linux/drivers/edac/i5000_edac.c
<<
>>
Prefs
   1/*
   2 * Intel 5000(P/V/X) class Memory Controllers kernel module
   3 *
   4 * This file may be distributed under the terms of the
   5 * GNU General Public License.
   6 *
   7 * Written by Douglas Thompson Linux Networx (http://lnxi.com)
   8 *      norsk5@xmission.com
   9 *
  10 * This module is based on the following document:
  11 *
  12 * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
  13 *      http://developer.intel.com/design/chipsets/datashts/313070.htm
  14 *
  15 */
  16
  17#include <linux/module.h>
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/pci_ids.h>
  21#include <linux/slab.h>
  22#include <linux/edac.h>
  23#include <asm/mmzone.h>
  24
  25#include "edac_module.h"
  26
  27/*
  28 * Alter this version for the I5000 module when modifications are made
  29 */
  30#define I5000_REVISION    " Ver: 2.0.12"
  31#define EDAC_MOD_STR      "i5000_edac"
  32
  33#define i5000_printk(level, fmt, arg...) \
  34        edac_printk(level, "i5000", fmt, ##arg)
  35
  36#define i5000_mc_printk(mci, level, fmt, arg...) \
  37        edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
  38
  39#ifndef PCI_DEVICE_ID_INTEL_FBD_0
  40#define PCI_DEVICE_ID_INTEL_FBD_0       0x25F5
  41#endif
  42#ifndef PCI_DEVICE_ID_INTEL_FBD_1
  43#define PCI_DEVICE_ID_INTEL_FBD_1       0x25F6
  44#endif
  45
  46/* Device 16,
  47 * Function 0: System Address
  48 * Function 1: Memory Branch Map, Control, Errors Register
  49 * Function 2: FSB Error Registers
  50 *
  51 * All 3 functions of Device 16 (0,1,2) share the SAME DID
  52 */
  53#define PCI_DEVICE_ID_INTEL_I5000_DEV16 0x25F0
  54
  55/* OFFSETS for Function 0 */
  56
  57/* OFFSETS for Function 1 */
  58#define         AMBASE                  0x48
  59#define         MAXCH                   0x56
  60#define         MAXDIMMPERCH            0x57
  61#define         TOLM                    0x6C
  62#define         REDMEMB                 0x7C
  63#define                 RED_ECC_LOCATOR(x)      ((x) & 0x3FFFF)
  64#define                 REC_ECC_LOCATOR_EVEN(x) ((x) & 0x001FF)
  65#define                 REC_ECC_LOCATOR_ODD(x)  ((x) & 0x3FE00)
  66#define         MIR0                    0x80
  67#define         MIR1                    0x84
  68#define         MIR2                    0x88
  69#define         AMIR0                   0x8C
  70#define         AMIR1                   0x90
  71#define         AMIR2                   0x94
  72
  73#define         FERR_FAT_FBD            0x98
  74#define         NERR_FAT_FBD            0x9C
  75#define                 EXTRACT_FBDCHAN_INDX(x) (((x)>>28) & 0x3)
  76#define                 FERR_FAT_FBDCHAN 0x30000000
  77#define                 FERR_FAT_M3ERR  0x00000004
  78#define                 FERR_FAT_M2ERR  0x00000002
  79#define                 FERR_FAT_M1ERR  0x00000001
  80#define                 FERR_FAT_MASK   (FERR_FAT_M1ERR | \
  81                                                FERR_FAT_M2ERR | \
  82                                                FERR_FAT_M3ERR)
  83
  84#define         FERR_NF_FBD             0xA0
  85
  86/* Thermal and SPD or BFD errors */
  87#define                 FERR_NF_M28ERR  0x01000000
  88#define                 FERR_NF_M27ERR  0x00800000
  89#define                 FERR_NF_M26ERR  0x00400000
  90#define                 FERR_NF_M25ERR  0x00200000
  91#define                 FERR_NF_M24ERR  0x00100000
  92#define                 FERR_NF_M23ERR  0x00080000
  93#define                 FERR_NF_M22ERR  0x00040000
  94#define                 FERR_NF_M21ERR  0x00020000
  95
  96/* Correctable errors */
  97#define                 FERR_NF_M20ERR  0x00010000
  98#define                 FERR_NF_M19ERR  0x00008000
  99#define                 FERR_NF_M18ERR  0x00004000
 100#define                 FERR_NF_M17ERR  0x00002000
 101
 102/* Non-Retry or redundant Retry errors */
 103#define                 FERR_NF_M16ERR  0x00001000
 104#define                 FERR_NF_M15ERR  0x00000800
 105#define                 FERR_NF_M14ERR  0x00000400
 106#define                 FERR_NF_M13ERR  0x00000200
 107
 108/* Uncorrectable errors */
 109#define                 FERR_NF_M12ERR  0x00000100
 110#define                 FERR_NF_M11ERR  0x00000080
 111#define                 FERR_NF_M10ERR  0x00000040
 112#define                 FERR_NF_M9ERR   0x00000020
 113#define                 FERR_NF_M8ERR   0x00000010
 114#define                 FERR_NF_M7ERR   0x00000008
 115#define                 FERR_NF_M6ERR   0x00000004
 116#define                 FERR_NF_M5ERR   0x00000002
 117#define                 FERR_NF_M4ERR   0x00000001
 118
 119#define                 FERR_NF_UNCORRECTABLE   (FERR_NF_M12ERR | \
 120                                                        FERR_NF_M11ERR | \
 121                                                        FERR_NF_M10ERR | \
 122                                                        FERR_NF_M9ERR | \
 123                                                        FERR_NF_M8ERR | \
 124                                                        FERR_NF_M7ERR | \
 125                                                        FERR_NF_M6ERR | \
 126                                                        FERR_NF_M5ERR | \
 127                                                        FERR_NF_M4ERR)
 128#define                 FERR_NF_CORRECTABLE     (FERR_NF_M20ERR | \
 129                                                        FERR_NF_M19ERR | \
 130                                                        FERR_NF_M18ERR | \
 131                                                        FERR_NF_M17ERR)
 132#define                 FERR_NF_DIMM_SPARE      (FERR_NF_M27ERR | \
 133                                                        FERR_NF_M28ERR)
 134#define                 FERR_NF_THERMAL         (FERR_NF_M26ERR | \
 135                                                        FERR_NF_M25ERR | \
 136                                                        FERR_NF_M24ERR | \
 137                                                        FERR_NF_M23ERR)
 138#define                 FERR_NF_SPD_PROTOCOL    (FERR_NF_M22ERR)
 139#define                 FERR_NF_NORTH_CRC       (FERR_NF_M21ERR)
 140#define                 FERR_NF_NON_RETRY       (FERR_NF_M13ERR | \
 141                                                        FERR_NF_M14ERR | \
 142                                                        FERR_NF_M15ERR)
 143
 144#define         NERR_NF_FBD             0xA4
 145#define                 FERR_NF_MASK            (FERR_NF_UNCORRECTABLE | \
 146                                                        FERR_NF_CORRECTABLE | \
 147                                                        FERR_NF_DIMM_SPARE | \
 148                                                        FERR_NF_THERMAL | \
 149                                                        FERR_NF_SPD_PROTOCOL | \
 150                                                        FERR_NF_NORTH_CRC | \
 151                                                        FERR_NF_NON_RETRY)
 152
 153#define         EMASK_FBD               0xA8
 154#define                 EMASK_FBD_M28ERR        0x08000000
 155#define                 EMASK_FBD_M27ERR        0x04000000
 156#define                 EMASK_FBD_M26ERR        0x02000000
 157#define                 EMASK_FBD_M25ERR        0x01000000
 158#define                 EMASK_FBD_M24ERR        0x00800000
 159#define                 EMASK_FBD_M23ERR        0x00400000
 160#define                 EMASK_FBD_M22ERR        0x00200000
 161#define                 EMASK_FBD_M21ERR        0x00100000
 162#define                 EMASK_FBD_M20ERR        0x00080000
 163#define                 EMASK_FBD_M19ERR        0x00040000
 164#define                 EMASK_FBD_M18ERR        0x00020000
 165#define                 EMASK_FBD_M17ERR        0x00010000
 166
 167#define                 EMASK_FBD_M15ERR        0x00004000
 168#define                 EMASK_FBD_M14ERR        0x00002000
 169#define                 EMASK_FBD_M13ERR        0x00001000
 170#define                 EMASK_FBD_M12ERR        0x00000800
 171#define                 EMASK_FBD_M11ERR        0x00000400
 172#define                 EMASK_FBD_M10ERR        0x00000200
 173#define                 EMASK_FBD_M9ERR         0x00000100
 174#define                 EMASK_FBD_M8ERR         0x00000080
 175#define                 EMASK_FBD_M7ERR         0x00000040
 176#define                 EMASK_FBD_M6ERR         0x00000020
 177#define                 EMASK_FBD_M5ERR         0x00000010
 178#define                 EMASK_FBD_M4ERR         0x00000008
 179#define                 EMASK_FBD_M3ERR         0x00000004
 180#define                 EMASK_FBD_M2ERR         0x00000002
 181#define                 EMASK_FBD_M1ERR         0x00000001
 182
 183#define                 ENABLE_EMASK_FBD_FATAL_ERRORS   (EMASK_FBD_M1ERR | \
 184                                                        EMASK_FBD_M2ERR | \
 185                                                        EMASK_FBD_M3ERR)
 186
 187#define                 ENABLE_EMASK_FBD_UNCORRECTABLE  (EMASK_FBD_M4ERR | \
 188                                                        EMASK_FBD_M5ERR | \
 189                                                        EMASK_FBD_M6ERR | \
 190                                                        EMASK_FBD_M7ERR | \
 191                                                        EMASK_FBD_M8ERR | \
 192                                                        EMASK_FBD_M9ERR | \
 193                                                        EMASK_FBD_M10ERR | \
 194                                                        EMASK_FBD_M11ERR | \
 195                                                        EMASK_FBD_M12ERR)
 196#define                 ENABLE_EMASK_FBD_CORRECTABLE    (EMASK_FBD_M17ERR | \
 197                                                        EMASK_FBD_M18ERR | \
 198                                                        EMASK_FBD_M19ERR | \
 199                                                        EMASK_FBD_M20ERR)
 200#define                 ENABLE_EMASK_FBD_DIMM_SPARE     (EMASK_FBD_M27ERR | \
 201                                                        EMASK_FBD_M28ERR)
 202#define                 ENABLE_EMASK_FBD_THERMALS       (EMASK_FBD_M26ERR | \
 203                                                        EMASK_FBD_M25ERR | \
 204                                                        EMASK_FBD_M24ERR | \
 205                                                        EMASK_FBD_M23ERR)
 206#define                 ENABLE_EMASK_FBD_SPD_PROTOCOL   (EMASK_FBD_M22ERR)
 207#define                 ENABLE_EMASK_FBD_NORTH_CRC      (EMASK_FBD_M21ERR)
 208#define                 ENABLE_EMASK_FBD_NON_RETRY      (EMASK_FBD_M15ERR | \
 209                                                        EMASK_FBD_M14ERR | \
 210                                                        EMASK_FBD_M13ERR)
 211
 212#define         ENABLE_EMASK_ALL        (ENABLE_EMASK_FBD_NON_RETRY | \
 213                                        ENABLE_EMASK_FBD_NORTH_CRC | \
 214                                        ENABLE_EMASK_FBD_SPD_PROTOCOL | \
 215                                        ENABLE_EMASK_FBD_THERMALS | \
 216                                        ENABLE_EMASK_FBD_DIMM_SPARE | \
 217                                        ENABLE_EMASK_FBD_FATAL_ERRORS | \
 218                                        ENABLE_EMASK_FBD_CORRECTABLE | \
 219                                        ENABLE_EMASK_FBD_UNCORRECTABLE)
 220
 221#define         ERR0_FBD                0xAC
 222#define         ERR1_FBD                0xB0
 223#define         ERR2_FBD                0xB4
 224#define         MCERR_FBD               0xB8
 225#define         NRECMEMA                0xBE
 226#define                 NREC_BANK(x)            (((x)>>12) & 0x7)
 227#define                 NREC_RDWR(x)            (((x)>>11) & 1)
 228#define                 NREC_RANK(x)            (((x)>>8) & 0x7)
 229#define         NRECMEMB                0xC0
 230#define                 NREC_CAS(x)             (((x)>>16) & 0xFFF)
 231#define                 NREC_RAS(x)             ((x) & 0x7FFF)
 232#define         NRECFGLOG               0xC4
 233#define         NREEECFBDA              0xC8
 234#define         NREEECFBDB              0xCC
 235#define         NREEECFBDC              0xD0
 236#define         NREEECFBDD              0xD4
 237#define         NREEECFBDE              0xD8
 238#define         REDMEMA                 0xDC
 239#define         RECMEMA                 0xE2
 240#define                 REC_BANK(x)             (((x)>>12) & 0x7)
 241#define                 REC_RDWR(x)             (((x)>>11) & 1)
 242#define                 REC_RANK(x)             (((x)>>8) & 0x7)
 243#define         RECMEMB                 0xE4
 244#define                 REC_CAS(x)              (((x)>>16) & 0xFFFFFF)
 245#define                 REC_RAS(x)              ((x) & 0x7FFF)
 246#define         RECFGLOG                0xE8
 247#define         RECFBDA                 0xEC
 248#define         RECFBDB                 0xF0
 249#define         RECFBDC                 0xF4
 250#define         RECFBDD                 0xF8
 251#define         RECFBDE                 0xFC
 252
 253/* OFFSETS for Function 2 */
 254
 255/*
 256 * Device 21,
 257 * Function 0: Memory Map Branch 0
 258 *
 259 * Device 22,
 260 * Function 0: Memory Map Branch 1
 261 */
 262#define PCI_DEVICE_ID_I5000_BRANCH_0    0x25F5
 263#define PCI_DEVICE_ID_I5000_BRANCH_1    0x25F6
 264
 265#define AMB_PRESENT_0   0x64
 266#define AMB_PRESENT_1   0x66
 267#define MTR0            0x80
 268#define MTR1            0x84
 269#define MTR2            0x88
 270#define MTR3            0x8C
 271
 272#define NUM_MTRS                4
 273#define CHANNELS_PER_BRANCH     2
 274#define MAX_BRANCHES            2
 275
 276/* Defines to extract the various fields from the
 277 *      MTRx - Memory Technology Registers
 278 */
 279#define MTR_DIMMS_PRESENT(mtr)          ((mtr) & (0x1 << 8))
 280#define MTR_DRAM_WIDTH(mtr)             ((((mtr) >> 6) & 0x1) ? 8 : 4)
 281#define MTR_DRAM_BANKS(mtr)             ((((mtr) >> 5) & 0x1) ? 8 : 4)
 282#define MTR_DRAM_BANKS_ADDR_BITS(mtr)   ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
 283#define MTR_DIMM_RANK(mtr)              (((mtr) >> 4) & 0x1)
 284#define MTR_DIMM_RANK_ADDR_BITS(mtr)    (MTR_DIMM_RANK(mtr) ? 2 : 1)
 285#define MTR_DIMM_ROWS(mtr)              (((mtr) >> 2) & 0x3)
 286#define MTR_DIMM_ROWS_ADDR_BITS(mtr)    (MTR_DIMM_ROWS(mtr) + 13)
 287#define MTR_DIMM_COLS(mtr)              ((mtr) & 0x3)
 288#define MTR_DIMM_COLS_ADDR_BITS(mtr)    (MTR_DIMM_COLS(mtr) + 10)
 289
 290/* enables the report of miscellaneous messages as CE errors - default off */
 291static int misc_messages;
 292
 293/* Enumeration of supported devices */
 294enum i5000_chips {
 295        I5000P = 0,
 296        I5000V = 1,             /* future */
 297        I5000X = 2              /* future */
 298};
 299
 300/* Device name and register DID (Device ID) */
 301struct i5000_dev_info {
 302        const char *ctl_name;   /* name for this device */
 303        u16 fsb_mapping_errors; /* DID for the branchmap,control */
 304};
 305
 306/* Table of devices attributes supported by this driver */
 307static const struct i5000_dev_info i5000_devs[] = {
 308        [I5000P] = {
 309                .ctl_name = "I5000",
 310                .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
 311        },
 312};
 313
 314struct i5000_dimm_info {
 315        int megabytes;          /* size, 0 means not present  */
 316        int dual_rank;
 317};
 318
 319#define MAX_CHANNELS    6       /* max possible channels */
 320#define MAX_CSROWS      (8*2)   /* max possible csrows per channel */
 321
 322/* driver private data structure */
 323struct i5000_pvt {
 324        struct pci_dev *system_address; /* 16.0 */
 325        struct pci_dev *branchmap_werrors;      /* 16.1 */
 326        struct pci_dev *fsb_error_regs; /* 16.2 */
 327        struct pci_dev *branch_0;       /* 21.0 */
 328        struct pci_dev *branch_1;       /* 22.0 */
 329
 330        u16 tolm;               /* top of low memory */
 331        union {
 332                u64 ambase;             /* AMB BAR */
 333                struct {
 334                        u32 ambase_bottom;
 335                        u32 ambase_top;
 336                } u __packed;
 337        };
 338
 339        u16 mir0, mir1, mir2;
 340
 341        u16 b0_mtr[NUM_MTRS];   /* Memory Technlogy Reg */
 342        u16 b0_ambpresent0;     /* Branch 0, Channel 0 */
 343        u16 b0_ambpresent1;     /* Brnach 0, Channel 1 */
 344
 345        u16 b1_mtr[NUM_MTRS];   /* Memory Technlogy Reg */
 346        u16 b1_ambpresent0;     /* Branch 1, Channel 8 */
 347        u16 b1_ambpresent1;     /* Branch 1, Channel 1 */
 348
 349        /* DIMM information matrix, allocating architecture maximums */
 350        struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
 351
 352        /* Actual values for this controller */
 353        int maxch;              /* Max channels */
 354        int maxdimmperch;       /* Max DIMMs per channel */
 355};
 356
 357/* I5000 MCH error information retrieved from Hardware */
 358struct i5000_error_info {
 359
 360        /* These registers are always read from the MC */
 361        u32 ferr_fat_fbd;       /* First Errors Fatal */
 362        u32 nerr_fat_fbd;       /* Next Errors Fatal */
 363        u32 ferr_nf_fbd;        /* First Errors Non-Fatal */
 364        u32 nerr_nf_fbd;        /* Next Errors Non-Fatal */
 365
 366        /* These registers are input ONLY if there was a Recoverable  Error */
 367        u32 redmemb;            /* Recoverable Mem Data Error log B */
 368        u16 recmema;            /* Recoverable Mem Error log A */
 369        u32 recmemb;            /* Recoverable Mem Error log B */
 370
 371        /* These registers are input ONLY if there was a
 372         * Non-Recoverable Error */
 373        u16 nrecmema;           /* Non-Recoverable Mem log A */
 374        u32 nrecmemb;           /* Non-Recoverable Mem log B */
 375
 376};
 377
 378static struct edac_pci_ctl_info *i5000_pci;
 379
 380/*
 381 *      i5000_get_error_info    Retrieve the hardware error information from
 382 *                              the hardware and cache it in the 'info'
 383 *                              structure
 384 */
 385static void i5000_get_error_info(struct mem_ctl_info *mci,
 386                                 struct i5000_error_info *info)
 387{
 388        struct i5000_pvt *pvt;
 389        u32 value;
 390
 391        pvt = mci->pvt_info;
 392
 393        /* read in the 1st FATAL error register */
 394        pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
 395
 396        /* Mask only the bits that the doc says are valid
 397         */
 398        value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
 399
 400        /* If there is an error, then read in the */
 401        /* NEXT FATAL error register and the Memory Error Log Register A */
 402        if (value & FERR_FAT_MASK) {
 403                info->ferr_fat_fbd = value;
 404
 405                /* harvest the various error data we need */
 406                pci_read_config_dword(pvt->branchmap_werrors,
 407                                NERR_FAT_FBD, &info->nerr_fat_fbd);
 408                pci_read_config_word(pvt->branchmap_werrors,
 409                                NRECMEMA, &info->nrecmema);
 410                pci_read_config_dword(pvt->branchmap_werrors,
 411                                NRECMEMB, &info->nrecmemb);
 412
 413                /* Clear the error bits, by writing them back */
 414                pci_write_config_dword(pvt->branchmap_werrors,
 415                                FERR_FAT_FBD, value);
 416        } else {
 417                info->ferr_fat_fbd = 0;
 418                info->nerr_fat_fbd = 0;
 419                info->nrecmema = 0;
 420                info->nrecmemb = 0;
 421        }
 422
 423        /* read in the 1st NON-FATAL error register */
 424        pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
 425
 426        /* If there is an error, then read in the 1st NON-FATAL error
 427         * register as well */
 428        if (value & FERR_NF_MASK) {
 429                info->ferr_nf_fbd = value;
 430
 431                /* harvest the various error data we need */
 432                pci_read_config_dword(pvt->branchmap_werrors,
 433                                NERR_NF_FBD, &info->nerr_nf_fbd);
 434                pci_read_config_word(pvt->branchmap_werrors,
 435                                RECMEMA, &info->recmema);
 436                pci_read_config_dword(pvt->branchmap_werrors,
 437                                RECMEMB, &info->recmemb);
 438                pci_read_config_dword(pvt->branchmap_werrors,
 439                                REDMEMB, &info->redmemb);
 440
 441                /* Clear the error bits, by writing them back */
 442                pci_write_config_dword(pvt->branchmap_werrors,
 443                                FERR_NF_FBD, value);
 444        } else {
 445                info->ferr_nf_fbd = 0;
 446                info->nerr_nf_fbd = 0;
 447                info->recmema = 0;
 448                info->recmemb = 0;
 449                info->redmemb = 0;
 450        }
 451}
 452
 453/*
 454 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
 455 *                                      struct i5000_error_info *info,
 456 *                                      int handle_errors);
 457 *
 458 *      handle the Intel FATAL errors, if any
 459 */
 460static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
 461                                        struct i5000_error_info *info,
 462                                        int handle_errors)
 463{
 464        char msg[EDAC_MC_LABEL_LEN + 1 + 160];
 465        char *specific = NULL;
 466        u32 allErrors;
 467        int channel;
 468        int bank;
 469        int rank;
 470        int rdwr;
 471        int ras, cas;
 472
 473        /* mask off the Error bits that are possible */
 474        allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
 475        if (!allErrors)
 476                return;         /* if no error, return now */
 477
 478        channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
 479
 480        /* Use the NON-Recoverable macros to extract data */
 481        bank = NREC_BANK(info->nrecmema);
 482        rank = NREC_RANK(info->nrecmema);
 483        rdwr = NREC_RDWR(info->nrecmema);
 484        ras = NREC_RAS(info->nrecmemb);
 485        cas = NREC_CAS(info->nrecmemb);
 486
 487        edac_dbg(0, "\t\tCSROW= %d  Channel= %d (DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
 488                 rank, channel, bank,
 489                 rdwr ? "Write" : "Read", ras, cas);
 490
 491        /* Only 1 bit will be on */
 492        switch (allErrors) {
 493        case FERR_FAT_M1ERR:
 494                specific = "Alert on non-redundant retry or fast "
 495                                "reset timeout";
 496                break;
 497        case FERR_FAT_M2ERR:
 498                specific = "Northbound CRC error on non-redundant "
 499                                "retry";
 500                break;
 501        case FERR_FAT_M3ERR:
 502                {
 503                static int done;
 504
 505                /*
 506                 * This error is generated to inform that the intelligent
 507                 * throttling is disabled and the temperature passed the
 508                 * specified middle point. Since this is something the BIOS
 509                 * should take care of, we'll warn only once to avoid
 510                 * worthlessly flooding the log.
 511                 */
 512                if (done)
 513                        return;
 514                done++;
 515
 516                specific = ">Tmid Thermal event with intelligent "
 517                           "throttling disabled";
 518                }
 519                break;
 520        }
 521
 522        /* Form out message */
 523        snprintf(msg, sizeof(msg),
 524                 "Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)",
 525                 bank, ras, cas, allErrors, specific);
 526
 527        /* Call the helper to output message */
 528        edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
 529                             channel >> 1, channel & 1, rank,
 530                             rdwr ? "Write error" : "Read error",
 531                             msg);
 532}
 533
 534/*
 535 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
 536 *                              struct i5000_error_info *info,
 537 *                              int handle_errors);
 538 *
 539 *      handle the Intel NON-FATAL errors, if any
 540 */
 541static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
 542                                        struct i5000_error_info *info,
 543                                        int handle_errors)
 544{
 545        char msg[EDAC_MC_LABEL_LEN + 1 + 170];
 546        char *specific = NULL;
 547        u32 allErrors;
 548        u32 ue_errors;
 549        u32 ce_errors;
 550        u32 misc_errors;
 551        int branch;
 552        int channel;
 553        int bank;
 554        int rank;
 555        int rdwr;
 556        int ras, cas;
 557
 558        /* mask off the Error bits that are possible */
 559        allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
 560        if (!allErrors)
 561                return;         /* if no error, return now */
 562
 563        /* ONLY ONE of the possible error bits will be set, as per the docs */
 564        ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
 565        if (ue_errors) {
 566                edac_dbg(0, "\tUncorrected bits= 0x%x\n", ue_errors);
 567
 568                branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
 569
 570                /*
 571                 * According with i5000 datasheet, bit 28 has no significance
 572                 * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
 573                 */
 574                channel = branch & 2;
 575
 576                bank = NREC_BANK(info->nrecmema);
 577                rank = NREC_RANK(info->nrecmema);
 578                rdwr = NREC_RDWR(info->nrecmema);
 579                ras = NREC_RAS(info->nrecmemb);
 580                cas = NREC_CAS(info->nrecmemb);
 581
 582                edac_dbg(0, "\t\tCSROW= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
 583                         rank, channel, channel + 1, branch >> 1, bank,
 584                         rdwr ? "Write" : "Read", ras, cas);
 585
 586                switch (ue_errors) {
 587                case FERR_NF_M12ERR:
 588                        specific = "Non-Aliased Uncorrectable Patrol Data ECC";
 589                        break;
 590                case FERR_NF_M11ERR:
 591                        specific = "Non-Aliased Uncorrectable Spare-Copy "
 592                                        "Data ECC";
 593                        break;
 594                case FERR_NF_M10ERR:
 595                        specific = "Non-Aliased Uncorrectable Mirrored Demand "
 596                                        "Data ECC";
 597                        break;
 598                case FERR_NF_M9ERR:
 599                        specific = "Non-Aliased Uncorrectable Non-Mirrored "
 600                                        "Demand Data ECC";
 601                        break;
 602                case FERR_NF_M8ERR:
 603                        specific = "Aliased Uncorrectable Patrol Data ECC";
 604                        break;
 605                case FERR_NF_M7ERR:
 606                        specific = "Aliased Uncorrectable Spare-Copy Data ECC";
 607                        break;
 608                case FERR_NF_M6ERR:
 609                        specific = "Aliased Uncorrectable Mirrored Demand "
 610                                        "Data ECC";
 611                        break;
 612                case FERR_NF_M5ERR:
 613                        specific = "Aliased Uncorrectable Non-Mirrored Demand "
 614                                        "Data ECC";
 615                        break;
 616                case FERR_NF_M4ERR:
 617                        specific = "Uncorrectable Data ECC on Replay";
 618                        break;
 619                }
 620
 621                /* Form out message */
 622                snprintf(msg, sizeof(msg),
 623                         "Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)",
 624                         rank, bank, ras, cas, ue_errors, specific);
 625
 626                /* Call the helper to output message */
 627                edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
 628                                channel >> 1, -1, rank,
 629                                rdwr ? "Write error" : "Read error",
 630                                msg);
 631        }
 632
 633        /* Check correctable errors */
 634        ce_errors = allErrors & FERR_NF_CORRECTABLE;
 635        if (ce_errors) {
 636                edac_dbg(0, "\tCorrected bits= 0x%x\n", ce_errors);
 637
 638                branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
 639
 640                channel = 0;
 641                if (REC_ECC_LOCATOR_ODD(info->redmemb))
 642                        channel = 1;
 643
 644                /* Convert channel to be based from zero, instead of
 645                 * from branch base of 0 */
 646                channel += branch;
 647
 648                bank = REC_BANK(info->recmema);
 649                rank = REC_RANK(info->recmema);
 650                rdwr = REC_RDWR(info->recmema);
 651                ras = REC_RAS(info->recmemb);
 652                cas = REC_CAS(info->recmemb);
 653
 654                edac_dbg(0, "\t\tCSROW= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
 655                         rank, channel, branch >> 1, bank,
 656                         rdwr ? "Write" : "Read", ras, cas);
 657
 658                switch (ce_errors) {
 659                case FERR_NF_M17ERR:
 660                        specific = "Correctable Non-Mirrored Demand Data ECC";
 661                        break;
 662                case FERR_NF_M18ERR:
 663                        specific = "Correctable Mirrored Demand Data ECC";
 664                        break;
 665                case FERR_NF_M19ERR:
 666                        specific = "Correctable Spare-Copy Data ECC";
 667                        break;
 668                case FERR_NF_M20ERR:
 669                        specific = "Correctable Patrol Data ECC";
 670                        break;
 671                }
 672
 673                /* Form out message */
 674                snprintf(msg, sizeof(msg),
 675                         "Rank=%d Bank=%d RDWR=%s RAS=%d "
 676                         "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
 677                         rdwr ? "Write" : "Read", ras, cas, ce_errors,
 678                         specific);
 679
 680                /* Call the helper to output message */
 681                edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
 682                                channel >> 1, channel % 2, rank,
 683                                rdwr ? "Write error" : "Read error",
 684                                msg);
 685        }
 686
 687        if (!misc_messages)
 688                return;
 689
 690        misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
 691                                   FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
 692        if (misc_errors) {
 693                switch (misc_errors) {
 694                case FERR_NF_M13ERR:
 695                        specific = "Non-Retry or Redundant Retry FBD Memory "
 696                                        "Alert or Redundant Fast Reset Timeout";
 697                        break;
 698                case FERR_NF_M14ERR:
 699                        specific = "Non-Retry or Redundant Retry FBD "
 700                                        "Configuration Alert";
 701                        break;
 702                case FERR_NF_M15ERR:
 703                        specific = "Non-Retry or Redundant Retry FBD "
 704                                        "Northbound CRC error on read data";
 705                        break;
 706                case FERR_NF_M21ERR:
 707                        specific = "FBD Northbound CRC error on "
 708                                        "FBD Sync Status";
 709                        break;
 710                case FERR_NF_M22ERR:
 711                        specific = "SPD protocol error";
 712                        break;
 713                case FERR_NF_M27ERR:
 714                        specific = "DIMM-spare copy started";
 715                        break;
 716                case FERR_NF_M28ERR:
 717                        specific = "DIMM-spare copy completed";
 718                        break;
 719                }
 720                branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
 721
 722                /* Form out message */
 723                snprintf(msg, sizeof(msg),
 724                         "Err=%#x (%s)", misc_errors, specific);
 725
 726                /* Call the helper to output message */
 727                edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
 728                                branch >> 1, -1, -1,
 729                                "Misc error", msg);
 730        }
 731}
 732
 733/*
 734 *      i5000_process_error_info        Process the error info that is
 735 *      in the 'info' structure, previously retrieved from hardware
 736 */
 737static void i5000_process_error_info(struct mem_ctl_info *mci,
 738                                struct i5000_error_info *info,
 739                                int handle_errors)
 740{
 741        /* First handle any fatal errors that occurred */
 742        i5000_process_fatal_error_info(mci, info, handle_errors);
 743
 744        /* now handle any non-fatal errors that occurred */
 745        i5000_process_nonfatal_error_info(mci, info, handle_errors);
 746}
 747
 748/*
 749 *      i5000_clear_error       Retrieve any error from the hardware
 750 *                              but do NOT process that error.
 751 *                              Used for 'clearing' out of previous errors
 752 *                              Called by the Core module.
 753 */
 754static void i5000_clear_error(struct mem_ctl_info *mci)
 755{
 756        struct i5000_error_info info;
 757
 758        i5000_get_error_info(mci, &info);
 759}
 760
 761/*
 762 *      i5000_check_error       Retrieve and process errors reported by the
 763 *                              hardware. Called by the Core module.
 764 */
 765static void i5000_check_error(struct mem_ctl_info *mci)
 766{
 767        struct i5000_error_info info;
 768        edac_dbg(4, "MC%d\n", mci->mc_idx);
 769        i5000_get_error_info(mci, &info);
 770        i5000_process_error_info(mci, &info, 1);
 771}
 772
 773/*
 774 *      i5000_get_devices       Find and perform 'get' operation on the MCH's
 775 *                      device/functions we want to reference for this driver
 776 *
 777 *                      Need to 'get' device 16 func 1 and func 2
 778 */
 779static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
 780{
 781        //const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
 782        struct i5000_pvt *pvt;
 783        struct pci_dev *pdev;
 784
 785        pvt = mci->pvt_info;
 786
 787        /* Attempt to 'get' the MCH register we want */
 788        pdev = NULL;
 789        while (1) {
 790                pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 791                                PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
 792
 793                /* End of list, leave */
 794                if (pdev == NULL) {
 795                        i5000_printk(KERN_ERR,
 796                                "'system address,Process Bus' "
 797                                "device not found:"
 798                                "vendor 0x%x device 0x%x FUNC 1 "
 799                                "(broken BIOS?)\n",
 800                                PCI_VENDOR_ID_INTEL,
 801                                PCI_DEVICE_ID_INTEL_I5000_DEV16);
 802
 803                        return 1;
 804                }
 805
 806                /* Scan for device 16 func 1 */
 807                if (PCI_FUNC(pdev->devfn) == 1)
 808                        break;
 809        }
 810
 811        pvt->branchmap_werrors = pdev;
 812
 813        /* Attempt to 'get' the MCH register we want */
 814        pdev = NULL;
 815        while (1) {
 816                pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 817                                PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
 818
 819                if (pdev == NULL) {
 820                        i5000_printk(KERN_ERR,
 821                                "MC: 'branchmap,control,errors' "
 822                                "device not found:"
 823                                "vendor 0x%x device 0x%x Func 2 "
 824                                "(broken BIOS?)\n",
 825                                PCI_VENDOR_ID_INTEL,
 826                                PCI_DEVICE_ID_INTEL_I5000_DEV16);
 827
 828                        pci_dev_put(pvt->branchmap_werrors);
 829                        return 1;
 830                }
 831
 832                /* Scan for device 16 func 1 */
 833                if (PCI_FUNC(pdev->devfn) == 2)
 834                        break;
 835        }
 836
 837        pvt->fsb_error_regs = pdev;
 838
 839        edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
 840                 pci_name(pvt->system_address),
 841                 pvt->system_address->vendor, pvt->system_address->device);
 842        edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
 843                 pci_name(pvt->branchmap_werrors),
 844                 pvt->branchmap_werrors->vendor,
 845                 pvt->branchmap_werrors->device);
 846        edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
 847                 pci_name(pvt->fsb_error_regs),
 848                 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
 849
 850        pdev = NULL;
 851        pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 852                        PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
 853
 854        if (pdev == NULL) {
 855                i5000_printk(KERN_ERR,
 856                        "MC: 'BRANCH 0' device not found:"
 857                        "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
 858                        PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
 859
 860                pci_dev_put(pvt->branchmap_werrors);
 861                pci_dev_put(pvt->fsb_error_regs);
 862                return 1;
 863        }
 864
 865        pvt->branch_0 = pdev;
 866
 867        /* If this device claims to have more than 2 channels then
 868         * fetch Branch 1's information
 869         */
 870        if (pvt->maxch >= CHANNELS_PER_BRANCH) {
 871                pdev = NULL;
 872                pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 873                                PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
 874
 875                if (pdev == NULL) {
 876                        i5000_printk(KERN_ERR,
 877                                "MC: 'BRANCH 1' device not found:"
 878                                "vendor 0x%x device 0x%x Func 0 "
 879                                "(broken BIOS?)\n",
 880                                PCI_VENDOR_ID_INTEL,
 881                                PCI_DEVICE_ID_I5000_BRANCH_1);
 882
 883                        pci_dev_put(pvt->branchmap_werrors);
 884                        pci_dev_put(pvt->fsb_error_regs);
 885                        pci_dev_put(pvt->branch_0);
 886                        return 1;
 887                }
 888
 889                pvt->branch_1 = pdev;
 890        }
 891
 892        return 0;
 893}
 894
 895/*
 896 *      i5000_put_devices       'put' all the devices that we have
 897 *                              reserved via 'get'
 898 */
 899static void i5000_put_devices(struct mem_ctl_info *mci)
 900{
 901        struct i5000_pvt *pvt;
 902
 903        pvt = mci->pvt_info;
 904
 905        pci_dev_put(pvt->branchmap_werrors);    /* FUNC 1 */
 906        pci_dev_put(pvt->fsb_error_regs);       /* FUNC 2 */
 907        pci_dev_put(pvt->branch_0);     /* DEV 21 */
 908
 909        /* Only if more than 2 channels do we release the second branch */
 910        if (pvt->maxch >= CHANNELS_PER_BRANCH)
 911                pci_dev_put(pvt->branch_1);     /* DEV 22 */
 912}
 913
 914/*
 915 *      determine_amb_resent
 916 *
 917 *              the information is contained in NUM_MTRS different registers
 918 *              determineing which of the NUM_MTRS requires knowing
 919 *              which channel is in question
 920 *
 921 *      2 branches, each with 2 channels
 922 *              b0_ambpresent0 for channel '0'
 923 *              b0_ambpresent1 for channel '1'
 924 *              b1_ambpresent0 for channel '2'
 925 *              b1_ambpresent1 for channel '3'
 926 */
 927static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
 928{
 929        int amb_present;
 930
 931        if (channel < CHANNELS_PER_BRANCH) {
 932                if (channel & 0x1)
 933                        amb_present = pvt->b0_ambpresent1;
 934                else
 935                        amb_present = pvt->b0_ambpresent0;
 936        } else {
 937                if (channel & 0x1)
 938                        amb_present = pvt->b1_ambpresent1;
 939                else
 940                        amb_present = pvt->b1_ambpresent0;
 941        }
 942
 943        return amb_present;
 944}
 945
 946/*
 947 * determine_mtr(pvt, csrow, channel)
 948 *
 949 *      return the proper MTR register as determine by the csrow and channel desired
 950 */
 951static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel)
 952{
 953        int mtr;
 954
 955        if (channel < CHANNELS_PER_BRANCH)
 956                mtr = pvt->b0_mtr[slot];
 957        else
 958                mtr = pvt->b1_mtr[slot];
 959
 960        return mtr;
 961}
 962
 963/*
 964 */
 965static void decode_mtr(int slot_row, u16 mtr)
 966{
 967        int ans;
 968
 969        ans = MTR_DIMMS_PRESENT(mtr);
 970
 971        edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n",
 972                 slot_row, mtr, ans ? "" : "NOT ");
 973        if (!ans)
 974                return;
 975
 976        edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
 977        edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
 978        edac_dbg(2, "\t\tNUMRANK: %s\n",
 979                 MTR_DIMM_RANK(mtr) ? "double" : "single");
 980        edac_dbg(2, "\t\tNUMROW: %s\n",
 981                 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
 982                 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
 983                 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
 984                 "reserved");
 985        edac_dbg(2, "\t\tNUMCOL: %s\n",
 986                 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
 987                 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
 988                 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
 989                 "reserved");
 990}
 991
 992static void handle_channel(struct i5000_pvt *pvt, int slot, int channel,
 993                        struct i5000_dimm_info *dinfo)
 994{
 995        int mtr;
 996        int amb_present_reg;
 997        int addrBits;
 998
 999        mtr = determine_mtr(pvt, slot, channel);
1000        if (MTR_DIMMS_PRESENT(mtr)) {
1001                amb_present_reg = determine_amb_present_reg(pvt, channel);
1002
1003                /* Determine if there is a DIMM present in this DIMM slot */
1004                if (amb_present_reg) {
1005                        dinfo->dual_rank = MTR_DIMM_RANK(mtr);
1006
1007                        /* Start with the number of bits for a Bank
1008                                * on the DRAM */
1009                        addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
1010                        /* Add the number of ROW bits */
1011                        addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
1012                        /* add the number of COLUMN bits */
1013                        addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
1014
1015                        /* Dual-rank memories have twice the size */
1016                        if (dinfo->dual_rank)
1017                                addrBits++;
1018
1019                        addrBits += 6;  /* add 64 bits per DIMM */
1020                        addrBits -= 20; /* divide by 2^^20 */
1021                        addrBits -= 3;  /* 8 bits per bytes */
1022
1023                        dinfo->megabytes = 1 << addrBits;
1024                }
1025        }
1026}
1027
1028/*
1029 *      calculate_dimm_size
1030 *
1031 *      also will output a DIMM matrix map, if debug is enabled, for viewing
1032 *      how the DIMMs are populated
1033 */
1034static void calculate_dimm_size(struct i5000_pvt *pvt)
1035{
1036        struct i5000_dimm_info *dinfo;
1037        int slot, channel, branch;
1038        char *p, *mem_buffer;
1039        int space, n;
1040
1041        /* ================= Generate some debug output ================= */
1042        space = PAGE_SIZE;
1043        mem_buffer = p = kmalloc(space, GFP_KERNEL);
1044        if (p == NULL) {
1045                i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
1046                        __FILE__, __func__);
1047                return;
1048        }
1049
1050        /* Scan all the actual slots
1051         * and calculate the information for each DIMM
1052         * Start with the highest slot first, to display it first
1053         * and work toward the 0th slot
1054         */
1055        for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) {
1056
1057                /* on an odd slot, first output a 'boundary' marker,
1058                 * then reset the message buffer  */
1059                if (slot & 0x1) {
1060                        n = snprintf(p, space, "--------------------------"
1061                                "--------------------------------");
1062                        p += n;
1063                        space -= n;
1064                        edac_dbg(2, "%s\n", mem_buffer);
1065                        p = mem_buffer;
1066                        space = PAGE_SIZE;
1067                }
1068                n = snprintf(p, space, "slot %2d    ", slot);
1069                p += n;
1070                space -= n;
1071
1072                for (channel = 0; channel < pvt->maxch; channel++) {
1073                        dinfo = &pvt->dimm_info[slot][channel];
1074                        handle_channel(pvt, slot, channel, dinfo);
1075                        if (dinfo->megabytes)
1076                                n = snprintf(p, space, "%4d MB %dR| ",
1077                                             dinfo->megabytes, dinfo->dual_rank + 1);
1078                        else
1079                                n = snprintf(p, space, "%4d MB   | ", 0);
1080                        p += n;
1081                        space -= n;
1082                }
1083                p += n;
1084                space -= n;
1085                edac_dbg(2, "%s\n", mem_buffer);
1086                p = mem_buffer;
1087                space = PAGE_SIZE;
1088        }
1089
1090        /* Output the last bottom 'boundary' marker */
1091        n = snprintf(p, space, "--------------------------"
1092                "--------------------------------");
1093        p += n;
1094        space -= n;
1095        edac_dbg(2, "%s\n", mem_buffer);
1096        p = mem_buffer;
1097        space = PAGE_SIZE;
1098
1099        /* now output the 'channel' labels */
1100        n = snprintf(p, space, "           ");
1101        p += n;
1102        space -= n;
1103        for (channel = 0; channel < pvt->maxch; channel++) {
1104                n = snprintf(p, space, "channel %d | ", channel);
1105                p += n;
1106                space -= n;
1107        }
1108        edac_dbg(2, "%s\n", mem_buffer);
1109        p = mem_buffer;
1110        space = PAGE_SIZE;
1111
1112        n = snprintf(p, space, "           ");
1113        p += n;
1114        for (branch = 0; branch < MAX_BRANCHES; branch++) {
1115                n = snprintf(p, space, "       branch %d       | ", branch);
1116                p += n;
1117                space -= n;
1118        }
1119
1120        /* output the last message and free buffer */
1121        edac_dbg(2, "%s\n", mem_buffer);
1122        kfree(mem_buffer);
1123}
1124
1125/*
1126 *      i5000_get_mc_regs       read in the necessary registers and
1127 *                              cache locally
1128 *
1129 *                      Fills in the private data members
1130 */
1131static void i5000_get_mc_regs(struct mem_ctl_info *mci)
1132{
1133        struct i5000_pvt *pvt;
1134        u32 actual_tolm;
1135        u16 limit;
1136        int slot_row;
1137        int way0, way1;
1138
1139        pvt = mci->pvt_info;
1140
1141        pci_read_config_dword(pvt->system_address, AMBASE,
1142                        &pvt->u.ambase_bottom);
1143        pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1144                        &pvt->u.ambase_top);
1145
1146        edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1147                 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1148
1149        /* Get the Branch Map regs */
1150        pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1151        pvt->tolm >>= 12;
1152        edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
1153                 pvt->tolm, pvt->tolm);
1154
1155        actual_tolm = pvt->tolm << 28;
1156        edac_dbg(2, "Actual TOLM byte addr=%u (0x%x)\n",
1157                 actual_tolm, actual_tolm);
1158
1159        pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1160        pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1161        pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
1162
1163        /* Get the MIR[0-2] regs */
1164        limit = (pvt->mir0 >> 4) & 0x0FFF;
1165        way0 = pvt->mir0 & 0x1;
1166        way1 = pvt->mir0 & 0x2;
1167        edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1168                 limit, way1, way0);
1169        limit = (pvt->mir1 >> 4) & 0x0FFF;
1170        way0 = pvt->mir1 & 0x1;
1171        way1 = pvt->mir1 & 0x2;
1172        edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1173                 limit, way1, way0);
1174        limit = (pvt->mir2 >> 4) & 0x0FFF;
1175        way0 = pvt->mir2 & 0x1;
1176        way1 = pvt->mir2 & 0x2;
1177        edac_dbg(2, "MIR2: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1178                 limit, way1, way0);
1179
1180        /* Get the MTR[0-3] regs */
1181        for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1182                int where = MTR0 + (slot_row * sizeof(u32));
1183
1184                pci_read_config_word(pvt->branch_0, where,
1185                                &pvt->b0_mtr[slot_row]);
1186
1187                edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
1188                         slot_row, where, pvt->b0_mtr[slot_row]);
1189
1190                if (pvt->maxch >= CHANNELS_PER_BRANCH) {
1191                        pci_read_config_word(pvt->branch_1, where,
1192                                        &pvt->b1_mtr[slot_row]);
1193                        edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
1194                                 slot_row, where, pvt->b1_mtr[slot_row]);
1195                } else {
1196                        pvt->b1_mtr[slot_row] = 0;
1197                }
1198        }
1199
1200        /* Read and dump branch 0's MTRs */
1201        edac_dbg(2, "Memory Technology Registers:\n");
1202        edac_dbg(2, "   Branch 0:\n");
1203        for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1204                decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1205        }
1206        pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
1207                        &pvt->b0_ambpresent0);
1208        edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1209        pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
1210                        &pvt->b0_ambpresent1);
1211        edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1212
1213        /* Only if we have 2 branchs (4 channels) */
1214        if (pvt->maxch < CHANNELS_PER_BRANCH) {
1215                pvt->b1_ambpresent0 = 0;
1216                pvt->b1_ambpresent1 = 0;
1217        } else {
1218                /* Read and dump  branch 1's MTRs */
1219                edac_dbg(2, "   Branch 1:\n");
1220                for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1221                        decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1222                }
1223                pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
1224                                &pvt->b1_ambpresent0);
1225                edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
1226                         pvt->b1_ambpresent0);
1227                pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
1228                                &pvt->b1_ambpresent1);
1229                edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
1230                         pvt->b1_ambpresent1);
1231        }
1232
1233        /* Go and determine the size of each DIMM and place in an
1234         * orderly matrix */
1235        calculate_dimm_size(pvt);
1236}
1237
1238/*
1239 *      i5000_init_csrows       Initialize the 'csrows' table within
1240 *                              the mci control structure with the
1241 *                              addressing of memory.
1242 *
1243 *      return:
1244 *              0       success
1245 *              1       no actual memory found on this MC
1246 */
1247static int i5000_init_csrows(struct mem_ctl_info *mci)
1248{
1249        struct i5000_pvt *pvt;
1250        struct dimm_info *dimm;
1251        int empty;
1252        int max_csrows;
1253        int mtr;
1254        int csrow_megs;
1255        int channel;
1256        int slot;
1257
1258        pvt = mci->pvt_info;
1259        max_csrows = pvt->maxdimmperch * 2;
1260
1261        empty = 1;              /* Assume NO memory */
1262
1263        /*
1264         * FIXME: The memory layout used to map slot/channel into the
1265         * real memory architecture is weird: branch+slot are "csrows"
1266         * and channel is channel. That required an extra array (dimm_info)
1267         * to map the dimms. A good cleanup would be to remove this array,
1268         * and do a loop here with branch, channel, slot
1269         */
1270        for (slot = 0; slot < max_csrows; slot++) {
1271                for (channel = 0; channel < pvt->maxch; channel++) {
1272
1273                        mtr = determine_mtr(pvt, slot, channel);
1274
1275                        if (!MTR_DIMMS_PRESENT(mtr))
1276                                continue;
1277
1278                        dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1279                                       channel / MAX_BRANCHES,
1280                                       channel % MAX_BRANCHES, slot);
1281
1282                        csrow_megs = pvt->dimm_info[slot][channel].megabytes;
1283                        dimm->grain = 8;
1284
1285                        /* Assume DDR2 for now */
1286                        dimm->mtype = MEM_FB_DDR2;
1287
1288                        /* ask what device type on this row */
1289                        if (MTR_DRAM_WIDTH(mtr) == 8)
1290                                dimm->dtype = DEV_X8;
1291                        else
1292                                dimm->dtype = DEV_X4;
1293
1294                        dimm->edac_mode = EDAC_S8ECD8ED;
1295                        dimm->nr_pages = csrow_megs << 8;
1296                }
1297
1298                empty = 0;
1299        }
1300
1301        return empty;
1302}
1303
1304/*
1305 *      i5000_enable_error_reporting
1306 *                      Turn on the memory reporting features of the hardware
1307 */
1308static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
1309{
1310        struct i5000_pvt *pvt;
1311        u32 fbd_error_mask;
1312
1313        pvt = mci->pvt_info;
1314
1315        /* Read the FBD Error Mask Register */
1316        pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1317                        &fbd_error_mask);
1318
1319        /* Enable with a '0' */
1320        fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1321
1322        pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1323                        fbd_error_mask);
1324}
1325
1326/*
1327 * i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels)
1328 *
1329 *      ask the device how many channels are present and how many CSROWS
1330 *       as well
1331 */
1332static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
1333                                        int *num_dimms_per_channel,
1334                                        int *num_channels)
1335{
1336        u8 value;
1337
1338        /* Need to retrieve just how many channels and dimms per channel are
1339         * supported on this memory controller
1340         */
1341        pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
1342        *num_dimms_per_channel = (int)value;
1343
1344        pci_read_config_byte(pdev, MAXCH, &value);
1345        *num_channels = (int)value;
1346}
1347
1348/*
1349 *      i5000_probe1    Probe for ONE instance of device to see if it is
1350 *                      present.
1351 *      return:
1352 *              0 for FOUND a device
1353 *              < 0 for error code
1354 */
1355static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
1356{
1357        struct mem_ctl_info *mci;
1358        struct edac_mc_layer layers[3];
1359        struct i5000_pvt *pvt;
1360        int num_channels;
1361        int num_dimms_per_channel;
1362
1363        edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1364                 pdev->bus->number,
1365                 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1366
1367        /* We only are looking for func 0 of the set */
1368        if (PCI_FUNC(pdev->devfn) != 0)
1369                return -ENODEV;
1370
1371        /* Ask the devices for the number of CSROWS and CHANNELS so
1372         * that we can calculate the memory resources, etc
1373         *
1374         * The Chipset will report what it can handle which will be greater
1375         * or equal to what the motherboard manufacturer will implement.
1376         *
1377         * As we don't have a motherboard identification routine to determine
1378         * actual number of slots/dimms per channel, we thus utilize the
1379         * resource as specified by the chipset. Thus, we might have
1380         * have more DIMMs per channel than actually on the mobo, but this
1381         * allows the driver to support up to the chipset max, without
1382         * some fancy mobo determination.
1383         */
1384        i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
1385                                        &num_channels);
1386
1387        edac_dbg(0, "MC: Number of Branches=2 Channels= %d  DIMMS= %d\n",
1388                 num_channels, num_dimms_per_channel);
1389
1390        /* allocate a new MC control structure */
1391
1392        layers[0].type = EDAC_MC_LAYER_BRANCH;
1393        layers[0].size = MAX_BRANCHES;
1394        layers[0].is_virt_csrow = false;
1395        layers[1].type = EDAC_MC_LAYER_CHANNEL;
1396        layers[1].size = num_channels / MAX_BRANCHES;
1397        layers[1].is_virt_csrow = false;
1398        layers[2].type = EDAC_MC_LAYER_SLOT;
1399        layers[2].size = num_dimms_per_channel;
1400        layers[2].is_virt_csrow = true;
1401        mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1402        if (mci == NULL)
1403                return -ENOMEM;
1404
1405        edac_dbg(0, "MC: mci = %p\n", mci);
1406
1407        mci->pdev = &pdev->dev; /* record ptr  to the generic device */
1408
1409        pvt = mci->pvt_info;
1410        pvt->system_address = pdev;     /* Record this device in our private */
1411        pvt->maxch = num_channels;
1412        pvt->maxdimmperch = num_dimms_per_channel;
1413
1414        /* 'get' the pci devices we want to reserve for our use */
1415        if (i5000_get_devices(mci, dev_idx))
1416                goto fail0;
1417
1418        /* Time to get serious */
1419        i5000_get_mc_regs(mci); /* retrieve the hardware registers */
1420
1421        mci->mc_idx = 0;
1422        mci->mtype_cap = MEM_FLAG_FB_DDR2;
1423        mci->edac_ctl_cap = EDAC_FLAG_NONE;
1424        mci->edac_cap = EDAC_FLAG_NONE;
1425        mci->mod_name = "i5000_edac.c";
1426        mci->ctl_name = i5000_devs[dev_idx].ctl_name;
1427        mci->dev_name = pci_name(pdev);
1428        mci->ctl_page_to_phys = NULL;
1429
1430        /* Set the function pointer to an actual operation function */
1431        mci->edac_check = i5000_check_error;
1432
1433        /* initialize the MC control structure 'csrows' table
1434         * with the mapping and control information */
1435        if (i5000_init_csrows(mci)) {
1436                edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5000_init_csrows() returned nonzero value\n");
1437                mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
1438        } else {
1439                edac_dbg(1, "MC: Enable error reporting now\n");
1440                i5000_enable_error_reporting(mci);
1441        }
1442
1443        /* add this new MC control structure to EDAC's list of MCs */
1444        if (edac_mc_add_mc(mci)) {
1445                edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1446                /* FIXME: perhaps some code should go here that disables error
1447                 * reporting if we just enabled it
1448                 */
1449                goto fail1;
1450        }
1451
1452        i5000_clear_error(mci);
1453
1454        /* allocating generic PCI control info */
1455        i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1456        if (!i5000_pci) {
1457                printk(KERN_WARNING
1458                        "%s(): Unable to create PCI control\n",
1459                        __func__);
1460                printk(KERN_WARNING
1461                        "%s(): PCI error report via EDAC not setup\n",
1462                        __func__);
1463        }
1464
1465        return 0;
1466
1467        /* Error exit unwinding stack */
1468fail1:
1469
1470        i5000_put_devices(mci);
1471
1472fail0:
1473        edac_mc_free(mci);
1474        return -ENODEV;
1475}
1476
1477/*
1478 *      i5000_init_one  constructor for one instance of device
1479 *
1480 *      returns:
1481 *              negative on error
1482 *              count (>= 0)
1483 */
1484static int i5000_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
1485{
1486        int rc;
1487
1488        edac_dbg(0, "MC:\n");
1489
1490        /* wake up device */
1491        rc = pci_enable_device(pdev);
1492        if (rc)
1493                return rc;
1494
1495        /* now probe and enable the device */
1496        return i5000_probe1(pdev, id->driver_data);
1497}
1498
1499/*
1500 *      i5000_remove_one        destructor for one instance of device
1501 *
1502 */
1503static void i5000_remove_one(struct pci_dev *pdev)
1504{
1505        struct mem_ctl_info *mci;
1506
1507        edac_dbg(0, "\n");
1508
1509        if (i5000_pci)
1510                edac_pci_release_generic_ctl(i5000_pci);
1511
1512        if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
1513                return;
1514
1515        /* retrieve references to resources, and free those resources */
1516        i5000_put_devices(mci);
1517        edac_mc_free(mci);
1518}
1519
1520/*
1521 *      pci_device_id   table for which devices we are looking for
1522 *
1523 *      The "E500P" device is the first device supported.
1524 */
1525static const struct pci_device_id i5000_pci_tbl[] = {
1526        {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
1527         .driver_data = I5000P},
1528
1529        {0,}                    /* 0 terminated list. */
1530};
1531
1532MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
1533
1534/*
1535 *      i5000_driver    pci_driver structure for this module
1536 *
1537 */
1538static struct pci_driver i5000_driver = {
1539        .name = KBUILD_BASENAME,
1540        .probe = i5000_init_one,
1541        .remove = i5000_remove_one,
1542        .id_table = i5000_pci_tbl,
1543};
1544
1545/*
1546 *      i5000_init              Module entry function
1547 *                      Try to initialize this module for its devices
1548 */
1549static int __init i5000_init(void)
1550{
1551        int pci_rc;
1552
1553        edac_dbg(2, "MC:\n");
1554
1555        /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1556        opstate_init();
1557
1558        pci_rc = pci_register_driver(&i5000_driver);
1559
1560        return (pci_rc < 0) ? pci_rc : 0;
1561}
1562
1563/*
1564 *      i5000_exit()    Module exit function
1565 *                      Unregister the driver
1566 */
1567static void __exit i5000_exit(void)
1568{
1569        edac_dbg(2, "MC:\n");
1570        pci_unregister_driver(&i5000_driver);
1571}
1572
1573module_init(i5000_init);
1574module_exit(i5000_exit);
1575
1576MODULE_LICENSE("GPL");
1577MODULE_AUTHOR
1578    ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
1579MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
1580                I5000_REVISION);
1581
1582module_param(edac_op_state, int, 0444);
1583MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1584module_param(misc_messages, int, 0444);
1585MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");
1586
1587