto out;
1237        }
1238out:
1239        return ret;
1240}
1241
1242static void sdma_free_bd(struct sdma_desc *desc)
1243{
1244        u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1245
1246        dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1247                          desc->bd_phys);
1248}
1249
1250static void sdma_desc_free(struct virt_dma_desc *vd)
1251{
1252        struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1253
1254        sdma_free_bd(desc);
1255        kfree(desc);
1256}
1257
1258static int sdma_alloc_chan_resources(struct dma_chan *chan)
1259{
1260        struct sdma_channel *sdmac = to_sdma_chan(chan);
1261        struct imx_dma_data *data = chan->private;
1262        struct imx_dma_data mem_data;
1263        int prio, ret;
1264
1265        /*
1266         * MEMCPY may never setup chan->private by filter function such as
1267         * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1268         * Please note in any other slave case, you have to setup chan->private
1269         * with 'struct imx_dma_data' in your own filter function if you want to
1270         * request dma channel by dma_request_channel() rather than
1271         * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1272         * to warn you to correct your filter function.
1273         */
1274        if (!data) {
1275                dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1276                mem_data.priority = 2;
1277                mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1278                mem_data.dma_request = 0;
1279                mem_data.dma_request2 = 0;
1280                data = &mem_data;
1281
1282                sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1283        }
1284
1285        switch (data->priority) {
1286        case DMA_PRIO_HIGH:
1287                prio = 3;
1288                break;
1289        case DMA_PRIO_MEDIUM:
1290                prio = 2;
1291                break;
1292        case DMA_PRIO_LOW:
1293        default:
1294                prio = 1;
1295                break;
1296        }
1297
1298        sdmac->peripheral_type = data->peripheral_type;
1299        sdmac->event_id0 = data->dma_request;
1300        sdmac->event_id1 = data->dma_request2;
1301
1302        ret = clk_enable(sdmac->sdma->clk_ipg);
1303        if (ret)
1304                return ret;
1305        ret = clk_enable(sdmac->sdma->clk_ahb);
1306        if (ret)
1307                goto disable_clk_ipg;
1308
1309        ret = sdma_set_channel_priority(sdmac, prio);
1310        if (ret)
1311                goto disable_clk_ahb;
1312
1313        return 0;
1314
1315disable_clk_ahb:
1316        clk_disable(sdmac->sdma->clk_ahb);
1317disable_clk_ipg:
1318        clk_disable(sdmac->sdma->clk_ipg);
1319        return ret;
1320}
1321
1322static void sdma_free_chan_resources(struct dma_chan *chan)
1323{
1324        struct sdma_channel *sdmac = to_sdma_chan(chan);
1325        struct sdma_engine *sdma = sdmac->sdma;
1326
1327        sdma_disable_channel_async(chan);
1328
1329        sdma_channel_synchronize(chan);
1330
1331        if (sdmac->event_id0)
1332                sdma_event_disable(sdmac, sdmac->event_id0);
1333        if (sdmac->event_id1)
1334                sdma_event_disable(sdmac, sdmac->event_id1);
1335
1336        sdmac->event_id0 = 0;
1337        sdmac->event_id1 = 0;
1338
1339        sdma_set_channel_priority(sdmac, 0);
1340
1341        clk_disable(sdma->clk_ipg);
1342        clk_disable(sdma->clk_ahb);
1343}
1344
1345static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1346                                enum dma_transfer_direction direction, u32 bds)
1347{
1348        struct sdma_desc *desc;
1349
1350        desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1351        if (!desc)
1352                goto err_out;
1353
1354        sdmac->status = DMA_IN_PROGRESS;
1355        sdmac->direction = direction;
1356        sdmac->flags = 0;
1357
1358        desc->chn_count = 0;
1359        desc->chn_real_count = 0;
1360        desc->buf_tail = 0;
1361        desc->buf_ptail = 0;
1362        desc->sdmac = sdmac;
1363        desc->num_bd = bds;
1364
1365        if (sdma_alloc_bd(desc))
1366                goto err_desc_out;
1367
1368        /* No slave_config called in MEMCPY case, so do here */
1369        if (direction == DMA_MEM_TO_MEM)
1370                sdma_config_ownership(sdmac, false, true, false);
1371
1372        if (sdma_load_context(sdmac))
1373                goto err_desc_out;
1374
1375        return desc;
1376
1377err_desc_out:
1378        kfree(desc);
1379err_out:
1380        return NULL;
1381}
1382
1383static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1384                struct dma_chan *chan, dma_addr_t dma_dst,
1385                dma_addr_t dma_src, size_t len, unsigned long flags)
1386{
1387        struct sdma_channel *sdmac = to_sdma_chan(chan);
1388        struct sdma_engine *sdma = sdmac->sdma;
1389        int channel = sdmac->channel;
1390        size_t count;
1391        int i = 0, param;
1392        struct sdma_buffer_descriptor *bd;
1393        struct sdma_desc *desc;
1394
1395        if (!chan || !len)
1396                return NULL;
1397
1398        dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1399                &dma_src, &dma_dst, len, channel);
1400
1401        desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1402                                        len / SDMA_BD_MAX_CNT + 1);
1403        if (!desc)
1404                return NULL;
1405
1406        do {
1407                count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1408                bd = &desc->bd[i];
1409                bd->buffer_addr = dma_src;
1410                bd->ext_buffer_addr = dma_dst;
1411                bd->mode.count = count;
1412                desc->chn_count += count;
1413                bd->mode.command = 0;
1414
1415                dma_src += count;
1416                dma_dst += count;
1417                len -= count;
1418                i++;
1419
1420                param = BD_DONE | BD_EXTD | BD_CONT;
1421                /* last bd */
1422                if (!len) {
1423                        param |= BD_INTR;
1424                        param |= BD_LAST;
1425                        param &= ~BD_CONT;
1426                }
1427
1428                dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1429                                i, count, bd->buffer_addr,
1430                                param & BD_WRAP ? "wrap" : "",
1431                                param & BD_INTR ? " intr" : "");
1432
1433                bd->mode.status = param;
1434        } while (len);
1435
1436        return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1437}
1438
1439static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1440                struct dma_chan *chan, struct scatterlist *sgl,
1441                unsigned int sg_len, enum dma_transfer_direction direction,
1442                unsigned long flags, void *context)
1443{
1444        struct sdma_channel *sdmac = to_sdma_chan(chan);
1445        struct sdma_engine *sdma = sdmac->sdma;
1446        int i, count;
1447        int channel = sdmac->channel;
1448        struct scatterlist *sg;
1449        struct sdma_desc *desc;
1450
1451        sdma_config_write(chan, &sdmac->slave_config, direction);
1452
1453        desc = sdma_transfer_init(sdmac, direction, sg_len);
1454        if (!desc)
1455                goto err_out;
1456
1457        dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1458                        sg_len, channel);
1459
1460        for_each_sg(sgl, sg, sg_len, i) {
1461                struct sdma_buffer_descriptor *bd = &desc->bd[i];
1462                int param;
1463
1464                bd->buffer_addr = sg->dma_address;
1465
1466                count = sg_dma_len(sg);
1467
1468                if (count > SDMA_BD_MAX_CNT) {
1469                        dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1470                                        channel, count, SDMA_BD_MAX_CNT);
1471                        goto err_bd_out;
1472                }
1473
1474                bd->mode.count = count;
1475                desc->chn_count += count;
1476
1477                if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1478                        goto err_bd_out;
1479
1480                switch (sdmac->word_size) {
1481                case DMA_SLAVE_BUSWIDTH_4_BYTES:
1482                        bd->mode.command = 0;
1483                        if (count & 3 || sg->dma_address & 3)
1484                                goto err_bd_out;
1485                        break;
1486                case DMA_SLAVE_BUSWIDTH_2_BYTES:
1487                        bd->mode.command = 2;
1488                        if (count & 1 || sg->dma_address & 1)
1489                                goto err_bd_out;
1490                        break;
1491                case DMA_SLAVE_BUSWIDTH_1_BYTE:
1492                        bd->mode.command = 1;
1493                        break;
1494                default:
1495                        goto err_bd_out;
1496                }
1497
1498                param = BD_DONE | BD_EXTD | BD_CONT;
1499
1500                if (i + 1 == sg_len) {
1501                        param |= BD_INTR;
1502                        param |= BD_LAST;
1503                        param &= ~BD_CONT;
1504                }
1505
1506                dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1507                                i, count, (u64)sg->dma_address,
1508                                param & BD_WRAP ? "wrap" : "",
1509                                param & BD_INTR ? " intr" : "");
1510
1511                bd->mode.status = param;
1512        }
1513
1514        return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1515err_bd_out:
1516        sdma_free_bd(desc);
1517        kfree(desc);
1518err_out:
1519        sdmac->status = DMA_ERROR;
1520        return NULL;
1521}
1522
1523static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1524                struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1525                size_t period_len, enum dma_transfer_direction direction,
1526                unsigned long flags)
1527{
1528        struct sdma_channel *sdmac = to_sdma_chan(chan);
1529        struct sdma_engine *sdma = sdmac->sdma;
1530        int num_periods = buf_len / period_len;
1531        int channel = sdmac->channel;
1532        int i = 0, buf = 0;
1533        struct sdma_desc *desc;
1534
1535        dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1536
1537        sdma_config_write(chan, &sdmac->slave_config, direction);
1538
1539        desc = sdma_transfer_init(sdmac, direction, num_periods);
1540        if (!desc)
1541                goto err_out;
1542
1543        desc->period_len = period_len;
1544
1545        sdmac->flags |= IMX_DMA_SG_LOOP;
1546
1547        if (period_len > SDMA_BD_MAX_CNT) {
1548                dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1549                                channel, period_len, SDMA_BD_MAX_CNT);
1550                goto err_bd_out;
1551        }
1552
1553        while (buf < buf_len) {
1554                struct sdma_buffer_descriptor *bd = &desc->bd[i];
1555                int param;
1556
1557                bd->buffer_addr = dma_addr;
1558
1559                bd->mode.count = period_len;
1560
1561                if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1562                        goto err_bd_out;
1563                if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1564                        bd->mode.command = 0;
1565                else
1566                        bd->mode.command = sdmac->word_size;
1567
1568                param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1569                if (i + 1 == num_periods)
1570                        param |= BD_WRAP;
1571
1572                dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1573                                i, period_len, (u64)dma_addr,
1574                                param & BD_WRAP ? "wrap" : "",
1575                                param & BD_INTR ? " intr" : "");
1576
1577                bd->mode.status = param;
1578
1579                dma_addr += period_len;
1580                buf += period_len;
1581
1582                i++;
1583        }
1584
1585        return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1586err_bd_out:
1587        sdma_free_bd(desc);
1588        kfree(desc);
1589err_out:
1590        sdmac->status = DMA_ERROR;
1591        return NULL;
1592}
1593
1594static int sdma_config_write(struct dma_chan *chan,
1595                       struct dma_slave_config *dmaengine_cfg,
1596                       enum dma_transfer_direction direction)
1597{
1598        struct sdma_channel *sdmac = to_sdma_chan(chan);
1599
1600        if (direction == DMA_DEV_TO_MEM) {
1601                sdmac->per_address = dmaengine_cfg->src_addr;
1602                sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1603                        dmaengine_cfg->src_addr_width;
1604                sdmac->word_size = dmaengine_cfg->src_addr_width;
1605        } else if (direction == DMA_DEV_TO_DEV) {
1606                sdmac->per_address2 = dmaengine_cfg->src_addr;
1607                sdmac->per_address = dmaengine_cfg->dst_addr;
1608                sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1609                        SDMA_WATERMARK_LEVEL_LWML;
1610                sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1611                        SDMA_WATERMARK_LEVEL_HWML;
1612                sdmac->word_size = dmaengine_cfg->dst_addr_width;
1613        } else {
1614                sdmac->per_address = dmaengine_cfg->dst_addr;
1615                sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1616                        dmaengine_cfg->dst_addr_width;
1617                sdmac->word_size = dmaengine_cfg->dst_addr_width;
1618        }
1619        sdmac->direction = direction;
1620        return sdma_config_channel(chan);
1621}
1622
1623static int sdma_config(struct dma_chan *chan,
1624                       struct dma_slave_config *dmaengine_cfg)
1625{
1626        struct sdma_channel *sdmac = to_sdma_chan(chan);
1627
1628        memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1629
1630        /* Set ENBLn earlier to make sure dma request triggered after that */
1631        if (sdmac->event_id0) {
1632                if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1633                        return -EINVAL;
1634                sdma_event_enable(sdmac, sdmac->event_id0);
1635        }
1636
1637        if (sdmac->event_id1) {
1638                if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1639                        return -EINVAL;
1640                sdma_event_enable(sdmac, sdmac->event_id1);
1641        }
1642
1643        return 0;
1644}
1645
1646static enum dma_status sdma_tx_status(struct dma_chan *chan,
1647                                      dma_cookie_t cookie,
1648                                      struct dma_tx_state *txstate)
1649{
1650        struct sdma_channel *sdmac = to_sdma_chan(chan);
1651        struct sdma_desc *desc;
1652        u32 residue;
1653        struct virt_dma_desc *vd;
1654        enum dma_status ret;
1655        unsigned long flags;
1656
1657        ret = dma_cookie_status(chan, cookie, txstate);
1658        if (ret == DMA_COMPLETE || !txstate)
1659                return ret;
1660
1661        spin_lock_irqsave(&sdmac->vc.lock, flags);
1662        vd = vchan_find_desc(&sdmac->vc, cookie);
1663        if (vd) {
1664                desc = to_sdma_desc(&vd->tx);
1665                if (sdmac->flags & IMX_DMA_SG_LOOP)
1666                        residue = (desc->num_bd - desc->buf_ptail) *
1667                                desc->period_len - desc->chn_real_count;
1668                else
1669                        residue = desc->chn_count - desc->chn_real_count;
1670        } else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) {
1671                residue = sdmac->desc->chn_count - sdmac->desc->chn_real_count;
1672        } else {
1673                residue = 0;
1674        }
1675        spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1676
1677        dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1678                         residue);
1679
1680        return sdmac->status;
1681}
1682
1683static void sdma_issue_pending(struct dma_chan *chan)
1684{
1685        struct sdma_channel *sdmac = to_sdma_chan(chan);
1686        unsigned long flags;
1687
1688        spin_lock_irqsave(&sdmac->vc.lock, flags);
1689        if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1690                sdma_start_desc(sdmac);
1691        spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1692}
1693
1694#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1695#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1696#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1697#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1698
1699static void sdma_add_scripts(struct sdma_engine *sdma,
1700                const struct sdma_script_start_addrs *addr)
1701{
1702        s32 *addr_arr = (u32 *)addr;
1703        s32 *saddr_arr = (u32 *)sdma->script_addrs;
1704        int i;
1705
1706        /* use the default firmware in ROM if missing external firmware */
1707        if (!sdma->script_number)
1708                sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1709
1710        for (i = 0; i < sdma->script_number; i++)
1711                if (addr_arr[i] > 0)
1712                        saddr_arr[i] = addr_arr[i];
1713}
1714
1715static void sdma_load_firmware(const struct firmware *fw, void *context)
1716{
1717        struct sdma_engine *sdma = context;
1718        const struct sdma_firmware_header *header;
1719        const struct sdma_script_start_addrs *addr;
1720        unsigned short *ram_code;
1721
1722        if (!fw) {
1723                dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1724                /* In this case we just use the ROM firmware. */
1725                return;
1726        }
1727
1728        if (fw->size < sizeof(*header))
1729                goto err_firmware;
1730
1731        header = (struct sdma_firmware_header *)fw->data;
1732
1733        if (header->magic != SDMA_FIRMWARE_MAGIC)
1734                goto err_firmware;
1735        if (header->ram_code_start + header->ram_code_size > fw->size)
1736                goto err_firmware;
1737        switch (header->version_major) {
1738        case 1:
1739                sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1740                break;
1741        case 2:
1742                sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1743                break;
1744        case 3:
1745                sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1746                break;
1747        case 4:
1748                sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1749                break;
1750        default:
1751                dev_err(sdma->dev, "unknown firmware version\n");
1752                goto err_firmware;
1753        }
1754
1755        addr = (void *)header + header->script_addrs_start;
1756        ram_code = (void *)header + header->ram_code_start;
1757
1758        clk_enable(sdma->clk_ipg);
1759        clk_enable(sdma->clk_ahb);
1760        /* download the RAM image for SDMA */
1761        sdma_load_script(sdma, ram_code,
1762                        header->ram_code_size,
1763                        addr->ram_code_start_addr);
1764        clk_disable(sdma->clk_ipg);
1765        clk_disable(sdma->clk_ahb);
1766
1767        sdma_add_scripts(sdma, addr);
1768
1769        dev_info(sdma->dev, "loaded firmware %d.%d\n",
1770                        header->version_major,
1771                        header->version_minor);
1772
1773err_firmware:
1774        release_firmware(fw);
1775}
1776
1777#define EVENT_REMAP_CELLS 3
1778
1779static int sdma_event_remap(struct sdma_engine *sdma)
1780{
1781        struct device_node *np = sdma->dev->of_node;
1782        struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1783        struct property *event_remap;
1784        struct regmap *gpr;
1785        char propname[] = "fsl,sdma-event-remap";
1786        u32 reg, val, shift, num_map, i;
1787        int ret = 0;
1788
1789        if (IS_ERR(np) || IS_ERR(gpr_np))
1790                goto out;
1791
1792        event_remap = of_find_property(np, propname, NULL);
1793        num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1794        if (!num_map) {
1795                dev_dbg(sdma->dev, "no event needs to be remapped\n");
1796                goto out;
1797        } else if (num_map % EVENT_REMAP_CELLS) {
1798                dev_err(sdma->dev, "the property %s must modulo %d\n",
1799                                propname, EVENT_REMAP_CELLS);
1800                ret = -EINVAL;
1801                goto out;
1802        }
1803
1804        gpr = syscon_node_to_regmap(gpr_np);
1805        if (IS_ERR(gpr)) {
1806                dev_err(sdma->dev, "failed to get gpr regmap\n");
1807                ret = PTR_ERR(gpr);
1808                goto out;
1809        }
1810
1811        for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1812                ret = of_property_read_u32_index(np, propname, i, &reg);
1813                if (ret) {
1814                        dev_err(sdma->dev, "failed to read property %s index %d\n",
1815                                        propname, i);
1816                        goto out;
1817                }
1818
1819                ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1820                if (ret) {
1821                        dev_err(sdma->dev, "failed to read property %s index %d\n",
1822                                        propname, i + 1);
1823                        goto out;
1824                }
1825
1826                ret = of_property_read_u32_index(np, propname, i + 2, &val);
1827                if (ret) {
1828                        dev_err(sdma->dev, "failed to read property %s index %d\n",
1829                                        propname, i + 2);
1830                        goto out;
1831                }
1832
1833                regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1834        }
1835
1836out:
1837        if (!IS_ERR(gpr_np))
1838                of_node_put(gpr_np);
1839
1840        return ret;
1841}
1842
1843static int sdma_get_firmware(struct sdma_engine *sdma,
1844                const char *fw_name)
1845{
1846        int ret;
1847
1848        ret = request_firmware_nowait(THIS_MODULE,
1849                        FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1850                        GFP_KERNEL, sdma, sdma_load_firmware);
1851
1852        return ret;
1853}
1854
1855static int sdma_init(struct sdma_engine *sdma)
1856{
1857        int i, ret;
1858        dma_addr_t ccb_phys;
1859
1860        ret = clk_enable(sdma->clk_ipg);
1861        if (ret)
1862                return ret;
1863        ret = clk_enable(sdma->clk_ahb);
1864        if (ret)
1865                goto disable_clk_ipg;
1866
1867        if (sdma->drvdata->check_ratio &&
1868            (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
1869                sdma->clk_ratio = 1;
1870
1871        /* Be sure SDMA has not started yet */
1872        writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1873
1874        sdma->channel_control = dma_alloc_coherent(sdma->dev,
1875                        MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1876                        sizeof(struct sdma_context_data),
1877                        &ccb_phys, GFP_KERNEL);
1878
1879        if (!sdma->channel_control) {
1880                ret = -ENOMEM;
1881                goto err_dma_alloc;
1882        }
1883
1884        sdma->context = (void *)sdma->channel_control +
1885                MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1886        sdma->context_phys = ccb_phys +
1887                MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1888
1889        /* Zero-out the CCB structures array just allocated */
1890        memset(sdma->channel_control, 0,
1891                        MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1892
1893        /* disable all channels */
1894        for (i = 0; i < sdma->drvdata->num_events; i++)
1895                writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1896
1897        /* All channels have priority 0 */
1898        for (i = 0; i < MAX_DMA_CHANNELS; i++)
1899                writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1900
1901        ret = sdma_request_channel0(sdma);
1902        if (ret)
1903                goto err_dma_alloc;
1904
1905        sdma_config_ownership(&sdma->channel[0], false, true, false);
1906
1907        /* Set Command Channel (Channel Zero) */
1908        writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1909
1910        /* Set bits of CONFIG register but with static context switching */
1911        if (sdma->clk_ratio)
1912                writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
1913        else
1914                writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1915
1916        writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1917
1918        /* Initializes channel's priorities */
1919        sdma_set_channel_priority(&sdma->channel[0], 7);
1920
1921        clk_disable(sdma->clk_ipg);
1922        clk_disable(sdma->clk_ahb);
1923
1924        return 0;
1925
1926err_dma_alloc:
1927        clk_disable(sdma->clk_ahb);
1928disable_clk_ipg:
1929        clk_disable(sdma->clk_ipg);
1930        dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1931        return ret;
1932}
1933
1934static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1935{
1936        struct sdma_channel *sdmac = to_sdma_chan(chan);
1937        struct imx_dma_data *data = fn_param;
1938
1939        if (!imx_dma_is_general_purpose(chan))
1940                return false;
1941
1942        sdmac->data = *data;
1943        chan->private = &sdmac->data;
1944
1945        return true;
1946}
1947
1948static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1949                                   struct of_dma *ofdma)
1950{
1951        struct sdma_engine *sdma = ofdma->of_dma_data;
1952        dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1953        struct imx_dma_data data;
1954
1955        if (dma_spec->args_count != 3)
1956                return NULL;
1957
1958        data.dma_request = dma_spec->args[0];
1959        data.peripheral_type = dma_spec->args[1];
1960        data.priority = dma_spec->args[2];
1961        /*
1962         * init dma_request2 to zero, which is not used by the dts.
1963         * For P2P, dma_request2 is init from dma_request_channel(),
1964         * chan->private will point to the imx_dma_data, and in
1965         * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1966         * be set to sdmac->event_id1.
1967         */
1968        data.dma_request2 = 0;
1969
1970        return __dma_request_channel(&mask, sdma_filter_fn, &data,
1971                                     ofdma->of_node);
1972}
1973
1974static int sdma_probe(struct platform_device *pdev)
1975{
1976        const struct of_device_id *of_id =
1977                        of_match_device(sdma_dt_ids, &pdev->dev);
1978        struct device_node *np = pdev->dev.of_node;
1979        struct device_node *spba_bus;
1980        const char *fw_name;
1981        int ret;
1982        int irq;
1983        struct resource *iores;
1984        struct resource spba_res;
1985        struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1986        int i;
1987        struct sdma_engine *sdma;
1988        s32 *saddr_arr;
1989        const struct sdma_driver_data *drvdata = NULL;
1990
1991        if (of_id)
1992                drvdata = of_id->data;
1993        else if (pdev->id_entry)
1994                drvdata = (void *)pdev->id_entry->driver_data;
1995
1996        if (!drvdata) {
1997                dev_err(&pdev->dev, "unable to find driver data\n");
1998                return -EINVAL;
1999        }
2000
2001        ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2002        if (ret)
2003                return ret;
2004
2005        sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2006        if (!sdma)
2007                return -ENOMEM;
2008
2009        spin_lock_init(&sdma->channel_0_lock);
2010
2011        sdma->dev = &pdev->dev;
2012        sdma->drvdata = drvdata;
2013
2014        irq = platform_get_irq(pdev, 0);
2015        if (irq < 0)
2016                return irq;
2017
2018        iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2019        sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2020        if (IS_ERR(sdma->regs))
2021                return PTR_ERR(sdma->regs);
2022
2023        sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2024        if (IS_ERR(sdma->clk_ipg))
2025                return PTR_ERR(sdma->clk_ipg);
2026
2027        sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2028        if (IS_ERR(sdma->clk_ahb))
2029                return PTR_ERR(sdma->clk_ahb);
2030
2031        ret = clk_prepare(sdma->clk_ipg);
2032        if (ret)
2033                return ret;
2034
2035        ret = clk_prepare(sdma->clk_ahb);
2036        if (ret)
2037                goto err_clk;
2038
2039        ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2040                               sdma);
2041        if (ret)
2042                goto err_irq;
2043
2044        sdma->irq = irq;
2045
2046        sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2047        if (!sdma->script_addrs) {
2048                ret = -ENOMEM;
2049                goto err_irq;
2050        }
2051
2052        /* initially no scripts available */
2053        saddr_arr = (s32 *)sdma->script_addrs;
2054        for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
2055                saddr_arr[i] = -EINVAL;
2056
2057        dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2058        dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2059        dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2060
2061        INIT_LIST_HEAD(&sdma->dma_device.channels);
2062        /* Initialize channel parameters */
2063        for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2064                struct sdma_channel *sdmac = &sdma->channel[i];
2065
2066                sdmac->sdma = sdma;
2067
2068                sdmac->channel = i;
2069                sdmac->vc.desc_free = sdma_desc_free;
2070                INIT_WORK(&sdmac->terminate_worker,
2071                                sdma_channel_terminate_work);
2072                /*
2073                 * Add the channel to the DMAC list. Do not add channel 0 though
2074                 * because we need it internally in the SDMA driver. This also means
2075                 * that channel 0 in dmaengine counting matches sdma channel 1.
2076                 */
2077                if (i)
2078                        vchan_init(&sdmac->vc, &sdma->dma_device);
2079        }
2080
2081        ret = sdma_init(sdma);
2082        if (ret)
2083                goto err_init;
2084
2085        ret = sdma_event_remap(sdma);
2086        if (ret)
2087                goto err_init;
2088
2089        if (sdma->drvdata->script_addrs)
2090                sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2091        if (pdata && pdata->script_addrs)
2092                sdma_add_scripts(sdma, pdata->script_addrs);
2093
2094        sdma->dma_device.dev = &pdev->dev;
2095
2096        sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2097        sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2098        sdma->dma_device.device_tx_status = sdma_tx_status;
2099        sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2100        sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2101        sdma->dma_device.device_config = sdma_config;
2102        sdma->dma_device.device_terminate_all = sdma_disable_channel_async;
2103        sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2104        sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2105        sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2106        sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2107        sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2108        sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2109        sdma->dma_device.device_issue_pending = sdma_issue_pending;
2110        sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
2111        sdma->dma_device.copy_align = 2;
2112        dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2113
2114        platform_set_drvdata(pdev, sdma);
2115
2116        ret = dma_async_device_register(&sdma->dma_device);
2117        if (ret) {
2118                dev_err(&pdev->dev, "unable to register\n");
2119                goto err_init;
2120        }
2121
2122        if (np) {
2123                ret = of_dma_controller_register(np, sdma_xlate, sdma);
2124                if (ret) {
2125                        dev_err(&pdev->dev, "failed to register controller\n");
2126                        goto err_register;
2127                }
2128
2129                spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2130                ret = of_address_to_resource(spba_bus, 0, &spba_res);
2131                if (!ret) {
2132                        sdma->spba_start_addr = spba_res.start;
2133                        sdma->spba_end_addr = spba_res.end;
2134                }
2135                of_node_put(spba_bus);
2136        }
2137
2138        /*
2139         * Kick off firmware loading as the very last step:
2140         * attempt to load firmware only if we're not on the error path, because
2141         * the firmware callback requires a fully functional and allocated sdma
2142         * instance.
2143         */
2144        if (pdata) {
2145                ret = sdma_get_firmware(sdma, pdata->fw_name);
2146                if (ret)
2147                        dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
2148        } else {
2149                /*
2150                 * Because that device tree does not encode ROM script address,
2151                 * the RAM script in firmware is mandatory for device tree
2152                 * probe, otherwise it fails.
2153                 */
2154                ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2155                                              &fw_name);
2156                if (ret) {
2157                        dev_warn(&pdev->dev, "failed to get firmware name\n");
2158                } else {
2159                        ret = sdma_get_firmware(sdma, fw_name);
2160                        if (ret)
2161                                dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2162                }
2163        }
2164
2165        return 0;
2166
2167err_register:
2168        dma_async_device_unregister(&sdma->dma_device);
2169err_init:
2170        kfree(sdma->script_addrs);
2171err_irq:
2172        clk_unprepare(sdma->clk_ahb);
2173err_clk:
2174        clk_unprepare(sdma->clk_ipg);
2175        return ret;
2176}
2177
2178static int sdma_remove(struct platform_device *pdev)
2179{
2180        struct sdma_engine *sdma = platform_get_drvdata(pdev);
2181        int i;
2182
2183        devm_free_irq(&pdev->dev, sdma->irq, sdma);
2184        dma_async_device_unregister(&sdma->dma_device);
2185        kfree(sdma->script_addrs);
2186        clk_unprepare(sdma->clk_ahb);
2187        clk_unprepare(sdma->clk_ipg);
2188        /* Kill the tasklet */
2189        for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2190                struct sdma_channel *sdmac = &sdma->channel[i];
2191
2192                tasklet_kill(&sdmac->vc.task);
2193                sdma_free_chan_resources(&sdmac->vc.chan);
2194        }
2195
2196        platform_set_drvdata(pdev, NULL);
2197        return 0;
2198}
2199
2200static struct platform_driver sdma_driver = {
2201        .driver         = {
2202                .name   = "imx-sdma",
2203                .of_match_table = sdma_dt_ids,
2204        },
2205        .id_table       = sdma_devtypes,
2206        .remove         = sdma_remove,
2207        .probe          = sdma_probe,
2208};
2209
2210module_platform_driver(sdma_driver);
2211
2212MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2213MODULE_DESCRIPTION("i.MX SDMA driver");
2214#if IS_ENABLED(CONFIG_SOC_IMX6Q)
2215MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2216#endif
2217#if IS_ENABLED(CONFIG_SOC_IMX7D)
2218MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2219#endif
2220MODULE_LICENSE("GPL");
2221