linux/drivers/dma/ppc4xx/adma.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2006-2009 DENX Software Engineering.
   4 *
   5 * Author: Yuri Tikhonov <yur@emcraft.com>
   6 *
   7 * Further porting to arch/powerpc by
   8 *      Anatolij Gustschin <agust@denx.de>
   9 */
  10
  11/*
  12 * This driver supports the asynchrounous DMA copy and RAID engines available
  13 * on the AMCC PPC440SPe Processors.
  14 * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
  15 * ADMA driver written by D.Williams.
  16 */
  17
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/async_tx.h>
  21#include <linux/delay.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/spinlock.h>
  24#include <linux/interrupt.h>
  25#include <linux/slab.h>
  26#include <linux/uaccess.h>
  27#include <linux/proc_fs.h>
  28#include <linux/of.h>
  29#include <linux/of_address.h>
  30#include <linux/of_irq.h>
  31#include <linux/of_platform.h>
  32#include <asm/dcr.h>
  33#include <asm/dcr-regs.h>
  34#include "adma.h"
  35#include "../dmaengine.h"
  36
  37enum ppc_adma_init_code {
  38        PPC_ADMA_INIT_OK = 0,
  39        PPC_ADMA_INIT_MEMRES,
  40        PPC_ADMA_INIT_MEMREG,
  41        PPC_ADMA_INIT_ALLOC,
  42        PPC_ADMA_INIT_COHERENT,
  43        PPC_ADMA_INIT_CHANNEL,
  44        PPC_ADMA_INIT_IRQ1,
  45        PPC_ADMA_INIT_IRQ2,
  46        PPC_ADMA_INIT_REGISTER
  47};
  48
  49static char *ppc_adma_errors[] = {
  50        [PPC_ADMA_INIT_OK] = "ok",
  51        [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
  52        [PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
  53        [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
  54                                "structure",
  55        [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
  56                                   "hardware descriptors",
  57        [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
  58        [PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
  59        [PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
  60        [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
  61};
  62
  63static enum ppc_adma_init_code
  64ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
  65
  66struct ppc_dma_chan_ref {
  67        struct dma_chan *chan;
  68        struct list_head node;
  69};
  70
  71/* The list of channels exported by ppc440spe ADMA */
  72struct list_head
  73ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
  74
  75/* This flag is set when want to refetch the xor chain in the interrupt
  76 * handler
  77 */
  78static u32 do_xor_refetch;
  79
  80/* Pointer to DMA0, DMA1 CP/CS FIFO */
  81static void *ppc440spe_dma_fifo_buf;
  82
  83/* Pointers to last submitted to DMA0, DMA1 CDBs */
  84static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
  85static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
  86
  87/* Pointer to last linked and submitted xor CB */
  88static struct ppc440spe_adma_desc_slot *xor_last_linked;
  89static struct ppc440spe_adma_desc_slot *xor_last_submit;
  90
  91/* This array is used in data-check operations for storing a pattern */
  92static char ppc440spe_qword[16];
  93
  94static atomic_t ppc440spe_adma_err_irq_ref;
  95static dcr_host_t ppc440spe_mq_dcr_host;
  96static unsigned int ppc440spe_mq_dcr_len;
  97
  98/* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
  99 * the block size in transactions, then we do not allow to activate more than
 100 * only one RXOR transactions simultaneously. So use this var to store
 101 * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
 102 * set) or not (PPC440SPE_RXOR_RUN is clear).
 103 */
 104static unsigned long ppc440spe_rxor_state;
 105
 106/* These are used in enable & check routines
 107 */
 108static u32 ppc440spe_r6_enabled;
 109static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
 110static struct completion ppc440spe_r6_test_comp;
 111
 112static int ppc440spe_adma_dma2rxor_prep_src(
 113                struct ppc440spe_adma_desc_slot *desc,
 114                struct ppc440spe_rxor *cursor, int index,
 115                int src_cnt, u32 addr);
 116static void ppc440spe_adma_dma2rxor_set_src(
 117                struct ppc440spe_adma_desc_slot *desc,
 118                int index, dma_addr_t addr);
 119static void ppc440spe_adma_dma2rxor_set_mult(
 120                struct ppc440spe_adma_desc_slot *desc,
 121                int index, u8 mult);
 122
 123#ifdef ADMA_LL_DEBUG
 124#define ADMA_LL_DBG(x) ({ if (1) x; 0; })
 125#else
 126#define ADMA_LL_DBG(x) ({ if (0) x; 0; })
 127#endif
 128
 129static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
 130{
 131        struct dma_cdb *cdb;
 132        struct xor_cb *cb;
 133        int i;
 134
 135        switch (chan->device->id) {
 136        case 0:
 137        case 1:
 138                cdb = block;
 139
 140                pr_debug("CDB at %p [%d]:\n"
 141                        "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
 142                        "\t sg1u 0x%08x sg1l 0x%08x\n"
 143                        "\t sg2u 0x%08x sg2l 0x%08x\n"
 144                        "\t sg3u 0x%08x sg3l 0x%08x\n",
 145                        cdb, chan->device->id,
 146                        cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
 147                        le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
 148                        le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
 149                        le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
 150                );
 151                break;
 152        case 2:
 153                cb = block;
 154
 155                pr_debug("CB at %p [%d]:\n"
 156                        "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
 157                        "\t cbtah 0x%08x cbtal 0x%08x\n"
 158                        "\t cblah 0x%08x cblal 0x%08x\n",
 159                        cb, chan->device->id,
 160                        cb->cbc, cb->cbbc, cb->cbs,
 161                        cb->cbtah, cb->cbtal,
 162                        cb->cblah, cb->cblal);
 163                for (i = 0; i < 16; i++) {
 164                        if (i && !cb->ops[i].h && !cb->ops[i].l)
 165                                continue;
 166                        pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
 167                                i, cb->ops[i].h, cb->ops[i].l);
 168                }
 169                break;
 170        }
 171}
 172
 173static void print_cb_list(struct ppc440spe_adma_chan *chan,
 174                          struct ppc440spe_adma_desc_slot *iter)
 175{
 176        for (; iter; iter = iter->hw_next)
 177                print_cb(chan, iter->hw_desc);
 178}
 179
 180static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
 181                             unsigned int src_cnt)
 182{
 183        int i;
 184
 185        pr_debug("\n%s(%d):\nsrc: ", __func__, id);
 186        for (i = 0; i < src_cnt; i++)
 187                pr_debug("\t0x%016llx ", src[i]);
 188        pr_debug("dst:\n\t0x%016llx\n", dst);
 189}
 190
 191static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
 192                            unsigned int src_cnt)
 193{
 194        int i;
 195
 196        pr_debug("\n%s(%d):\nsrc: ", __func__, id);
 197        for (i = 0; i < src_cnt; i++)
 198                pr_debug("\t0x%016llx ", src[i]);
 199        pr_debug("dst: ");
 200        for (i = 0; i < 2; i++)
 201                pr_debug("\t0x%016llx ", dst[i]);
 202}
 203
 204static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
 205                                    unsigned int src_cnt,
 206                                    const unsigned char *scf)
 207{
 208        int i;
 209
 210        pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
 211        if (scf) {
 212                for (i = 0; i < src_cnt; i++)
 213                        pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
 214        } else {
 215                for (i = 0; i < src_cnt; i++)
 216                        pr_debug("\t0x%016llx(no) ", src[i]);
 217        }
 218
 219        pr_debug("dst: ");
 220        for (i = 0; i < 2; i++)
 221                pr_debug("\t0x%016llx ", src[src_cnt + i]);
 222}
 223
 224/******************************************************************************
 225 * Command (Descriptor) Blocks low-level routines
 226 ******************************************************************************/
 227/**
 228 * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
 229 * pseudo operation
 230 */
 231static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
 232                                          struct ppc440spe_adma_chan *chan)
 233{
 234        struct xor_cb *p;
 235
 236        switch (chan->device->id) {
 237        case PPC440SPE_XOR_ID:
 238                p = desc->hw_desc;
 239                memset(desc->hw_desc, 0, sizeof(struct xor_cb));
 240                /* NOP with Command Block Complete Enable */
 241                p->cbc = XOR_CBCR_CBCE_BIT;
 242                break;
 243        case PPC440SPE_DMA0_ID:
 244        case PPC440SPE_DMA1_ID:
 245                memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
 246                /* NOP with interrupt */
 247                set_bit(PPC440SPE_DESC_INT, &desc->flags);
 248                break;
 249        default:
 250                printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
 251                                __func__);
 252                break;
 253        }
 254}
 255
 256/**
 257 * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
 258 * pseudo operation
 259 */
 260static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
 261{
 262        memset(desc->hw_desc, 0, sizeof(struct xor_cb));
 263        desc->hw_next = NULL;
 264        desc->src_cnt = 0;
 265        desc->dst_cnt = 1;
 266}
 267
 268/**
 269 * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
 270 */
 271static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
 272                                         int src_cnt, unsigned long flags)
 273{
 274        struct xor_cb *hw_desc = desc->hw_desc;
 275
 276        memset(desc->hw_desc, 0, sizeof(struct xor_cb));
 277        desc->hw_next = NULL;
 278        desc->src_cnt = src_cnt;
 279        desc->dst_cnt = 1;
 280
 281        hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
 282        if (flags & DMA_PREP_INTERRUPT)
 283                /* Enable interrupt on completion */
 284                hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
 285}
 286
 287/**
 288 * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
 289 * operation in DMA2 controller
 290 */
 291static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
 292                int dst_cnt, int src_cnt, unsigned long flags)
 293{
 294        struct xor_cb *hw_desc = desc->hw_desc;
 295
 296        memset(desc->hw_desc, 0, sizeof(struct xor_cb));
 297        desc->hw_next = NULL;
 298        desc->src_cnt = src_cnt;
 299        desc->dst_cnt = dst_cnt;
 300        memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
 301        desc->descs_per_op = 0;
 302
 303        hw_desc->cbc = XOR_CBCR_TGT_BIT;
 304        if (flags & DMA_PREP_INTERRUPT)
 305                /* Enable interrupt on completion */
 306                hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
 307}
 308
 309#define DMA_CTRL_FLAGS_LAST     DMA_PREP_FENCE
 310#define DMA_PREP_ZERO_P         (DMA_CTRL_FLAGS_LAST << 1)
 311#define DMA_PREP_ZERO_Q         (DMA_PREP_ZERO_P << 1)
 312
 313/**
 314 * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
 315 * with DMA0/1
 316 */
 317static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
 318                                int dst_cnt, int src_cnt, unsigned long flags,
 319                                unsigned long op)
 320{
 321        struct dma_cdb *hw_desc;
 322        struct ppc440spe_adma_desc_slot *iter;
 323        u8 dopc;
 324
 325        /* Common initialization of a PQ descriptors chain */
 326        set_bits(op, &desc->flags);
 327        desc->src_cnt = src_cnt;
 328        desc->dst_cnt = dst_cnt;
 329
 330        /* WXOR MULTICAST if both P and Q are being computed
 331         * MV_SG1_SG2 if Q only
 332         */
 333        dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
 334                DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
 335
 336        list_for_each_entry(iter, &desc->group_list, chain_node) {
 337                hw_desc = iter->hw_desc;
 338                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
 339
 340                if (likely(!list_is_last(&iter->chain_node,
 341                                &desc->group_list))) {
 342                        /* set 'next' pointer */
 343                        iter->hw_next = list_entry(iter->chain_node.next,
 344                                struct ppc440spe_adma_desc_slot, chain_node);
 345                        clear_bit(PPC440SPE_DESC_INT, &iter->flags);
 346                } else {
 347                        /* this is the last descriptor.
 348                         * this slot will be pasted from ADMA level
 349                         * each time it wants to configure parameters
 350                         * of the transaction (src, dst, ...)
 351                         */
 352                        iter->hw_next = NULL;
 353                        if (flags & DMA_PREP_INTERRUPT)
 354                                set_bit(PPC440SPE_DESC_INT, &iter->flags);
 355                        else
 356                                clear_bit(PPC440SPE_DESC_INT, &iter->flags);
 357                }
 358        }
 359
 360        /* Set OPS depending on WXOR/RXOR type of operation */
 361        if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
 362                /* This is a WXOR only chain:
 363                 * - first descriptors are for zeroing destinations
 364                 *   if PPC440SPE_ZERO_P/Q set;
 365                 * - descriptors remained are for GF-XOR operations.
 366                 */
 367                iter = list_first_entry(&desc->group_list,
 368                                        struct ppc440spe_adma_desc_slot,
 369                                        chain_node);
 370
 371                if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
 372                        hw_desc = iter->hw_desc;
 373                        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 374                        iter = list_first_entry(&iter->chain_node,
 375                                        struct ppc440spe_adma_desc_slot,
 376                                        chain_node);
 377                }
 378
 379                if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
 380                        hw_desc = iter->hw_desc;
 381                        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 382                        iter = list_first_entry(&iter->chain_node,
 383                                        struct ppc440spe_adma_desc_slot,
 384                                        chain_node);
 385                }
 386
 387                list_for_each_entry_from(iter, &desc->group_list, chain_node) {
 388                        hw_desc = iter->hw_desc;
 389                        hw_desc->opc = dopc;
 390                }
 391        } else {
 392                /* This is either RXOR-only or mixed RXOR/WXOR */
 393
 394                /* The first 1 or 2 slots in chain are always RXOR,
 395                 * if need to calculate P & Q, then there are two
 396                 * RXOR slots; if only P or only Q, then there is one
 397                 */
 398                iter = list_first_entry(&desc->group_list,
 399                                        struct ppc440spe_adma_desc_slot,
 400                                        chain_node);
 401                hw_desc = iter->hw_desc;
 402                hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 403
 404                if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
 405                        iter = list_first_entry(&iter->chain_node,
 406                                                struct ppc440spe_adma_desc_slot,
 407                                                chain_node);
 408                        hw_desc = iter->hw_desc;
 409                        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 410                }
 411
 412                /* The remaining descs (if any) are WXORs */
 413                if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
 414                        iter = list_first_entry(&iter->chain_node,
 415                                                struct ppc440spe_adma_desc_slot,
 416                                                chain_node);
 417                        list_for_each_entry_from(iter, &desc->group_list,
 418                                                chain_node) {
 419                                hw_desc = iter->hw_desc;
 420                                hw_desc->opc = dopc;
 421                        }
 422                }
 423        }
 424}
 425
 426/**
 427 * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
 428 * for PQ_ZERO_SUM operation
 429 */
 430static void ppc440spe_desc_init_dma01pqzero_sum(
 431                                struct ppc440spe_adma_desc_slot *desc,
 432                                int dst_cnt, int src_cnt)
 433{
 434        struct dma_cdb *hw_desc;
 435        struct ppc440spe_adma_desc_slot *iter;
 436        int i = 0;
 437        u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
 438                                   DMA_CDB_OPC_MV_SG1_SG2;
 439        /*
 440         * Initialize starting from 2nd or 3rd descriptor dependent
 441         * on dst_cnt. First one or two slots are for cloning P
 442         * and/or Q to chan->pdest and/or chan->qdest as we have
 443         * to preserve original P/Q.
 444         */
 445        iter = list_first_entry(&desc->group_list,
 446                                struct ppc440spe_adma_desc_slot, chain_node);
 447        iter = list_entry(iter->chain_node.next,
 448                          struct ppc440spe_adma_desc_slot, chain_node);
 449
 450        if (dst_cnt > 1) {
 451                iter = list_entry(iter->chain_node.next,
 452                                  struct ppc440spe_adma_desc_slot, chain_node);
 453        }
 454        /* initialize each source descriptor in chain */
 455        list_for_each_entry_from(iter, &desc->group_list, chain_node) {
 456                hw_desc = iter->hw_desc;
 457                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
 458                iter->src_cnt = 0;
 459                iter->dst_cnt = 0;
 460
 461                /* This is a ZERO_SUM operation:
 462                 * - <src_cnt> descriptors starting from 2nd or 3rd
 463                 *   descriptor are for GF-XOR operations;
 464                 * - remaining <dst_cnt> descriptors are for checking the result
 465                 */
 466                if (i++ < src_cnt)
 467                        /* MV_SG1_SG2 if only Q is being verified
 468                         * MULTICAST if both P and Q are being verified
 469                         */
 470                        hw_desc->opc = dopc;
 471                else
 472                        /* DMA_CDB_OPC_DCHECK128 operation */
 473                        hw_desc->opc = DMA_CDB_OPC_DCHECK128;
 474
 475                if (likely(!list_is_last(&iter->chain_node,
 476                                         &desc->group_list))) {
 477                        /* set 'next' pointer */
 478                        iter->hw_next = list_entry(iter->chain_node.next,
 479                                                struct ppc440spe_adma_desc_slot,
 480                                                chain_node);
 481                } else {
 482                        /* this is the last descriptor.
 483                         * this slot will be pasted from ADMA level
 484                         * each time it wants to configure parameters
 485                         * of the transaction (src, dst, ...)
 486                         */
 487                        iter->hw_next = NULL;
 488                        /* always enable interrupt generation since we get
 489                         * the status of pqzero from the handler
 490                         */
 491                        set_bit(PPC440SPE_DESC_INT, &iter->flags);
 492                }
 493        }
 494        desc->src_cnt = src_cnt;
 495        desc->dst_cnt = dst_cnt;
 496}
 497
 498/**
 499 * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
 500 */
 501static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
 502                                        unsigned long flags)
 503{
 504        struct dma_cdb *hw_desc = desc->hw_desc;
 505
 506        memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
 507        desc->hw_next = NULL;
 508        desc->src_cnt = 1;
 509        desc->dst_cnt = 1;
 510
 511        if (flags & DMA_PREP_INTERRUPT)
 512                set_bit(PPC440SPE_DESC_INT, &desc->flags);
 513        else
 514                clear_bit(PPC440SPE_DESC_INT, &desc->flags);
 515
 516        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 517}
 518
 519/**
 520 * ppc440spe_desc_set_src_addr - set source address into the descriptor
 521 */
 522static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
 523                                        struct ppc440spe_adma_chan *chan,
 524                                        int src_idx, dma_addr_t addrh,
 525                                        dma_addr_t addrl)
 526{
 527        struct dma_cdb *dma_hw_desc;
 528        struct xor_cb *xor_hw_desc;
 529        phys_addr_t addr64, tmplow, tmphi;
 530
 531        switch (chan->device->id) {
 532        case PPC440SPE_DMA0_ID:
 533        case PPC440SPE_DMA1_ID:
 534                if (!addrh) {
 535                        addr64 = addrl;
 536                        tmphi = (addr64 >> 32);
 537                        tmplow = (addr64 & 0xFFFFFFFF);
 538                } else {
 539                        tmphi = addrh;
 540                        tmplow = addrl;
 541                }
 542                dma_hw_desc = desc->hw_desc;
 543                dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
 544                dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
 545                break;
 546        case PPC440SPE_XOR_ID:
 547                xor_hw_desc = desc->hw_desc;
 548                xor_hw_desc->ops[src_idx].l = addrl;
 549                xor_hw_desc->ops[src_idx].h |= addrh;
 550                break;
 551        }
 552}
 553
 554/**
 555 * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
 556 */
 557static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
 558                        struct ppc440spe_adma_chan *chan, u32 mult_index,
 559                        int sg_index, unsigned char mult_value)
 560{
 561        struct dma_cdb *dma_hw_desc;
 562        struct xor_cb *xor_hw_desc;
 563        u32 *psgu;
 564
 565        switch (chan->device->id) {
 566        case PPC440SPE_DMA0_ID:
 567        case PPC440SPE_DMA1_ID:
 568                dma_hw_desc = desc->hw_desc;
 569
 570                switch (sg_index) {
 571                /* for RXOR operations set multiplier
 572                 * into source cued address
 573                 */
 574                case DMA_CDB_SG_SRC:
 575                        psgu = &dma_hw_desc->sg1u;
 576                        break;
 577                /* for WXOR operations set multiplier
 578                 * into destination cued address(es)
 579                 */
 580                case DMA_CDB_SG_DST1:
 581                        psgu = &dma_hw_desc->sg2u;
 582                        break;
 583                case DMA_CDB_SG_DST2:
 584                        psgu = &dma_hw_desc->sg3u;
 585                        break;
 586                default:
 587                        BUG();
 588                }
 589
 590                *psgu |= cpu_to_le32(mult_value << mult_index);
 591                break;
 592        case PPC440SPE_XOR_ID:
 593                xor_hw_desc = desc->hw_desc;
 594                break;
 595        default:
 596                BUG();
 597        }
 598}
 599
 600/**
 601 * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
 602 */
 603static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
 604                                struct ppc440spe_adma_chan *chan,
 605                                dma_addr_t addrh, dma_addr_t addrl,
 606                                u32 dst_idx)
 607{
 608        struct dma_cdb *dma_hw_desc;
 609        struct xor_cb *xor_hw_desc;
 610        phys_addr_t addr64, tmphi, tmplow;
 611        u32 *psgu, *psgl;
 612
 613        switch (chan->device->id) {
 614        case PPC440SPE_DMA0_ID:
 615        case PPC440SPE_DMA1_ID:
 616                if (!addrh) {
 617                        addr64 = addrl;
 618                        tmphi = (addr64 >> 32);
 619                        tmplow = (addr64 & 0xFFFFFFFF);
 620                } else {
 621                        tmphi = addrh;
 622                        tmplow = addrl;
 623                }
 624                dma_hw_desc = desc->hw_desc;
 625
 626                psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
 627                psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
 628
 629                *psgl = cpu_to_le32((u32)tmplow);
 630                *psgu |= cpu_to_le32((u32)tmphi);
 631                break;
 632        case PPC440SPE_XOR_ID:
 633                xor_hw_desc = desc->hw_desc;
 634                xor_hw_desc->cbtal = addrl;
 635                xor_hw_desc->cbtah |= addrh;
 636                break;
 637        }
 638}
 639
 640/**
 641 * ppc440spe_desc_set_byte_count - set number of data bytes involved
 642 * into the operation
 643 */
 644static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
 645                                struct ppc440spe_adma_chan *chan,
 646                                u32 byte_count)
 647{
 648        struct dma_cdb *dma_hw_desc;
 649        struct xor_cb *xor_hw_desc;
 650
 651        switch (chan->device->id) {
 652        case PPC440SPE_DMA0_ID:
 653        case PPC440SPE_DMA1_ID:
 654                dma_hw_desc = desc->hw_desc;
 655                dma_hw_desc->cnt = cpu_to_le32(byte_count);
 656                break;
 657        case PPC440SPE_XOR_ID:
 658                xor_hw_desc = desc->hw_desc;
 659                xor_hw_desc->cbbc = byte_count;
 660                break;
 661        }
 662}
 663
 664/**
 665 * ppc440spe_desc_set_rxor_block_size - set RXOR block size
 666 */
 667static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
 668{
 669        /* assume that byte_count is aligned on the 512-boundary;
 670         * thus write it directly to the register (bits 23:31 are
 671         * reserved there).
 672         */
 673        dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
 674}
 675
 676/**
 677 * ppc440spe_desc_set_dcheck - set CHECK pattern
 678 */
 679static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
 680                                struct ppc440spe_adma_chan *chan, u8 *qword)
 681{
 682        struct dma_cdb *dma_hw_desc;
 683
 684        switch (chan->device->id) {
 685        case PPC440SPE_DMA0_ID:
 686        case PPC440SPE_DMA1_ID:
 687                dma_hw_desc = desc->hw_desc;
 688                iowrite32(qword[0], &dma_hw_desc->sg3l);
 689                iowrite32(qword[4], &dma_hw_desc->sg3u);
 690                iowrite32(qword[8], &dma_hw_desc->sg2l);
 691                iowrite32(qword[12], &dma_hw_desc->sg2u);
 692                break;
 693        default:
 694                BUG();
 695        }
 696}
 697
 698/**
 699 * ppc440spe_xor_set_link - set link address in xor CB
 700 */
 701static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
 702                                struct ppc440spe_adma_desc_slot *next_desc)
 703{
 704        struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
 705
 706        if (unlikely(!next_desc || !(next_desc->phys))) {
 707                printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
 708                        __func__, next_desc,
 709                        next_desc ? next_desc->phys : 0);
 710                BUG();
 711        }
 712
 713        xor_hw_desc->cbs = 0;
 714        xor_hw_desc->cblal = next_desc->phys;
 715        xor_hw_desc->cblah = 0;
 716        xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
 717}
 718
 719/**
 720 * ppc440spe_desc_set_link - set the address of descriptor following this
 721 * descriptor in chain
 722 */
 723static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
 724                                struct ppc440spe_adma_desc_slot *prev_desc,
 725                                struct ppc440spe_adma_desc_slot *next_desc)
 726{
 727        unsigned long flags;
 728        struct ppc440spe_adma_desc_slot *tail = next_desc;
 729
 730        if (unlikely(!prev_desc || !next_desc ||
 731                (prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
 732                /* If previous next is overwritten something is wrong.
 733                 * though we may refetch from append to initiate list
 734                 * processing; in this case - it's ok.
 735                 */
 736                printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
 737                        "prev->hw_next=0x%p\n", __func__, prev_desc,
 738                        next_desc, prev_desc ? prev_desc->hw_next : 0);
 739                BUG();
 740        }
 741
 742        local_irq_save(flags);
 743
 744        /* do s/w chaining both for DMA and XOR descriptors */
 745        prev_desc->hw_next = next_desc;
 746
 747        switch (chan->device->id) {
 748        case PPC440SPE_DMA0_ID:
 749        case PPC440SPE_DMA1_ID:
 750                break;
 751        case PPC440SPE_XOR_ID:
 752                /* bind descriptor to the chain */
 753                while (tail->hw_next)
 754                        tail = tail->hw_next;
 755                xor_last_linked = tail;
 756
 757                if (prev_desc == xor_last_submit)
 758                        /* do not link to the last submitted CB */
 759                        break;
 760                ppc440spe_xor_set_link(prev_desc, next_desc);
 761                break;
 762        }
 763
 764        local_irq_restore(flags);
 765}
 766
 767/**
 768 * ppc440spe_desc_get_link - get the address of the descriptor that
 769 * follows this one
 770 */
 771static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
 772                                        struct ppc440spe_adma_chan *chan)
 773{
 774        if (!desc->hw_next)
 775                return 0;
 776
 777        return desc->hw_next->phys;
 778}
 779
 780/**
 781 * ppc440spe_desc_is_aligned - check alignment
 782 */
 783static inline int ppc440spe_desc_is_aligned(
 784        struct ppc440spe_adma_desc_slot *desc, int num_slots)
 785{
 786        return (desc->idx & (num_slots - 1)) ? 0 : 1;
 787}
 788
 789/**
 790 * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
 791 * XOR operation
 792 */
 793static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
 794                        int *slots_per_op)
 795{
 796        int slot_cnt;
 797
 798        /* each XOR descriptor provides up to 16 source operands */
 799        slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
 800
 801        if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
 802                return slot_cnt;
 803
 804        printk(KERN_ERR "%s: len %d > max %d !!\n",
 805                __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
 806        BUG();
 807        return slot_cnt;
 808}
 809
 810/**
 811 * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
 812 * DMA2 PQ operation
 813 */
 814static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
 815                int src_cnt, size_t len)
 816{
 817        signed long long order = 0;
 818        int state = 0;
 819        int addr_count = 0;
 820        int i;
 821        for (i = 1; i < src_cnt; i++) {
 822                dma_addr_t cur_addr = srcs[i];
 823                dma_addr_t old_addr = srcs[i-1];
 824                switch (state) {
 825                case 0:
 826                        if (cur_addr == old_addr + len) {
 827                                /* direct RXOR */
 828                                order = 1;
 829                                state = 1;
 830                                if (i == src_cnt-1)
 831                                        addr_count++;
 832                        } else if (old_addr == cur_addr + len) {
 833                                /* reverse RXOR */
 834                                order = -1;
 835                                state = 1;
 836                                if (i == src_cnt-1)
 837                                        addr_count++;
 838                        } else {
 839                                state = 3;
 840                        }
 841                        break;
 842                case 1:
 843                        if (i == src_cnt-2 || (order == -1
 844                                && cur_addr != old_addr - len)) {
 845                                order = 0;
 846                                state = 0;
 847                                addr_count++;
 848                        } else if (cur_addr == old_addr + len*order) {
 849                                state = 2;
 850                                if (i == src_cnt-1)
 851                                        addr_count++;
 852                        } else if (cur_addr == old_addr + 2*len) {
 853                                state = 2;
 854                                if (i == src_cnt-1)
 855                                        addr_count++;
 856                        } else if (cur_addr == old_addr + 3*len) {
 857                                state = 2;
 858                                if (i == src_cnt-1)
 859                                        addr_count++;
 860                        } else {
 861                                order = 0;
 862                                state = 0;
 863                                addr_count++;
 864                        }
 865                        break;
 866                case 2:
 867                        order = 0;
 868                        state = 0;
 869                        addr_count++;
 870                                break;
 871                }
 872                if (state == 3)
 873                        break;
 874        }
 875        if (src_cnt <= 1 || (state != 1 && state != 2)) {
 876                pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
 877                        __func__, src_cnt, state, addr_count, order);
 878                for (i = 0; i < src_cnt; i++)
 879                        pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
 880                BUG();
 881        }
 882
 883        return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
 884}
 885
 886
 887/******************************************************************************
 888 * ADMA channel low-level routines
 889 ******************************************************************************/
 890
 891static u32
 892ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
 893static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
 894
 895/**
 896 * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
 897 */
 898static void ppc440spe_adma_device_clear_eot_status(
 899                                        struct ppc440spe_adma_chan *chan)
 900{
 901        struct dma_regs *dma_reg;
 902        struct xor_regs *xor_reg;
 903        u8 *p = chan->device->dma_desc_pool_virt;
 904        struct dma_cdb *cdb;
 905        u32 rv, i;
 906
 907        switch (chan->device->id) {
 908        case PPC440SPE_DMA0_ID:
 909        case PPC440SPE_DMA1_ID:
 910                /* read FIFO to ack */
 911                dma_reg = chan->device->dma_reg;
 912                while ((rv = ioread32(&dma_reg->csfpl))) {
 913                        i = rv & DMA_CDB_ADDR_MSK;
 914                        cdb = (struct dma_cdb *)&p[i -
 915                            (u32)chan->device->dma_desc_pool];
 916
 917                        /* Clear opcode to ack. This is necessary for
 918                         * ZeroSum operations only
 919                         */
 920                        cdb->opc = 0;
 921
 922                        if (test_bit(PPC440SPE_RXOR_RUN,
 923                            &ppc440spe_rxor_state)) {
 924                                /* probably this is a completed RXOR op,
 925                                 * get pointer to CDB using the fact that
 926                                 * physical and virtual addresses of CDB
 927                                 * in pools have the same offsets
 928                                 */
 929                                if (le32_to_cpu(cdb->sg1u) &
 930                                    DMA_CUED_XOR_BASE) {
 931                                        /* this is a RXOR */
 932                                        clear_bit(PPC440SPE_RXOR_RUN,
 933                                                  &ppc440spe_rxor_state);
 934                                }
 935                        }
 936
 937                        if (rv & DMA_CDB_STATUS_MSK) {
 938                                /* ZeroSum check failed
 939                                 */
 940                                struct ppc440spe_adma_desc_slot *iter;
 941                                dma_addr_t phys = rv & ~DMA_CDB_MSK;
 942
 943                                /*
 944                                 * Update the status of corresponding
 945                                 * descriptor.
 946                                 */
 947                                list_for_each_entry(iter, &chan->chain,
 948                                    chain_node) {
 949                                        if (iter->phys == phys)
 950                                                break;
 951                                }
 952                                /*
 953                                 * if cannot find the corresponding
 954                                 * slot it's a bug
 955                                 */
 956                                BUG_ON(&iter->chain_node == &chan->chain);
 957
 958                                if (iter->xor_check_result) {
 959                                        if (test_bit(PPC440SPE_DESC_PCHECK,
 960                                                     &iter->flags)) {
 961                                                *iter->xor_check_result |=
 962                                                        SUM_CHECK_P_RESULT;
 963                                        } else
 964                                        if (test_bit(PPC440SPE_DESC_QCHECK,
 965                                                     &iter->flags)) {
 966                                                *iter->xor_check_result |=
 967                                                        SUM_CHECK_Q_RESULT;
 968                                        } else
 969                                                BUG();
 970                                }
 971                        }
 972                }
 973
 974                rv = ioread32(&dma_reg->dsts);
 975                if (rv) {
 976                        pr_err("DMA%d err status: 0x%x\n",
 977                               chan->device->id, rv);
 978                        /* write back to clear */
 979                        iowrite32(rv, &dma_reg->dsts);
 980                }
 981                break;
 982        case PPC440SPE_XOR_ID:
 983                /* reset status bits to ack */
 984                xor_reg = chan->device->xor_reg;
 985                rv = ioread32be(&xor_reg->sr);
 986                iowrite32be(rv, &xor_reg->sr);
 987
 988                if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
 989                        if (rv & XOR_IE_RPTIE_BIT) {
 990                                /* Read PLB Timeout Error.
 991                                 * Try to resubmit the CB
 992                                 */
 993                                u32 val = ioread32be(&xor_reg->ccbalr);
 994
 995                                iowrite32be(val, &xor_reg->cblalr);
 996
 997                                val = ioread32be(&xor_reg->crsr);
 998                                iowrite32be(val | XOR_CRSR_XAE_BIT,
 999                                            &xor_reg->crsr);
1000                        } else
1001                                pr_err("XOR ERR 0x%x status\n", rv);
1002                        break;
1003                }
1004
1005                /*  if the XORcore is idle, but there are unprocessed CBs
1006                 * then refetch the s/w chain here
1007                 */
1008                if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
1009                    do_xor_refetch)
1010                        ppc440spe_chan_append(chan);
1011                break;
1012        }
1013}
1014
1015/**
1016 * ppc440spe_chan_is_busy - get the channel status
1017 */
1018static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
1019{
1020        struct dma_regs *dma_reg;
1021        struct xor_regs *xor_reg;
1022        int busy = 0;
1023
1024        switch (chan->device->id) {
1025        case PPC440SPE_DMA0_ID:
1026        case PPC440SPE_DMA1_ID:
1027                dma_reg = chan->device->dma_reg;
1028                /*  if command FIFO's head and tail pointers are equal and
1029                 * status tail is the same as command, then channel is free
1030                 */
1031                if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
1032                    ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
1033                        busy = 1;
1034                break;
1035        case PPC440SPE_XOR_ID:
1036                /* use the special status bit for the XORcore
1037                 */
1038                xor_reg = chan->device->xor_reg;
1039                busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
1040                break;
1041        }
1042
1043        return busy;
1044}
1045
1046/**
1047 * ppc440spe_chan_set_first_xor_descriptor -  init XORcore chain
1048 */
1049static void ppc440spe_chan_set_first_xor_descriptor(
1050                                struct ppc440spe_adma_chan *chan,
1051                                struct ppc440spe_adma_desc_slot *next_desc)
1052{
1053        struct xor_regs *xor_reg = chan->device->xor_reg;
1054
1055        if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
1056                printk(KERN_INFO "%s: Warn: XORcore is running "
1057                        "when try to set the first CDB!\n",
1058                        __func__);
1059
1060        xor_last_submit = xor_last_linked = next_desc;
1061
1062        iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
1063
1064        iowrite32be(next_desc->phys, &xor_reg->cblalr);
1065        iowrite32be(0, &xor_reg->cblahr);
1066        iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
1067                    &xor_reg->cbcr);
1068
1069        chan->hw_chain_inited = 1;
1070}
1071
1072/**
1073 * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1074 * called with irqs disabled
1075 */
1076static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
1077                struct ppc440spe_adma_desc_slot *desc)
1078{
1079        u32 pcdb;
1080        struct dma_regs *dma_reg = chan->device->dma_reg;
1081
1082        pcdb = desc->phys;
1083        if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
1084                pcdb |= DMA_CDB_NO_INT;
1085
1086        chan_last_sub[chan->device->id] = desc;
1087
1088        ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
1089
1090        iowrite32(pcdb, &dma_reg->cpfpl);
1091}
1092
1093/**
1094 * ppc440spe_chan_append - update the h/w chain in the channel
1095 */
1096static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
1097{
1098        struct xor_regs *xor_reg;
1099        struct ppc440spe_adma_desc_slot *iter;
1100        struct xor_cb *xcb;
1101        u32 cur_desc;
1102        unsigned long flags;
1103
1104        local_irq_save(flags);
1105
1106        switch (chan->device->id) {
1107        case PPC440SPE_DMA0_ID:
1108        case PPC440SPE_DMA1_ID:
1109                cur_desc = ppc440spe_chan_get_current_descriptor(chan);
1110
1111                if (likely(cur_desc)) {
1112                        iter = chan_last_sub[chan->device->id];
1113                        BUG_ON(!iter);
1114                } else {
1115                        /* first peer */
1116                        iter = chan_first_cdb[chan->device->id];
1117                        BUG_ON(!iter);
1118                        ppc440spe_dma_put_desc(chan, iter);
1119                        chan->hw_chain_inited = 1;
1120                }
1121
1122                /* is there something new to append */
1123                if (!iter->hw_next)
1124                        break;
1125
1126                /* flush descriptors from the s/w queue to fifo */
1127                list_for_each_entry_continue(iter, &chan->chain, chain_node) {
1128                        ppc440spe_dma_put_desc(chan, iter);
1129                        if (!iter->hw_next)
1130                                break;
1131                }
1132                break;
1133        case PPC440SPE_XOR_ID:
1134                /* update h/w links and refetch */
1135                if (!xor_last_submit->hw_next)
1136                        break;
1137
1138                xor_reg = chan->device->xor_reg;
1139                /* the last linked CDB has to generate an interrupt
1140                 * that we'd be able to append the next lists to h/w
1141                 * regardless of the XOR engine state at the moment of
1142                 * appending of these next lists
1143                 */
1144                xcb = xor_last_linked->hw_desc;
1145                xcb->cbc |= XOR_CBCR_CBCE_BIT;
1146
1147                if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
1148                        /* XORcore is idle. Refetch now */
1149                        do_xor_refetch = 0;
1150                        ppc440spe_xor_set_link(xor_last_submit,
1151                                xor_last_submit->hw_next);
1152
1153                        ADMA_LL_DBG(print_cb_list(chan,
1154                                xor_last_submit->hw_next));
1155
1156                        xor_last_submit = xor_last_linked;
1157                        iowrite32be(ioread32be(&xor_reg->crsr) |
1158                                    XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
1159                                    &xor_reg->crsr);
1160                } else {
1161                        /* XORcore is running. Refetch later in the handler */
1162                        do_xor_refetch = 1;
1163                }
1164
1165                break;
1166        }
1167
1168        local_irq_restore(flags);
1169}
1170
1171/**
1172 * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1173 */
1174static u32
1175ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
1176{
1177        struct dma_regs *dma_reg;
1178        struct xor_regs *xor_reg;
1179
1180        if (unlikely(!chan->hw_chain_inited))
1181                /* h/w descriptor chain is not initialized yet */
1182                return 0;
1183
1184        switch (chan->device->id) {
1185        case PPC440SPE_DMA0_ID:
1186        case PPC440SPE_DMA1_ID:
1187                dma_reg = chan->device->dma_reg;
1188                return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
1189        case PPC440SPE_XOR_ID:
1190                xor_reg = chan->device->xor_reg;
1191                return ioread32be(&xor_reg->ccbalr);
1192        }
1193        return 0;
1194}
1195
1196/**
1197 * ppc440spe_chan_run - enable the channel
1198 */
1199static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
1200{
1201        struct xor_regs *xor_reg;
1202
1203        switch (chan->device->id) {
1204        case PPC440SPE_DMA0_ID:
1205        case PPC440SPE_DMA1_ID:
1206                /* DMAs are always enabled, do nothing */
1207                break;
1208        case PPC440SPE_XOR_ID:
1209                /* drain write buffer */
1210                xor_reg = chan->device->xor_reg;
1211
1212                /* fetch descriptor pointed to in <link> */
1213                iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
1214                            &xor_reg->crsr);
1215                break;
1216        }
1217}
1218
1219/******************************************************************************
1220 * ADMA device level
1221 ******************************************************************************/
1222
1223static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
1224static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
1225
1226static dma_cookie_t
1227ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
1228
1229static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
1230                                    dma_addr_t addr, int index);
1231static void
1232ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
1233                                  dma_addr_t addr, int index);
1234
1235static void
1236ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
1237                           dma_addr_t *paddr, unsigned long flags);
1238static void
1239ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
1240                          dma_addr_t addr, int index);
1241static void
1242ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
1243                               unsigned char mult, int index, int dst_pos);
1244static void
1245ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
1246                                   dma_addr_t paddr, dma_addr_t qaddr);
1247
1248static struct page *ppc440spe_rxor_srcs[32];
1249
1250/**
1251 * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1252 */
1253static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
1254{
1255        int i, order = 0, state = 0;
1256        int idx = 0;
1257
1258        if (unlikely(!(src_cnt > 1)))
1259                return 0;
1260
1261        BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
1262
1263        /* Skip holes in the source list before checking */
1264        for (i = 0; i < src_cnt; i++) {
1265                if (!srcs[i])
1266                        continue;
1267                ppc440spe_rxor_srcs[idx++] = srcs[i];
1268        }
1269        src_cnt = idx;
1270
1271        for (i = 1; i < src_cnt; i++) {
1272                char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
1273                char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
1274
1275                switch (state) {
1276                case 0:
1277                        if (cur_addr == old_addr + len) {
1278                                /* direct RXOR */
1279                                order = 1;
1280                                state = 1;
1281                        } else if (old_addr == cur_addr + len) {
1282                                /* reverse RXOR */
1283                                order = -1;
1284                                state = 1;
1285                        } else
1286                                goto out;
1287                        break;
1288                case 1:
1289                        if ((i == src_cnt - 2) ||
1290                            (order == -1 && cur_addr != old_addr - len)) {
1291                                order = 0;
1292                                state = 0;
1293                        } else if ((cur_addr == old_addr + len * order) ||
1294                                   (cur_addr == old_addr + 2 * len) ||
1295                                   (cur_addr == old_addr + 3 * len)) {
1296                                state = 2;
1297                        } else {
1298                                order = 0;
1299                                state = 0;
1300                        }
1301                        break;
1302                case 2:
1303                        order = 0;
1304                        state = 0;
1305                        break;
1306                }
1307        }
1308
1309out:
1310        if (state == 1 || state == 2)
1311                return 1;
1312
1313        return 0;
1314}
1315
1316/**
1317 * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1318 *      the operation given on this channel. It's assumed that 'chan' is
1319 *      capable to process 'cap' type of operation.
1320 * @chan: channel to use
1321 * @cap: type of transaction
1322 * @dst_lst: array of destination pointers
1323 * @dst_cnt: number of destination operands
1324 * @src_lst: array of source pointers
1325 * @src_cnt: number of source operands
1326 * @src_sz: size of each source operand
1327 */
1328static int ppc440spe_adma_estimate(struct dma_chan *chan,
1329        enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
1330        struct page **src_lst, int src_cnt, size_t src_sz)
1331{
1332        int ef = 1;
1333
1334        if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
1335                /* If RAID-6 capabilities were not activated don't try
1336                 * to use them
1337                 */
1338                if (unlikely(!ppc440spe_r6_enabled))
1339                        return -1;
1340        }
1341        /*  In the current implementation of ppc440spe ADMA driver it
1342         * makes sense to pick out only pq case, because it may be
1343         * processed:
1344         * (1) either using Biskup method on DMA2;
1345         * (2) or on DMA0/1.
1346         *  Thus we give a favour to (1) if the sources are suitable;
1347         * else let it be processed on one of the DMA0/1 engines.
1348         *  In the sum_product case where destination is also the
1349         * source process it on DMA0/1 only.
1350         */
1351        if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
1352
1353                if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
1354                        ef = 0; /* sum_product case, process on DMA0/1 */
1355                else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
1356                        ef = 3; /* override (DMA0/1 + idle) */
1357                else
1358                        ef = 0; /* can't process on DMA2 if !rxor */
1359        }
1360
1361        /* channel idleness increases the priority */
1362        if (likely(ef) &&
1363            !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
1364                ef++;
1365
1366        return ef;
1367}
1368
1369struct dma_chan *
1370ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
1371        struct page **dst_lst, int dst_cnt, struct page **src_lst,
1372        int src_cnt, size_t src_sz)
1373{
1374        struct dma_chan *best_chan = NULL;
1375        struct ppc_dma_chan_ref *ref;
1376        int best_rank = -1;
1377
1378        if (unlikely(!src_sz))
1379                return NULL;
1380        if (src_sz > PAGE_SIZE) {
1381                /*
1382                 * should a user of the api ever pass > PAGE_SIZE requests
1383                 * we sort out cases where temporary page-sized buffers
1384                 * are used.
1385                 */
1386                switch (cap) {
1387                case DMA_PQ:
1388                        if (src_cnt == 1 && dst_lst[1] == src_lst[0])
1389                                return NULL;
1390                        if (src_cnt == 2 && dst_lst[1] == src_lst[1])
1391                                return NULL;
1392                        break;
1393                case DMA_PQ_VAL:
1394                case DMA_XOR_VAL:
1395                        return NULL;
1396                default:
1397                        break;
1398                }
1399        }
1400
1401        list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
1402                if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
1403                        int rank;
1404
1405                        rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
1406                                        dst_cnt, src_lst, src_cnt, src_sz);
1407                        if (rank > best_rank) {
1408                                best_rank = rank;
1409                                best_chan = ref->chan;
1410                        }
1411                }
1412        }
1413
1414        return best_chan;
1415}
1416EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
1417
1418/**
1419 * ppc440spe_get_group_entry - get group entry with index idx
1420 * @tdesc: is the last allocated slot in the group.
1421 */
1422static struct ppc440spe_adma_desc_slot *
1423ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
1424{
1425        struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
1426        int i = 0;
1427
1428        if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
1429                printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1430                        __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
1431                BUG();
1432        }
1433
1434        list_for_each_entry(iter, &tdesc->group_list, chain_node) {
1435                if (i++ == entry_idx)
1436                        break;
1437        }
1438        return iter;
1439}
1440
1441/**
1442 * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1443 * @slot: Slot to free
1444 * Caller must hold &ppc440spe_chan->lock while calling this function
1445 */
1446static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
1447                                      struct ppc440spe_adma_chan *chan)
1448{
1449        int stride = slot->slots_per_op;
1450
1451        while (stride--) {
1452                slot->slots_per_op = 0;
1453                slot = list_entry(slot->slot_node.next,
1454                                struct ppc440spe_adma_desc_slot,
1455                                slot_node);
1456        }
1457}
1458
1459/**
1460 * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1461 * upon completion
1462 */
1463static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
1464                struct ppc440spe_adma_desc_slot *desc,
1465                struct ppc440spe_adma_chan *chan,
1466                dma_cookie_t cookie)
1467{
1468        BUG_ON(desc->async_tx.cookie < 0);
1469        if (desc->async_tx.cookie > 0) {
1470                cookie = desc->async_tx.cookie;
1471                desc->async_tx.cookie = 0;
1472
1473                dma_descriptor_unmap(&desc->async_tx);
1474                /* call the callback (must not sleep or submit new
1475                 * operations to this channel)
1476                 */
1477                dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
1478        }
1479
1480        /* run dependent operations */
1481        dma_run_dependencies(&desc->async_tx);
1482
1483        return cookie;
1484}
1485
1486/**
1487 * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1488 */
1489static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
1490                struct ppc440spe_adma_chan *chan)
1491{
1492        /* the client is allowed to attach dependent operations
1493         * until 'ack' is set
1494         */
1495        if (!async_tx_test_ack(&desc->async_tx))
1496                return 0;
1497
1498        /* leave the last descriptor in the chain
1499         * so we can append to it
1500         */
1501        if (list_is_last(&desc->chain_node, &chan->chain) ||
1502            desc->phys == ppc440spe_chan_get_current_descriptor(chan))
1503                return 1;
1504
1505        if (chan->device->id != PPC440SPE_XOR_ID) {
1506                /* our DMA interrupt handler clears opc field of
1507                 * each processed descriptor. For all types of
1508                 * operations except for ZeroSum we do not actually
1509                 * need ack from the interrupt handler. ZeroSum is a
1510                 * special case since the result of this operation
1511                 * is available from the handler only, so if we see
1512                 * such type of descriptor (which is unprocessed yet)
1513                 * then leave it in chain.
1514                 */
1515                struct dma_cdb *cdb = desc->hw_desc;
1516                if (cdb->opc == DMA_CDB_OPC_DCHECK128)
1517                        return 1;
1518        }
1519
1520        dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
1521                desc->phys, desc->idx, desc->slots_per_op);
1522
1523        list_del(&desc->chain_node);
1524        ppc440spe_adma_free_slots(desc, chan);
1525        return 0;
1526}
1527
1528/**
1529 * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1530 *      which runs through the channel CDBs list until reach the descriptor
1531 *      currently processed. When routine determines that all CDBs of group
1532 *      are completed then corresponding callbacks (if any) are called and slots
1533 *      are freed.
1534 */
1535static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1536{
1537        struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
1538        dma_cookie_t cookie = 0;
1539        u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
1540        int busy = ppc440spe_chan_is_busy(chan);
1541        int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
1542
1543        dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
1544                chan->device->id, __func__);
1545
1546        if (!current_desc) {
1547                /*  There were no transactions yet, so
1548                 * nothing to clean
1549                 */
1550                return;
1551        }
1552
1553        /* free completed slots from the chain starting with
1554         * the oldest descriptor
1555         */
1556        list_for_each_entry_safe(iter, _iter, &chan->chain,
1557                                        chain_node) {
1558                dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
1559                    "busy: %d this_desc: %#llx next_desc: %#x "
1560                    "cur: %#x ack: %d\n",
1561                    iter->async_tx.cookie, iter->idx, busy, iter->phys,
1562                    ppc440spe_desc_get_link(iter, chan), current_desc,
1563                    async_tx_test_ack(&iter->async_tx));
1564                prefetch(_iter);
1565                prefetch(&_iter->async_tx);
1566
1567                /* do not advance past the current descriptor loaded into the
1568                 * hardware channel,subsequent descriptors are either in process
1569                 * or have not been submitted
1570                 */
1571                if (seen_current)
1572                        break;
1573
1574                /* stop the search if we reach the current descriptor and the
1575                 * channel is busy, or if it appears that the current descriptor
1576                 * needs to be re-read (i.e. has been appended to)
1577                 */
1578                if (iter->phys == current_desc) {
1579                        BUG_ON(seen_current++);
1580                        if (busy || ppc440spe_desc_get_link(iter, chan)) {
1581                                /* not all descriptors of the group have
1582                                 * been completed; exit.
1583                                 */
1584                                break;
1585                        }
1586                }
1587
1588                /* detect the start of a group transaction */
1589                if (!slot_cnt && !slots_per_op) {
1590                        slot_cnt = iter->slot_cnt;
1591                        slots_per_op = iter->slots_per_op;
1592                        if (slot_cnt <= slots_per_op) {
1593                                slot_cnt = 0;
1594                                slots_per_op = 0;
1595                        }
1596                }
1597
1598                if (slot_cnt) {
1599                        if (!group_start)
1600                                group_start = iter;
1601                        slot_cnt -= slots_per_op;
1602                }
1603
1604                /* all the members of a group are complete */
1605                if (slots_per_op != 0 && slot_cnt == 0) {
1606                        struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
1607                        int end_of_chain = 0;
1608
1609                        /* clean up the group */
1610                        slot_cnt = group_start->slot_cnt;
1611                        grp_iter = group_start;
1612                        list_for_each_entry_safe_from(grp_iter, _grp_iter,
1613                                &chan->chain, chain_node) {
1614
1615                                cookie = ppc440spe_adma_run_tx_complete_actions(
1616                                        grp_iter, chan, cookie);
1617
1618                                slot_cnt -= slots_per_op;
1619                                end_of_chain = ppc440spe_adma_clean_slot(
1620                                    grp_iter, chan);
1621                                if (end_of_chain && slot_cnt) {
1622                                        /* Should wait for ZeroSum completion */
1623                                        if (cookie > 0)
1624                                                chan->common.completed_cookie = cookie;
1625                                        return;
1626                                }
1627
1628                                if (slot_cnt == 0 || end_of_chain)
1629                                        break;
1630                        }
1631
1632                        /* the group should be complete at this point */
1633                        BUG_ON(slot_cnt);
1634
1635                        slots_per_op = 0;
1636                        group_start = NULL;
1637                        if (end_of_chain)
1638                                break;
1639                        else
1640                                continue;
1641                } else if (slots_per_op) /* wait for group completion */
1642                        continue;
1643
1644                cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
1645                    cookie);
1646
1647                if (ppc440spe_adma_clean_slot(iter, chan))
1648                        break;
1649        }
1650
1651        BUG_ON(!seen_current);
1652
1653        if (cookie > 0) {
1654                chan->common.completed_cookie = cookie;
1655                pr_debug("\tcompleted cookie %d\n", cookie);
1656        }
1657
1658}
1659
1660/**
1661 * ppc440spe_adma_tasklet - clean up watch-dog initiator
1662 */
1663static void ppc440spe_adma_tasklet(unsigned long data)
1664{
1665        struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
1666
1667        spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
1668        __ppc440spe_adma_slot_cleanup(chan);
1669        spin_unlock(&chan->lock);
1670}
1671
1672/**
1673 * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1674 */
1675static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1676{
1677        spin_lock_bh(&chan->lock);
1678        __ppc440spe_adma_slot_cleanup(chan);
1679        spin_unlock_bh(&chan->lock);
1680}
1681
1682/**
1683 * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1684 */
1685static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
1686                struct ppc440spe_adma_chan *chan, int num_slots,
1687                int slots_per_op)
1688{
1689        struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
1690        struct ppc440spe_adma_desc_slot *alloc_start = NULL;
1691        struct list_head chain = LIST_HEAD_INIT(chain);
1692        int slots_found, retry = 0;
1693
1694
1695        BUG_ON(!num_slots || !slots_per_op);
1696        /* start search from the last allocated descrtiptor
1697         * if a contiguous allocation can not be found start searching
1698         * from the beginning of the list
1699         */
1700retry:
1701        slots_found = 0;
1702        if (retry == 0)
1703                iter = chan->last_used;
1704        else
1705                iter = list_entry(&chan->all_slots,
1706                                  struct ppc440spe_adma_desc_slot,
1707                                  slot_node);
1708        list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
1709            slot_node) {
1710                prefetch(_iter);
1711                prefetch(&_iter->async_tx);
1712                if (iter->slots_per_op) {
1713                        slots_found = 0;
1714                        continue;
1715                }
1716
1717                /* start the allocation if the slot is correctly aligned */
1718                if (!slots_found++)
1719                        alloc_start = iter;
1720
1721                if (slots_found == num_slots) {
1722                        struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
1723                        struct ppc440spe_adma_desc_slot *last_used = NULL;
1724
1725                        iter = alloc_start;
1726                        while (num_slots) {
1727                                int i;
1728                                /* pre-ack all but the last descriptor */
1729                                if (num_slots != slots_per_op)
1730                                        async_tx_ack(&iter->async_tx);
1731
1732                                list_add_tail(&iter->chain_node, &chain);
1733                                alloc_tail = iter;
1734                                iter->async_tx.cookie = 0;
1735                                iter->hw_next = NULL;
1736                                iter->flags = 0;
1737                                iter->slot_cnt = num_slots;
1738                                iter->xor_check_result = NULL;
1739                                for (i = 0; i < slots_per_op; i++) {
1740                                        iter->slots_per_op = slots_per_op - i;
1741                                        last_used = iter;
1742                                        iter = list_entry(iter->slot_node.next,
1743                                                struct ppc440spe_adma_desc_slot,
1744                                                slot_node);
1745                                }
1746                                num_slots -= slots_per_op;
1747                        }
1748                        alloc_tail->group_head = alloc_start;
1749                        alloc_tail->async_tx.cookie = -EBUSY;
1750                        list_splice(&chain, &alloc_tail->group_list);
1751                        chan->last_used = last_used;
1752                        return alloc_tail;
1753                }
1754        }
1755        if (!retry++)
1756                goto retry;
1757
1758        /* try to free some slots if the allocation fails */
1759        tasklet_schedule(&chan->irq_tasklet);
1760        return NULL;
1761}
1762
1763/**
1764 * ppc440spe_adma_alloc_chan_resources -  allocate pools for CDB slots
1765 */
1766static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
1767{
1768        struct ppc440spe_adma_chan *ppc440spe_chan;
1769        struct ppc440spe_adma_desc_slot *slot = NULL;
1770        char *hw_desc;
1771        int i, db_sz;
1772        int init;
1773
1774        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1775        init = ppc440spe_chan->slots_allocated ? 0 : 1;
1776        chan->chan_id = ppc440spe_chan->device->id;
1777
1778        /* Allocate descriptor slots */
1779        i = ppc440spe_chan->slots_allocated;
1780        if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
1781                db_sz = sizeof(struct dma_cdb);
1782        else
1783                db_sz = sizeof(struct xor_cb);
1784
1785        for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
1786                slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
1787                               GFP_KERNEL);
1788                if (!slot) {
1789                        printk(KERN_INFO "SPE ADMA Channel only initialized"
1790                                " %d descriptor slots", i--);
1791                        break;
1792                }
1793
1794                hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
1795                slot->hw_desc = (void *) &hw_desc[i * db_sz];
1796                dma_async_tx_descriptor_init(&slot->async_tx, chan);
1797                slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
1798                INIT_LIST_HEAD(&slot->chain_node);
1799                INIT_LIST_HEAD(&slot->slot_node);
1800                INIT_LIST_HEAD(&slot->group_list);
1801                slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
1802                slot->idx = i;
1803
1804                spin_lock_bh(&ppc440spe_chan->lock);
1805                ppc440spe_chan->slots_allocated++;
1806                list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
1807                spin_unlock_bh(&ppc440spe_chan->lock);
1808        }
1809
1810        if (i && !ppc440spe_chan->last_used) {
1811                ppc440spe_chan->last_used =
1812                        list_entry(ppc440spe_chan->all_slots.next,
1813                                struct ppc440spe_adma_desc_slot,
1814                                slot_node);
1815        }
1816
1817        dev_dbg(ppc440spe_chan->device->common.dev,
1818                "ppc440spe adma%d: allocated %d descriptor slots\n",
1819                ppc440spe_chan->device->id, i);
1820
1821        /* initialize the channel and the chain with a null operation */
1822        if (init) {
1823                switch (ppc440spe_chan->device->id) {
1824                case PPC440SPE_DMA0_ID:
1825                case PPC440SPE_DMA1_ID:
1826                        ppc440spe_chan->hw_chain_inited = 0;
1827                        /* Use WXOR for self-testing */
1828                        if (!ppc440spe_r6_tchan)
1829                                ppc440spe_r6_tchan = ppc440spe_chan;
1830                        break;
1831                case PPC440SPE_XOR_ID:
1832                        ppc440spe_chan_start_null_xor(ppc440spe_chan);
1833                        break;
1834                default:
1835                        BUG();
1836                }
1837                ppc440spe_chan->needs_unmap = 1;
1838        }
1839
1840        return (i > 0) ? i : -ENOMEM;
1841}
1842
1843/**
1844 * ppc440spe_rxor_set_region_data -
1845 */
1846static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
1847        u8 xor_arg_no, u32 mask)
1848{
1849        struct xor_cb *xcb = desc->hw_desc;
1850
1851        xcb->ops[xor_arg_no].h |= mask;
1852}
1853
1854/**
1855 * ppc440spe_rxor_set_src -
1856 */
1857static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
1858        u8 xor_arg_no, dma_addr_t addr)
1859{
1860        struct xor_cb *xcb = desc->hw_desc;
1861
1862        xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
1863        xcb->ops[xor_arg_no].l = addr;
1864}
1865
1866/**
1867 * ppc440spe_rxor_set_mult -
1868 */
1869static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
1870        u8 xor_arg_no, u8 idx, u8 mult)
1871{
1872        struct xor_cb *xcb = desc->hw_desc;
1873
1874        xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
1875}
1876
1877/**
1878 * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
1879 *      has been achieved
1880 */
1881static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
1882{
1883        dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
1884                chan->device->id, chan->pending);
1885
1886        if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
1887                chan->pending = 0;
1888                ppc440spe_chan_append(chan);
1889        }
1890}
1891
1892/**
1893 * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
1894 *      (it's not necessary that descriptors will be submitted to the h/w
1895 *      chains too right now)
1896 */
1897static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
1898{
1899        struct ppc440spe_adma_desc_slot *sw_desc;
1900        struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
1901        struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
1902        int slot_cnt;
1903        int slots_per_op;
1904        dma_cookie_t cookie;
1905
1906        sw_desc = tx_to_ppc440spe_adma_slot(tx);
1907
1908        group_start = sw_desc->group_head;
1909        slot_cnt = group_start->slot_cnt;
1910        slots_per_op = group_start->slots_per_op;
1911
1912        spin_lock_bh(&chan->lock);
1913        cookie = dma_cookie_assign(tx);
1914
1915        if (unlikely(list_empty(&chan->chain))) {
1916                /* first peer */
1917                list_splice_init(&sw_desc->group_list, &chan->chain);
1918                chan_first_cdb[chan->device->id] = group_start;
1919        } else {
1920                /* isn't first peer, bind CDBs to chain */
1921                old_chain_tail = list_entry(chan->chain.prev,
1922                                        struct ppc440spe_adma_desc_slot,
1923                                        chain_node);
1924                list_splice_init(&sw_desc->group_list,
1925                    &old_chain_tail->chain_node);
1926                /* fix up the hardware chain */
1927                ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
1928        }
1929
1930        /* increment the pending count by the number of operations */
1931        chan->pending += slot_cnt / slots_per_op;
1932        ppc440spe_adma_check_threshold(chan);
1933        spin_unlock_bh(&chan->lock);
1934
1935        dev_dbg(chan->device->common.dev,
1936                "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
1937                chan->device->id, __func__,
1938                sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
1939
1940        return cookie;
1941}
1942
1943/**
1944 * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
1945 */
1946static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
1947                struct dma_chan *chan, unsigned long flags)
1948{
1949        struct ppc440spe_adma_chan *ppc440spe_chan;
1950        struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
1951        int slot_cnt, slots_per_op;
1952
1953        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1954
1955        dev_dbg(ppc440spe_chan->device->common.dev,
1956                "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
1957                __func__);
1958
1959        spin_lock_bh(&ppc440spe_chan->lock);
1960        slot_cnt = slots_per_op = 1;
1961        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
1962                        slots_per_op);
1963        if (sw_desc) {
1964                group_start = sw_desc->group_head;
1965                ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
1966                group_start->unmap_len = 0;
1967                sw_desc->async_tx.flags = flags;
1968        }
1969        spin_unlock_bh(&ppc440spe_chan->lock);
1970
1971        return sw_desc ? &sw_desc->async_tx : NULL;
1972}
1973
1974/**
1975 * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
1976 */
1977static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
1978                struct dma_chan *chan, dma_addr_t dma_dest,
1979                dma_addr_t dma_src, size_t len, unsigned long flags)
1980{
1981        struct ppc440spe_adma_chan *ppc440spe_chan;
1982        struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
1983        int slot_cnt, slots_per_op;
1984
1985        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1986
1987        if (unlikely(!len))
1988                return NULL;
1989
1990        BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
1991
1992        spin_lock_bh(&ppc440spe_chan->lock);
1993
1994        dev_dbg(ppc440spe_chan->device->common.dev,
1995                "ppc440spe adma%d: %s len: %u int_en %d\n",
1996                ppc440spe_chan->device->id, __func__, len,
1997                flags & DMA_PREP_INTERRUPT ? 1 : 0);
1998        slot_cnt = slots_per_op = 1;
1999        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2000                slots_per_op);
2001        if (sw_desc) {
2002                group_start = sw_desc->group_head;
2003                ppc440spe_desc_init_memcpy(group_start, flags);
2004                ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2005                ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
2006                ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2007                sw_desc->unmap_len = len;
2008                sw_desc->async_tx.flags = flags;
2009        }
2010        spin_unlock_bh(&ppc440spe_chan->lock);
2011
2012        return sw_desc ? &sw_desc->async_tx : NULL;
2013}
2014
2015/**
2016 * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2017 */
2018static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
2019                struct dma_chan *chan, dma_addr_t dma_dest,
2020                dma_addr_t *dma_src, u32 src_cnt, size_t len,
2021                unsigned long flags)
2022{
2023        struct ppc440spe_adma_chan *ppc440spe_chan;
2024        struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2025        int slot_cnt, slots_per_op;
2026
2027        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2028
2029        ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
2030                                     dma_dest, dma_src, src_cnt));
2031        if (unlikely(!len))
2032                return NULL;
2033        BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2034
2035        dev_dbg(ppc440spe_chan->device->common.dev,
2036                "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2037                ppc440spe_chan->device->id, __func__, src_cnt, len,
2038                flags & DMA_PREP_INTERRUPT ? 1 : 0);
2039
2040        spin_lock_bh(&ppc440spe_chan->lock);
2041        slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
2042        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2043                        slots_per_op);
2044        if (sw_desc) {
2045                group_start = sw_desc->group_head;
2046                ppc440spe_desc_init_xor(group_start, src_cnt, flags);
2047                ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2048                while (src_cnt--)
2049                        ppc440spe_adma_memcpy_xor_set_src(group_start,
2050                                dma_src[src_cnt], src_cnt);
2051                ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2052                sw_desc->unmap_len = len;
2053                sw_desc->async_tx.flags = flags;
2054        }
2055        spin_unlock_bh(&ppc440spe_chan->lock);
2056
2057        return sw_desc ? &sw_desc->async_tx : NULL;
2058}
2059
2060static inline void
2061ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
2062                                int src_cnt);
2063static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
2064
2065/**
2066 * ppc440spe_adma_init_dma2rxor_slot -
2067 */
2068static void ppc440spe_adma_init_dma2rxor_slot(
2069                struct ppc440spe_adma_desc_slot *desc,
2070                dma_addr_t *src, int src_cnt)
2071{
2072        int i;
2073
2074        /* initialize CDB */
2075        for (i = 0; i < src_cnt; i++) {
2076                ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
2077                                                 desc->src_cnt, (u32)src[i]);
2078        }
2079}
2080
2081/**
2082 * ppc440spe_dma01_prep_mult -
2083 * for Q operation where destination is also the source
2084 */
2085static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
2086                struct ppc440spe_adma_chan *ppc440spe_chan,
2087                dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2088                const unsigned char *scf, size_t len, unsigned long flags)
2089{
2090        struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2091        unsigned long op = 0;
2092        int slot_cnt;
2093
2094        set_bit(PPC440SPE_DESC_WXOR, &op);
2095        slot_cnt = 2;
2096
2097        spin_lock_bh(&ppc440spe_chan->lock);
2098
2099        /* use WXOR, each descriptor occupies one slot */
2100        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2101        if (sw_desc) {
2102                struct ppc440spe_adma_chan *chan;
2103                struct ppc440spe_adma_desc_slot *iter;
2104                struct dma_cdb *hw_desc;
2105
2106                chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2107                set_bits(op, &sw_desc->flags);
2108                sw_desc->src_cnt = src_cnt;
2109                sw_desc->dst_cnt = dst_cnt;
2110                /* First descriptor, zero data in the destination and copy it
2111                 * to q page using MULTICAST transfer.
2112                 */
2113                iter = list_first_entry(&sw_desc->group_list,
2114                                        struct ppc440spe_adma_desc_slot,
2115                                        chain_node);
2116                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2117                /* set 'next' pointer */
2118                iter->hw_next = list_entry(iter->chain_node.next,
2119                                           struct ppc440spe_adma_desc_slot,
2120                                           chain_node);
2121                clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2122                hw_desc = iter->hw_desc;
2123                hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2124
2125                ppc440spe_desc_set_dest_addr(iter, chan,
2126                                             DMA_CUED_XOR_BASE, dst[0], 0);
2127                ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
2128                ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2129                                            src[0]);
2130                ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2131                iter->unmap_len = len;
2132
2133                /*
2134                 * Second descriptor, multiply data from the q page
2135                 * and store the result in real destination.
2136                 */
2137                iter = list_first_entry(&iter->chain_node,
2138                                        struct ppc440spe_adma_desc_slot,
2139                                        chain_node);
2140                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2141                iter->hw_next = NULL;
2142                if (flags & DMA_PREP_INTERRUPT)
2143                        set_bit(PPC440SPE_DESC_INT, &iter->flags);
2144                else
2145                        clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2146
2147                hw_desc = iter->hw_desc;
2148                hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2149                ppc440spe_desc_set_src_addr(iter, chan, 0,
2150                                            DMA_CUED_XOR_HB, dst[1]);
2151                ppc440spe_desc_set_dest_addr(iter, chan,
2152                                             DMA_CUED_XOR_BASE, dst[0], 0);
2153
2154                ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2155                                            DMA_CDB_SG_DST1, scf[0]);
2156                ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2157                iter->unmap_len = len;
2158                sw_desc->async_tx.flags = flags;
2159        }
2160
2161        spin_unlock_bh(&ppc440spe_chan->lock);
2162
2163        return sw_desc;
2164}
2165
2166/**
2167 * ppc440spe_dma01_prep_sum_product -
2168 * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2169 * the source.
2170 */
2171static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
2172                struct ppc440spe_adma_chan *ppc440spe_chan,
2173                dma_addr_t *dst, dma_addr_t *src, int src_cnt,
2174                const unsigned char *scf, size_t len, unsigned long flags)
2175{
2176        struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2177        unsigned long op = 0;
2178        int slot_cnt;
2179
2180        set_bit(PPC440SPE_DESC_WXOR, &op);
2181        slot_cnt = 3;
2182
2183        spin_lock_bh(&ppc440spe_chan->lock);
2184
2185        /* WXOR, each descriptor occupies one slot */
2186        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2187        if (sw_desc) {
2188                struct ppc440spe_adma_chan *chan;
2189                struct ppc440spe_adma_desc_slot *iter;
2190                struct dma_cdb *hw_desc;
2191
2192                chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2193                set_bits(op, &sw_desc->flags);
2194                sw_desc->src_cnt = src_cnt;
2195                sw_desc->dst_cnt = 1;
2196                /* 1st descriptor, src[1] data to q page and zero destination */
2197                iter = list_first_entry(&sw_desc->group_list,
2198                                        struct ppc440spe_adma_desc_slot,
2199                                        chain_node);
2200                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2201                iter->hw_next = list_entry(iter->chain_node.next,
2202                                           struct ppc440spe_adma_desc_slot,
2203                                           chain_node);
2204                clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2205                hw_desc = iter->hw_desc;
2206                hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2207
2208                ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2209                                             *dst, 0);
2210                ppc440spe_desc_set_dest_addr(iter, chan, 0,
2211                                             ppc440spe_chan->qdest, 1);
2212                ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2213                                            src[1]);
2214                ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2215                iter->unmap_len = len;
2216
2217                /* 2nd descriptor, multiply src[1] data and store the
2218                 * result in destination */
2219                iter = list_first_entry(&iter->chain_node,
2220                                        struct ppc440spe_adma_desc_slot,
2221                                        chain_node);
2222                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2223                /* set 'next' pointer */
2224                iter->hw_next = list_entry(iter->chain_node.next,
2225                                           struct ppc440spe_adma_desc_slot,
2226                                           chain_node);
2227                if (flags & DMA_PREP_INTERRUPT)
2228                        set_bit(PPC440SPE_DESC_INT, &iter->flags);
2229                else
2230                        clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2231
2232                hw_desc = iter->hw_desc;
2233                hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2234                ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2235                                            ppc440spe_chan->qdest);
2236                ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2237                                             *dst, 0);
2238                ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2239                                            DMA_CDB_SG_DST1, scf[1]);
2240                ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2241                iter->unmap_len = len;
2242
2243                /*
2244                 * 3rd descriptor, multiply src[0] data and xor it
2245                 * with destination
2246                 */
2247                iter = list_first_entry(&iter->chain_node,
2248                                        struct ppc440spe_adma_desc_slot,
2249                                        chain_node);
2250                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2251                iter->hw_next = NULL;
2252                if (flags & DMA_PREP_INTERRUPT)
2253                        set_bit(PPC440SPE_DESC_INT, &iter->flags);
2254                else
2255                        clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2256
2257                hw_desc = iter->hw_desc;
2258                hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2259                ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2260                                            src[0]);
2261                ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2262                                             *dst, 0);
2263                ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2264                                            DMA_CDB_SG_DST1, scf[0]);
2265                ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2266                iter->unmap_len = len;
2267                sw_desc->async_tx.flags = flags;
2268        }
2269
2270        spin_unlock_bh(&ppc440spe_chan->lock);
2271
2272        return sw_desc;
2273}
2274
2275static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
2276                struct ppc440spe_adma_chan *ppc440spe_chan,
2277                dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2278                const unsigned char *scf, size_t len, unsigned long flags)
2279{
2280        int slot_cnt;
2281        struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2282        unsigned long op = 0;
2283        unsigned char mult = 1;
2284
2285        pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2286                 __func__, dst_cnt, src_cnt, len);
2287        /*  select operations WXOR/RXOR depending on the
2288         * source addresses of operators and the number
2289         * of destinations (RXOR support only Q-parity calculations)
2290         */
2291        set_bit(PPC440SPE_DESC_WXOR, &op);
2292        if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
2293                /* no active RXOR;
2294                 * do RXOR if:
2295                 * - there are more than 1 source,
2296                 * - len is aligned on 512-byte boundary,
2297                 * - source addresses fit to one of 4 possible regions.
2298                 */
2299                if (src_cnt > 1 &&
2300                    !(len & MQ0_CF2H_RXOR_BS_MASK) &&
2301                    (src[0] + len) == src[1]) {
2302                        /* may do RXOR R1 R2 */
2303                        set_bit(PPC440SPE_DESC_RXOR, &op);
2304                        if (src_cnt != 2) {
2305                                /* may try to enhance region of RXOR */
2306                                if ((src[1] + len) == src[2]) {
2307                                        /* do RXOR R1 R2 R3 */
2308                                        set_bit(PPC440SPE_DESC_RXOR123,
2309                                                &op);
2310                                } else if ((src[1] + len * 2) == src[2]) {
2311                                        /* do RXOR R1 R2 R4 */
2312                                        set_bit(PPC440SPE_DESC_RXOR124, &op);
2313                                } else if ((src[1] + len * 3) == src[2]) {
2314                                        /* do RXOR R1 R2 R5 */
2315                                        set_bit(PPC440SPE_DESC_RXOR125,
2316                                                &op);
2317                                } else {
2318                                        /* do RXOR R1 R2 */
2319                                        set_bit(PPC440SPE_DESC_RXOR12,
2320                                                &op);
2321                                }
2322                        } else {
2323                                /* do RXOR R1 R2 */
2324                                set_bit(PPC440SPE_DESC_RXOR12, &op);
2325                        }
2326                }
2327
2328                if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2329                        /* can not do this operation with RXOR */
2330                        clear_bit(PPC440SPE_RXOR_RUN,
2331                                &ppc440spe_rxor_state);
2332                } else {
2333                        /* can do; set block size right now */
2334                        ppc440spe_desc_set_rxor_block_size(len);
2335                }
2336        }
2337
2338        /* Number of necessary slots depends on operation type selected */
2339        if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2340                /*  This is a WXOR only chain. Need descriptors for each
2341                 * source to GF-XOR them with WXOR, and need descriptors
2342                 * for each destination to zero them with WXOR
2343                 */
2344                slot_cnt = src_cnt;
2345
2346                if (flags & DMA_PREP_ZERO_P) {
2347                        slot_cnt++;
2348                        set_bit(PPC440SPE_ZERO_P, &op);
2349                }
2350                if (flags & DMA_PREP_ZERO_Q) {
2351                        slot_cnt++;
2352                        set_bit(PPC440SPE_ZERO_Q, &op);
2353                }
2354        } else {
2355                /*  Need 1/2 descriptor for RXOR operation, and
2356                 * need (src_cnt - (2 or 3)) for WXOR of sources
2357                 * remained (if any)
2358                 */
2359                slot_cnt = dst_cnt;
2360
2361                if (flags & DMA_PREP_ZERO_P)
2362                        set_bit(PPC440SPE_ZERO_P, &op);
2363                if (flags & DMA_PREP_ZERO_Q)
2364                        set_bit(PPC440SPE_ZERO_Q, &op);
2365
2366                if (test_bit(PPC440SPE_DESC_RXOR12, &op))
2367                        slot_cnt += src_cnt - 2;
2368                else
2369                        slot_cnt += src_cnt - 3;
2370
2371                /*  Thus we have either RXOR only chain or
2372                 * mixed RXOR/WXOR
2373                 */
2374                if (slot_cnt == dst_cnt)
2375                        /* RXOR only chain */
2376                        clear_bit(PPC440SPE_DESC_WXOR, &op);
2377        }
2378
2379        spin_lock_bh(&ppc440spe_chan->lock);
2380        /* for both RXOR/WXOR each descriptor occupies one slot */
2381        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2382        if (sw_desc) {
2383                ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
2384                                flags, op);
2385
2386                /* setup dst/src/mult */
2387                pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2388                         __func__, dst[0], dst[1]);
2389                ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2390                while (src_cnt--) {
2391                        ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2392                                                  src_cnt);
2393
2394                        /* NOTE: "Multi = 0 is equivalent to = 1" as it
2395                         * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2396                         * doesn't work for RXOR with DMA0/1! Instead, multi=0
2397                         * leads to zeroing source data after RXOR.
2398                         * So, for P case set-up mult=1 explicitly.
2399                         */
2400                        if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2401                                mult = scf[src_cnt];
2402                        ppc440spe_adma_pq_set_src_mult(sw_desc,
2403                                mult, src_cnt,  dst_cnt - 1);
2404                }
2405
2406                /* Setup byte count foreach slot just allocated */
2407                sw_desc->async_tx.flags = flags;
2408                list_for_each_entry(iter, &sw_desc->group_list,
2409                                chain_node) {
2410                        ppc440spe_desc_set_byte_count(iter,
2411                                ppc440spe_chan, len);
2412                        iter->unmap_len = len;
2413                }
2414        }
2415        spin_unlock_bh(&ppc440spe_chan->lock);
2416
2417        return sw_desc;
2418}
2419
2420static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
2421                struct ppc440spe_adma_chan *ppc440spe_chan,
2422                dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2423                const unsigned char *scf, size_t len, unsigned long flags)
2424{
2425        int slot_cnt, descs_per_op;
2426        struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2427        unsigned long op = 0;
2428        unsigned char mult = 1;
2429
2430        BUG_ON(!dst_cnt);
2431        /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2432                 __func__, dst_cnt, src_cnt, len);*/
2433
2434        spin_lock_bh(&ppc440spe_chan->lock);
2435        descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
2436        if (descs_per_op < 0) {
2437                spin_unlock_bh(&ppc440spe_chan->lock);
2438                return NULL;
2439        }
2440
2441        /* depending on number of sources we have 1 or 2 RXOR chains */
2442        slot_cnt = descs_per_op * dst_cnt;
2443
2444        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2445        if (sw_desc) {
2446                op = slot_cnt;
2447                sw_desc->async_tx.flags = flags;
2448                list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2449                        ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
2450                                --op ? 0 : flags);
2451                        ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2452                                len);
2453                        iter->unmap_len = len;
2454
2455                        ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
2456                        iter->rxor_cursor.len = len;
2457                        iter->descs_per_op = descs_per_op;
2458                }
2459                op = 0;
2460                list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2461                        op++;
2462                        if (op % descs_per_op == 0)
2463                                ppc440spe_adma_init_dma2rxor_slot(iter, src,
2464                                                                  src_cnt);
2465                        if (likely(!list_is_last(&iter->chain_node,
2466                                                 &sw_desc->group_list))) {
2467                                /* set 'next' pointer */
2468                                iter->hw_next =
2469                                        list_entry(iter->chain_node.next,
2470                                                struct ppc440spe_adma_desc_slot,
2471                                                chain_node);
2472                                ppc440spe_xor_set_link(iter, iter->hw_next);
2473                        } else {
2474                                /* this is the last descriptor. */
2475                                iter->hw_next = NULL;
2476                        }
2477                }
2478
2479                /* fixup head descriptor */
2480                sw_desc->dst_cnt = dst_cnt;
2481                if (flags & DMA_PREP_ZERO_P)
2482                        set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
2483                if (flags & DMA_PREP_ZERO_Q)
2484                        set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
2485
2486                /* setup dst/src/mult */
2487                ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2488
2489                while (src_cnt--) {
2490                        /* handle descriptors (if dst_cnt == 2) inside
2491                         * the ppc440spe_adma_pq_set_srcxxx() functions
2492                         */
2493                        ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2494                                                  src_cnt);
2495                        if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2496                                mult = scf[src_cnt];
2497                        ppc440spe_adma_pq_set_src_mult(sw_desc,
2498                                        mult, src_cnt, dst_cnt - 1);
2499                }
2500        }
2501        spin_unlock_bh(&ppc440spe_chan->lock);
2502        ppc440spe_desc_set_rxor_block_size(len);
2503        return sw_desc;
2504}
2505
2506/**
2507 * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2508 */
2509static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
2510                struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
2511                unsigned int src_cnt, const unsigned char *scf,
2512                size_t len, unsigned long flags)
2513{
2514        struct ppc440spe_adma_chan *ppc440spe_chan;
2515        struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2516        int dst_cnt = 0;
2517
2518        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2519
2520        ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
2521                                    dst, src, src_cnt));
2522        BUG_ON(!len);
2523        BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2524        BUG_ON(!src_cnt);
2525
2526        if (src_cnt == 1 && dst[1] == src[0]) {
2527                dma_addr_t dest[2];
2528
2529                /* dst[1] is real destination (Q) */
2530                dest[0] = dst[1];
2531                /* this is the page to multicast source data to */
2532                dest[1] = ppc440spe_chan->qdest;
2533                sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
2534                                dest, 2, src, src_cnt, scf, len, flags);
2535                return sw_desc ? &sw_desc->async_tx : NULL;
2536        }
2537
2538        if (src_cnt == 2 && dst[1] == src[1]) {
2539                sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
2540                                        &dst[1], src, 2, scf, len, flags);
2541                return sw_desc ? &sw_desc->async_tx : NULL;
2542        }
2543
2544        if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
2545                BUG_ON(!dst[0]);
2546                dst_cnt++;
2547                flags |= DMA_PREP_ZERO_P;
2548        }
2549
2550        if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
2551                BUG_ON(!dst[1]);
2552                dst_cnt++;
2553                flags |= DMA_PREP_ZERO_Q;
2554        }
2555
2556        BUG_ON(!dst_cnt);
2557
2558        dev_dbg(ppc440spe_chan->device->common.dev,
2559                "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2560                ppc440spe_chan->device->id, __func__, src_cnt, len,
2561                flags & DMA_PREP_INTERRUPT ? 1 : 0);
2562
2563        switch (ppc440spe_chan->device->id) {
2564        case PPC440SPE_DMA0_ID:
2565        case PPC440SPE_DMA1_ID:
2566                sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
2567                                dst, dst_cnt, src, src_cnt, scf,
2568                                len, flags);
2569                break;
2570
2571        case PPC440SPE_XOR_ID:
2572                sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
2573                                dst, dst_cnt, src, src_cnt, scf,
2574                                len, flags);
2575                break;
2576        }
2577
2578        return sw_desc ? &sw_desc->async_tx : NULL;
2579}
2580
2581/**
2582 * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2583 * a PQ_ZERO_SUM operation
2584 */
2585static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
2586                struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
2587                unsigned int src_cnt, const unsigned char *scf, size_t len,
2588                enum sum_check_flags *pqres, unsigned long flags)
2589{
2590        struct ppc440spe_adma_chan *ppc440spe_chan;
2591        struct ppc440spe_adma_desc_slot *sw_desc, *iter;
2592        dma_addr_t pdest, qdest;
2593        int slot_cnt, slots_per_op, idst, dst_cnt;
2594
2595        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2596
2597        if (flags & DMA_PREP_PQ_DISABLE_P)
2598                pdest = 0;
2599        else
2600                pdest = pq[0];
2601
2602        if (flags & DMA_PREP_PQ_DISABLE_Q)
2603                qdest = 0;
2604        else
2605                qdest = pq[1];
2606
2607        ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
2608                                            src, src_cnt, scf));
2609
2610        /* Always use WXOR for P/Q calculations (two destinations).
2611         * Need 1 or 2 extra slots to verify results are zero.
2612         */
2613        idst = dst_cnt = (pdest && qdest) ? 2 : 1;
2614
2615        /* One additional slot per destination to clone P/Q
2616         * before calculation (we have to preserve destinations).
2617         */
2618        slot_cnt = src_cnt + dst_cnt * 2;
2619        slots_per_op = 1;
2620
2621        spin_lock_bh(&ppc440spe_chan->lock);
2622        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2623                                             slots_per_op);
2624        if (sw_desc) {
2625                ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
2626
2627                /* Setup byte count for each slot just allocated */
2628                sw_desc->async_tx.flags = flags;
2629                list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2630                        ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2631                                                      len);
2632                        iter->unmap_len = len;
2633                }
2634
2635                if (pdest) {
2636                        struct dma_cdb *hw_desc;
2637                        struct ppc440spe_adma_chan *chan;
2638
2639                        iter = sw_desc->group_head;
2640                        chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2641                        memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2642                        iter->hw_next = list_entry(iter->chain_node.next,
2643                                                struct ppc440spe_adma_desc_slot,
2644                                                chain_node);
2645                        hw_desc = iter->hw_desc;
2646                        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2647                        iter->src_cnt = 0;
2648                        iter->dst_cnt = 0;
2649                        ppc440spe_desc_set_dest_addr(iter, chan, 0,
2650                                                     ppc440spe_chan->pdest, 0);
2651                        ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
2652                        ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2653                                                      len);
2654                        iter->unmap_len = 0;
2655                        /* override pdest to preserve original P */
2656                        pdest = ppc440spe_chan->pdest;
2657                }
2658                if (qdest) {
2659                        struct dma_cdb *hw_desc;
2660                        struct ppc440spe_adma_chan *chan;
2661
2662                        iter = list_first_entry(&sw_desc->group_list,
2663                                                struct ppc440spe_adma_desc_slot,
2664                                                chain_node);
2665                        chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2666
2667                        if (pdest) {
2668                                iter = list_entry(iter->chain_node.next,
2669                                                struct ppc440spe_adma_desc_slot,
2670                                                chain_node);
2671                        }
2672
2673                        memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2674                        iter->hw_next = list_entry(iter->chain_node.next,
2675                                                struct ppc440spe_adma_desc_slot,
2676                                                chain_node);
2677                        hw_desc = iter->hw_desc;
2678                        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2679                        iter->src_cnt = 0;
2680                        iter->dst_cnt = 0;
2681                        ppc440spe_desc_set_dest_addr(iter, chan, 0,
2682                                                     ppc440spe_chan->qdest, 0);
2683                        ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
2684                        ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2685                                                      len);
2686                        iter->unmap_len = 0;
2687                        /* override qdest to preserve original Q */
2688                        qdest = ppc440spe_chan->qdest;
2689                }
2690
2691                /* Setup destinations for P/Q ops */
2692                ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
2693
2694                /* Setup zero QWORDs into DCHECK CDBs */
2695                idst = dst_cnt;
2696                list_for_each_entry_reverse(iter, &sw_desc->group_list,
2697                                            chain_node) {
2698                        /*
2699                         * The last CDB corresponds to Q-parity check,
2700                         * the one before last CDB corresponds
2701                         * P-parity check
2702                         */
2703                        if (idst == DMA_DEST_MAX_NUM) {
2704                                if (idst == dst_cnt) {
2705                                        set_bit(PPC440SPE_DESC_QCHECK,
2706                                                &iter->flags);
2707                                } else {
2708                                        set_bit(PPC440SPE_DESC_PCHECK,
2709                                                &iter->flags);
2710                                }
2711                        } else {
2712                                if (qdest) {
2713                                        set_bit(PPC440SPE_DESC_QCHECK,
2714                                                &iter->flags);
2715                                } else {
2716                                        set_bit(PPC440SPE_DESC_PCHECK,
2717                                                &iter->flags);
2718                                }
2719                        }
2720                        iter->xor_check_result = pqres;
2721
2722                        /*
2723                         * set it to zero, if check fail then result will
2724                         * be updated
2725                         */
2726                        *iter->xor_check_result = 0;
2727                        ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
2728                                ppc440spe_qword);
2729
2730                        if (!(--dst_cnt))
2731                                break;
2732                }
2733
2734                /* Setup sources and mults for P/Q ops */
2735                list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
2736                                                     chain_node) {
2737                        struct ppc440spe_adma_chan *chan;
2738                        u32 mult_dst;
2739
2740                        chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2741                        ppc440spe_desc_set_src_addr(iter, chan, 0,
2742                                                    DMA_CUED_XOR_HB,
2743                                                    src[src_cnt - 1]);
2744                        if (qdest) {
2745                                mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
2746                                                           DMA_CDB_SG_DST1;
2747                                ppc440spe_desc_set_src_mult(iter, chan,
2748                                                            DMA_CUED_MULT1_OFF,
2749                                                            mult_dst,
2750                                                            scf[src_cnt - 1]);
2751                        }
2752                        if (!(--src_cnt))
2753                                break;
2754                }
2755        }
2756        spin_unlock_bh(&ppc440spe_chan->lock);
2757        return sw_desc ? &sw_desc->async_tx : NULL;
2758}
2759
2760/**
2761 * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
2762 * XOR ZERO_SUM operation
2763 */
2764static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
2765                struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
2766                size_t len, enum sum_check_flags *result, unsigned long flags)
2767{
2768        struct dma_async_tx_descriptor *tx;
2769        dma_addr_t pq[2];
2770
2771        /* validate P, disable Q */
2772        pq[0] = src[0];
2773        pq[1] = 0;
2774        flags |= DMA_PREP_PQ_DISABLE_Q;
2775
2776        tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
2777                                                src_cnt - 1, 0, len,
2778                                                result, flags);
2779        return tx;
2780}
2781
2782/**
2783 * ppc440spe_adma_set_dest - set destination address into descriptor
2784 */
2785static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2786                dma_addr_t addr, int index)
2787{
2788        struct ppc440spe_adma_chan *chan;
2789
2790        BUG_ON(index >= sw_desc->dst_cnt);
2791
2792        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2793
2794        switch (chan->device->id) {
2795        case PPC440SPE_DMA0_ID:
2796        case PPC440SPE_DMA1_ID:
2797                /* to do: support transfers lengths >
2798                 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
2799                 */
2800                ppc440spe_desc_set_dest_addr(sw_desc->group_head,
2801                        chan, 0, addr, index);
2802                break;
2803        case PPC440SPE_XOR_ID:
2804                sw_desc = ppc440spe_get_group_entry(sw_desc, index);
2805                ppc440spe_desc_set_dest_addr(sw_desc,
2806                        chan, 0, addr, index);
2807                break;
2808        }
2809}
2810
2811static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
2812                struct ppc440spe_adma_chan *chan, dma_addr_t addr)
2813{
2814        /*  To clear destinations update the descriptor
2815         * (P or Q depending on index) as follows:
2816         * addr is destination (0 corresponds to SG2):
2817         */
2818        ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
2819
2820        /* ... and the addr is source: */
2821        ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
2822
2823        /* addr is always SG2 then the mult is always DST1 */
2824        ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2825                                    DMA_CDB_SG_DST1, 1);
2826}
2827
2828/**
2829 * ppc440spe_adma_pq_set_dest - set destination address into descriptor
2830 * for the PQXOR operation
2831 */
2832static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2833                dma_addr_t *addrs, unsigned long flags)
2834{
2835        struct ppc440spe_adma_desc_slot *iter;
2836        struct ppc440spe_adma_chan *chan;
2837        dma_addr_t paddr, qaddr;
2838        dma_addr_t addr = 0, ppath, qpath;
2839        int index = 0, i;
2840
2841        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2842
2843        if (flags & DMA_PREP_PQ_DISABLE_P)
2844                paddr = 0;
2845        else
2846                paddr = addrs[0];
2847
2848        if (flags & DMA_PREP_PQ_DISABLE_Q)
2849                qaddr = 0;
2850        else
2851                qaddr = addrs[1];
2852
2853        if (!paddr || !qaddr)
2854                addr = paddr ? paddr : qaddr;
2855
2856        switch (chan->device->id) {
2857        case PPC440SPE_DMA0_ID:
2858        case PPC440SPE_DMA1_ID:
2859                /* walk through the WXOR source list and set P/Q-destinations
2860                 * for each slot:
2861                 */
2862                if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
2863                        /* This is WXOR-only chain; may have 1/2 zero descs */
2864                        if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
2865                                index++;
2866                        if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
2867                                index++;
2868
2869                        iter = ppc440spe_get_group_entry(sw_desc, index);
2870                        if (addr) {
2871                                /* one destination */
2872                                list_for_each_entry_from(iter,
2873                                        &sw_desc->group_list, chain_node)
2874                                        ppc440spe_desc_set_dest_addr(iter, chan,
2875                                                DMA_CUED_XOR_BASE, addr, 0);
2876                        } else {
2877                                /* two destinations */
2878                                list_for_each_entry_from(iter,
2879                                        &sw_desc->group_list, chain_node) {
2880                                        ppc440spe_desc_set_dest_addr(iter, chan,
2881                                                DMA_CUED_XOR_BASE, paddr, 0);
2882                                        ppc440spe_desc_set_dest_addr(iter, chan,
2883                                                DMA_CUED_XOR_BASE, qaddr, 1);
2884                                }
2885                        }
2886
2887                        if (index) {
2888                                /*  To clear destinations update the descriptor
2889                                 * (1st,2nd, or both depending on flags)
2890                                 */
2891                                index = 0;
2892                                if (test_bit(PPC440SPE_ZERO_P,
2893                                                &sw_desc->flags)) {
2894                                        iter = ppc440spe_get_group_entry(
2895                                                        sw_desc, index++);
2896                                        ppc440spe_adma_pq_zero_op(iter, chan,
2897                                                        paddr);
2898                                }
2899
2900                                if (test_bit(PPC440SPE_ZERO_Q,
2901                                                &sw_desc->flags)) {
2902                                        iter = ppc440spe_get_group_entry(
2903                                                        sw_desc, index++);
2904                                        ppc440spe_adma_pq_zero_op(iter, chan,
2905                                                        qaddr);
2906                                }
2907
2908                                return;
2909                        }
2910                } else {
2911                        /* This is RXOR-only or RXOR/WXOR mixed chain */
2912
2913                        /* If we want to include destination into calculations,
2914                         * then make dest addresses cued with mult=1 (XOR).
2915                         */
2916                        ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
2917                                        DMA_CUED_XOR_HB :
2918                                        DMA_CUED_XOR_BASE |
2919                                                (1 << DMA_CUED_MULT1_OFF);
2920                        qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
2921                                        DMA_CUED_XOR_HB :
2922                                        DMA_CUED_XOR_BASE |
2923                                                (1 << DMA_CUED_MULT1_OFF);
2924
2925                        /* Setup destination(s) in RXOR slot(s) */
2926                        iter = ppc440spe_get_group_entry(sw_desc, index++);
2927                        ppc440spe_desc_set_dest_addr(iter, chan,
2928                                                paddr ? ppath : qpath,
2929                                                paddr ? paddr : qaddr, 0);
2930                        if (!addr) {
2931                                /* two destinations */
2932                                iter = ppc440spe_get_group_entry(sw_desc,
2933                                                                 index++);
2934                                ppc440spe_desc_set_dest_addr(iter, chan,
2935                                                qpath, qaddr, 0);
2936                        }
2937
2938                        if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
2939                                /* Setup destination(s) in remaining WXOR
2940                                 * slots
2941                                 */
2942                                iter = ppc440spe_get_group_entry(sw_desc,
2943                                                                 index);
2944                                if (addr) {
2945                                        /* one destination */
2946                                        list_for_each_entry_from(iter,
2947                                            &sw_desc->group_list,
2948                                            chain_node)
2949                                                ppc440spe_desc_set_dest_addr(
2950                                                        iter, chan,
2951                                                        DMA_CUED_XOR_BASE,
2952                                                        addr, 0);
2953
2954                                } else {
2955                                        /* two destinations */
2956                                        list_for_each_entry_from(iter,
2957                                            &sw_desc->group_list,
2958                                            chain_node) {
2959                                                ppc440spe_desc_set_dest_addr(
2960                                                        iter, chan,
2961                                                        DMA_CUED_XOR_BASE,
2962                                                        paddr, 0);
2963                                                ppc440spe_desc_set_dest_addr(
2964                                                        iter, chan,
2965                                                        DMA_CUED_XOR_BASE,
2966                                                        qaddr, 1);
2967                                        }
2968                                }
2969                        }
2970
2971                }
2972                break;
2973
2974        case PPC440SPE_XOR_ID:
2975                /* DMA2 descriptors have only 1 destination, so there are
2976                 * two chains - one for each dest.
2977                 * If we want to include destination into calculations,
2978                 * then make dest addresses cued with mult=1 (XOR).
2979                 */
2980                ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
2981                                DMA_CUED_XOR_HB :
2982                                DMA_CUED_XOR_BASE |
2983                                        (1 << DMA_CUED_MULT1_OFF);
2984
2985                qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
2986                                DMA_CUED_XOR_HB :
2987                                DMA_CUED_XOR_BASE |
2988                                        (1 << DMA_CUED_MULT1_OFF);
2989
2990                iter = ppc440spe_get_group_entry(sw_desc, 0);
2991                for (i = 0; i < sw_desc->descs_per_op; i++) {
2992                        ppc440spe_desc_set_dest_addr(iter, chan,
2993                                paddr ? ppath : qpath,
2994                                paddr ? paddr : qaddr, 0);
2995                        iter = list_entry(iter->chain_node.next,
2996                                          struct ppc440spe_adma_desc_slot,
2997                                          chain_node);
2998                }
2999
3000                if (!addr) {
3001                        /* Two destinations; setup Q here */
3002                        iter = ppc440spe_get_group_entry(sw_desc,
3003                                sw_desc->descs_per_op);
3004                        for (i = 0; i < sw_desc->descs_per_op; i++) {
3005                                ppc440spe_desc_set_dest_addr(iter,
3006                                        chan, qpath, qaddr, 0);
3007                                iter = list_entry(iter->chain_node.next,
3008                                                struct ppc440spe_adma_desc_slot,
3009                                                chain_node);
3010                        }
3011                }
3012
3013                break;
3014        }
3015}
3016
3017/**
3018 * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3019 * for the PQ_ZERO_SUM operation
3020 */
3021static void ppc440spe_adma_pqzero_sum_set_dest(
3022                struct ppc440spe_adma_desc_slot *sw_desc,
3023                dma_addr_t paddr, dma_addr_t qaddr)
3024{
3025        struct ppc440spe_adma_desc_slot *iter, *end;
3026        struct ppc440spe_adma_chan *chan;
3027        dma_addr_t addr = 0;
3028        int idx;
3029
3030        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3031
3032        /* walk through the WXOR source list and set P/Q-destinations
3033         * for each slot
3034         */
3035        idx = (paddr && qaddr) ? 2 : 1;
3036        /* set end */
3037        list_for_each_entry_reverse(end, &sw_desc->group_list,
3038                                    chain_node) {
3039                if (!(--idx))
3040                        break;
3041        }
3042        /* set start */
3043        idx = (paddr && qaddr) ? 2 : 1;
3044        iter = ppc440spe_get_group_entry(sw_desc, idx);
3045
3046        if (paddr && qaddr) {
3047                /* two destinations */
3048                list_for_each_entry_from(iter, &sw_desc->group_list,
3049                                         chain_node) {
3050                        if (unlikely(iter == end))
3051                                break;
3052                        ppc440spe_desc_set_dest_addr(iter, chan,
3053                                                DMA_CUED_XOR_BASE, paddr, 0);
3054                        ppc440spe_desc_set_dest_addr(iter, chan,
3055                                                DMA_CUED_XOR_BASE, qaddr, 1);
3056                }
3057        } else {
3058                /* one destination */
3059                addr = paddr ? paddr : qaddr;
3060                list_for_each_entry_from(iter, &sw_desc->group_list,
3061                                         chain_node) {
3062                        if (unlikely(iter == end))
3063                                break;
3064                        ppc440spe_desc_set_dest_addr(iter, chan,
3065                                                DMA_CUED_XOR_BASE, addr, 0);
3066                }
3067        }
3068
3069        /*  The remaining descriptors are DATACHECK. These have no need in
3070         * destination. Actually, these destinations are used there
3071         * as sources for check operation. So, set addr as source.
3072         */
3073        ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
3074
3075        if (!addr) {
3076                end = list_entry(end->chain_node.next,
3077                                 struct ppc440spe_adma_desc_slot, chain_node);
3078                ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
3079        }
3080}
3081
3082/**
3083 * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3084 */
3085static inline void ppc440spe_desc_set_xor_src_cnt(
3086                        struct ppc440spe_adma_desc_slot *desc,
3087                        int src_cnt)
3088{
3089        struct xor_cb *hw_desc = desc->hw_desc;
3090
3091        hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
3092        hw_desc->cbc |= src_cnt;
3093}
3094
3095/**
3096 * ppc440spe_adma_pq_set_src - set source address into descriptor
3097 */
3098static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
3099                dma_addr_t addr, int index)
3100{
3101        struct ppc440spe_adma_chan *chan;
3102        dma_addr_t haddr = 0;
3103        struct ppc440spe_adma_desc_slot *iter = NULL;
3104
3105        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3106
3107        switch (chan->device->id) {
3108        case PPC440SPE_DMA0_ID:
3109        case PPC440SPE_DMA1_ID:
3110                /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3111                 */
3112                if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3113                        /* RXOR-only or RXOR/WXOR operation */
3114                        int iskip = test_bit(PPC440SPE_DESC_RXOR12,
3115                                &sw_desc->flags) ?  2 : 3;
3116
3117                        if (index == 0) {
3118                                /* 1st slot (RXOR) */
3119                                /* setup sources region (R1-2-3, R1-2-4,
3120                                 * or R1-2-5)
3121                                 */
3122                                if (test_bit(PPC440SPE_DESC_RXOR12,
3123                                                &sw_desc->flags))
3124                                        haddr = DMA_RXOR12 <<
3125                                                DMA_CUED_REGION_OFF;
3126                                else if (test_bit(PPC440SPE_DESC_RXOR123,
3127                                    &sw_desc->flags))
3128                                        haddr = DMA_RXOR123 <<
3129                                                DMA_CUED_REGION_OFF;
3130                                else if (test_bit(PPC440SPE_DESC_RXOR124,
3131                                    &sw_desc->flags))
3132                                        haddr = DMA_RXOR124 <<
3133                                                DMA_CUED_REGION_OFF;
3134                                else if (test_bit(PPC440SPE_DESC_RXOR125,
3135                                    &sw_desc->flags))
3136                                        haddr = DMA_RXOR125 <<
3137                                                DMA_CUED_REGION_OFF;
3138                                else
3139                                        BUG();
3140                                haddr |= DMA_CUED_XOR_BASE;
3141                                iter = ppc440spe_get_group_entry(sw_desc, 0);
3142                        } else if (index < iskip) {
3143                                /* 1st slot (RXOR)
3144                                 * shall actually set source address only once
3145                                 * instead of first <iskip>
3146                                 */
3147                                iter = NULL;
3148                        } else {
3149                                /* 2nd/3d and next slots (WXOR);
3150                                 * skip first slot with RXOR
3151                                 */
3152                                haddr = DMA_CUED_XOR_HB;
3153                                iter = ppc440spe_get_group_entry(sw_desc,
3154                                    index - iskip + sw_desc->dst_cnt);
3155                        }
3156                } else {
3157                        int znum = 0;
3158
3159                        /* WXOR-only operation; skip first slots with
3160                         * zeroing destinations
3161                         */
3162                        if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3163                                znum++;
3164                        if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3165                                znum++;
3166
3167                        haddr = DMA_CUED_XOR_HB;
3168                        iter = ppc440spe_get_group_entry(sw_desc,
3169                                        index + znum);
3170                }
3171
3172                if (likely(iter)) {
3173                        ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
3174
3175                        if (!index &&
3176                            test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
3177                            sw_desc->dst_cnt == 2) {
3178                                /* if we have two destinations for RXOR, then
3179                                 * setup source in the second descr too
3180                                 */
3181                                iter = ppc440spe_get_group_entry(sw_desc, 1);
3182                                ppc440spe_desc_set_src_addr(iter, chan, 0,
3183                                        haddr, addr);
3184                        }
3185                }
3186                break;
3187
3188        case PPC440SPE_XOR_ID:
3189                /* DMA2 may do Biskup */
3190                iter = sw_desc->group_head;
3191                if (iter->dst_cnt == 2) {
3192                        /* both P & Q calculations required; set P src here */
3193                        ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3194
3195                        /* this is for Q */
3196                        iter = ppc440spe_get_group_entry(sw_desc,
3197                                sw_desc->descs_per_op);
3198                }
3199                ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3200                break;
3201        }
3202}
3203
3204/**
3205 * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3206 */
3207static void ppc440spe_adma_memcpy_xor_set_src(
3208                struct ppc440spe_adma_desc_slot *sw_desc,
3209                dma_addr_t addr, int index)
3210{
3211        struct ppc440spe_adma_chan *chan;
3212
3213        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3214        sw_desc = sw_desc->group_head;
3215
3216        if (likely(sw_desc))
3217                ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
3218}
3219
3220/**
3221 * ppc440spe_adma_dma2rxor_inc_addr  -
3222 */
3223static void ppc440spe_adma_dma2rxor_inc_addr(
3224                struct ppc440spe_adma_desc_slot *desc,
3225                struct ppc440spe_rxor *cursor, int index, int src_cnt)
3226{
3227        cursor->addr_count++;
3228        if (index == src_cnt - 1) {
3229                ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3230        } else if (cursor->addr_count == XOR_MAX_OPS) {
3231                ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3232                cursor->addr_count = 0;
3233                cursor->desc_count++;
3234        }
3235}
3236
3237/**
3238 * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3239 */
3240static int ppc440spe_adma_dma2rxor_prep_src(
3241                struct ppc440spe_adma_desc_slot *hdesc,
3242                struct ppc440spe_rxor *cursor, int index,
3243                int src_cnt, u32 addr)
3244{
3245        int rval = 0;
3246        u32 sign;
3247        struct ppc440spe_adma_desc_slot *desc = hdesc;
3248        int i;
3249
3250        for (i = 0; i < cursor->desc_count; i++) {
3251                desc = list_entry(hdesc->chain_node.next,
3252                                  struct ppc440spe_adma_desc_slot,
3253                                  chain_node);
3254        }
3255
3256        switch (cursor->state) {
3257        case 0:
3258                if (addr == cursor->addrl + cursor->len) {
3259                        /* direct RXOR */
3260                        cursor->state = 1;
3261                        cursor->xor_count++;
3262                        if (index == src_cnt-1) {
3263                                ppc440spe_rxor_set_region(desc,
3264                                        cursor->addr_count,
3265                                        DMA_RXOR12 << DMA_CUED_REGION_OFF);
3266                                ppc440spe_adma_dma2rxor_inc_addr(
3267                                        desc, cursor, index, src_cnt);
3268                        }
3269                } else if (cursor->addrl == addr + cursor->len) {
3270                        /* reverse RXOR */
3271                        cursor->state = 1;
3272                        cursor->xor_count++;
3273                        set_bit(cursor->addr_count, &desc->reverse_flags[0]);
3274                        if (index == src_cnt-1) {
3275                                ppc440spe_rxor_set_region(desc,
3276                                        cursor->addr_count,
3277                                        DMA_RXOR12 << DMA_CUED_REGION_OFF);
3278                                ppc440spe_adma_dma2rxor_inc_addr(
3279                                        desc, cursor, index, src_cnt);
3280                        }
3281                } else {
3282                        printk(KERN_ERR "Cannot build "
3283                                "DMA2 RXOR command block.\n");
3284                        BUG();
3285                }
3286                break;
3287        case 1:
3288                sign = test_bit(cursor->addr_count,
3289                                desc->reverse_flags)
3290                        ? -1 : 1;
3291                if (index == src_cnt-2 || (sign == -1
3292                        && addr != cursor->addrl - 2*cursor->len)) {
3293                        cursor->state = 0;
3294                        cursor->xor_count = 1;
3295                        cursor->addrl = addr;
3296                        ppc440spe_rxor_set_region(desc,
3297                                cursor->addr_count,
3298                                DMA_RXOR12 << DMA_CUED_REGION_OFF);
3299                        ppc440spe_adma_dma2rxor_inc_addr(
3300                                desc, cursor, index, src_cnt);
3301                } else if (addr == cursor->addrl + 2*sign*cursor->len) {
3302                        cursor->state = 2;
3303                        cursor->xor_count = 0;
3304                        ppc440spe_rxor_set_region(desc,
3305                                cursor->addr_count,
3306                                DMA_RXOR123 << DMA_CUED_REGION_OFF);
3307                        if (index == src_cnt-1) {
3308                                ppc440spe_adma_dma2rxor_inc_addr(
3309                                        desc, cursor, index, src_cnt);
3310                        }
3311                } else if (addr == cursor->addrl + 3*cursor->len) {
3312                        cursor->state = 2;
3313                        cursor->xor_count = 0;
3314                        ppc440spe_rxor_set_region(desc,
3315                                cursor->addr_count,
3316                                DMA_RXOR124 << DMA_CUED_REGION_OFF);
3317                        if (index == src_cnt-1) {
3318                                ppc440spe_adma_dma2rxor_inc_addr(
3319                                        desc, cursor, index, src_cnt);
3320                        }
3321                } else if (addr == cursor->addrl + 4*cursor->len) {
3322                        cursor->state = 2;
3323                        cursor->xor_count = 0;
3324                        ppc440spe_rxor_set_region(desc,
3325                                cursor->addr_count,
3326                                DMA_RXOR125 << DMA_CUED_REGION_OFF);
3327                        if (index == src_cnt-1) {
3328                                ppc440spe_adma_dma2rxor_inc_addr(
3329                                        desc, cursor, index, src_cnt);
3330                        }
3331                } else {
3332                        cursor->state = 0;
3333                        cursor->xor_count = 1;
3334                        cursor->addrl = addr;
3335                        ppc440spe_rxor_set_region(desc,
3336                                cursor->addr_count,
3337                                DMA_RXOR12 << DMA_CUED_REGION_OFF);
3338                        ppc440spe_adma_dma2rxor_inc_addr(
3339                                desc, cursor, index, src_cnt);
3340                }
3341                break;
3342        case 2:
3343                cursor->state = 0;
3344                cursor->addrl = addr;
3345                cursor->xor_count++;
3346                if (index) {
3347                        ppc440spe_adma_dma2rxor_inc_addr(
3348                                desc, cursor, index, src_cnt);
3349                }
3350                break;
3351        }
3352
3353        return rval;
3354}
3355
3356/**
3357 * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3358 *      ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3359 */
3360static void ppc440spe_adma_dma2rxor_set_src(
3361                struct ppc440spe_adma_desc_slot *desc,
3362                int index, dma_addr_t addr)
3363{
3364        struct xor_cb *xcb = desc->hw_desc;
3365        int k = 0, op = 0, lop = 0;
3366
3367        /* get the RXOR operand which corresponds to index addr */
3368        while (op <= index) {
3369                lop = op;
3370                if (k == XOR_MAX_OPS) {
3371                        k = 0;
3372                        desc = list_entry(desc->chain_node.next,
3373                                struct ppc440spe_adma_desc_slot, chain_node);
3374                        xcb = desc->hw_desc;
3375
3376                }
3377                if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3378                    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3379                        op += 2;
3380                else
3381                        op += 3;
3382        }
3383
3384        BUG_ON(k < 1);
3385
3386        if (test_bit(k-1, desc->reverse_flags)) {
3387                /* reverse operand order; put last op in RXOR group */
3388                if (index == op - 1)
3389                        ppc440spe_rxor_set_src(desc, k - 1, addr);
3390        } else {
3391                /* direct operand order; put first op in RXOR group */
3392                if (index == lop)
3393                        ppc440spe_rxor_set_src(desc, k - 1, addr);
3394        }
3395}
3396
3397/**
3398 * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3399 *      ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3400 */
3401static void ppc440spe_adma_dma2rxor_set_mult(
3402                struct ppc440spe_adma_desc_slot *desc,
3403                int index, u8 mult)
3404{
3405        struct xor_cb *xcb = desc->hw_desc;
3406        int k = 0, op = 0, lop = 0;
3407
3408        /* get the RXOR operand which corresponds to index mult */
3409        while (op <= index) {
3410                lop = op;
3411                if (k == XOR_MAX_OPS) {
3412                        k = 0;
3413                        desc = list_entry(desc->chain_node.next,
3414                                          struct ppc440spe_adma_desc_slot,
3415                                          chain_node);
3416                        xcb = desc->hw_desc;
3417
3418                }
3419                if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3420                    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3421                        op += 2;
3422                else
3423                        op += 3;
3424        }
3425
3426        BUG_ON(k < 1);
3427        if (test_bit(k-1, desc->reverse_flags)) {
3428                /* reverse order */
3429                ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
3430        } else {
3431                /* direct order */
3432                ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
3433        }
3434}
3435
3436/**
3437 * ppc440spe_init_rxor_cursor -
3438 */
3439static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
3440{
3441        memset(cursor, 0, sizeof(struct ppc440spe_rxor));
3442        cursor->state = 2;
3443}
3444
3445/**
3446 * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3447 * descriptor for the PQXOR operation
3448 */
3449static void ppc440spe_adma_pq_set_src_mult(
3450                struct ppc440spe_adma_desc_slot *sw_desc,
3451                unsigned char mult, int index, int dst_pos)
3452{
3453        struct ppc440spe_adma_chan *chan;
3454        u32 mult_idx, mult_dst;
3455        struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
3456
3457        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3458
3459        switch (chan->device->id) {
3460        case PPC440SPE_DMA0_ID:
3461        case PPC440SPE_DMA1_ID:
3462                if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3463                        int region = test_bit(PPC440SPE_DESC_RXOR12,
3464                                        &sw_desc->flags) ? 2 : 3;
3465
3466                        if (index < region) {
3467                                /* RXOR multipliers */
3468                                iter = ppc440spe_get_group_entry(sw_desc,
3469                                        sw_desc->dst_cnt - 1);
3470                                if (sw_desc->dst_cnt == 2)
3471                                        iter1 = ppc440spe_get_group_entry(
3472                                                        sw_desc, 0);
3473
3474                                mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
3475                                mult_dst = DMA_CDB_SG_SRC;
3476                        } else {
3477                                /* WXOR multiplier */
3478                                iter = ppc440spe_get_group_entry(sw_desc,
3479                                                        index - region +
3480                                                        sw_desc->dst_cnt);
3481                                mult_idx = DMA_CUED_MULT1_OFF;
3482                                mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
3483                                                     DMA_CDB_SG_DST1;
3484                        }
3485                } else {
3486                        int znum = 0;
3487
3488                        /* WXOR-only;
3489                         * skip first slots with destinations (if ZERO_DST has
3490                         * place)
3491                         */
3492                        if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3493                                znum++;
3494                        if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3495                                znum++;
3496
3497                        iter = ppc440spe_get_group_entry(sw_desc, index + znum);
3498                        mult_idx = DMA_CUED_MULT1_OFF;
3499                        mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
3500                }
3501
3502                if (likely(iter)) {
3503                        ppc440spe_desc_set_src_mult(iter, chan,
3504                                mult_idx, mult_dst, mult);
3505
3506                        if (unlikely(iter1)) {
3507                                /* if we have two destinations for RXOR, then
3508                                 * we've just set Q mult. Set-up P now.
3509                                 */
3510                                ppc440spe_desc_set_src_mult(iter1, chan,
3511                                        mult_idx, mult_dst, 1);
3512                        }
3513
3514                }
3515                break;
3516
3517        case PPC440SPE_XOR_ID:
3518                iter = sw_desc->group_head;
3519                if (sw_desc->dst_cnt == 2) {
3520                        /* both P & Q calculations required; set P mult here */
3521                        ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
3522
3523                        /* and then set Q mult */
3524                        iter = ppc440spe_get_group_entry(sw_desc,
3525                               sw_desc->descs_per_op);
3526                }
3527                ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
3528                break;
3529        }
3530}
3531
3532/**
3533 * ppc440spe_adma_free_chan_resources - free the resources allocated
3534 */
3535static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
3536{
3537        struct ppc440spe_adma_chan *ppc440spe_chan;
3538        struct ppc440spe_adma_desc_slot *iter, *_iter;
3539        int in_use_descs = 0;
3540
3541        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3542        ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3543
3544        spin_lock_bh(&ppc440spe_chan->lock);
3545        list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
3546                                        chain_node) {
3547                in_use_descs++;
3548                list_del(&iter->chain_node);
3549        }
3550        list_for_each_entry_safe_reverse(iter, _iter,
3551                        &ppc440spe_chan->all_slots, slot_node) {
3552                list_del(&iter->slot_node);
3553                kfree(iter);
3554                ppc440spe_chan->slots_allocated--;
3555        }
3556        ppc440spe_chan->last_used = NULL;
3557
3558        dev_dbg(ppc440spe_chan->device->common.dev,
3559                "ppc440spe adma%d %s slots_allocated %d\n",
3560                ppc440spe_chan->device->id,
3561                __func__, ppc440spe_chan->slots_allocated);
3562        spin_unlock_bh(&ppc440spe_chan->lock);
3563
3564        /* one is ok since we left it on there on purpose */
3565        if (in_use_descs > 1)
3566                printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
3567                        in_use_descs - 1);
3568}
3569
3570/**
3571 * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3572 * @chan: ADMA channel handle
3573 * @cookie: ADMA transaction identifier
3574 * @txstate: a holder for the current state of the channel
3575 */
3576static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
3577                        dma_cookie_t cookie, struct dma_tx_state *txstate)
3578{
3579        struct ppc440spe_adma_chan *ppc440spe_chan;
3580        enum dma_status ret;
3581
3582        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3583        ret = dma_cookie_status(chan, cookie, txstate);
3584        if (ret == DMA_COMPLETE)
3585                return ret;
3586
3587        ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3588
3589        return dma_cookie_status(chan, cookie, txstate);
3590}
3591
3592/**
3593 * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3594 */
3595static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
3596{
3597        struct ppc440spe_adma_chan *chan = data;
3598
3599        dev_dbg(chan->device->common.dev,
3600                "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3601
3602        tasklet_schedule(&chan->irq_tasklet);
3603        ppc440spe_adma_device_clear_eot_status(chan);
3604
3605        return IRQ_HANDLED;
3606}
3607
3608/**
3609 * ppc440spe_adma_err_handler - DMA error interrupt handler;
3610 *      do the same things as a eot handler
3611 */
3612static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
3613{
3614        struct ppc440spe_adma_chan *chan = data;
3615
3616        dev_dbg(chan->device->common.dev,
3617                "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3618
3619        tasklet_schedule(&chan->irq_tasklet);
3620        ppc440spe_adma_device_clear_eot_status(chan);
3621
3622        return IRQ_HANDLED;
3623}
3624
3625/**
3626 * ppc440spe_test_callback - called when test operation has been done
3627 */
3628static void ppc440spe_test_callback(void *unused)
3629{
3630        complete(&ppc440spe_r6_test_comp);
3631}
3632
3633/**
3634 * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
3635 */
3636static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
3637{
3638        struct ppc440spe_adma_chan *ppc440spe_chan;
3639
3640        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3641        dev_dbg(ppc440spe_chan->device->common.dev,
3642                "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
3643                __func__, ppc440spe_chan->pending);
3644
3645        if (ppc440spe_chan->pending) {
3646                ppc440spe_chan->pending = 0;
3647                ppc440spe_chan_append(ppc440spe_chan);
3648        }
3649}
3650
3651/**
3652 * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
3653 *      use FIFOs (as opposite to chains used in XOR) so this is a XOR
3654 *      specific operation)
3655 */
3656static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
3657{
3658        struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
3659        dma_cookie_t cookie;
3660        int slot_cnt, slots_per_op;
3661
3662        dev_dbg(chan->device->common.dev,
3663                "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3664
3665        spin_lock_bh(&chan->lock);
3666        slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
3667        sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
3668        if (sw_desc) {
3669                group_start = sw_desc->group_head;
3670                list_splice_init(&sw_desc->group_list, &chan->chain);
3671                async_tx_ack(&sw_desc->async_tx);
3672                ppc440spe_desc_init_null_xor(group_start);
3673
3674                cookie = dma_cookie_assign(&sw_desc->async_tx);
3675
3676                /* initialize the completed cookie to be less than
3677                 * the most recently used cookie
3678                 */
3679                chan->common.completed_cookie = cookie - 1;
3680
3681                /* channel should not be busy */
3682                BUG_ON(ppc440spe_chan_is_busy(chan));
3683
3684                /* set the descriptor address */
3685                ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
3686
3687                /* run the descriptor */
3688                ppc440spe_chan_run(chan);
3689        } else
3690                printk(KERN_ERR "ppc440spe adma%d"
3691                        " failed to allocate null descriptor\n",
3692                        chan->device->id);
3693        spin_unlock_bh(&chan->lock);
3694}
3695
3696/**
3697 * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
3698 *      For this we just perform one WXOR operation with the same source
3699 *      and destination addresses, the GF-multiplier is 1; so if RAID-6
3700 *      capabilities are enabled then we'll get src/dst filled with zero.
3701 */
3702static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
3703{
3704        struct ppc440spe_adma_desc_slot *sw_desc, *iter;
3705        struct page *pg;
3706        char *a;
3707        dma_addr_t dma_addr, addrs[2];
3708        unsigned long op = 0;
3709        int rval = 0;
3710
3711        set_bit(PPC440SPE_DESC_WXOR, &op);
3712
3713        pg = alloc_page(GFP_KERNEL);
3714        if (!pg)
3715                return -ENOMEM;
3716
3717        spin_lock_bh(&chan->lock);
3718        sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
3719        if (sw_desc) {
3720                /* 1 src, 1 dsr, int_ena, WXOR */
3721                ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
3722                list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
3723                        ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
3724                        iter->unmap_len = PAGE_SIZE;
3725                }
3726        } else {
3727                rval = -EFAULT;
3728                spin_unlock_bh(&chan->lock);
3729                goto exit;
3730        }
3731        spin_unlock_bh(&chan->lock);
3732
3733        /* Fill the test page with ones */
3734        memset(page_address(pg), 0xFF, PAGE_SIZE);
3735        dma_addr = dma_map_page(chan->device->dev, pg, 0,
3736                                PAGE_SIZE, DMA_BIDIRECTIONAL);
3737
3738        /* Setup addresses */
3739        ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
3740        ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
3741        addrs[0] = dma_addr;
3742        addrs[1] = 0;
3743        ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
3744
3745        async_tx_ack(&sw_desc->async_tx);
3746        sw_desc->async_tx.callback = ppc440spe_test_callback;
3747        sw_desc->async_tx.callback_param = NULL;
3748
3749        init_completion(&ppc440spe_r6_test_comp);
3750
3751        ppc440spe_adma_tx_submit(&sw_desc->async_tx);
3752        ppc440spe_adma_issue_pending(&chan->common);
3753
3754        wait_for_completion(&ppc440spe_r6_test_comp);
3755
3756        /* Now check if the test page is zeroed */
3757        a = page_address(pg);
3758        if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
3759                /* page is zero - RAID-6 enabled */
3760                rval = 0;
3761        } else {
3762                /* RAID-6 was not enabled */
3763                rval = -EINVAL;
3764        }
3765exit:
3766        __free_page(pg);
3767        return rval;
3768}
3769
3770static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
3771{
3772        switch (adev->id) {
3773        case PPC440SPE_DMA0_ID:
3774        case PPC440SPE_DMA1_ID:
3775                dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
3776                dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3777                dma_cap_set(DMA_PQ, adev->common.cap_mask);
3778                dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
3779                dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
3780                break;
3781        case PPC440SPE_XOR_ID:
3782                dma_cap_set(DMA_XOR, adev->common.cap_mask);
3783                dma_cap_set(DMA_PQ, adev->common.cap_mask);
3784                dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3785                adev->common.cap_mask = adev->common.cap_mask;
3786                break;
3787        }
3788
3789        /* Set base routines */
3790        adev->common.device_alloc_chan_resources =
3791                                ppc440spe_adma_alloc_chan_resources;
3792        adev->common.device_free_chan_resources =
3793                                ppc440spe_adma_free_chan_resources;
3794        adev->common.device_tx_status = ppc440spe_adma_tx_status;
3795        adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
3796
3797        /* Set prep routines based on capability */
3798        if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
3799                adev->common.device_prep_dma_memcpy =
3800                        ppc440spe_adma_prep_dma_memcpy;
3801        }
3802        if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
3803                adev->common.max_xor = XOR_MAX_OPS;
3804                adev->common.device_prep_dma_xor =
3805                        ppc440spe_adma_prep_dma_xor;
3806        }
3807        if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
3808                switch (adev->id) {
3809                case PPC440SPE_DMA0_ID:
3810                        dma_set_maxpq(&adev->common,
3811                                DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3812                        break;
3813                case PPC440SPE_DMA1_ID:
3814                        dma_set_maxpq(&adev->common,
3815                                DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3816                        break;
3817                case PPC440SPE_XOR_ID:
3818                        adev->common.max_pq = XOR_MAX_OPS * 3;
3819                        break;
3820                }
3821                adev->common.device_prep_dma_pq =
3822                        ppc440spe_adma_prep_dma_pq;
3823        }
3824        if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
3825                switch (adev->id) {
3826                case PPC440SPE_DMA0_ID:
3827                        adev->common.max_pq = DMA0_FIFO_SIZE /
3828                                                sizeof(struct dma_cdb);
3829                        break;
3830                case PPC440SPE_DMA1_ID:
3831                        adev->common.max_pq = DMA1_FIFO_SIZE /
3832                                                sizeof(struct dma_cdb);
3833                        break;
3834                }
3835                adev->common.device_prep_dma_pq_val =
3836                        ppc440spe_adma_prep_dma_pqzero_sum;
3837        }
3838        if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
3839                switch (adev->id) {
3840                case PPC440SPE_DMA0_ID:
3841                        adev->common.max_xor = DMA0_FIFO_SIZE /
3842                                                sizeof(struct dma_cdb);
3843                        break;
3844                case PPC440SPE_DMA1_ID:
3845                        adev->common.max_xor = DMA1_FIFO_SIZE /
3846                                                sizeof(struct dma_cdb);
3847                        break;
3848                }
3849                adev->common.device_prep_dma_xor_val =
3850                        ppc440spe_adma_prep_dma_xor_zero_sum;
3851        }
3852        if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
3853                adev->common.device_prep_dma_interrupt =
3854                        ppc440spe_adma_prep_dma_interrupt;
3855        }
3856        pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
3857          "( %s%s%s%s%s%s)\n",
3858          dev_name(adev->dev),
3859          dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
3860          dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
3861          dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
3862          dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
3863          dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
3864          dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
3865}
3866
3867static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
3868                                     struct ppc440spe_adma_chan *chan,
3869                                     int *initcode)
3870{
3871        struct platform_device *ofdev;
3872        struct device_node *np;
3873        int ret;
3874
3875        ofdev = container_of(adev->dev, struct platform_device, dev);
3876        np = ofdev->dev.of_node;
3877        if (adev->id != PPC440SPE_XOR_ID) {
3878                adev->err_irq = irq_of_parse_and_map(np, 1);
3879                if (!adev->err_irq) {
3880                        dev_warn(adev->dev, "no err irq resource?\n");
3881                        *initcode = PPC_ADMA_INIT_IRQ2;
3882                        adev->err_irq = -ENXIO;
3883                } else
3884                        atomic_inc(&ppc440spe_adma_err_irq_ref);
3885        } else {
3886                adev->err_irq = -ENXIO;
3887        }
3888
3889        adev->irq = irq_of_parse_and_map(np, 0);
3890        if (!adev->irq) {
3891                dev_err(adev->dev, "no irq resource\n");
3892                *initcode = PPC_ADMA_INIT_IRQ1;
3893                ret = -ENXIO;
3894                goto err_irq_map;
3895        }
3896        dev_dbg(adev->dev, "irq %d, err irq %d\n",
3897                adev->irq, adev->err_irq);
3898
3899        ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
3900                          0, dev_driver_string(adev->dev), chan);
3901        if (ret) {
3902                dev_err(adev->dev, "can't request irq %d\n",
3903                        adev->irq);
3904                *initcode = PPC_ADMA_INIT_IRQ1;
3905                ret = -EIO;
3906                goto err_req1;
3907        }
3908
3909        /* only DMA engines have a separate error IRQ
3910         * so it's Ok if err_irq < 0 in XOR engine case.
3911         */
3912        if (adev->err_irq > 0) {
3913                /* both DMA engines share common error IRQ */
3914                ret = request_irq(adev->err_irq,
3915                                  ppc440spe_adma_err_handler,
3916                                  IRQF_SHARED,
3917                                  dev_driver_string(adev->dev),
3918                                  chan);
3919                if (ret) {
3920                        dev_err(adev->dev, "can't request irq %d\n",
3921                                adev->err_irq);
3922                        *initcode = PPC_ADMA_INIT_IRQ2;
3923                        ret = -EIO;
3924                        goto err_req2;
3925                }
3926        }
3927
3928        if (adev->id == PPC440SPE_XOR_ID) {
3929                /* enable XOR engine interrupts */
3930                iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
3931                            XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
3932                            &adev->xor_reg->ier);
3933        } else {
3934                u32 mask, enable;
3935
3936                np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
3937                if (!np) {
3938                        pr_err("%s: can't find I2O device tree node\n",
3939                                __func__);
3940                        ret = -ENODEV;
3941                        goto err_req2;
3942                }
3943                adev->i2o_reg = of_iomap(np, 0);
3944                if (!adev->i2o_reg) {
3945                        pr_err("%s: failed to map I2O registers\n", __func__);
3946                        of_node_put(np);
3947                        ret = -EINVAL;
3948                        goto err_req2;
3949                }
3950                of_node_put(np);
3951                /* Unmask 'CS FIFO Attention' interrupts and
3952                 * enable generating interrupts on errors
3953                 */
3954                enable = (adev->id == PPC440SPE_DMA0_ID) ?
3955                         ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
3956                         ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
3957                mask = ioread32(&adev->i2o_reg->iopim) & enable;
3958                iowrite32(mask, &adev->i2o_reg->iopim);
3959        }
3960        return 0;
3961
3962err_req2:
3963        free_irq(adev->irq, chan);
3964err_req1:
3965        irq_dispose_mapping(adev->irq);
3966err_irq_map:
3967        if (adev->err_irq > 0) {
3968                if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
3969                        irq_dispose_mapping(adev->err_irq);
3970        }
3971        return ret;
3972}
3973
3974static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
3975                                        struct ppc440spe_adma_chan *chan)
3976{
3977        u32 mask, disable;
3978
3979        if (adev->id == PPC440SPE_XOR_ID) {
3980                /* disable XOR engine interrupts */
3981                mask = ioread32be(&adev->xor_reg->ier);
3982                mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
3983                          XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
3984                iowrite32be(mask, &adev->xor_reg->ier);
3985        } else {
3986                /* disable DMAx engine interrupts */
3987                disable = (adev->id == PPC440SPE_DMA0_ID) ?
3988                          (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
3989                          (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
3990                mask = ioread32(&adev->i2o_reg->iopim) | disable;
3991                iowrite32(mask, &adev->i2o_reg->iopim);
3992        }
3993        free_irq(adev->irq, chan);
3994        irq_dispose_mapping(adev->irq);
3995        if (adev->err_irq > 0) {
3996                free_irq(adev->err_irq, chan);
3997                if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
3998                        irq_dispose_mapping(adev->err_irq);
3999                        iounmap(adev->i2o_reg);
4000                }
4001        }
4002}
4003
4004/**
4005 * ppc440spe_adma_probe - probe the asynch device
4006 */
4007static int ppc440spe_adma_probe(struct platform_device *ofdev)
4008{
4009        struct device_node *np = ofdev->dev.of_node;
4010        struct resource res;
4011        struct ppc440spe_adma_device *adev;
4012        struct ppc440spe_adma_chan *chan;
4013        struct ppc_dma_chan_ref *ref, *_ref;
4014        int ret = 0, initcode = PPC_ADMA_INIT_OK;
4015        const u32 *idx;
4016        int len;
4017        void *regs;
4018        u32 id, pool_size;
4019
4020        if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
4021                id = PPC440SPE_XOR_ID;
4022                /* As far as the XOR engine is concerned, it does not
4023                 * use FIFOs but uses linked list. So there is no dependency
4024                 * between pool size to allocate and the engine configuration.
4025                 */
4026                pool_size = PAGE_SIZE << 1;
4027        } else {
4028                /* it is DMA0 or DMA1 */
4029                idx = of_get_property(np, "cell-index", &len);
4030                if (!idx || (len != sizeof(u32))) {
4031                        dev_err(&ofdev->dev, "Device node %pOF has missing "
4032                                "or invalid cell-index property\n",
4033                                np);
4034                        return -EINVAL;
4035                }
4036                id = *idx;
4037                /* DMA0,1 engines use FIFO to maintain CDBs, so we
4038                 * should allocate the pool accordingly to size of this
4039                 * FIFO. Thus, the pool size depends on the FIFO depth:
4040                 * how much CDBs pointers the FIFO may contain then so
4041                 * much CDBs we should provide in the pool.
4042                 * That is
4043                 *   CDB size = 32B;
4044                 *   CDBs number = (DMA0_FIFO_SIZE >> 3);
4045                 *   Pool size = CDBs number * CDB size =
4046                 *      = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4047                 */
4048                pool_size = (id == PPC440SPE_DMA0_ID) ?
4049                            DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4050                pool_size <<= 2;
4051        }
4052
4053        if (of_address_to_resource(np, 0, &res)) {
4054                dev_err(&ofdev->dev, "failed to get memory resource\n");
4055                initcode = PPC_ADMA_INIT_MEMRES;
4056                ret = -ENODEV;
4057                goto out;
4058        }
4059
4060        if (!request_mem_region(res.start, resource_size(&res),
4061                                dev_driver_string(&ofdev->dev))) {
4062                dev_err(&ofdev->dev, "failed to request memory region %pR\n",
4063                        &res);
4064                initcode = PPC_ADMA_INIT_MEMREG;
4065                ret = -EBUSY;
4066                goto out;
4067        }
4068
4069        /* create a device */
4070        adev = kzalloc(sizeof(*adev), GFP_KERNEL);
4071        if (!adev) {
4072                initcode = PPC_ADMA_INIT_ALLOC;
4073                ret = -ENOMEM;
4074                goto err_adev_alloc;
4075        }
4076
4077        adev->id = id;
4078        adev->pool_size = pool_size;
4079        /* allocate coherent memory for hardware descriptors */
4080        adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
4081                                        adev->pool_size, &adev->dma_desc_pool,
4082                                        GFP_KERNEL);
4083        if (adev->dma_desc_pool_virt == NULL) {
4084                dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
4085                        "memory for hardware descriptors\n",
4086                        adev->pool_size);
4087                initcode = PPC_ADMA_INIT_COHERENT;
4088                ret = -ENOMEM;
4089                goto err_dma_alloc;
4090        }
4091        dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
4092                adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
4093
4094        regs = ioremap(res.start, resource_size(&res));
4095        if (!regs) {
4096                dev_err(&ofdev->dev, "failed to ioremap regs!\n");
4097                ret = -ENOMEM;
4098                goto err_regs_alloc;
4099        }
4100
4101        if (adev->id == PPC440SPE_XOR_ID) {
4102                adev->xor_reg = regs;
4103                /* Reset XOR */
4104                iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
4105                iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
4106        } else {
4107                size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
4108                                   DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4109                adev->dma_reg = regs;
4110                /* DMAx_FIFO_SIZE is defined in bytes,
4111                 * <fsiz> - is defined in number of CDB pointers (8byte).
4112                 * DMA FIFO Length = CSlength + CPlength, where
4113                 * CSlength = CPlength = (fsiz + 1) * 8.
4114                 */
4115                iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
4116                          &adev->dma_reg->fsiz);
4117                /* Configure DMA engine */
4118                iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
4119                          &adev->dma_reg->cfg);
4120                /* Clear Status */
4121                iowrite32(~0, &adev->dma_reg->dsts);
4122        }
4123
4124        adev->dev = &ofdev->dev;
4125        adev->common.dev = &ofdev->dev;
4126        INIT_LIST_HEAD(&adev->common.channels);
4127        platform_set_drvdata(ofdev, adev);
4128
4129        /* create a channel */
4130        chan = kzalloc(sizeof(*chan), GFP_KERNEL);
4131        if (!chan) {
4132                initcode = PPC_ADMA_INIT_CHANNEL;
4133                ret = -ENOMEM;
4134                goto err_chan_alloc;
4135        }
4136
4137        spin_lock_init(&chan->lock);
4138        INIT_LIST_HEAD(&chan->chain);
4139        INIT_LIST_HEAD(&chan->all_slots);
4140        chan->device = adev;
4141        chan->common.device = &adev->common;
4142        dma_cookie_init(&chan->common);
4143        list_add_tail(&chan->common.device_node, &adev->common.channels);
4144        tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
4145                     (unsigned long)chan);
4146
4147        /* allocate and map helper pages for async validation or
4148         * async_mult/async_sum_product operations on DMA0/1.
4149         */
4150        if (adev->id != PPC440SPE_XOR_ID) {
4151                chan->pdest_page = alloc_page(GFP_KERNEL);
4152                chan->qdest_page = alloc_page(GFP_KERNEL);
4153                if (!chan->pdest_page ||
4154                    !chan->qdest_page) {
4155                        if (chan->pdest_page)
4156                                __free_page(chan->pdest_page);
4157                        if (chan->qdest_page)
4158                                __free_page(chan->qdest_page);
4159                        ret = -ENOMEM;
4160                        goto err_page_alloc;
4161                }
4162                chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
4163                                           PAGE_SIZE, DMA_BIDIRECTIONAL);
4164                chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
4165                                           PAGE_SIZE, DMA_BIDIRECTIONAL);
4166        }
4167
4168        ref = kmalloc(sizeof(*ref), GFP_KERNEL);
4169        if (ref) {
4170                ref->chan = &chan->common;
4171                INIT_LIST_HEAD(&ref->node);
4172                list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
4173        } else {
4174                dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
4175                ret = -ENOMEM;
4176                goto err_ref_alloc;
4177        }
4178
4179        ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
4180        if (ret)
4181                goto err_irq;
4182
4183        ppc440spe_adma_init_capabilities(adev);
4184
4185        ret = dma_async_device_register(&adev->common);
4186        if (ret) {
4187                initcode = PPC_ADMA_INIT_REGISTER;
4188                dev_err(&ofdev->dev, "failed to register dma device\n");
4189                goto err_dev_reg;
4190        }
4191
4192        goto out;
4193
4194err_dev_reg:
4195        ppc440spe_adma_release_irqs(adev, chan);
4196err_irq:
4197        list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
4198                if (chan == to_ppc440spe_adma_chan(ref->chan)) {
4199                        list_del(&ref->node);
4200                        kfree(ref);
4201                }
4202        }
4203err_ref_alloc:
4204        if (adev->id != PPC440SPE_XOR_ID) {
4205                dma_unmap_page(&ofdev->dev, chan->pdest,
4206                               PAGE_SIZE, DMA_BIDIRECTIONAL);
4207                dma_unmap_page(&ofdev->dev, chan->qdest,
4208                               PAGE_SIZE, DMA_BIDIRECTIONAL);
4209                __free_page(chan->pdest_page);
4210                __free_page(chan->qdest_page);
4211        }
4212err_page_alloc:
4213        kfree(chan);
4214err_chan_alloc:
4215        if (adev->id == PPC440SPE_XOR_ID)
4216                iounmap(adev->xor_reg);
4217        else
4218                iounmap(adev->dma_reg);
4219err_regs_alloc:
4220        dma_free_coherent(adev->dev, adev->pool_size,
4221                          adev->dma_desc_pool_virt,
4222                          adev->dma_desc_pool);
4223err_dma_alloc:
4224        kfree(adev);
4225err_adev_alloc:
4226        release_mem_region(res.start, resource_size(&res));
4227out:
4228        if (id < PPC440SPE_ADMA_ENGINES_NUM)
4229                ppc440spe_adma_devices[id] = initcode;
4230
4231        return ret;
4232}
4233
4234/**
4235 * ppc440spe_adma_remove - remove the asynch device
4236 */
4237static int ppc440spe_adma_remove(struct platform_device *ofdev)
4238{
4239        struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
4240        struct device_node *np = ofdev->dev.of_node;
4241        struct resource res;
4242        struct dma_chan *chan, *_chan;
4243        struct ppc_dma_chan_ref *ref, *_ref;
4244        struct ppc440spe_adma_chan *ppc440spe_chan;
4245
4246        if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
4247                ppc440spe_adma_devices[adev->id] = -1;
4248
4249        dma_async_device_unregister(&adev->common);
4250
4251        list_for_each_entry_safe(chan, _chan, &adev->common.channels,
4252                                 device_node) {
4253                ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4254                ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
4255                tasklet_kill(&ppc440spe_chan->irq_tasklet);
4256                if (adev->id != PPC440SPE_XOR_ID) {
4257                        dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
4258                                        PAGE_SIZE, DMA_BIDIRECTIONAL);
4259                        dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
4260                                        PAGE_SIZE, DMA_BIDIRECTIONAL);
4261                        __free_page(ppc440spe_chan->pdest_page);
4262                        __free_page(ppc440spe_chan->qdest_page);
4263                }
4264                list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
4265                                         node) {
4266                        if (ppc440spe_chan ==
4267                            to_ppc440spe_adma_chan(ref->chan)) {
4268                                list_del(&ref->node);
4269                                kfree(ref);
4270                        }
4271                }
4272                list_del(&chan->device_node);
4273                kfree(ppc440spe_chan);
4274        }
4275
4276        dma_free_coherent(adev->dev, adev->pool_size,
4277                          adev->dma_desc_pool_virt, adev->dma_desc_pool);
4278        if (adev->id == PPC440SPE_XOR_ID)
4279                iounmap(adev->xor_reg);
4280        else
4281                iounmap(adev->dma_reg);
4282        of_address_to_resource(np, 0, &res);
4283        release_mem_region(res.start, resource_size(&res));
4284        kfree(adev);
4285        return 0;
4286}
4287
4288/*
4289 * /sys driver interface to enable h/w RAID-6 capabilities
4290 * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4291 * directory are "devices", "enable" and "poly".
4292 * "devices" shows available engines.
4293 * "enable" is used to enable RAID-6 capabilities or to check
4294 * whether these has been activated.
4295 * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4296 */
4297
4298static ssize_t devices_show(struct device_driver *dev, char *buf)
4299{
4300        ssize_t size = 0;
4301        int i;
4302
4303        for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
4304                if (ppc440spe_adma_devices[i] == -1)
4305                        continue;
4306                size += snprintf(buf + size, PAGE_SIZE - size,
4307                                 "PPC440SP(E)-ADMA.%d: %s\n", i,
4308                                 ppc_adma_errors[ppc440spe_adma_devices[i]]);
4309        }
4310        return size;
4311}
4312static DRIVER_ATTR_RO(devices);
4313
4314static ssize_t enable_show(struct device_driver *dev, char *buf)
4315{
4316        return snprintf(buf, PAGE_SIZE,
4317                        "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4318                        ppc440spe_r6_enabled ? "EN" : "DIS");
4319}
4320
4321static ssize_t enable_store(struct device_driver *dev, const char *buf,
4322                            size_t count)
4323{
4324        unsigned long val;
4325
4326        if (!count || count > 11)
4327                return -EINVAL;
4328
4329        if (!ppc440spe_r6_tchan)
4330                return -EFAULT;
4331
4332        /* Write a key */
4333        sscanf(buf, "%lx", &val);
4334        dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
4335        isync();
4336
4337        /* Verify whether it really works now */
4338        if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
4339                pr_info("PPC440SP(e) RAID-6 has been activated "
4340                        "successfully\n");
4341                ppc440spe_r6_enabled = 1;
4342        } else {
4343                pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4344                        " Error key ?\n");
4345                ppc440spe_r6_enabled = 0;
4346        }
4347        return count;
4348}
4349static DRIVER_ATTR_RW(enable);
4350
4351static ssize_t poly_show(struct device_driver *dev, char *buf)
4352{
4353        ssize_t size = 0;
4354        u32 reg;
4355
4356#ifdef CONFIG_440SP
4357        /* 440SP has fixed polynomial */
4358        reg = 0x4d;
4359#else
4360        reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4361        reg >>= MQ0_CFBHL_POLY;
4362        reg &= 0xFF;
4363#endif
4364
4365        size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
4366                        "uses 0x1%02x polynomial.\n", reg);
4367        return size;
4368}
4369
4370static ssize_t poly_store(struct device_driver *dev, const char *buf,
4371                          size_t count)
4372{
4373        unsigned long reg, val;
4374
4375#ifdef CONFIG_440SP
4376        /* 440SP uses default 0x14D polynomial only */
4377        return -EINVAL;
4378#endif
4379
4380        if (!count || count > 6)
4381                return -EINVAL;
4382
4383        /* e.g., 0x14D or 0x11D */
4384        sscanf(buf, "%lx", &val);
4385
4386        if (val & ~0x1FF)
4387                return -EINVAL;
4388
4389        val &= 0xFF;
4390        reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4391        reg &= ~(0xFF << MQ0_CFBHL_POLY);
4392        reg |= val << MQ0_CFBHL_POLY;
4393        dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
4394
4395        return count;
4396}
4397static DRIVER_ATTR_RW(poly);
4398
4399/*
4400 * Common initialisation for RAID engines; allocate memory for
4401 * DMAx FIFOs, perform configuration common for all DMA engines.
4402 * Further DMA engine specific configuration is done at probe time.
4403 */
4404static int ppc440spe_configure_raid_devices(void)
4405{
4406        struct device_node *np;
4407        struct resource i2o_res;
4408        struct i2o_regs __iomem *i2o_reg;
4409        dcr_host_t i2o_dcr_host;
4410        unsigned int dcr_base, dcr_len;
4411        int i, ret;
4412
4413        np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4414        if (!np) {
4415                pr_err("%s: can't find I2O device tree node\n",
4416                        __func__);
4417                return -ENODEV;
4418        }
4419
4420        if (of_address_to_resource(np, 0, &i2o_res)) {
4421                of_node_put(np);
4422                return -EINVAL;
4423        }
4424
4425        i2o_reg = of_iomap(np, 0);
4426        if (!i2o_reg) {
4427                pr_err("%s: failed to map I2O registers\n", __func__);
4428                of_node_put(np);
4429                return -EINVAL;
4430        }
4431
4432        /* Get I2O DCRs base */
4433        dcr_base = dcr_resource_start(np, 0);
4434        dcr_len = dcr_resource_len(np, 0);
4435        if (!dcr_base && !dcr_len) {
4436                pr_err("%pOF: can't get DCR registers base/len!\n", np);
4437                of_node_put(np);
4438                iounmap(i2o_reg);
4439                return -ENODEV;
4440        }
4441
4442        i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
4443        if (!DCR_MAP_OK(i2o_dcr_host)) {
4444                pr_err("%pOF: failed to map DCRs!\n", np);
4445                of_node_put(np);
4446                iounmap(i2o_reg);
4447                return -ENODEV;
4448        }
4449        of_node_put(np);
4450
4451        /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4452         * the base address of FIFO memory space.
4453         * Actually we need twice more physical memory than programmed in the
4454         * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4455         */
4456        ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
4457                                         GFP_KERNEL);
4458        if (!ppc440spe_dma_fifo_buf) {
4459                pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
4460                iounmap(i2o_reg);
4461                dcr_unmap(i2o_dcr_host, dcr_len);
4462                return -ENOMEM;
4463        }
4464
4465        /*
4466         * Configure h/w
4467         */
4468        /* Reset I2O/DMA */
4469        mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
4470        mtdcri(SDR0, DCRN_SDR0_SRST, 0);
4471
4472        /* Setup the base address of mmaped registers */
4473        dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
4474        dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
4475                                                I2O_REG_ENABLE);
4476        dcr_unmap(i2o_dcr_host, dcr_len);
4477
4478        /* Setup FIFO memory space base address */
4479        iowrite32(0, &i2o_reg->ifbah);
4480        iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
4481
4482        /* set zero FIFO size for I2O, so the whole
4483         * ppc440spe_dma_fifo_buf is used by DMAs.
4484         * DMAx_FIFOs will be configured while probe.
4485         */
4486        iowrite32(0, &i2o_reg->ifsiz);
4487        iounmap(i2o_reg);
4488
4489        /* To prepare WXOR/RXOR functionality we need access to
4490         * Memory Queue Module DCRs (finally it will be enabled
4491         * via /sys interface of the ppc440spe ADMA driver).
4492         */
4493        np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
4494        if (!np) {
4495                pr_err("%s: can't find MQ device tree node\n",
4496                        __func__);
4497                ret = -ENODEV;
4498                goto out_free;
4499        }
4500
4501        /* Get MQ DCRs base */
4502        dcr_base = dcr_resource_start(np, 0);
4503        dcr_len = dcr_resource_len(np, 0);
4504        if (!dcr_base && !dcr_len) {
4505                pr_err("%pOF: can't get DCR registers base/len!\n", np);
4506                ret = -ENODEV;
4507                goto out_mq;
4508        }
4509
4510        ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
4511        if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
4512                pr_err("%pOF: failed to map DCRs!\n", np);
4513                ret = -ENODEV;
4514                goto out_mq;
4515        }
4516        of_node_put(np);
4517        ppc440spe_mq_dcr_len = dcr_len;
4518
4519        /* Set HB alias */
4520        dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
4521
4522        /* Set:
4523         * - LL transaction passing limit to 1;
4524         * - Memory controller cycle limit to 1;
4525         * - Galois Polynomial to 0x14d (default)
4526         */
4527        dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
4528                  (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
4529                  (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
4530
4531        atomic_set(&ppc440spe_adma_err_irq_ref, 0);
4532        for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
4533                ppc440spe_adma_devices[i] = -1;
4534
4535        return 0;
4536
4537out_mq:
4538        of_node_put(np);
4539out_free:
4540        kfree(ppc440spe_dma_fifo_buf);
4541        return ret;
4542}
4543
4544static const struct of_device_id ppc440spe_adma_of_match[] = {
4545        { .compatible   = "ibm,dma-440spe", },
4546        { .compatible   = "amcc,xor-accelerator", },
4547        {},
4548};
4549MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
4550
4551static struct platform_driver ppc440spe_adma_driver = {
4552        .probe = ppc440spe_adma_probe,
4553        .remove = ppc440spe_adma_remove,
4554        .driver = {
4555                .name = "PPC440SP(E)-ADMA",
4556                .of_match_table = ppc440spe_adma_of_match,
4557        },
4558};
4559
4560static __init int ppc440spe_adma_init(void)
4561{
4562        int ret;
4563
4564        ret = ppc440spe_configure_raid_devices();
4565        if (ret)
4566                return ret;
4567
4568        ret = platform_driver_register(&ppc440spe_adma_driver);
4569        if (ret) {
4570                pr_err("%s: failed to register platform driver\n",
4571                        __func__);
4572                goto out_reg;
4573        }
4574
4575        /* Initialization status */
4576        ret = driver_create_file(&ppc440spe_adma_driver.driver,
4577                                 &driver_attr_devices);
4578        if (ret)
4579                goto out_dev;
4580
4581        /* RAID-6 h/w enable entry */
4582        ret = driver_create_file(&ppc440spe_adma_driver.driver,
4583                                 &driver_attr_enable);
4584        if (ret)
4585                goto out_en;
4586
4587        /* GF polynomial to use */
4588        ret = driver_create_file(&ppc440spe_adma_driver.driver,
4589                                 &driver_attr_poly);
4590        if (!ret)
4591                return ret;
4592
4593        driver_remove_file(&ppc440spe_adma_driver.driver,
4594                           &driver_attr_enable);
4595out_en:
4596        driver_remove_file(&ppc440spe_adma_driver.driver,
4597                           &driver_attr_devices);
4598out_dev:
4599        /* User will not be able to enable h/w RAID-6 */
4600        pr_err("%s: failed to create RAID-6 driver interface\n",
4601                __func__);
4602        platform_driver_unregister(&ppc440spe_adma_driver);
4603out_reg:
4604        dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4605        kfree(ppc440spe_dma_fifo_buf);
4606        return ret;
4607}
4608
4609static void __exit ppc440spe_adma_exit(void)
4610{
4611        driver_remove_file(&ppc440spe_adma_driver.driver,
4612                           &driver_attr_poly);
4613        driver_remove_file(&ppc440spe_adma_driver.driver,
4614                           &driver_attr_enable);
4615        driver_remove_file(&ppc440spe_adma_driver.driver,
4616                           &driver_attr_devices);
4617        platform_driver_unregister(&ppc440spe_adma_driver);
4618        dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4619        kfree(ppc440spe_dma_fifo_buf);
4620}
4621
4622arch_initcall(ppc440spe_adma_init);
4623module_exit(ppc440spe_adma_exit);
4624
4625MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
4626MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
4627MODULE_LICENSE("GPL");
4628