linux/drivers/dma/ste_dma40.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) Ericsson AB 2007-2008
   4 * Copyright (C) ST-Ericsson SA 2008-2010
   5 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
   6 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
   7 */
   8
   9#include <linux/dma-mapping.h>
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/export.h>
  13#include <linux/dmaengine.h>
  14#include <linux/platform_device.h>
  15#include <linux/clk.h>
  16#include <linux/delay.h>
  17#include <linux/log2.h>
  18#include <linux/pm.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/err.h>
  21#include <linux/of.h>
  22#include <linux/of_dma.h>
  23#include <linux/amba/bus.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/platform_data/dma-ste-dma40.h>
  26
  27#include "dmaengine.h"
  28#include "ste_dma40_ll.h"
  29
  30#define D40_NAME "dma40"
  31
  32#define D40_PHY_CHAN -1
  33
  34/* For masking out/in 2 bit channel positions */
  35#define D40_CHAN_POS(chan)  (2 * (chan / 2))
  36#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  37
  38/* Maximum iterations taken before giving up suspending a channel */
  39#define D40_SUSPEND_MAX_IT 500
  40
  41/* Milliseconds */
  42#define DMA40_AUTOSUSPEND_DELAY 100
  43
  44/* Hardware requirement on LCLA alignment */
  45#define LCLA_ALIGNMENT 0x40000
  46
  47/* Max number of links per event group */
  48#define D40_LCLA_LINK_PER_EVENT_GRP 128
  49#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  50
  51/* Max number of logical channels per physical channel */
  52#define D40_MAX_LOG_CHAN_PER_PHY 32
  53
  54/* Attempts before giving up to trying to get pages that are aligned */
  55#define MAX_LCLA_ALLOC_ATTEMPTS 256
  56
  57/* Bit markings for allocation map */
  58#define D40_ALLOC_FREE          BIT(31)
  59#define D40_ALLOC_PHY           BIT(30)
  60#define D40_ALLOC_LOG_FREE      0
  61
  62#define D40_MEMCPY_MAX_CHANS    8
  63
  64/* Reserved event lines for memcpy only. */
  65#define DB8500_DMA_MEMCPY_EV_0  51
  66#define DB8500_DMA_MEMCPY_EV_1  56
  67#define DB8500_DMA_MEMCPY_EV_2  57
  68#define DB8500_DMA_MEMCPY_EV_3  58
  69#define DB8500_DMA_MEMCPY_EV_4  59
  70#define DB8500_DMA_MEMCPY_EV_5  60
  71
  72static int dma40_memcpy_channels[] = {
  73        DB8500_DMA_MEMCPY_EV_0,
  74        DB8500_DMA_MEMCPY_EV_1,
  75        DB8500_DMA_MEMCPY_EV_2,
  76        DB8500_DMA_MEMCPY_EV_3,
  77        DB8500_DMA_MEMCPY_EV_4,
  78        DB8500_DMA_MEMCPY_EV_5,
  79};
  80
  81/* Default configuration for physcial memcpy */
  82static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
  83        .mode = STEDMA40_MODE_PHYSICAL,
  84        .dir = DMA_MEM_TO_MEM,
  85
  86        .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  87        .src_info.psize = STEDMA40_PSIZE_PHY_1,
  88        .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  89
  90        .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  91        .dst_info.psize = STEDMA40_PSIZE_PHY_1,
  92        .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  93};
  94
  95/* Default configuration for logical memcpy */
  96static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
  97        .mode = STEDMA40_MODE_LOGICAL,
  98        .dir = DMA_MEM_TO_MEM,
  99
 100        .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 101        .src_info.psize = STEDMA40_PSIZE_LOG_1,
 102        .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 103
 104        .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 105        .dst_info.psize = STEDMA40_PSIZE_LOG_1,
 106        .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 107};
 108
 109/**
 110 * enum 40_command - The different commands and/or statuses.
 111 *
 112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 116 */
 117enum d40_command {
 118        D40_DMA_STOP            = 0,
 119        D40_DMA_RUN             = 1,
 120        D40_DMA_SUSPEND_REQ     = 2,
 121        D40_DMA_SUSPENDED       = 3
 122};
 123
 124/*
 125 * enum d40_events - The different Event Enables for the event lines.
 126 *
 127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
 128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
 129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
 130 * @D40_ROUND_EVENTLINE: Status check for event line.
 131 */
 132
 133enum d40_events {
 134        D40_DEACTIVATE_EVENTLINE        = 0,
 135        D40_ACTIVATE_EVENTLINE          = 1,
 136        D40_SUSPEND_REQ_EVENTLINE       = 2,
 137        D40_ROUND_EVENTLINE             = 3
 138};
 139
 140/*
 141 * These are the registers that has to be saved and later restored
 142 * when the DMA hw is powered off.
 143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 144 */
 145static __maybe_unused u32 d40_backup_regs[] = {
 146        D40_DREG_LCPA,
 147        D40_DREG_LCLA,
 148        D40_DREG_PRMSE,
 149        D40_DREG_PRMSO,
 150        D40_DREG_PRMOE,
 151        D40_DREG_PRMOO,
 152};
 153
 154#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
 155
 156/*
 157 * since 9540 and 8540 has the same HW revision
 158 * use v4a for 9540 or ealier
 159 * use v4b for 8540 or later
 160 * HW revision:
 161 * DB8500ed has revision 0
 162 * DB8500v1 has revision 2
 163 * DB8500v2 has revision 3
 164 * AP9540v1 has revision 4
 165 * DB8540v1 has revision 4
 166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
 167 */
 168static u32 d40_backup_regs_v4a[] = {
 169        D40_DREG_PSEG1,
 170        D40_DREG_PSEG2,
 171        D40_DREG_PSEG3,
 172        D40_DREG_PSEG4,
 173        D40_DREG_PCEG1,
 174        D40_DREG_PCEG2,
 175        D40_DREG_PCEG3,
 176        D40_DREG_PCEG4,
 177        D40_DREG_RSEG1,
 178        D40_DREG_RSEG2,
 179        D40_DREG_RSEG3,
 180        D40_DREG_RSEG4,
 181        D40_DREG_RCEG1,
 182        D40_DREG_RCEG2,
 183        D40_DREG_RCEG3,
 184        D40_DREG_RCEG4,
 185};
 186
 187#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
 188
 189static u32 d40_backup_regs_v4b[] = {
 190        D40_DREG_CPSEG1,
 191        D40_DREG_CPSEG2,
 192        D40_DREG_CPSEG3,
 193        D40_DREG_CPSEG4,
 194        D40_DREG_CPSEG5,
 195        D40_DREG_CPCEG1,
 196        D40_DREG_CPCEG2,
 197        D40_DREG_CPCEG3,
 198        D40_DREG_CPCEG4,
 199        D40_DREG_CPCEG5,
 200        D40_DREG_CRSEG1,
 201        D40_DREG_CRSEG2,
 202        D40_DREG_CRSEG3,
 203        D40_DREG_CRSEG4,
 204        D40_DREG_CRSEG5,
 205        D40_DREG_CRCEG1,
 206        D40_DREG_CRCEG2,
 207        D40_DREG_CRCEG3,
 208        D40_DREG_CRCEG4,
 209        D40_DREG_CRCEG5,
 210};
 211
 212#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
 213
 214static __maybe_unused u32 d40_backup_regs_chan[] = {
 215        D40_CHAN_REG_SSCFG,
 216        D40_CHAN_REG_SSELT,
 217        D40_CHAN_REG_SSPTR,
 218        D40_CHAN_REG_SSLNK,
 219        D40_CHAN_REG_SDCFG,
 220        D40_CHAN_REG_SDELT,
 221        D40_CHAN_REG_SDPTR,
 222        D40_CHAN_REG_SDLNK,
 223};
 224
 225#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
 226                             BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
 227
 228/**
 229 * struct d40_interrupt_lookup - lookup table for interrupt handler
 230 *
 231 * @src: Interrupt mask register.
 232 * @clr: Interrupt clear register.
 233 * @is_error: true if this is an error interrupt.
 234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 236 */
 237struct d40_interrupt_lookup {
 238        u32 src;
 239        u32 clr;
 240        bool is_error;
 241        int offset;
 242};
 243
 244
 245static struct d40_interrupt_lookup il_v4a[] = {
 246        {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
 247        {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
 248        {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
 249        {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
 250        {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
 251        {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
 252        {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
 253        {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
 254        {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
 255        {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
 256};
 257
 258static struct d40_interrupt_lookup il_v4b[] = {
 259        {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
 260        {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
 261        {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
 262        {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
 263        {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
 264        {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
 265        {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
 266        {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
 267        {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
 268        {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
 269        {D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
 270        {D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
 271};
 272
 273/**
 274 * struct d40_reg_val - simple lookup struct
 275 *
 276 * @reg: The register.
 277 * @val: The value that belongs to the register in reg.
 278 */
 279struct d40_reg_val {
 280        unsigned int reg;
 281        unsigned int val;
 282};
 283
 284static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
 285        /* Clock every part of the DMA block from start */
 286        { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 287
 288        /* Interrupts on all logical channels */
 289        { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
 290        { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
 291        { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
 292        { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
 293        { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
 294        { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
 295        { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
 296        { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
 297        { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
 298        { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
 299        { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
 300        { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
 301};
 302static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
 303        /* Clock every part of the DMA block from start */
 304        { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 305
 306        /* Interrupts on all logical channels */
 307        { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
 308        { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
 309        { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
 310        { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
 311        { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
 312        { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
 313        { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
 314        { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
 315        { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
 316        { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
 317        { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
 318        { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
 319        { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
 320        { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
 321        { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
 322};
 323
 324/**
 325 * struct d40_lli_pool - Structure for keeping LLIs in memory
 326 *
 327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 329 * pre_alloc_lli is used.
 330 * @dma_addr: DMA address, if mapped
 331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 333 * one buffer to one buffer.
 334 */
 335struct d40_lli_pool {
 336        void    *base;
 337        int      size;
 338        dma_addr_t      dma_addr;
 339        /* Space for dst and src, plus an extra for padding */
 340        u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
 341};
 342
 343/**
 344 * struct d40_desc - A descriptor is one DMA job.
 345 *
 346 * @lli_phy: LLI settings for physical channel. Both src and dst=
 347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 348 * lli_len equals one.
 349 * @lli_log: Same as above but for logical channels.
 350 * @lli_pool: The pool with two entries pre-allocated.
 351 * @lli_len: Number of llis of current descriptor.
 352 * @lli_current: Number of transferred llis.
 353 * @lcla_alloc: Number of LCLA entries allocated.
 354 * @txd: DMA engine struct. Used for among other things for communication
 355 * during a transfer.
 356 * @node: List entry.
 357 * @is_in_client_list: true if the client owns this descriptor.
 358 * @cyclic: true if this is a cyclic job
 359 *
 360 * This descriptor is used for both logical and physical transfers.
 361 */
 362struct d40_desc {
 363        /* LLI physical */
 364        struct d40_phy_lli_bidir         lli_phy;
 365        /* LLI logical */
 366        struct d40_log_lli_bidir         lli_log;
 367
 368        struct d40_lli_pool              lli_pool;
 369        int                              lli_len;
 370        int                              lli_current;
 371        int                              lcla_alloc;
 372
 373        struct dma_async_tx_descriptor   txd;
 374        struct list_head                 node;
 375
 376        bool                             is_in_client_list;
 377        bool                             cyclic;
 378};
 379
 380/**
 381 * struct d40_lcla_pool - LCLA pool settings and data.
 382 *
 383 * @base: The virtual address of LCLA. 18 bit aligned.
 384 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 385 * This pointer is only there for clean-up on error.
 386 * @pages: The number of pages needed for all physical channels.
 387 * Only used later for clean-up on error
 388 * @lock: Lock to protect the content in this struct.
 389 * @alloc_map: big map over which LCLA entry is own by which job.
 390 */
 391struct d40_lcla_pool {
 392        void            *base;
 393        dma_addr_t      dma_addr;
 394        void            *base_unaligned;
 395        int              pages;
 396        spinlock_t       lock;
 397        struct d40_desc **alloc_map;
 398};
 399
 400/**
 401 * struct d40_phy_res - struct for handling eventlines mapped to physical
 402 * channels.
 403 *
 404 * @lock: A lock protection this entity.
 405 * @reserved: True if used by secure world or otherwise.
 406 * @num: The physical channel number of this entity.
 407 * @allocated_src: Bit mapped to show which src event line's are mapped to
 408 * this physical channel. Can also be free or physically allocated.
 409 * @allocated_dst: Same as for src but is dst.
 410 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
 411 * event line number.
 412 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
 413 */
 414struct d40_phy_res {
 415        spinlock_t lock;
 416        bool       reserved;
 417        int        num;
 418        u32        allocated_src;
 419        u32        allocated_dst;
 420        bool       use_soft_lli;
 421};
 422
 423struct d40_base;
 424
 425/**
 426 * struct d40_chan - Struct that describes a channel.
 427 *
 428 * @lock: A spinlock to protect this struct.
 429 * @log_num: The logical number, if any of this channel.
 430 * @pending_tx: The number of pending transfers. Used between interrupt handler
 431 * and tasklet.
 432 * @busy: Set to true when transfer is ongoing on this channel.
 433 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 434 * point is NULL, then the channel is not allocated.
 435 * @chan: DMA engine handle.
 436 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 437 * transfer and call client callback.
 438 * @client: Cliented owned descriptor list.
 439 * @pending_queue: Submitted jobs, to be issued by issue_pending()
 440 * @active: Active descriptor.
 441 * @done: Completed jobs
 442 * @queue: Queued jobs.
 443 * @prepare_queue: Prepared jobs.
 444 * @dma_cfg: The client configuration of this dma channel.
 445 * @slave_config: DMA slave configuration.
 446 * @configured: whether the dma_cfg configuration is valid
 447 * @base: Pointer to the device instance struct.
 448 * @src_def_cfg: Default cfg register setting for src.
 449 * @dst_def_cfg: Default cfg register setting for dst.
 450 * @log_def: Default logical channel settings.
 451 * @lcpa: Pointer to dst and src lcpa settings.
 452 * @runtime_addr: runtime configured address.
 453 * @runtime_direction: runtime configured direction.
 454 *
 455 * This struct can either "be" a logical or a physical channel.
 456 */
 457struct d40_chan {
 458        spinlock_t                       lock;
 459        int                              log_num;
 460        int                              pending_tx;
 461        bool                             busy;
 462        struct d40_phy_res              *phy_chan;
 463        struct dma_chan                  chan;
 464        struct tasklet_struct            tasklet;
 465        struct list_head                 client;
 466        struct list_head                 pending_queue;
 467        struct list_head                 active;
 468        struct list_head                 done;
 469        struct list_head                 queue;
 470        struct list_head                 prepare_queue;
 471        struct stedma40_chan_cfg         dma_cfg;
 472        struct dma_slave_config          slave_config;
 473        bool                             configured;
 474        struct d40_base                 *base;
 475        /* Default register configurations */
 476        u32                              src_def_cfg;
 477        u32                              dst_def_cfg;
 478        struct d40_def_lcsp              log_def;
 479        struct d40_log_lli_full         *lcpa;
 480        /* Runtime reconfiguration */
 481        dma_addr_t                      runtime_addr;
 482        enum dma_transfer_direction     runtime_direction;
 483};
 484
 485/**
 486 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
 487 * controller
 488 *
 489 * @backup: the pointer to the registers address array for backup
 490 * @backup_size: the size of the registers address array for backup
 491 * @realtime_en: the realtime enable register
 492 * @realtime_clear: the realtime clear register
 493 * @high_prio_en: the high priority enable register
 494 * @high_prio_clear: the high priority clear register
 495 * @interrupt_en: the interrupt enable register
 496 * @interrupt_clear: the interrupt clear register
 497 * @il: the pointer to struct d40_interrupt_lookup
 498 * @il_size: the size of d40_interrupt_lookup array
 499 * @init_reg: the pointer to the struct d40_reg_val
 500 * @init_reg_size: the size of d40_reg_val array
 501 */
 502struct d40_gen_dmac {
 503        u32                             *backup;
 504        u32                              backup_size;
 505        u32                              realtime_en;
 506        u32                              realtime_clear;
 507        u32                              high_prio_en;
 508        u32                              high_prio_clear;
 509        u32                              interrupt_en;
 510        u32                              interrupt_clear;
 511        struct d40_interrupt_lookup     *il;
 512        u32                              il_size;
 513        struct d40_reg_val              *init_reg;
 514        u32                              init_reg_size;
 515};
 516
 517/**
 518 * struct d40_base - The big global struct, one for each probe'd instance.
 519 *
 520 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 521 * @execmd_lock: Lock for execute command usage since several channels share
 522 * the same physical register.
 523 * @dev: The device structure.
 524 * @virtbase: The virtual base address of the DMA's register.
 525 * @rev: silicon revision detected.
 526 * @clk: Pointer to the DMA clock structure.
 527 * @phy_start: Physical memory start of the DMA registers.
 528 * @phy_size: Size of the DMA register map.
 529 * @irq: The IRQ number.
 530 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
 531 * transfers).
 532 * @num_phy_chans: The number of physical channels. Read from HW. This
 533 * is the number of available channels for this driver, not counting "Secure
 534 * mode" allocated physical channels.
 535 * @num_log_chans: The number of logical channels. Calculated from
 536 * num_phy_chans.
 537 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 538 * @dma_slave: dma_device channels that can do only do slave transfers.
 539 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 540 * @phy_chans: Room for all possible physical channels in system.
 541 * @log_chans: Room for all possible logical channels in system.
 542 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 543 * to log_chans entries.
 544 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 545 * to phy_chans entries.
 546 * @plat_data: Pointer to provided platform_data which is the driver
 547 * configuration.
 548 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
 549 * @phy_res: Vector containing all physical channels.
 550 * @lcla_pool: lcla pool settings and data.
 551 * @lcpa_base: The virtual mapped address of LCPA.
 552 * @phy_lcpa: The physical address of the LCPA.
 553 * @lcpa_size: The size of the LCPA area.
 554 * @desc_slab: cache for descriptors.
 555 * @reg_val_backup: Here the values of some hardware registers are stored
 556 * before the DMA is powered off. They are restored when the power is back on.
 557 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
 558 * later
 559 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 560 * @regs_interrupt: Scratch space for registers during interrupt.
 561 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
 562 * @gen_dmac: the struct for generic registers values to represent u8500/8540
 563 * DMA controller
 564 */
 565struct d40_base {
 566        spinlock_t                       interrupt_lock;
 567        spinlock_t                       execmd_lock;
 568        struct device                    *dev;
 569        void __iomem                     *virtbase;
 570        u8                                rev:4;
 571        struct clk                       *clk;
 572        phys_addr_t                       phy_start;
 573        resource_size_t                   phy_size;
 574        int                               irq;
 575        int                               num_memcpy_chans;
 576        int                               num_phy_chans;
 577        int                               num_log_chans;
 578        struct device_dma_parameters      dma_parms;
 579        struct dma_device                 dma_both;
 580        struct dma_device                 dma_slave;
 581        struct dma_device                 dma_memcpy;
 582        struct d40_chan                  *phy_chans;
 583        struct d40_chan                  *log_chans;
 584        struct d40_chan                 **lookup_log_chans;
 585        struct d40_chan                 **lookup_phy_chans;
 586        struct stedma40_platform_data    *plat_data;
 587        struct regulator                 *lcpa_regulator;
 588        /* Physical half channels */
 589        struct d40_phy_res               *phy_res;
 590        struct d40_lcla_pool              lcla_pool;
 591        void                             *lcpa_base;
 592        dma_addr_t                        phy_lcpa;
 593        resource_size_t                   lcpa_size;
 594        struct kmem_cache                *desc_slab;
 595        u32                               reg_val_backup[BACKUP_REGS_SZ];
 596        u32                               reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
 597        u32                              *reg_val_backup_chan;
 598        u32                              *regs_interrupt;
 599        u16                               gcc_pwr_off_mask;
 600        struct d40_gen_dmac               gen_dmac;
 601};
 602
 603static struct device *chan2dev(struct d40_chan *d40c)
 604{
 605        return &d40c->chan.dev->device;
 606}
 607
 608static bool chan_is_physical(struct d40_chan *chan)
 609{
 610        return chan->log_num == D40_PHY_CHAN;
 611}
 612
 613static bool chan_is_logical(struct d40_chan *chan)
 614{
 615        return !chan_is_physical(chan);
 616}
 617
 618static void __iomem *chan_base(struct d40_chan *chan)
 619{
 620        return chan->base->virtbase + D40_DREG_PCBASE +
 621               chan->phy_chan->num * D40_DREG_PCDELTA;
 622}
 623
 624#define d40_err(dev, format, arg...)            \
 625        dev_err(dev, "[%s] " format, __func__, ## arg)
 626
 627#define chan_err(d40c, format, arg...)          \
 628        d40_err(chan2dev(d40c), format, ## arg)
 629
 630static int d40_set_runtime_config_write(struct dma_chan *chan,
 631                                  struct dma_slave_config *config,
 632                                  enum dma_transfer_direction direction);
 633
 634static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
 635                              int lli_len)
 636{
 637        bool is_log = chan_is_logical(d40c);
 638        u32 align;
 639        void *base;
 640
 641        if (is_log)
 642                align = sizeof(struct d40_log_lli);
 643        else
 644                align = sizeof(struct d40_phy_lli);
 645
 646        if (lli_len == 1) {
 647                base = d40d->lli_pool.pre_alloc_lli;
 648                d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
 649                d40d->lli_pool.base = NULL;
 650        } else {
 651                d40d->lli_pool.size = lli_len * 2 * align;
 652
 653                base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
 654                d40d->lli_pool.base = base;
 655
 656                if (d40d->lli_pool.base == NULL)
 657                        return -ENOMEM;
 658        }
 659
 660        if (is_log) {
 661                d40d->lli_log.src = PTR_ALIGN(base, align);
 662                d40d->lli_log.dst = d40d->lli_log.src + lli_len;
 663
 664                d40d->lli_pool.dma_addr = 0;
 665        } else {
 666                d40d->lli_phy.src = PTR_ALIGN(base, align);
 667                d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
 668
 669                d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
 670                                                         d40d->lli_phy.src,
 671                                                         d40d->lli_pool.size,
 672                                                         DMA_TO_DEVICE);
 673
 674                if (dma_mapping_error(d40c->base->dev,
 675                                      d40d->lli_pool.dma_addr)) {
 676                        kfree(d40d->lli_pool.base);
 677                        d40d->lli_pool.base = NULL;
 678                        d40d->lli_pool.dma_addr = 0;
 679                        return -ENOMEM;
 680                }
 681        }
 682
 683        return 0;
 684}
 685
 686static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
 687{
 688        if (d40d->lli_pool.dma_addr)
 689                dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
 690                                 d40d->lli_pool.size, DMA_TO_DEVICE);
 691
 692        kfree(d40d->lli_pool.base);
 693        d40d->lli_pool.base = NULL;
 694        d40d->lli_pool.size = 0;
 695        d40d->lli_log.src = NULL;
 696        d40d->lli_log.dst = NULL;
 697        d40d->lli_phy.src = NULL;
 698        d40d->lli_phy.dst = NULL;
 699}
 700
 701static int d40_lcla_alloc_one(struct d40_chan *d40c,
 702                              struct d40_desc *d40d)
 703{
 704        unsigned long flags;
 705        int i;
 706        int ret = -EINVAL;
 707
 708        spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 709
 710        /*
 711         * Allocate both src and dst at the same time, therefore the half
 712         * start on 1 since 0 can't be used since zero is used as end marker.
 713         */
 714        for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 715                int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 716
 717                if (!d40c->base->lcla_pool.alloc_map[idx]) {
 718                        d40c->base->lcla_pool.alloc_map[idx] = d40d;
 719                        d40d->lcla_alloc++;
 720                        ret = i;
 721                        break;
 722                }
 723        }
 724
 725        spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 726
 727        return ret;
 728}
 729
 730static int d40_lcla_free_all(struct d40_chan *d40c,
 731                             struct d40_desc *d40d)
 732{
 733        unsigned long flags;
 734        int i;
 735        int ret = -EINVAL;
 736
 737        if (chan_is_physical(d40c))
 738                return 0;
 739
 740        spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 741
 742        for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 743                int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 744
 745                if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
 746                        d40c->base->lcla_pool.alloc_map[idx] = NULL;
 747                        d40d->lcla_alloc--;
 748                        if (d40d->lcla_alloc == 0) {
 749                                ret = 0;
 750                                break;
 751                        }
 752                }
 753        }
 754
 755        spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 756
 757        return ret;
 758
 759}
 760
 761static void d40_desc_remove(struct d40_desc *d40d)
 762{
 763        list_del(&d40d->node);
 764}
 765
 766static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
 767{
 768        struct d40_desc *desc = NULL;
 769
 770        if (!list_empty(&d40c->client)) {
 771                struct d40_desc *d;
 772                struct d40_desc *_d;
 773
 774                list_for_each_entry_safe(d, _d, &d40c->client, node) {
 775                        if (async_tx_test_ack(&d->txd)) {
 776                                d40_desc_remove(d);
 777                                desc = d;
 778                                memset(desc, 0, sizeof(*desc));
 779                                break;
 780                        }
 781                }
 782        }
 783
 784        if (!desc)
 785                desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
 786
 787        if (desc)
 788                INIT_LIST_HEAD(&desc->node);
 789
 790        return desc;
 791}
 792
 793static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
 794{
 795
 796        d40_pool_lli_free(d40c, d40d);
 797        d40_lcla_free_all(d40c, d40d);
 798        kmem_cache_free(d40c->base->desc_slab, d40d);
 799}
 800
 801static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
 802{
 803        list_add_tail(&desc->node, &d40c->active);
 804}
 805
 806static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
 807{
 808        struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
 809        struct d40_phy_lli *lli_src = desc->lli_phy.src;
 810        void __iomem *base = chan_base(chan);
 811
 812        writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
 813        writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
 814        writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
 815        writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
 816
 817        writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
 818        writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
 819        writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
 820        writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
 821}
 822
 823static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
 824{
 825        list_add_tail(&desc->node, &d40c->done);
 826}
 827
 828static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
 829{
 830        struct d40_lcla_pool *pool = &chan->base->lcla_pool;
 831        struct d40_log_lli_bidir *lli = &desc->lli_log;
 832        int lli_current = desc->lli_current;
 833        int lli_len = desc->lli_len;
 834        bool cyclic = desc->cyclic;
 835        int curr_lcla = -EINVAL;
 836        int first_lcla = 0;
 837        bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
 838        bool linkback;
 839
 840        /*
 841         * We may have partially running cyclic transfers, in case we did't get
 842         * enough LCLA entries.
 843         */
 844        linkback = cyclic && lli_current == 0;
 845
 846        /*
 847         * For linkback, we need one LCLA even with only one link, because we
 848         * can't link back to the one in LCPA space
 849         */
 850        if (linkback || (lli_len - lli_current > 1)) {
 851                /*
 852                 * If the channel is expected to use only soft_lli don't
 853                 * allocate a lcla. This is to avoid a HW issue that exists
 854                 * in some controller during a peripheral to memory transfer
 855                 * that uses linked lists.
 856                 */
 857                if (!(chan->phy_chan->use_soft_lli &&
 858                        chan->dma_cfg.dir == DMA_DEV_TO_MEM))
 859                        curr_lcla = d40_lcla_alloc_one(chan, desc);
 860
 861                first_lcla = curr_lcla;
 862        }
 863
 864        /*
 865         * For linkback, we normally load the LCPA in the loop since we need to
 866         * link it to the second LCLA and not the first.  However, if we
 867         * couldn't even get a first LCLA, then we have to run in LCPA and
 868         * reload manually.
 869         */
 870        if (!linkback || curr_lcla == -EINVAL) {
 871                unsigned int flags = 0;
 872
 873                if (curr_lcla == -EINVAL)
 874                        flags |= LLI_TERM_INT;
 875
 876                d40_log_lli_lcpa_write(chan->lcpa,
 877                                       &lli->dst[lli_current],
 878                                       &lli->src[lli_current],
 879                                       curr_lcla,
 880                                       flags);
 881                lli_current++;
 882        }
 883
 884        if (curr_lcla < 0)
 885                goto set_current;
 886
 887        for (; lli_current < lli_len; lli_current++) {
 888                unsigned int lcla_offset = chan->phy_chan->num * 1024 +
 889                                           8 * curr_lcla * 2;
 890                struct d40_log_lli *lcla = pool->base + lcla_offset;
 891                unsigned int flags = 0;
 892                int next_lcla;
 893
 894                if (lli_current + 1 < lli_len)
 895                        next_lcla = d40_lcla_alloc_one(chan, desc);
 896                else
 897                        next_lcla = linkback ? first_lcla : -EINVAL;
 898
 899                if (cyclic || next_lcla == -EINVAL)
 900                        flags |= LLI_TERM_INT;
 901
 902                if (linkback && curr_lcla == first_lcla) {
 903                        /* First link goes in both LCPA and LCLA */
 904                        d40_log_lli_lcpa_write(chan->lcpa,
 905                                               &lli->dst[lli_current],
 906                                               &lli->src[lli_current],
 907                                               next_lcla, flags);
 908                }
 909
 910                /*
 911                 * One unused LCLA in the cyclic case if the very first
 912                 * next_lcla fails...
 913                 */
 914                d40_log_lli_lcla_write(lcla,
 915                                       &lli->dst[lli_current],
 916                                       &lli->src[lli_current],
 917                                       next_lcla, flags);
 918
 919                /*
 920                 * Cache maintenance is not needed if lcla is
 921                 * mapped in esram
 922                 */
 923                if (!use_esram_lcla) {
 924                        dma_sync_single_range_for_device(chan->base->dev,
 925                                                pool->dma_addr, lcla_offset,
 926                                                2 * sizeof(struct d40_log_lli),
 927                                                DMA_TO_DEVICE);
 928                }
 929                curr_lcla = next_lcla;
 930
 931                if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
 932                        lli_current++;
 933                        break;
 934                }
 935        }
 936 set_current:
 937        desc->lli_current = lli_current;
 938}
 939
 940static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
 941{
 942        if (chan_is_physical(d40c)) {
 943                d40_phy_lli_load(d40c, d40d);
 944                d40d->lli_current = d40d->lli_len;
 945        } else
 946                d40_log_lli_to_lcxa(d40c, d40d);
 947}
 948
 949static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
 950{
 951        return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
 952}
 953
 954/* remove desc from current queue and add it to the pending_queue */
 955static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
 956{
 957        d40_desc_remove(desc);
 958        desc->is_in_client_list = false;
 959        list_add_tail(&desc->node, &d40c->pending_queue);
 960}
 961
 962static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
 963{
 964        return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
 965                                        node);
 966}
 967
 968static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
 969{
 970        return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
 971}
 972
 973static struct d40_desc *d40_first_done(struct d40_chan *d40c)
 974{
 975        return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
 976}
 977
 978static int d40_psize_2_burst_size(bool is_log, int psize)
 979{
 980        if (is_log) {
 981                if (psize == STEDMA40_PSIZE_LOG_1)
 982                        return 1;
 983        } else {
 984                if (psize == STEDMA40_PSIZE_PHY_1)
 985                        return 1;
 986        }
 987
 988        return 2 << psize;
 989}
 990
 991/*
 992 * The dma only supports transmitting packages up to
 993 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
 994 *
 995 * Calculate the total number of dma elements required to send the entire sg list.
 996 */
 997static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
 998{
 999        int dmalen;
1000        u32 max_w = max(data_width1, data_width2);
1001        u32 min_w = min(data_width1, data_width2);
1002        u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1003
1004        if (seg_max > STEDMA40_MAX_SEG_SIZE)
1005                seg_max -= max_w;
1006
1007        if (!IS_ALIGNED(size, max_w))
1008                return -EINVAL;
1009
1010        if (size <= seg_max)
1011                dmalen = 1;
1012        else {
1013                dmalen = size / seg_max;
1014                if (dmalen * seg_max < size)
1015                        dmalen++;
1016        }
1017        return dmalen;
1018}
1019
1020static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1021                           u32 data_width1, u32 data_width2)
1022{
1023        struct scatterlist *sg;
1024        int i;
1025        int len = 0;
1026        int ret;
1027
1028        for_each_sg(sgl, sg, sg_len, i) {
1029                ret = d40_size_2_dmalen(sg_dma_len(sg),
1030                                        data_width1, data_width2);
1031                if (ret < 0)
1032                        return ret;
1033                len += ret;
1034        }
1035        return len;
1036}
1037
1038static int __d40_execute_command_phy(struct d40_chan *d40c,
1039                                     enum d40_command command)
1040{
1041        u32 status;
1042        int i;
1043        void __iomem *active_reg;
1044        int ret = 0;
1045        unsigned long flags;
1046        u32 wmask;
1047
1048        if (command == D40_DMA_STOP) {
1049                ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1050                if (ret)
1051                        return ret;
1052        }
1053
1054        spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1055
1056        if (d40c->phy_chan->num % 2 == 0)
1057                active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1058        else
1059                active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1060
1061        if (command == D40_DMA_SUSPEND_REQ) {
1062                status = (readl(active_reg) &
1063                          D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1064                        D40_CHAN_POS(d40c->phy_chan->num);
1065
1066                if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1067                        goto unlock;
1068        }
1069
1070        wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1071        writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1072               active_reg);
1073
1074        if (command == D40_DMA_SUSPEND_REQ) {
1075
1076                for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1077                        status = (readl(active_reg) &
1078                                  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1079                                D40_CHAN_POS(d40c->phy_chan->num);
1080
1081                        cpu_relax();
1082                        /*
1083                         * Reduce the number of bus accesses while
1084                         * waiting for the DMA to suspend.
1085                         */
1086                        udelay(3);
1087
1088                        if (status == D40_DMA_STOP ||
1089                            status == D40_DMA_SUSPENDED)
1090                                break;
1091                }
1092
1093                if (i == D40_SUSPEND_MAX_IT) {
1094                        chan_err(d40c,
1095                                "unable to suspend the chl %d (log: %d) status %x\n",
1096                                d40c->phy_chan->num, d40c->log_num,
1097                                status);
1098                        dump_stack();
1099                        ret = -EBUSY;
1100                }
1101
1102        }
1103 unlock:
1104        spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1105        return ret;
1106}
1107
1108static void d40_term_all(struct d40_chan *d40c)
1109{
1110        struct d40_desc *d40d;
1111        struct d40_desc *_d;
1112
1113        /* Release completed descriptors */
1114        while ((d40d = d40_first_done(d40c))) {
1115                d40_desc_remove(d40d);
1116                d40_desc_free(d40c, d40d);
1117        }
1118
1119        /* Release active descriptors */
1120        while ((d40d = d40_first_active_get(d40c))) {
1121                d40_desc_remove(d40d);
1122                d40_desc_free(d40c, d40d);
1123        }
1124
1125        /* Release queued descriptors waiting for transfer */
1126        while ((d40d = d40_first_queued(d40c))) {
1127                d40_desc_remove(d40d);
1128                d40_desc_free(d40c, d40d);
1129        }
1130
1131        /* Release pending descriptors */
1132        while ((d40d = d40_first_pending(d40c))) {
1133                d40_desc_remove(d40d);
1134                d40_desc_free(d40c, d40d);
1135        }
1136
1137        /* Release client owned descriptors */
1138        if (!list_empty(&d40c->client))
1139                list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1140                        d40_desc_remove(d40d);
1141                        d40_desc_free(d40c, d40d);
1142                }
1143
1144        /* Release descriptors in prepare queue */
1145        if (!list_empty(&d40c->prepare_queue))
1146                list_for_each_entry_safe(d40d, _d,
1147                                         &d40c->prepare_queue, node) {
1148                        d40_desc_remove(d40d);
1149                        d40_desc_free(d40c, d40d);
1150                }
1151
1152        d40c->pending_tx = 0;
1153}
1154
1155static void __d40_config_set_event(struct d40_chan *d40c,
1156                                   enum d40_events event_type, u32 event,
1157                                   int reg)
1158{
1159        void __iomem *addr = chan_base(d40c) + reg;
1160        int tries;
1161        u32 status;
1162
1163        switch (event_type) {
1164
1165        case D40_DEACTIVATE_EVENTLINE:
1166
1167                writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1168                       | ~D40_EVENTLINE_MASK(event), addr);
1169                break;
1170
1171        case D40_SUSPEND_REQ_EVENTLINE:
1172                status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1173                          D40_EVENTLINE_POS(event);
1174
1175                if (status == D40_DEACTIVATE_EVENTLINE ||
1176                    status == D40_SUSPEND_REQ_EVENTLINE)
1177                        break;
1178
1179                writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1180                       | ~D40_EVENTLINE_MASK(event), addr);
1181
1182                for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1183
1184                        status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1185                                  D40_EVENTLINE_POS(event);
1186
1187                        cpu_relax();
1188                        /*
1189                         * Reduce the number of bus accesses while
1190                         * waiting for the DMA to suspend.
1191                         */
1192                        udelay(3);
1193
1194                        if (status == D40_DEACTIVATE_EVENTLINE)
1195                                break;
1196                }
1197
1198                if (tries == D40_SUSPEND_MAX_IT) {
1199                        chan_err(d40c,
1200                                "unable to stop the event_line chl %d (log: %d)"
1201                                "status %x\n", d40c->phy_chan->num,
1202                                 d40c->log_num, status);
1203                }
1204                break;
1205
1206        case D40_ACTIVATE_EVENTLINE:
1207        /*
1208         * The hardware sometimes doesn't register the enable when src and dst
1209         * event lines are active on the same logical channel.  Retry to ensure
1210         * it does.  Usually only one retry is sufficient.
1211         */
1212                tries = 100;
1213                while (--tries) {
1214                        writel((D40_ACTIVATE_EVENTLINE <<
1215                                D40_EVENTLINE_POS(event)) |
1216                                ~D40_EVENTLINE_MASK(event), addr);
1217
1218                        if (readl(addr) & D40_EVENTLINE_MASK(event))
1219                                break;
1220                }
1221
1222                if (tries != 99)
1223                        dev_dbg(chan2dev(d40c),
1224                                "[%s] workaround enable S%cLNK (%d tries)\n",
1225                                __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1226                                100 - tries);
1227
1228                WARN_ON(!tries);
1229                break;
1230
1231        case D40_ROUND_EVENTLINE:
1232                BUG();
1233                break;
1234
1235        }
1236}
1237
1238static void d40_config_set_event(struct d40_chan *d40c,
1239                                 enum d40_events event_type)
1240{
1241        u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1242
1243        /* Enable event line connected to device (or memcpy) */
1244        if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1245            (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1246                __d40_config_set_event(d40c, event_type, event,
1247                                       D40_CHAN_REG_SSLNK);
1248
1249        if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1250                __d40_config_set_event(d40c, event_type, event,
1251                                       D40_CHAN_REG_SDLNK);
1252}
1253
1254static u32 d40_chan_has_events(struct d40_chan *d40c)
1255{
1256        void __iomem *chanbase = chan_base(d40c);
1257        u32 val;
1258
1259        val = readl(chanbase + D40_CHAN_REG_SSLNK);
1260        val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1261
1262        return val;
1263}
1264
1265static int
1266__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1267{
1268        unsigned long flags;
1269        int ret = 0;
1270        u32 active_status;
1271        void __iomem *active_reg;
1272
1273        if (d40c->phy_chan->num % 2 == 0)
1274                active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1275        else
1276                active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1277
1278
1279        spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1280
1281        switch (command) {
1282        case D40_DMA_STOP:
1283        case D40_DMA_SUSPEND_REQ:
1284
1285                active_status = (readl(active_reg) &
1286                                 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1287                                 D40_CHAN_POS(d40c->phy_chan->num);
1288
1289                if (active_status == D40_DMA_RUN)
1290                        d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1291                else
1292                        d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1293
1294                if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1295                        ret = __d40_execute_command_phy(d40c, command);
1296
1297                break;
1298
1299        case D40_DMA_RUN:
1300
1301                d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1302                ret = __d40_execute_command_phy(d40c, command);
1303                break;
1304
1305        case D40_DMA_SUSPENDED:
1306                BUG();
1307                break;
1308        }
1309
1310        spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1311        return ret;
1312}
1313
1314static int d40_channel_execute_command(struct d40_chan *d40c,
1315                                       enum d40_command command)
1316{
1317        if (chan_is_logical(d40c))
1318                return __d40_execute_command_log(d40c, command);
1319        else
1320                return __d40_execute_command_phy(d40c, command);
1321}
1322
1323static u32 d40_get_prmo(struct d40_chan *d40c)
1324{
1325        static const unsigned int phy_map[] = {
1326                [STEDMA40_PCHAN_BASIC_MODE]
1327                        = D40_DREG_PRMO_PCHAN_BASIC,
1328                [STEDMA40_PCHAN_MODULO_MODE]
1329                        = D40_DREG_PRMO_PCHAN_MODULO,
1330                [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1331                        = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1332        };
1333        static const unsigned int log_map[] = {
1334                [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1335                        = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1336                [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1337                        = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1338                [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1339                        = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1340        };
1341
1342        if (chan_is_physical(d40c))
1343                return phy_map[d40c->dma_cfg.mode_opt];
1344        else
1345                return log_map[d40c->dma_cfg.mode_opt];
1346}
1347
1348static void d40_config_write(struct d40_chan *d40c)
1349{
1350        u32 addr_base;
1351        u32 var;
1352
1353        /* Odd addresses are even addresses + 4 */
1354        addr_base = (d40c->phy_chan->num % 2) * 4;
1355        /* Setup channel mode to logical or physical */
1356        var = ((u32)(chan_is_logical(d40c)) + 1) <<
1357                D40_CHAN_POS(d40c->phy_chan->num);
1358        writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1359
1360        /* Setup operational mode option register */
1361        var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1362
1363        writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1364
1365        if (chan_is_logical(d40c)) {
1366                int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1367                           & D40_SREG_ELEM_LOG_LIDX_MASK;
1368                void __iomem *chanbase = chan_base(d40c);
1369
1370                /* Set default config for CFG reg */
1371                writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1372                writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1373
1374                /* Set LIDX for lcla */
1375                writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1376                writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1377
1378                /* Clear LNK which will be used by d40_chan_has_events() */
1379                writel(0, chanbase + D40_CHAN_REG_SSLNK);
1380                writel(0, chanbase + D40_CHAN_REG_SDLNK);
1381        }
1382}
1383
1384static u32 d40_residue(struct d40_chan *d40c)
1385{
1386        u32 num_elt;
1387
1388        if (chan_is_logical(d40c))
1389                num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1390                        >> D40_MEM_LCSP2_ECNT_POS;
1391        else {
1392                u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1393                num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1394                          >> D40_SREG_ELEM_PHY_ECNT_POS;
1395        }
1396
1397        return num_elt * d40c->dma_cfg.dst_info.data_width;
1398}
1399
1400static bool d40_tx_is_linked(struct d40_chan *d40c)
1401{
1402        bool is_link;
1403
1404        if (chan_is_logical(d40c))
1405                is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1406        else
1407                is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1408                          & D40_SREG_LNK_PHYS_LNK_MASK;
1409
1410        return is_link;
1411}
1412
1413static int d40_pause(struct dma_chan *chan)
1414{
1415        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1416        int res = 0;
1417        unsigned long flags;
1418
1419        if (d40c->phy_chan == NULL) {
1420                chan_err(d40c, "Channel is not allocated!\n");
1421                return -EINVAL;
1422        }
1423
1424        if (!d40c->busy)
1425                return 0;
1426
1427        spin_lock_irqsave(&d40c->lock, flags);
1428        pm_runtime_get_sync(d40c->base->dev);
1429
1430        res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1431
1432        pm_runtime_mark_last_busy(d40c->base->dev);
1433        pm_runtime_put_autosuspend(d40c->base->dev);
1434        spin_unlock_irqrestore(&d40c->lock, flags);
1435        return res;
1436}
1437
1438static int d40_resume(struct dma_chan *chan)
1439{
1440        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1441        int res = 0;
1442        unsigned long flags;
1443
1444        if (d40c->phy_chan == NULL) {
1445                chan_err(d40c, "Channel is not allocated!\n");
1446                return -EINVAL;
1447        }
1448
1449        if (!d40c->busy)
1450                return 0;
1451
1452        spin_lock_irqsave(&d40c->lock, flags);
1453        pm_runtime_get_sync(d40c->base->dev);
1454
1455        /* If bytes left to transfer or linked tx resume job */
1456        if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1457                res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1458
1459        pm_runtime_mark_last_busy(d40c->base->dev);
1460        pm_runtime_put_autosuspend(d40c->base->dev);
1461        spin_unlock_irqrestore(&d40c->lock, flags);
1462        return res;
1463}
1464
1465static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1466{
1467        struct d40_chan *d40c = container_of(tx->chan,
1468                                             struct d40_chan,
1469                                             chan);
1470        struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1471        unsigned long flags;
1472        dma_cookie_t cookie;
1473
1474        spin_lock_irqsave(&d40c->lock, flags);
1475        cookie = dma_cookie_assign(tx);
1476        d40_desc_queue(d40c, d40d);
1477        spin_unlock_irqrestore(&d40c->lock, flags);
1478
1479        return cookie;
1480}
1481
1482static int d40_start(struct d40_chan *d40c)
1483{
1484        return d40_channel_execute_command(d40c, D40_DMA_RUN);
1485}
1486
1487static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1488{
1489        struct d40_desc *d40d;
1490        int err;
1491
1492        /* Start queued jobs, if any */
1493        d40d = d40_first_queued(d40c);
1494
1495        if (d40d != NULL) {
1496                if (!d40c->busy) {
1497                        d40c->busy = true;
1498                        pm_runtime_get_sync(d40c->base->dev);
1499                }
1500
1501                /* Remove from queue */
1502                d40_desc_remove(d40d);
1503
1504                /* Add to active queue */
1505                d40_desc_submit(d40c, d40d);
1506
1507                /* Initiate DMA job */
1508                d40_desc_load(d40c, d40d);
1509
1510                /* Start dma job */
1511                err = d40_start(d40c);
1512
1513                if (err)
1514                        return NULL;
1515        }
1516
1517        return d40d;
1518}
1519
1520/* called from interrupt context */
1521static void dma_tc_handle(struct d40_chan *d40c)
1522{
1523        struct d40_desc *d40d;
1524
1525        /* Get first active entry from list */
1526        d40d = d40_first_active_get(d40c);
1527
1528        if (d40d == NULL)
1529                return;
1530
1531        if (d40d->cyclic) {
1532                /*
1533                 * If this was a paritially loaded list, we need to reloaded
1534                 * it, and only when the list is completed.  We need to check
1535                 * for done because the interrupt will hit for every link, and
1536                 * not just the last one.
1537                 */
1538                if (d40d->lli_current < d40d->lli_len
1539                    && !d40_tx_is_linked(d40c)
1540                    && !d40_residue(d40c)) {
1541                        d40_lcla_free_all(d40c, d40d);
1542                        d40_desc_load(d40c, d40d);
1543                        (void) d40_start(d40c);
1544
1545                        if (d40d->lli_current == d40d->lli_len)
1546                                d40d->lli_current = 0;
1547                }
1548        } else {
1549                d40_lcla_free_all(d40c, d40d);
1550
1551                if (d40d->lli_current < d40d->lli_len) {
1552                        d40_desc_load(d40c, d40d);
1553                        /* Start dma job */
1554                        (void) d40_start(d40c);
1555                        return;
1556                }
1557
1558                if (d40_queue_start(d40c) == NULL) {
1559                        d40c->busy = false;
1560
1561                        pm_runtime_mark_last_busy(d40c->base->dev);
1562                        pm_runtime_put_autosuspend(d40c->base->dev);
1563                }
1564
1565                d40_desc_remove(d40d);
1566                d40_desc_done(d40c, d40d);
1567        }
1568
1569        d40c->pending_tx++;
1570        tasklet_schedule(&d40c->tasklet);
1571
1572}
1573
1574static void dma_tasklet(unsigned long data)
1575{
1576        struct d40_chan *d40c = (struct d40_chan *) data;
1577        struct d40_desc *d40d;
1578        unsigned long flags;
1579        bool callback_active;
1580        struct dmaengine_desc_callback cb;
1581
1582        spin_lock_irqsave(&d40c->lock, flags);
1583
1584        /* Get first entry from the done list */
1585        d40d = d40_first_done(d40c);
1586        if (d40d == NULL) {
1587                /* Check if we have reached here for cyclic job */
1588                d40d = d40_first_active_get(d40c);
1589                if (d40d == NULL || !d40d->cyclic)
1590                        goto check_pending_tx;
1591        }
1592
1593        if (!d40d->cyclic)
1594                dma_cookie_complete(&d40d->txd);
1595
1596        /*
1597         * If terminating a channel pending_tx is set to zero.
1598         * This prevents any finished active jobs to return to the client.
1599         */
1600        if (d40c->pending_tx == 0) {
1601                spin_unlock_irqrestore(&d40c->lock, flags);
1602                return;
1603        }
1604
1605        /* Callback to client */
1606        callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1607        dmaengine_desc_get_callback(&d40d->txd, &cb);
1608
1609        if (!d40d->cyclic) {
1610                if (async_tx_test_ack(&d40d->txd)) {
1611                        d40_desc_remove(d40d);
1612                        d40_desc_free(d40c, d40d);
1613                } else if (!d40d->is_in_client_list) {
1614                        d40_desc_remove(d40d);
1615                        d40_lcla_free_all(d40c, d40d);
1616                        list_add_tail(&d40d->node, &d40c->client);
1617                        d40d->is_in_client_list = true;
1618                }
1619        }
1620
1621        d40c->pending_tx--;
1622
1623        if (d40c->pending_tx)
1624                tasklet_schedule(&d40c->tasklet);
1625
1626        spin_unlock_irqrestore(&d40c->lock, flags);
1627
1628        if (callback_active)
1629                dmaengine_desc_callback_invoke(&cb, NULL);
1630
1631        return;
1632 check_pending_tx:
1633        /* Rescue manouver if receiving double interrupts */
1634        if (d40c->pending_tx > 0)
1635                d40c->pending_tx--;
1636        spin_unlock_irqrestore(&d40c->lock, flags);
1637}
1638
1639static irqreturn_t d40_handle_interrupt(int irq, void *data)
1640{
1641        int i;
1642        u32 idx;
1643        u32 row;
1644        long chan = -1;
1645        struct d40_chan *d40c;
1646        unsigned long flags;
1647        struct d40_base *base = data;
1648        u32 *regs = base->regs_interrupt;
1649        struct d40_interrupt_lookup *il = base->gen_dmac.il;
1650        u32 il_size = base->gen_dmac.il_size;
1651
1652        spin_lock_irqsave(&base->interrupt_lock, flags);
1653
1654        /* Read interrupt status of both logical and physical channels */
1655        for (i = 0; i < il_size; i++)
1656                regs[i] = readl(base->virtbase + il[i].src);
1657
1658        for (;;) {
1659
1660                chan = find_next_bit((unsigned long *)regs,
1661                                     BITS_PER_LONG * il_size, chan + 1);
1662
1663                /* No more set bits found? */
1664                if (chan == BITS_PER_LONG * il_size)
1665                        break;
1666
1667                row = chan / BITS_PER_LONG;
1668                idx = chan & (BITS_PER_LONG - 1);
1669
1670                if (il[row].offset == D40_PHY_CHAN)
1671                        d40c = base->lookup_phy_chans[idx];
1672                else
1673                        d40c = base->lookup_log_chans[il[row].offset + idx];
1674
1675                if (!d40c) {
1676                        /*
1677                         * No error because this can happen if something else
1678                         * in the system is using the channel.
1679                         */
1680                        continue;
1681                }
1682
1683                /* ACK interrupt */
1684                writel(BIT(idx), base->virtbase + il[row].clr);
1685
1686                spin_lock(&d40c->lock);
1687
1688                if (!il[row].is_error)
1689                        dma_tc_handle(d40c);
1690                else
1691                        d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1692                                chan, il[row].offset, idx);
1693
1694                spin_unlock(&d40c->lock);
1695        }
1696
1697        spin_unlock_irqrestore(&base->interrupt_lock, flags);
1698
1699        return IRQ_HANDLED;
1700}
1701
1702static int d40_validate_conf(struct d40_chan *d40c,
1703                             struct stedma40_chan_cfg *conf)
1704{
1705        int res = 0;
1706        bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1707
1708        if (!conf->dir) {
1709                chan_err(d40c, "Invalid direction.\n");
1710                res = -EINVAL;
1711        }
1712
1713        if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1714            (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1715            (conf->dev_type < 0)) {
1716                chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1717                res = -EINVAL;
1718        }
1719
1720        if (conf->dir == DMA_DEV_TO_DEV) {
1721                /*
1722                 * DMAC HW supports it. Will be added to this driver,
1723                 * in case any dma client requires it.
1724                 */
1725                chan_err(d40c, "periph to periph not supported\n");
1726                res = -EINVAL;
1727        }
1728
1729        if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1730            conf->src_info.data_width !=
1731            d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1732            conf->dst_info.data_width) {
1733                /*
1734                 * The DMAC hardware only supports
1735                 * src (burst x width) == dst (burst x width)
1736                 */
1737
1738                chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1739                res = -EINVAL;
1740        }
1741
1742        return res;
1743}
1744
1745static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1746                               bool is_src, int log_event_line, bool is_log,
1747                               bool *first_user)
1748{
1749        unsigned long flags;
1750        spin_lock_irqsave(&phy->lock, flags);
1751
1752        *first_user = ((phy->allocated_src | phy->allocated_dst)
1753                        == D40_ALLOC_FREE);
1754
1755        if (!is_log) {
1756                /* Physical interrupts are masked per physical full channel */
1757                if (phy->allocated_src == D40_ALLOC_FREE &&
1758                    phy->allocated_dst == D40_ALLOC_FREE) {
1759                        phy->allocated_dst = D40_ALLOC_PHY;
1760                        phy->allocated_src = D40_ALLOC_PHY;
1761                        goto found_unlock;
1762                } else
1763                        goto not_found_unlock;
1764        }
1765
1766        /* Logical channel */
1767        if (is_src) {
1768                if (phy->allocated_src == D40_ALLOC_PHY)
1769                        goto not_found_unlock;
1770
1771                if (phy->allocated_src == D40_ALLOC_FREE)
1772                        phy->allocated_src = D40_ALLOC_LOG_FREE;
1773
1774                if (!(phy->allocated_src & BIT(log_event_line))) {
1775                        phy->allocated_src |= BIT(log_event_line);
1776                        goto found_unlock;
1777                } else
1778                        goto not_found_unlock;
1779        } else {
1780                if (phy->allocated_dst == D40_ALLOC_PHY)
1781                        goto not_found_unlock;
1782
1783                if (phy->allocated_dst == D40_ALLOC_FREE)
1784                        phy->allocated_dst = D40_ALLOC_LOG_FREE;
1785
1786                if (!(phy->allocated_dst & BIT(log_event_line))) {
1787                        phy->allocated_dst |= BIT(log_event_line);
1788                        goto found_unlock;
1789                }
1790        }
1791 not_found_unlock:
1792        spin_unlock_irqrestore(&phy->lock, flags);
1793        return false;
1794 found_unlock:
1795        spin_unlock_irqrestore(&phy->lock, flags);
1796        return true;
1797}
1798
1799static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1800                               int log_event_line)
1801{
1802        unsigned long flags;
1803        bool is_free = false;
1804
1805        spin_lock_irqsave(&phy->lock, flags);
1806        if (!log_event_line) {
1807                phy->allocated_dst = D40_ALLOC_FREE;
1808                phy->allocated_src = D40_ALLOC_FREE;
1809                is_free = true;
1810                goto unlock;
1811        }
1812
1813        /* Logical channel */
1814        if (is_src) {
1815                phy->allocated_src &= ~BIT(log_event_line);
1816                if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1817                        phy->allocated_src = D40_ALLOC_FREE;
1818        } else {
1819                phy->allocated_dst &= ~BIT(log_event_line);
1820                if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1821                        phy->allocated_dst = D40_ALLOC_FREE;
1822        }
1823
1824        is_free = ((phy->allocated_src | phy->allocated_dst) ==
1825                   D40_ALLOC_FREE);
1826 unlock:
1827        spin_unlock_irqrestore(&phy->lock, flags);
1828
1829        return is_free;
1830}
1831
1832static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1833{
1834        int dev_type = d40c->dma_cfg.dev_type;
1835        int event_group;
1836        int event_line;
1837        struct d40_phy_res *phys;
1838        int i;
1839        int j;
1840        int log_num;
1841        int num_phy_chans;
1842        bool is_src;
1843        bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1844
1845        phys = d40c->base->phy_res;
1846        num_phy_chans = d40c->base->num_phy_chans;
1847
1848        if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1849                log_num = 2 * dev_type;
1850                is_src = true;
1851        } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1852                   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1853                /* dst event lines are used for logical memcpy */
1854                log_num = 2 * dev_type + 1;
1855                is_src = false;
1856        } else
1857                return -EINVAL;
1858
1859        event_group = D40_TYPE_TO_GROUP(dev_type);
1860        event_line = D40_TYPE_TO_EVENT(dev_type);
1861
1862        if (!is_log) {
1863                if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1864                        /* Find physical half channel */
1865                        if (d40c->dma_cfg.use_fixed_channel) {
1866                                i = d40c->dma_cfg.phy_channel;
1867                                if (d40_alloc_mask_set(&phys[i], is_src,
1868                                                       0, is_log,
1869                                                       first_phy_user))
1870                                        goto found_phy;
1871                        } else {
1872                                for (i = 0; i < num_phy_chans; i++) {
1873                                        if (d40_alloc_mask_set(&phys[i], is_src,
1874                                                       0, is_log,
1875                                                       first_phy_user))
1876                                                goto found_phy;
1877                                }
1878                        }
1879                } else
1880                        for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1881                                int phy_num = j  + event_group * 2;
1882                                for (i = phy_num; i < phy_num + 2; i++) {
1883                                        if (d40_alloc_mask_set(&phys[i],
1884                                                               is_src,
1885                                                               0,
1886                                                               is_log,
1887                                                               first_phy_user))
1888                                                goto found_phy;
1889                                }
1890                        }
1891                return -EINVAL;
1892found_phy:
1893                d40c->phy_chan = &phys[i];
1894                d40c->log_num = D40_PHY_CHAN;
1895                goto out;
1896        }
1897        if (dev_type == -1)
1898                return -EINVAL;
1899
1900        /* Find logical channel */
1901        for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1902                int phy_num = j + event_group * 2;
1903
1904                if (d40c->dma_cfg.use_fixed_channel) {
1905                        i = d40c->dma_cfg.phy_channel;
1906
1907                        if ((i != phy_num) && (i != phy_num + 1)) {
1908                                dev_err(chan2dev(d40c),
1909                                        "invalid fixed phy channel %d\n", i);
1910                                return -EINVAL;
1911                        }
1912
1913                        if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1914                                               is_log, first_phy_user))
1915                                goto found_log;
1916
1917                        dev_err(chan2dev(d40c),
1918                                "could not allocate fixed phy channel %d\n", i);
1919                        return -EINVAL;
1920                }
1921
1922                /*
1923                 * Spread logical channels across all available physical rather
1924                 * than pack every logical channel at the first available phy
1925                 * channels.
1926                 */
1927                if (is_src) {
1928                        for (i = phy_num; i < phy_num + 2; i++) {
1929                                if (d40_alloc_mask_set(&phys[i], is_src,
1930                                                       event_line, is_log,
1931                                                       first_phy_user))
1932                                        goto found_log;
1933                        }
1934                } else {
1935                        for (i = phy_num + 1; i >= phy_num; i--) {
1936                                if (d40_alloc_mask_set(&phys[i], is_src,
1937                                                       event_line, is_log,
1938                                                       first_phy_user))
1939                                        goto found_log;
1940                        }
1941                }
1942        }
1943        return -EINVAL;
1944
1945found_log:
1946        d40c->phy_chan = &phys[i];
1947        d40c->log_num = log_num;
1948out:
1949
1950        if (is_log)
1951                d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1952        else
1953                d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1954
1955        return 0;
1956
1957}
1958
1959static int d40_config_memcpy(struct d40_chan *d40c)
1960{
1961        dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1962
1963        if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1964                d40c->dma_cfg = dma40_memcpy_conf_log;
1965                d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1966
1967                d40_log_cfg(&d40c->dma_cfg,
1968                            &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1969
1970        } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1971                   dma_has_cap(DMA_SLAVE, cap)) {
1972                d40c->dma_cfg = dma40_memcpy_conf_phy;
1973
1974                /* Generate interrrupt at end of transfer or relink. */
1975                d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
1976
1977                /* Generate interrupt on error. */
1978                d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1979                d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1980
1981        } else {
1982                chan_err(d40c, "No memcpy\n");
1983                return -EINVAL;
1984        }
1985
1986        return 0;
1987}
1988
1989static int d40_free_dma(struct d40_chan *d40c)
1990{
1991
1992        int res = 0;
1993        u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1994        struct d40_phy_res *phy = d40c->phy_chan;
1995        bool is_src;
1996
1997        /* Terminate all queued and active transfers */
1998        d40_term_all(d40c);
1999
2000        if (phy == NULL) {
2001                chan_err(d40c, "phy == null\n");
2002                return -EINVAL;
2003        }
2004
2005        if (phy->allocated_src == D40_ALLOC_FREE &&
2006            phy->allocated_dst == D40_ALLOC_FREE) {
2007                chan_err(d40c, "channel already free\n");
2008                return -EINVAL;
2009        }
2010
2011        if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2012            d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2013                is_src = false;
2014        else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2015                is_src = true;
2016        else {
2017                chan_err(d40c, "Unknown direction\n");
2018                return -EINVAL;
2019        }
2020
2021        pm_runtime_get_sync(d40c->base->dev);
2022        res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2023        if (res) {
2024                chan_err(d40c, "stop failed\n");
2025                goto mark_last_busy;
2026        }
2027
2028        d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2029
2030        if (chan_is_logical(d40c))
2031                d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2032        else
2033                d40c->base->lookup_phy_chans[phy->num] = NULL;
2034
2035        if (d40c->busy) {
2036                pm_runtime_mark_last_busy(d40c->base->dev);
2037                pm_runtime_put_autosuspend(d40c->base->dev);
2038        }
2039
2040        d40c->busy = false;
2041        d40c->phy_chan = NULL;
2042        d40c->configured = false;
2043 mark_last_busy:
2044        pm_runtime_mark_last_busy(d40c->base->dev);
2045        pm_runtime_put_autosuspend(d40c->base->dev);
2046        return res;
2047}
2048
2049static bool d40_is_paused(struct d40_chan *d40c)
2050{
2051        void __iomem *chanbase = chan_base(d40c);
2052        bool is_paused = false;
2053        unsigned long flags;
2054        void __iomem *active_reg;
2055        u32 status;
2056        u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2057
2058        spin_lock_irqsave(&d40c->lock, flags);
2059
2060        if (chan_is_physical(d40c)) {
2061                if (d40c->phy_chan->num % 2 == 0)
2062                        active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2063                else
2064                        active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2065
2066                status = (readl(active_reg) &
2067                          D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2068                        D40_CHAN_POS(d40c->phy_chan->num);
2069                if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2070                        is_paused = true;
2071                goto unlock;
2072        }
2073
2074        if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2075            d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2076                status = readl(chanbase + D40_CHAN_REG_SDLNK);
2077        } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2078                status = readl(chanbase + D40_CHAN_REG_SSLNK);
2079        } else {
2080                chan_err(d40c, "Unknown direction\n");
2081                goto unlock;
2082        }
2083
2084        status = (status & D40_EVENTLINE_MASK(event)) >>
2085                D40_EVENTLINE_POS(event);
2086
2087        if (status != D40_DMA_RUN)
2088                is_paused = true;
2089 unlock:
2090        spin_unlock_irqrestore(&d40c->lock, flags);
2091        return is_paused;
2092
2093}
2094
2095static u32 stedma40_residue(struct dma_chan *chan)
2096{
2097        struct d40_chan *d40c =
2098                container_of(chan, struct d40_chan, chan);
2099        u32 bytes_left;
2100        unsigned long flags;
2101
2102        spin_lock_irqsave(&d40c->lock, flags);
2103        bytes_left = d40_residue(d40c);
2104        spin_unlock_irqrestore(&d40c->lock, flags);
2105
2106        return bytes_left;
2107}
2108
2109static int
2110d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2111                struct scatterlist *sg_src, struct scatterlist *sg_dst,
2112                unsigned int sg_len, dma_addr_t src_dev_addr,
2113                dma_addr_t dst_dev_addr)
2114{
2115        struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2116        struct stedma40_half_channel_info *src_info = &cfg->src_info;
2117        struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2118        int ret;
2119
2120        ret = d40_log_sg_to_lli(sg_src, sg_len,
2121                                src_dev_addr,
2122                                desc->lli_log.src,
2123                                chan->log_def.lcsp1,
2124                                src_info->data_width,
2125                                dst_info->data_width);
2126
2127        ret = d40_log_sg_to_lli(sg_dst, sg_len,
2128                                dst_dev_addr,
2129                                desc->lli_log.dst,
2130                                chan->log_def.lcsp3,
2131                                dst_info->data_width,
2132                                src_info->data_width);
2133
2134        return ret < 0 ? ret : 0;
2135}
2136
2137static int
2138d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2139                struct scatterlist *sg_src, struct scatterlist *sg_dst,
2140                unsigned int sg_len, dma_addr_t src_dev_addr,
2141                dma_addr_t dst_dev_addr)
2142{
2143        struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2144        struct stedma40_half_channel_info *src_info = &cfg->src_info;
2145        struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2146        unsigned long flags = 0;
2147        int ret;
2148
2149        if (desc->cyclic)
2150                flags |= LLI_CYCLIC | LLI_TERM_INT;
2151
2152        ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2153                                desc->lli_phy.src,
2154                                virt_to_phys(desc->lli_phy.src),
2155                                chan->src_def_cfg,
2156                                src_info, dst_info, flags);
2157
2158        ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2159                                desc->lli_phy.dst,
2160                                virt_to_phys(desc->lli_phy.dst),
2161                                chan->dst_def_cfg,
2162                                dst_info, src_info, flags);
2163
2164        dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2165                                   desc->lli_pool.size, DMA_TO_DEVICE);
2166
2167        return ret < 0 ? ret : 0;
2168}
2169
2170static struct d40_desc *
2171d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2172              unsigned int sg_len, unsigned long dma_flags)
2173{
2174        struct stedma40_chan_cfg *cfg;
2175        struct d40_desc *desc;
2176        int ret;
2177
2178        desc = d40_desc_get(chan);
2179        if (!desc)
2180                return NULL;
2181
2182        cfg = &chan->dma_cfg;
2183        desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2184                                        cfg->dst_info.data_width);
2185        if (desc->lli_len < 0) {
2186                chan_err(chan, "Unaligned size\n");
2187                goto free_desc;
2188        }
2189
2190        ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2191        if (ret < 0) {
2192                chan_err(chan, "Could not allocate lli\n");
2193                goto free_desc;
2194        }
2195
2196        desc->lli_current = 0;
2197        desc->txd.flags = dma_flags;
2198        desc->txd.tx_submit = d40_tx_submit;
2199
2200        dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2201
2202        return desc;
2203 free_desc:
2204        d40_desc_free(chan, desc);
2205        return NULL;
2206}
2207
2208static struct dma_async_tx_descriptor *
2209d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2210            struct scatterlist *sg_dst, unsigned int sg_len,
2211            enum dma_transfer_direction direction, unsigned long dma_flags)
2212{
2213        struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2214        dma_addr_t src_dev_addr;
2215        dma_addr_t dst_dev_addr;
2216        struct d40_desc *desc;
2217        unsigned long flags;
2218        int ret;
2219
2220        if (!chan->phy_chan) {
2221                chan_err(chan, "Cannot prepare unallocated channel\n");
2222                return NULL;
2223        }
2224
2225        d40_set_runtime_config_write(dchan, &chan->slave_config, direction);
2226
2227        spin_lock_irqsave(&chan->lock, flags);
2228
2229        desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2230        if (desc == NULL)
2231                goto unlock;
2232
2233        if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2234                desc->cyclic = true;
2235
2236        src_dev_addr = 0;
2237        dst_dev_addr = 0;
2238        if (direction == DMA_DEV_TO_MEM)
2239                src_dev_addr = chan->runtime_addr;
2240        else if (direction == DMA_MEM_TO_DEV)
2241                dst_dev_addr = chan->runtime_addr;
2242
2243        if (chan_is_logical(chan))
2244                ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2245                                      sg_len, src_dev_addr, dst_dev_addr);
2246        else
2247                ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2248                                      sg_len, src_dev_addr, dst_dev_addr);
2249
2250        if (ret) {
2251                chan_err(chan, "Failed to prepare %s sg job: %d\n",
2252                         chan_is_logical(chan) ? "log" : "phy", ret);
2253                goto free_desc;
2254        }
2255
2256        /*
2257         * add descriptor to the prepare queue in order to be able
2258         * to free them later in terminate_all
2259         */
2260        list_add_tail(&desc->node, &chan->prepare_queue);
2261
2262        spin_unlock_irqrestore(&chan->lock, flags);
2263
2264        return &desc->txd;
2265 free_desc:
2266        d40_desc_free(chan, desc);
2267 unlock:
2268        spin_unlock_irqrestore(&chan->lock, flags);
2269        return NULL;
2270}
2271
2272bool stedma40_filter(struct dma_chan *chan, void *data)
2273{
2274        struct stedma40_chan_cfg *info = data;
2275        struct d40_chan *d40c =
2276                container_of(chan, struct d40_chan, chan);
2277        int err;
2278
2279        if (data) {
2280                err = d40_validate_conf(d40c, info);
2281                if (!err)
2282                        d40c->dma_cfg = *info;
2283        } else
2284                err = d40_config_memcpy(d40c);
2285
2286        if (!err)
2287                d40c->configured = true;
2288
2289        return err == 0;
2290}
2291EXPORT_SYMBOL(stedma40_filter);
2292
2293static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2294{
2295        bool realtime = d40c->dma_cfg.realtime;
2296        bool highprio = d40c->dma_cfg.high_priority;
2297        u32 rtreg;
2298        u32 event = D40_TYPE_TO_EVENT(dev_type);
2299        u32 group = D40_TYPE_TO_GROUP(dev_type);
2300        u32 bit = BIT(event);
2301        u32 prioreg;
2302        struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2303
2304        rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2305        /*
2306         * Due to a hardware bug, in some cases a logical channel triggered by
2307         * a high priority destination event line can generate extra packet
2308         * transactions.
2309         *
2310         * The workaround is to not set the high priority level for the
2311         * destination event lines that trigger logical channels.
2312         */
2313        if (!src && chan_is_logical(d40c))
2314                highprio = false;
2315
2316        prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2317
2318        /* Destination event lines are stored in the upper halfword */
2319        if (!src)
2320                bit <<= 16;
2321
2322        writel(bit, d40c->base->virtbase + prioreg + group * 4);
2323        writel(bit, d40c->base->virtbase + rtreg + group * 4);
2324}
2325
2326static void d40_set_prio_realtime(struct d40_chan *d40c)
2327{
2328        if (d40c->base->rev < 3)
2329                return;
2330
2331        if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2332            (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2333                __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2334
2335        if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2336            (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2337                __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2338}
2339
2340#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2341#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2342#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2343#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2344#define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2345
2346static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2347                                  struct of_dma *ofdma)
2348{
2349        struct stedma40_chan_cfg cfg;
2350        dma_cap_mask_t cap;
2351        u32 flags;
2352
2353        memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2354
2355        dma_cap_zero(cap);
2356        dma_cap_set(DMA_SLAVE, cap);
2357
2358        cfg.dev_type = dma_spec->args[0];
2359        flags = dma_spec->args[2];
2360
2361        switch (D40_DT_FLAGS_MODE(flags)) {
2362        case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2363        case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2364        }
2365
2366        switch (D40_DT_FLAGS_DIR(flags)) {
2367        case 0:
2368                cfg.dir = DMA_MEM_TO_DEV;
2369                cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2370                break;
2371        case 1:
2372                cfg.dir = DMA_DEV_TO_MEM;
2373                cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2374                break;
2375        }
2376
2377        if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2378                cfg.phy_channel = dma_spec->args[1];
2379                cfg.use_fixed_channel = true;
2380        }
2381
2382        if (D40_DT_FLAGS_HIGH_PRIO(flags))
2383                cfg.high_priority = true;
2384
2385        return dma_request_channel(cap, stedma40_filter, &cfg);
2386}
2387
2388/* DMA ENGINE functions */
2389static int d40_alloc_chan_resources(struct dma_chan *chan)
2390{
2391        int err;
2392        unsigned long flags;
2393        struct d40_chan *d40c =
2394                container_of(chan, struct d40_chan, chan);
2395        bool is_free_phy;
2396        spin_lock_irqsave(&d40c->lock, flags);
2397
2398        dma_cookie_init(chan);
2399
2400        /* If no dma configuration is set use default configuration (memcpy) */
2401        if (!d40c->configured) {
2402                err = d40_config_memcpy(d40c);
2403                if (err) {
2404                        chan_err(d40c, "Failed to configure memcpy channel\n");
2405                        goto mark_last_busy;
2406                }
2407        }
2408
2409        err = d40_allocate_channel(d40c, &is_free_phy);
2410        if (err) {
2411                chan_err(d40c, "Failed to allocate channel\n");
2412                d40c->configured = false;
2413                goto mark_last_busy;
2414        }
2415
2416        pm_runtime_get_sync(d40c->base->dev);
2417
2418        d40_set_prio_realtime(d40c);
2419
2420        if (chan_is_logical(d40c)) {
2421                if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2422                        d40c->lcpa = d40c->base->lcpa_base +
2423                                d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2424                else
2425                        d40c->lcpa = d40c->base->lcpa_base +
2426                                d40c->dma_cfg.dev_type *
2427                                D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2428
2429                /* Unmask the Global Interrupt Mask. */
2430                d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2431                d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2432        }
2433
2434        dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2435                 chan_is_logical(d40c) ? "logical" : "physical",
2436                 d40c->phy_chan->num,
2437                 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2438
2439
2440        /*
2441         * Only write channel configuration to the DMA if the physical
2442         * resource is free. In case of multiple logical channels
2443         * on the same physical resource, only the first write is necessary.
2444         */
2445        if (is_free_phy)
2446                d40_config_write(d40c);
2447 mark_last_busy:
2448        pm_runtime_mark_last_busy(d40c->base->dev);
2449        pm_runtime_put_autosuspend(d40c->base->dev);
2450        spin_unlock_irqrestore(&d40c->lock, flags);
2451        return err;
2452}
2453
2454static void d40_free_chan_resources(struct dma_chan *chan)
2455{
2456        struct d40_chan *d40c =
2457                container_of(chan, struct d40_chan, chan);
2458        int err;
2459        unsigned long flags;
2460
2461        if (d40c->phy_chan == NULL) {
2462                chan_err(d40c, "Cannot free unallocated channel\n");
2463                return;
2464        }
2465
2466        spin_lock_irqsave(&d40c->lock, flags);
2467
2468        err = d40_free_dma(d40c);
2469
2470        if (err)
2471                chan_err(d40c, "Failed to free channel\n");
2472        spin_unlock_irqrestore(&d40c->lock, flags);
2473}
2474
2475static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2476                                                       dma_addr_t dst,
2477                                                       dma_addr_t src,
2478                                                       size_t size,
2479                                                       unsigned long dma_flags)
2480{
2481        struct scatterlist dst_sg;
2482        struct scatterlist src_sg;
2483
2484        sg_init_table(&dst_sg, 1);
2485        sg_init_table(&src_sg, 1);
2486
2487        sg_dma_address(&dst_sg) = dst;
2488        sg_dma_address(&src_sg) = src;
2489
2490        sg_dma_len(&dst_sg) = size;
2491        sg_dma_len(&src_sg) = size;
2492
2493        return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2494                           DMA_MEM_TO_MEM, dma_flags);
2495}
2496
2497static struct dma_async_tx_descriptor *
2498d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2499                  unsigned int sg_len, enum dma_transfer_direction direction,
2500                  unsigned long dma_flags, void *context)
2501{
2502        if (!is_slave_direction(direction))
2503                return NULL;
2504
2505        return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2506}
2507
2508static struct dma_async_tx_descriptor *
2509dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2510                     size_t buf_len, size_t period_len,
2511                     enum dma_transfer_direction direction, unsigned long flags)
2512{
2513        unsigned int periods = buf_len / period_len;
2514        struct dma_async_tx_descriptor *txd;
2515        struct scatterlist *sg;
2516        int i;
2517
2518        sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2519        if (!sg)
2520                return NULL;
2521
2522        for (i = 0; i < periods; i++) {
2523                sg_dma_address(&sg[i]) = dma_addr;
2524                sg_dma_len(&sg[i]) = period_len;
2525                dma_addr += period_len;
2526        }
2527
2528        sg_chain(sg, periods + 1, sg);
2529
2530        txd = d40_prep_sg(chan, sg, sg, periods, direction,
2531                          DMA_PREP_INTERRUPT);
2532
2533        kfree(sg);
2534
2535        return txd;
2536}
2537
2538static enum dma_status d40_tx_status(struct dma_chan *chan,
2539                                     dma_cookie_t cookie,
2540                                     struct dma_tx_state *txstate)
2541{
2542        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2543        enum dma_status ret;
2544
2545        if (d40c->phy_chan == NULL) {
2546                chan_err(d40c, "Cannot read status of unallocated channel\n");
2547                return -EINVAL;
2548        }
2549
2550        ret = dma_cookie_status(chan, cookie, txstate);
2551        if (ret != DMA_COMPLETE && txstate)
2552                dma_set_residue(txstate, stedma40_residue(chan));
2553
2554        if (d40_is_paused(d40c))
2555                ret = DMA_PAUSED;
2556
2557        return ret;
2558}
2559
2560static void d40_issue_pending(struct dma_chan *chan)
2561{
2562        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2563        unsigned long flags;
2564
2565        if (d40c->phy_chan == NULL) {
2566                chan_err(d40c, "Channel is not allocated!\n");
2567                return;
2568        }
2569
2570        spin_lock_irqsave(&d40c->lock, flags);
2571
2572        list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2573
2574        /* Busy means that queued jobs are already being processed */
2575        if (!d40c->busy)
2576                (void) d40_queue_start(d40c);
2577
2578        spin_unlock_irqrestore(&d40c->lock, flags);
2579}
2580
2581static int d40_terminate_all(struct dma_chan *chan)
2582{
2583        unsigned long flags;
2584        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2585        int ret;
2586
2587        if (d40c->phy_chan == NULL) {
2588                chan_err(d40c, "Channel is not allocated!\n");
2589                return -EINVAL;
2590        }
2591
2592        spin_lock_irqsave(&d40c->lock, flags);
2593
2594        pm_runtime_get_sync(d40c->base->dev);
2595        ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2596        if (ret)
2597                chan_err(d40c, "Failed to stop channel\n");
2598
2599        d40_term_all(d40c);
2600        pm_runtime_mark_last_busy(d40c->base->dev);
2601        pm_runtime_put_autosuspend(d40c->base->dev);
2602        if (d40c->busy) {
2603                pm_runtime_mark_last_busy(d40c->base->dev);
2604                pm_runtime_put_autosuspend(d40c->base->dev);
2605        }
2606        d40c->busy = false;
2607
2608        spin_unlock_irqrestore(&d40c->lock, flags);
2609        return 0;
2610}
2611
2612static int
2613dma40_config_to_halfchannel(struct d40_chan *d40c,
2614                            struct stedma40_half_channel_info *info,
2615                            u32 maxburst)
2616{
2617        int psize;
2618
2619        if (chan_is_logical(d40c)) {
2620                if (maxburst >= 16)
2621                        psize = STEDMA40_PSIZE_LOG_16;
2622                else if (maxburst >= 8)
2623                        psize = STEDMA40_PSIZE_LOG_8;
2624                else if (maxburst >= 4)
2625                        psize = STEDMA40_PSIZE_LOG_4;
2626                else
2627                        psize = STEDMA40_PSIZE_LOG_1;
2628        } else {
2629                if (maxburst >= 16)
2630                        psize = STEDMA40_PSIZE_PHY_16;
2631                else if (maxburst >= 8)
2632                        psize = STEDMA40_PSIZE_PHY_8;
2633                else if (maxburst >= 4)
2634                        psize = STEDMA40_PSIZE_PHY_4;
2635                else
2636                        psize = STEDMA40_PSIZE_PHY_1;
2637        }
2638
2639        info->psize = psize;
2640        info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2641
2642        return 0;
2643}
2644
2645static int d40_set_runtime_config(struct dma_chan *chan,
2646                                  struct dma_slave_config *config)
2647{
2648        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2649
2650        memcpy(&d40c->slave_config, config, sizeof(*config));
2651
2652        return 0;
2653}
2654
2655/* Runtime reconfiguration extension */
2656static int d40_set_runtime_config_write(struct dma_chan *chan,
2657                                  struct dma_slave_config *config,
2658                                  enum dma_transfer_direction direction)
2659{
2660        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2661        struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2662        enum dma_slave_buswidth src_addr_width, dst_addr_width;
2663        dma_addr_t config_addr;
2664        u32 src_maxburst, dst_maxburst;
2665        int ret;
2666
2667        if (d40c->phy_chan == NULL) {
2668                chan_err(d40c, "Channel is not allocated!\n");
2669                return -EINVAL;
2670        }
2671
2672        src_addr_width = config->src_addr_width;
2673        src_maxburst = config->src_maxburst;
2674        dst_addr_width = config->dst_addr_width;
2675        dst_maxburst = config->dst_maxburst;
2676
2677        if (direction == DMA_DEV_TO_MEM) {
2678                config_addr = config->src_addr;
2679
2680                if (cfg->dir != DMA_DEV_TO_MEM)
2681                        dev_dbg(d40c->base->dev,
2682                                "channel was not configured for peripheral "
2683                                "to memory transfer (%d) overriding\n",
2684                                cfg->dir);
2685                cfg->dir = DMA_DEV_TO_MEM;
2686
2687                /* Configure the memory side */
2688                if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2689                        dst_addr_width = src_addr_width;
2690                if (dst_maxburst == 0)
2691                        dst_maxburst = src_maxburst;
2692
2693        } else if (direction == DMA_MEM_TO_DEV) {
2694                config_addr = config->dst_addr;
2695
2696                if (cfg->dir != DMA_MEM_TO_DEV)
2697                        dev_dbg(d40c->base->dev,
2698                                "channel was not configured for memory "
2699                                "to peripheral transfer (%d) overriding\n",
2700                                cfg->dir);
2701                cfg->dir = DMA_MEM_TO_DEV;
2702
2703                /* Configure the memory side */
2704                if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2705                        src_addr_width = dst_addr_width;
2706                if (src_maxburst == 0)
2707                        src_maxburst = dst_maxburst;
2708        } else {
2709                dev_err(d40c->base->dev,
2710                        "unrecognized channel direction %d\n",
2711                        direction);
2712                return -EINVAL;
2713        }
2714
2715        if (config_addr <= 0) {
2716                dev_err(d40c->base->dev, "no address supplied\n");
2717                return -EINVAL;
2718        }
2719
2720        if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2721                dev_err(d40c->base->dev,
2722                        "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2723                        src_maxburst,
2724                        src_addr_width,
2725                        dst_maxburst,
2726                        dst_addr_width);
2727                return -EINVAL;
2728        }
2729
2730        if (src_maxburst > 16) {
2731                src_maxburst = 16;
2732                dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2733        } else if (dst_maxburst > 16) {
2734                dst_maxburst = 16;
2735                src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2736        }
2737
2738        /* Only valid widths are; 1, 2, 4 and 8. */
2739        if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2740            src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2741            dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2742            dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2743            !is_power_of_2(src_addr_width) ||
2744            !is_power_of_2(dst_addr_width))
2745                return -EINVAL;
2746
2747        cfg->src_info.data_width = src_addr_width;
2748        cfg->dst_info.data_width = dst_addr_width;
2749
2750        ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2751                                          src_maxburst);
2752        if (ret)
2753                return ret;
2754
2755        ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2756                                          dst_maxburst);
2757        if (ret)
2758                return ret;
2759
2760        /* Fill in register values */
2761        if (chan_is_logical(d40c))
2762                d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2763        else
2764                d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2765
2766        /* These settings will take precedence later */
2767        d40c->runtime_addr = config_addr;
2768        d40c->runtime_direction = direction;
2769        dev_dbg(d40c->base->dev,
2770                "configured channel %s for %s, data width %d/%d, "
2771                "maxburst %d/%d elements, LE, no flow control\n",
2772                dma_chan_name(chan),
2773                (direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2774                src_addr_width, dst_addr_width,
2775                src_maxburst, dst_maxburst);
2776
2777        return 0;
2778}
2779
2780/* Initialization functions */
2781
2782static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2783                                 struct d40_chan *chans, int offset,
2784                                 int num_chans)
2785{
2786        int i = 0;
2787        struct d40_chan *d40c;
2788
2789        INIT_LIST_HEAD(&dma->channels);
2790
2791        for (i = offset; i < offset + num_chans; i++) {
2792                d40c = &chans[i];
2793                d40c->base = base;
2794                d40c->chan.device = dma;
2795
2796                spin_lock_init(&d40c->lock);
2797
2798                d40c->log_num = D40_PHY_CHAN;
2799
2800                INIT_LIST_HEAD(&d40c->done);
2801                INIT_LIST_HEAD(&d40c->active);
2802                INIT_LIST_HEAD(&d40c->queue);
2803                INIT_LIST_HEAD(&d40c->pending_queue);
2804                INIT_LIST_HEAD(&d40c->client);
2805                INIT_LIST_HEAD(&d40c->prepare_queue);
2806
2807                tasklet_init(&d40c->tasklet, dma_tasklet,
2808                             (unsigned long) d40c);
2809
2810                list_add_tail(&d40c->chan.device_node,
2811                              &dma->channels);
2812        }
2813}
2814
2815static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2816{
2817        if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
2818                dev->device_prep_slave_sg = d40_prep_slave_sg;
2819                dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2820        }
2821
2822        if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2823                dev->device_prep_dma_memcpy = d40_prep_memcpy;
2824                dev->directions = BIT(DMA_MEM_TO_MEM);
2825                /*
2826                 * This controller can only access address at even
2827                 * 32bit boundaries, i.e. 2^2
2828                 */
2829                dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2830        }
2831
2832        if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2833                dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2834
2835        dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2836        dev->device_free_chan_resources = d40_free_chan_resources;
2837        dev->device_issue_pending = d40_issue_pending;
2838        dev->device_tx_status = d40_tx_status;
2839        dev->device_config = d40_set_runtime_config;
2840        dev->device_pause = d40_pause;
2841        dev->device_resume = d40_resume;
2842        dev->device_terminate_all = d40_terminate_all;
2843        dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2844        dev->dev = base->dev;
2845}
2846
2847static int __init d40_dmaengine_init(struct d40_base *base,
2848                                     int num_reserved_chans)
2849{
2850        int err ;
2851
2852        d40_chan_init(base, &base->dma_slave, base->log_chans,
2853                      0, base->num_log_chans);
2854
2855        dma_cap_zero(base->dma_slave.cap_mask);
2856        dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2857        dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2858
2859        d40_ops_init(base, &base->dma_slave);
2860
2861        err = dmaenginem_async_device_register(&base->dma_slave);
2862
2863        if (err) {
2864                d40_err(base->dev, "Failed to register slave channels\n");
2865                goto exit;
2866        }
2867
2868        d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2869                      base->num_log_chans, base->num_memcpy_chans);
2870
2871        dma_cap_zero(base->dma_memcpy.cap_mask);
2872        dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2873
2874        d40_ops_init(base, &base->dma_memcpy);
2875
2876        err = dmaenginem_async_device_register(&base->dma_memcpy);
2877
2878        if (err) {
2879                d40_err(base->dev,
2880                        "Failed to register memcpy only channels\n");
2881                goto exit;
2882        }
2883
2884        d40_chan_init(base, &base->dma_both, base->phy_chans,
2885                      0, num_reserved_chans);
2886
2887        dma_cap_zero(base->dma_both.cap_mask);
2888        dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2889        dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2890        dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2891
2892        d40_ops_init(base, &base->dma_both);
2893        err = dmaenginem_async_device_register(&base->dma_both);
2894
2895        if (err) {
2896                d40_err(base->dev,
2897                        "Failed to register logical and physical capable channels\n");
2898                goto exit;
2899        }
2900        return 0;
2901 exit:
2902        return err;
2903}
2904
2905/* Suspend resume functionality */
2906#ifdef CONFIG_PM_SLEEP
2907static int dma40_suspend(struct device *dev)
2908{
2909        struct d40_base *base = dev_get_drvdata(dev);
2910        int ret;
2911
2912        ret = pm_runtime_force_suspend(dev);
2913        if (ret)
2914                return ret;
2915
2916        if (base->lcpa_regulator)
2917                ret = regulator_disable(base->lcpa_regulator);
2918        return ret;
2919}
2920
2921static int dma40_resume(struct device *dev)
2922{
2923        struct d40_base *base = dev_get_drvdata(dev);
2924        int ret = 0;
2925
2926        if (base->lcpa_regulator) {
2927                ret = regulator_enable(base->lcpa_regulator);
2928                if (ret)
2929                        return ret;
2930        }
2931
2932        return pm_runtime_force_resume(dev);
2933}
2934#endif
2935
2936#ifdef CONFIG_PM
2937static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2938                         u32 *regaddr, int num, bool save)
2939{
2940        int i;
2941
2942        for (i = 0; i < num; i++) {
2943                void __iomem *addr = baseaddr + regaddr[i];
2944
2945                if (save)
2946                        backup[i] = readl_relaxed(addr);
2947                else
2948                        writel_relaxed(backup[i], addr);
2949        }
2950}
2951
2952static void d40_save_restore_registers(struct d40_base *base, bool save)
2953{
2954        int i;
2955
2956        /* Save/Restore channel specific registers */
2957        for (i = 0; i < base->num_phy_chans; i++) {
2958                void __iomem *addr;
2959                int idx;
2960
2961                if (base->phy_res[i].reserved)
2962                        continue;
2963
2964                addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2965                idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2966
2967                dma40_backup(addr, &base->reg_val_backup_chan[idx],
2968                             d40_backup_regs_chan,
2969                             ARRAY_SIZE(d40_backup_regs_chan),
2970                             save);
2971        }
2972
2973        /* Save/Restore global registers */
2974        dma40_backup(base->virtbase, base->reg_val_backup,
2975                     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2976                     save);
2977
2978        /* Save/Restore registers only existing on dma40 v3 and later */
2979        if (base->gen_dmac.backup)
2980                dma40_backup(base->virtbase, base->reg_val_backup_v4,
2981                             base->gen_dmac.backup,
2982                        base->gen_dmac.backup_size,
2983                        save);
2984}
2985
2986static int dma40_runtime_suspend(struct device *dev)
2987{
2988        struct d40_base *base = dev_get_drvdata(dev);
2989
2990        d40_save_restore_registers(base, true);
2991
2992        /* Don't disable/enable clocks for v1 due to HW bugs */
2993        if (base->rev != 1)
2994                writel_relaxed(base->gcc_pwr_off_mask,
2995                               base->virtbase + D40_DREG_GCC);
2996
2997        return 0;
2998}
2999
3000static int dma40_runtime_resume(struct device *dev)
3001{
3002        struct d40_base *base = dev_get_drvdata(dev);
3003
3004        d40_save_restore_registers(base, false);
3005
3006        writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3007                       base->virtbase + D40_DREG_GCC);
3008        return 0;
3009}
3010#endif
3011
3012static const struct dev_pm_ops dma40_pm_ops = {
3013        SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3014        SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3015                                dma40_runtime_resume,
3016                                NULL)
3017};
3018
3019/* Initialization functions. */
3020
3021static int __init d40_phy_res_init(struct d40_base *base)
3022{
3023        int i;
3024        int num_phy_chans_avail = 0;
3025        u32 val[2];
3026        int odd_even_bit = -2;
3027        int gcc = D40_DREG_GCC_ENA;
3028
3029        val[0] = readl(base->virtbase + D40_DREG_PRSME);
3030        val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3031
3032        for (i = 0; i < base->num_phy_chans; i++) {
3033                base->phy_res[i].num = i;
3034                odd_even_bit += 2 * ((i % 2) == 0);
3035                if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3036                        /* Mark security only channels as occupied */
3037                        base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3038                        base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3039                        base->phy_res[i].reserved = true;
3040                        gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3041                                                       D40_DREG_GCC_SRC);
3042                        gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3043                                                       D40_DREG_GCC_DST);
3044
3045
3046                } else {
3047                        base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3048                        base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3049                        base->phy_res[i].reserved = false;
3050                        num_phy_chans_avail++;
3051                }
3052                spin_lock_init(&base->phy_res[i].lock);
3053        }
3054
3055        /* Mark disabled channels as occupied */
3056        for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3057                int chan = base->plat_data->disabled_channels[i];
3058
3059                base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3060                base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3061                base->phy_res[chan].reserved = true;
3062                gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3063                                               D40_DREG_GCC_SRC);
3064                gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3065                                               D40_DREG_GCC_DST);
3066                num_phy_chans_avail--;
3067        }
3068
3069        /* Mark soft_lli channels */
3070        for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3071                int chan = base->plat_data->soft_lli_chans[i];
3072
3073                base->phy_res[chan].use_soft_lli = true;
3074        }
3075
3076        dev_info(base->dev, "%d of %d physical DMA channels available\n",
3077                 num_phy_chans_avail, base->num_phy_chans);
3078
3079        /* Verify settings extended vs standard */
3080        val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3081
3082        for (i = 0; i < base->num_phy_chans; i++) {
3083
3084                if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3085                    (val[0] & 0x3) != 1)
3086                        dev_info(base->dev,
3087                                 "[%s] INFO: channel %d is misconfigured (%d)\n",
3088                                 __func__, i, val[0] & 0x3);
3089
3090                val[0] = val[0] >> 2;
3091        }
3092
3093        /*
3094         * To keep things simple, Enable all clocks initially.
3095         * The clocks will get managed later post channel allocation.
3096         * The clocks for the event lines on which reserved channels exists
3097         * are not managed here.
3098         */
3099        writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3100        base->gcc_pwr_off_mask = gcc;
3101
3102        return num_phy_chans_avail;
3103}
3104
3105static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3106{
3107        struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3108        struct clk *clk;
3109        void __iomem *virtbase;
3110        struct resource *res;
3111        struct d40_base *base;
3112        int num_log_chans;
3113        int num_phy_chans;
3114        int num_memcpy_chans;
3115        int clk_ret = -EINVAL;
3116        int i;
3117        u32 pid;
3118        u32 cid;
3119        u8 rev;
3120
3121        clk = clk_get(&pdev->dev, NULL);
3122        if (IS_ERR(clk)) {
3123                d40_err(&pdev->dev, "No matching clock found\n");
3124                goto check_prepare_enabled;
3125        }
3126
3127        clk_ret = clk_prepare_enable(clk);
3128        if (clk_ret) {
3129                d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3130                goto disable_unprepare;
3131        }
3132
3133        /* Get IO for DMAC base address */
3134        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3135        if (!res)
3136                goto disable_unprepare;
3137
3138        if (request_mem_region(res->start, resource_size(res),
3139                               D40_NAME " I/O base") == NULL)
3140                goto release_region;
3141
3142        virtbase = ioremap(res->start, resource_size(res));
3143        if (!virtbase)
3144                goto release_region;
3145
3146        /* This is just a regular AMBA PrimeCell ID actually */
3147        for (pid = 0, i = 0; i < 4; i++)
3148                pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3149                        & 255) << (i * 8);
3150        for (cid = 0, i = 0; i < 4; i++)
3151                cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3152                        & 255) << (i * 8);
3153
3154        if (cid != AMBA_CID) {
3155                d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3156                goto unmap_io;
3157        }
3158        if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3159                d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3160                        AMBA_MANF_BITS(pid),
3161                        AMBA_VENDOR_ST);
3162                goto unmap_io;
3163        }
3164        /*
3165         * HW revision:
3166         * DB8500ed has revision 0
3167         * ? has revision 1
3168         * DB8500v1 has revision 2
3169         * DB8500v2 has revision 3
3170         * AP9540v1 has revision 4
3171         * DB8540v1 has revision 4
3172         */
3173        rev = AMBA_REV_BITS(pid);
3174        if (rev < 2) {
3175                d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3176                goto unmap_io;
3177        }
3178
3179        /* The number of physical channels on this HW */
3180        if (plat_data->num_of_phy_chans)
3181                num_phy_chans = plat_data->num_of_phy_chans;
3182        else
3183                num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3184
3185        /* The number of channels used for memcpy */
3186        if (plat_data->num_of_memcpy_chans)
3187                num_memcpy_chans = plat_data->num_of_memcpy_chans;
3188        else
3189                num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3190
3191        num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3192
3193        dev_info(&pdev->dev,
3194                 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3195                 rev, &res->start, num_phy_chans, num_log_chans);
3196
3197        base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3198                       (num_phy_chans + num_log_chans + num_memcpy_chans) *
3199                       sizeof(struct d40_chan), GFP_KERNEL);
3200
3201        if (base == NULL)
3202                goto unmap_io;
3203
3204        base->rev = rev;
3205        base->clk = clk;
3206        base->num_memcpy_chans = num_memcpy_chans;
3207        base->num_phy_chans = num_phy_chans;
3208        base->num_log_chans = num_log_chans;
3209        base->phy_start = res->start;
3210        base->phy_size = resource_size(res);
3211        base->virtbase = virtbase;
3212        base->plat_data = plat_data;
3213        base->dev = &pdev->dev;
3214        base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3215        base->log_chans = &base->phy_chans[num_phy_chans];
3216
3217        if (base->plat_data->num_of_phy_chans == 14) {
3218                base->gen_dmac.backup = d40_backup_regs_v4b;
3219                base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3220                base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3221                base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3222                base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3223                base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3224                base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3225                base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3226                base->gen_dmac.il = il_v4b;
3227                base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3228                base->gen_dmac.init_reg = dma_init_reg_v4b;
3229                base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3230        } else {
3231                if (base->rev >= 3) {
3232                        base->gen_dmac.backup = d40_backup_regs_v4a;
3233                        base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3234                }
3235                base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3236                base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3237                base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3238                base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3239                base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3240                base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3241                base->gen_dmac.il = il_v4a;
3242                base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3243                base->gen_dmac.init_reg = dma_init_reg_v4a;
3244                base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3245        }
3246
3247        base->phy_res = kcalloc(num_phy_chans,
3248                                sizeof(*base->phy_res),
3249                                GFP_KERNEL);
3250        if (!base->phy_res)
3251                goto free_base;
3252
3253        base->lookup_phy_chans = kcalloc(num_phy_chans,
3254                                         sizeof(*base->lookup_phy_chans),
3255                                         GFP_KERNEL);
3256        if (!base->lookup_phy_chans)
3257                goto free_phy_res;
3258
3259        base->lookup_log_chans = kcalloc(num_log_chans,
3260                                         sizeof(*base->lookup_log_chans),
3261                                         GFP_KERNEL);
3262        if (!base->lookup_log_chans)
3263                goto free_phy_chans;
3264
3265        base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
3266                                                  sizeof(d40_backup_regs_chan),
3267                                                  GFP_KERNEL);
3268        if (!base->reg_val_backup_chan)
3269                goto free_log_chans;
3270
3271        base->lcla_pool.alloc_map = kcalloc(num_phy_chans
3272                                            * D40_LCLA_LINK_PER_EVENT_GRP,
3273                                            sizeof(*base->lcla_pool.alloc_map),
3274                                            GFP_KERNEL);
3275        if (!base->lcla_pool.alloc_map)
3276                goto free_backup_chan;
3277
3278        base->regs_interrupt = kmalloc_array(base->gen_dmac.il_size,
3279                                             sizeof(*base->regs_interrupt),
3280                                             GFP_KERNEL);
3281        if (!base->regs_interrupt)
3282                goto free_map;
3283
3284        base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3285                                            0, SLAB_HWCACHE_ALIGN,
3286                                            NULL);
3287        if (base->desc_slab == NULL)
3288                goto free_regs;
3289
3290
3291        return base;
3292 free_regs:
3293        kfree(base->regs_interrupt);
3294 free_map:
3295        kfree(base->lcla_pool.alloc_map);
3296 free_backup_chan:
3297        kfree(base->reg_val_backup_chan);
3298 free_log_chans:
3299        kfree(base->lookup_log_chans);
3300 free_phy_chans:
3301        kfree(base->lookup_phy_chans);
3302 free_phy_res:
3303        kfree(base->phy_res);
3304 free_base:
3305        kfree(base);
3306 unmap_io:
3307        iounmap(virtbase);
3308 release_region:
3309        release_mem_region(res->start, resource_size(res));
3310 check_prepare_enabled:
3311        if (!clk_ret)
3312 disable_unprepare:
3313                clk_disable_unprepare(clk);
3314        if (!IS_ERR(clk))
3315                clk_put(clk);
3316        return NULL;
3317}
3318
3319static void __init d40_hw_init(struct d40_base *base)
3320{
3321
3322        int i;
3323        u32 prmseo[2] = {0, 0};
3324        u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3325        u32 pcmis = 0;
3326        u32 pcicr = 0;
3327        struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3328        u32 reg_size = base->gen_dmac.init_reg_size;
3329
3330        for (i = 0; i < reg_size; i++)
3331                writel(dma_init_reg[i].val,
3332                       base->virtbase + dma_init_reg[i].reg);
3333
3334        /* Configure all our dma channels to default settings */
3335        for (i = 0; i < base->num_phy_chans; i++) {
3336
3337                activeo[i % 2] = activeo[i % 2] << 2;
3338
3339                if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3340                    == D40_ALLOC_PHY) {
3341                        activeo[i % 2] |= 3;
3342                        continue;
3343                }
3344
3345                /* Enable interrupt # */
3346                pcmis = (pcmis << 1) | 1;
3347
3348                /* Clear interrupt # */
3349                pcicr = (pcicr << 1) | 1;
3350
3351                /* Set channel to physical mode */
3352                prmseo[i % 2] = prmseo[i % 2] << 2;
3353                prmseo[i % 2] |= 1;
3354
3355        }
3356
3357        writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3358        writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3359        writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3360        writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3361
3362        /* Write which interrupt to enable */
3363        writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3364
3365        /* Write which interrupt to clear */
3366        writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3367
3368        /* These are __initdata and cannot be accessed after init */
3369        base->gen_dmac.init_reg = NULL;
3370        base->gen_dmac.init_reg_size = 0;
3371}
3372
3373static int __init d40_lcla_allocate(struct d40_base *base)
3374{
3375        struct d40_lcla_pool *pool = &base->lcla_pool;
3376        unsigned long *page_list;
3377        int i, j;
3378        int ret;
3379
3380        /*
3381         * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3382         * To full fill this hardware requirement without wasting 256 kb
3383         * we allocate pages until we get an aligned one.
3384         */
3385        page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3386                                  sizeof(*page_list),
3387                                  GFP_KERNEL);
3388        if (!page_list)
3389                return -ENOMEM;
3390
3391        /* Calculating how many pages that are required */
3392        base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3393
3394        for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3395                page_list[i] = __get_free_pages(GFP_KERNEL,
3396                                                base->lcla_pool.pages);
3397                if (!page_list[i]) {
3398
3399                        d40_err(base->dev, "Failed to allocate %d pages.\n",
3400                                base->lcla_pool.pages);
3401                        ret = -ENOMEM;
3402
3403                        for (j = 0; j < i; j++)
3404                                free_pages(page_list[j], base->lcla_pool.pages);
3405                        goto free_page_list;
3406                }
3407
3408                if ((virt_to_phys((void *)page_list[i]) &
3409                     (LCLA_ALIGNMENT - 1)) == 0)
3410                        break;
3411        }
3412
3413        for (j = 0; j < i; j++)
3414                free_pages(page_list[j], base->lcla_pool.pages);
3415
3416        if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3417                base->lcla_pool.base = (void *)page_list[i];
3418        } else {
3419                /*
3420                 * After many attempts and no succees with finding the correct
3421                 * alignment, try with allocating a big buffer.
3422                 */
3423                dev_warn(base->dev,
3424                         "[%s] Failed to get %d pages @ 18 bit align.\n",
3425                         __func__, base->lcla_pool.pages);
3426                base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3427                                                         base->num_phy_chans +
3428                                                         LCLA_ALIGNMENT,
3429                                                         GFP_KERNEL);
3430                if (!base->lcla_pool.base_unaligned) {
3431                        ret = -ENOMEM;
3432                        goto free_page_list;
3433                }
3434
3435                base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3436                                                 LCLA_ALIGNMENT);
3437        }
3438
3439        pool->dma_addr = dma_map_single(base->dev, pool->base,
3440                                        SZ_1K * base->num_phy_chans,
3441                                        DMA_TO_DEVICE);
3442        if (dma_mapping_error(base->dev, pool->dma_addr)) {
3443                pool->dma_addr = 0;
3444                ret = -ENOMEM;
3445                goto free_page_list;
3446        }
3447
3448        writel(virt_to_phys(base->lcla_pool.base),
3449               base->virtbase + D40_DREG_LCLA);
3450        ret = 0;
3451 free_page_list:
3452        kfree(page_list);
3453        return ret;
3454}
3455
3456static int __init d40_of_probe(struct platform_device *pdev,
3457                               struct device_node *np)
3458{
3459        struct stedma40_platform_data *pdata;
3460        int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3461        const __be32 *list;
3462
3463        pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
3464        if (!pdata)
3465                return -ENOMEM;
3466
3467        /* If absent this value will be obtained from h/w. */
3468        of_property_read_u32(np, "dma-channels", &num_phy);
3469        if (num_phy > 0)
3470                pdata->num_of_phy_chans = num_phy;
3471
3472        list = of_get_property(np, "memcpy-channels", &num_memcpy);
3473        num_memcpy /= sizeof(*list);
3474
3475        if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3476                d40_err(&pdev->dev,
3477                        "Invalid number of memcpy channels specified (%d)\n",
3478                        num_memcpy);
3479                return -EINVAL;
3480        }
3481        pdata->num_of_memcpy_chans = num_memcpy;
3482
3483        of_property_read_u32_array(np, "memcpy-channels",
3484                                   dma40_memcpy_channels,
3485                                   num_memcpy);
3486
3487        list = of_get_property(np, "disabled-channels", &num_disabled);
3488        num_disabled /= sizeof(*list);
3489
3490        if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3491                d40_err(&pdev->dev,
3492                        "Invalid number of disabled channels specified (%d)\n",
3493                        num_disabled);
3494                return -EINVAL;
3495        }
3496
3497        of_property_read_u32_array(np, "disabled-channels",
3498                                   pdata->disabled_channels,
3499                                   num_disabled);
3500        pdata->disabled_channels[num_disabled] = -1;
3501
3502        pdev->dev.platform_data = pdata;
3503
3504        return 0;
3505}
3506
3507static int __init d40_probe(struct platform_device *pdev)
3508{
3509        struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3510        struct device_node *np = pdev->dev.of_node;
3511        int ret = -ENOENT;
3512        struct d40_base *base;
3513        struct resource *res;
3514        int num_reserved_chans;
3515        u32 val;
3516
3517        if (!plat_data) {
3518                if (np) {
3519                        if (d40_of_probe(pdev, np)) {
3520                                ret = -ENOMEM;
3521                                goto report_failure;
3522                        }
3523                } else {
3524                        d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3525                        goto report_failure;
3526                }
3527        }
3528
3529        base = d40_hw_detect_init(pdev);
3530        if (!base)
3531                goto report_failure;
3532
3533        num_reserved_chans = d40_phy_res_init(base);
3534
3535        platform_set_drvdata(pdev, base);
3536
3537        spin_lock_init(&base->interrupt_lock);
3538        spin_lock_init(&base->execmd_lock);
3539
3540        /* Get IO for logical channel parameter address */
3541        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3542        if (!res) {
3543                ret = -ENOENT;
3544                d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3545                goto destroy_cache;
3546        }
3547        base->lcpa_size = resource_size(res);
3548        base->phy_lcpa = res->start;
3549
3550        if (request_mem_region(res->start, resource_size(res),
3551                               D40_NAME " I/O lcpa") == NULL) {
3552                ret = -EBUSY;
3553                d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3554                goto destroy_cache;
3555        }
3556
3557        /* We make use of ESRAM memory for this. */
3558        val = readl(base->virtbase + D40_DREG_LCPA);
3559        if (res->start != val && val != 0) {
3560                dev_warn(&pdev->dev,
3561                         "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3562                         __func__, val, &res->start);
3563        } else
3564                writel(res->start, base->virtbase + D40_DREG_LCPA);
3565
3566        base->lcpa_base = ioremap(res->start, resource_size(res));
3567        if (!base->lcpa_base) {
3568                ret = -ENOMEM;
3569                d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3570                goto destroy_cache;
3571        }
3572        /* If lcla has to be located in ESRAM we don't need to allocate */
3573        if (base->plat_data->use_esram_lcla) {
3574                res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3575                                                        "lcla_esram");
3576                if (!res) {
3577                        ret = -ENOENT;
3578                        d40_err(&pdev->dev,
3579                                "No \"lcla_esram\" memory resource\n");
3580                        goto destroy_cache;
3581                }
3582                base->lcla_pool.base = ioremap(res->start,
3583                                                resource_size(res));
3584                if (!base->lcla_pool.base) {
3585                        ret = -ENOMEM;
3586                        d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3587                        goto destroy_cache;
3588                }
3589                writel(res->start, base->virtbase + D40_DREG_LCLA);
3590
3591        } else {
3592                ret = d40_lcla_allocate(base);
3593                if (ret) {
3594                        d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3595                        goto destroy_cache;
3596                }
3597        }
3598
3599        spin_lock_init(&base->lcla_pool.lock);
3600
3601        base->irq = platform_get_irq(pdev, 0);
3602
3603        ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3604        if (ret) {
3605                d40_err(&pdev->dev, "No IRQ defined\n");
3606                goto destroy_cache;
3607        }
3608
3609        if (base->plat_data->use_esram_lcla) {
3610
3611                base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3612                if (IS_ERR(base->lcpa_regulator)) {
3613                        d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3614                        ret = PTR_ERR(base->lcpa_regulator);
3615                        base->lcpa_regulator = NULL;
3616                        goto destroy_cache;
3617                }
3618
3619                ret = regulator_enable(base->lcpa_regulator);
3620                if (ret) {
3621                        d40_err(&pdev->dev,
3622                                "Failed to enable lcpa_regulator\n");
3623                        regulator_put(base->lcpa_regulator);
3624                        base->lcpa_regulator = NULL;
3625                        goto destroy_cache;
3626                }
3627        }
3628
3629        writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3630
3631        pm_runtime_irq_safe(base->dev);
3632        pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3633        pm_runtime_use_autosuspend(base->dev);
3634        pm_runtime_mark_last_busy(base->dev);
3635        pm_runtime_set_active(base->dev);
3636        pm_runtime_enable(base->dev);
3637
3638        ret = d40_dmaengine_init(base, num_reserved_chans);
3639        if (ret)
3640                goto destroy_cache;
3641
3642        base->dev->dma_parms = &base->dma_parms;
3643        ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3644        if (ret) {
3645                d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3646                goto destroy_cache;
3647        }
3648
3649        d40_hw_init(base);
3650
3651        if (np) {
3652                ret = of_dma_controller_register(np, d40_xlate, NULL);
3653                if (ret)
3654                        dev_err(&pdev->dev,
3655                                "could not register of_dma_controller\n");
3656        }
3657
3658        dev_info(base->dev, "initialized\n");
3659        return 0;
3660 destroy_cache:
3661        kmem_cache_destroy(base->desc_slab);
3662        if (base->virtbase)
3663                iounmap(base->virtbase);
3664
3665        if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3666                iounmap(base->lcla_pool.base);
3667                base->lcla_pool.base = NULL;
3668        }
3669
3670        if (base->lcla_pool.dma_addr)
3671                dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3672                                 SZ_1K * base->num_phy_chans,
3673                                 DMA_TO_DEVICE);
3674
3675        if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3676                free_pages((unsigned long)base->lcla_pool.base,
3677                           base->lcla_pool.pages);
3678
3679        kfree(base->lcla_pool.base_unaligned);
3680
3681        if (base->phy_lcpa)
3682                release_mem_region(base->phy_lcpa,
3683                                   base->lcpa_size);
3684        if (base->phy_start)
3685                release_mem_region(base->phy_start,
3686                                   base->phy_size);
3687        if (base->clk) {
3688                clk_disable_unprepare(base->clk);
3689                clk_put(base->clk);
3690        }
3691
3692        if (base->lcpa_regulator) {
3693                regulator_disable(base->lcpa_regulator);
3694                regulator_put(base->lcpa_regulator);
3695        }
3696
3697        kfree(base->lcla_pool.alloc_map);
3698        kfree(base->lookup_log_chans);
3699        kfree(base->lookup_phy_chans);
3700        kfree(base->phy_res);
3701        kfree(base);
3702 report_failure:
3703        d40_err(&pdev->dev, "probe failed\n");
3704        return ret;
3705}
3706
3707static const struct of_device_id d40_match[] = {
3708        { .compatible = "stericsson,dma40", },
3709        {}
3710};
3711
3712static struct platform_driver d40_driver = {
3713        .driver = {
3714                .name  = D40_NAME,
3715                .pm = &dma40_pm_ops,
3716                .of_match_table = d40_match,
3717        },
3718};
3719
3720static int __init stedma40_init(void)
3721{
3722        return platform_driver_probe(&d40_driver, d40_probe);
3723}
3724subsys_initcall(stedma40_init);
3725