linux/drivers/edac/skx_base.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * EDAC driver for Intel(R) Xeon(R) Skylake processors
   4 * Copyright (c) 2016, Intel Corporation.
   5 */
   6
   7#include <linux/kernel.h>
   8#include <linux/processor.h>
   9#include <asm/cpu_device_id.h>
  10#include <asm/intel-family.h>
  11#include <asm/mce.h>
  12
  13#include "edac_module.h"
  14#include "skx_common.h"
  15
  16#define EDAC_MOD_STR    "skx_edac"
  17
  18/*
  19 * Debug macros
  20 */
  21#define skx_printk(level, fmt, arg...)                  \
  22        edac_printk(level, "skx", fmt, ##arg)
  23
  24#define skx_mc_printk(mci, level, fmt, arg...)          \
  25        edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
  26
  27static struct list_head *skx_edac_list;
  28
  29static u64 skx_tolm, skx_tohm;
  30static int skx_num_sockets;
  31static unsigned int nvdimm_count;
  32
  33#define MASK26  0x3FFFFFF               /* Mask for 2^26 */
  34#define MASK29  0x1FFFFFFF              /* Mask for 2^29 */
  35
  36static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx)
  37{
  38        struct skx_dev *d;
  39
  40        list_for_each_entry(d, skx_edac_list, list) {
  41                if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number)
  42                        return d;
  43        }
  44
  45        return NULL;
  46}
  47
  48enum munittype {
  49        CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD
  50};
  51
  52struct munit {
  53        u16     did;
  54        u16     devfn[SKX_NUM_IMC];
  55        u8      busidx;
  56        u8      per_socket;
  57        enum munittype mtype;
  58};
  59
  60/*
  61 * List of PCI device ids that we need together with some device
  62 * number and function numbers to tell which memory controller the
  63 * device belongs to.
  64 */
  65static const struct munit skx_all_munits[] = {
  66        { 0x2054, { }, 1, 1, SAD_ALL },
  67        { 0x2055, { }, 1, 1, UTIL_ALL },
  68        { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
  69        { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
  70        { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
  71        { 0x208e, { }, 1, 0, SAD },
  72        { }
  73};
  74
  75static int get_all_munits(const struct munit *m)
  76{
  77        struct pci_dev *pdev, *prev;
  78        struct skx_dev *d;
  79        u32 reg;
  80        int i = 0, ndev = 0;
  81
  82        prev = NULL;
  83        for (;;) {
  84                pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
  85                if (!pdev)
  86                        break;
  87                ndev++;
  88                if (m->per_socket == SKX_NUM_IMC) {
  89                        for (i = 0; i < SKX_NUM_IMC; i++)
  90                                if (m->devfn[i] == pdev->devfn)
  91                                        break;
  92                        if (i == SKX_NUM_IMC)
  93                                goto fail;
  94                }
  95                d = get_skx_dev(pdev->bus, m->busidx);
  96                if (!d)
  97                        goto fail;
  98
  99                /* Be sure that the device is enabled */
 100                if (unlikely(pci_enable_device(pdev) < 0)) {
 101                        skx_printk(KERN_ERR, "Couldn't enable device %04x:%04x\n",
 102                                   PCI_VENDOR_ID_INTEL, m->did);
 103                        goto fail;
 104                }
 105
 106                switch (m->mtype) {
 107                case CHAN0: case CHAN1: case CHAN2:
 108                        pci_dev_get(pdev);
 109                        d->imc[i].chan[m->mtype].cdev = pdev;
 110                        break;
 111                case SAD_ALL:
 112                        pci_dev_get(pdev);
 113                        d->sad_all = pdev;
 114                        break;
 115                case UTIL_ALL:
 116                        pci_dev_get(pdev);
 117                        d->util_all = pdev;
 118                        break;
 119                case SAD:
 120                        /*
 121                         * one of these devices per core, including cores
 122                         * that don't exist on this SKU. Ignore any that
 123                         * read a route table of zero, make sure all the
 124                         * non-zero values match.
 125                         */
 126                        pci_read_config_dword(pdev, 0xB4, &reg);
 127                        if (reg != 0) {
 128                                if (d->mcroute == 0) {
 129                                        d->mcroute = reg;
 130                                } else if (d->mcroute != reg) {
 131                                        skx_printk(KERN_ERR, "mcroute mismatch\n");
 132                                        goto fail;
 133                                }
 134                        }
 135                        ndev--;
 136                        break;
 137                }
 138
 139                prev = pdev;
 140        }
 141
 142        return ndev;
 143fail:
 144        pci_dev_put(pdev);
 145        return -ENODEV;
 146}
 147
 148static const struct x86_cpu_id skx_cpuids[] = {
 149        { X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 },
 150        { }
 151};
 152MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
 153
 154#define SKX_GET_MTMTR(dev, reg) \
 155        pci_read_config_dword((dev), 0x87c, &(reg))
 156
 157static bool skx_check_ecc(struct pci_dev *pdev)
 158{
 159        u32 mtmtr;
 160
 161        SKX_GET_MTMTR(pdev, mtmtr);
 162
 163        return !!GET_BITFIELD(mtmtr, 2, 2);
 164}
 165
 166static int skx_get_dimm_config(struct mem_ctl_info *mci)
 167{
 168        struct skx_pvt *pvt = mci->pvt_info;
 169        struct skx_imc *imc = pvt->imc;
 170        u32 mtr, amap, mcddrtcfg;
 171        struct dimm_info *dimm;
 172        int i, j;
 173        int ndimms;
 174
 175        for (i = 0; i < SKX_NUM_CHANNELS; i++) {
 176                ndimms = 0;
 177                pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
 178                pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg);
 179                for (j = 0; j < SKX_NUM_DIMMS; j++) {
 180                        dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
 181                                             mci->n_layers, i, j, 0);
 182                        pci_read_config_dword(imc->chan[i].cdev,
 183                                              0x80 + 4 * j, &mtr);
 184                        if (IS_DIMM_PRESENT(mtr)) {
 185                                ndimms += skx_get_dimm_info(mtr, amap, dimm, imc, i, j);
 186                        } else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) {
 187                                ndimms += skx_get_nvdimm_info(dimm, imc, i, j,
 188                                                              EDAC_MOD_STR);
 189                                nvdimm_count++;
 190                        }
 191                }
 192                if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) {
 193                        skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
 194                        return -ENODEV;
 195                }
 196        }
 197
 198        return 0;
 199}
 200
 201#define SKX_MAX_SAD 24
 202
 203#define SKX_GET_SAD(d, i, reg)  \
 204        pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &(reg))
 205#define SKX_GET_ILV(d, i, reg)  \
 206        pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &(reg))
 207
 208#define SKX_SAD_MOD3MODE(sad)   GET_BITFIELD((sad), 30, 31)
 209#define SKX_SAD_MOD3(sad)       GET_BITFIELD((sad), 27, 27)
 210#define SKX_SAD_LIMIT(sad)      (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
 211#define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6)
 212#define SKX_SAD_ATTR(sad)       GET_BITFIELD((sad), 3, 4)
 213#define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2)
 214#define SKX_SAD_ENABLE(sad)     GET_BITFIELD((sad), 0, 0)
 215
 216#define SKX_ILV_REMOTE(tgt)     (((tgt) & 8) == 0)
 217#define SKX_ILV_TARGET(tgt)     ((tgt) & 7)
 218
 219static bool skx_sad_decode(struct decoded_addr *res)
 220{
 221        struct skx_dev *d = list_first_entry(skx_edac_list, typeof(*d), list);
 222        u64 addr = res->addr;
 223        int i, idx, tgt, lchan, shift;
 224        u32 sad, ilv;
 225        u64 limit, prev_limit;
 226        int remote = 0;
 227
 228        /* Simple sanity check for I/O space or out of range */
 229        if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
 230                edac_dbg(0, "Address 0x%llx out of range\n", addr);
 231                return false;
 232        }
 233
 234restart:
 235        prev_limit = 0;
 236        for (i = 0; i < SKX_MAX_SAD; i++) {
 237                SKX_GET_SAD(d, i, sad);
 238                limit = SKX_SAD_LIMIT(sad);
 239                if (SKX_SAD_ENABLE(sad)) {
 240                        if (addr >= prev_limit && addr <= limit)
 241                                goto sad_found;
 242                }
 243                prev_limit = limit + 1;
 244        }
 245        edac_dbg(0, "No SAD entry for 0x%llx\n", addr);
 246        return false;
 247
 248sad_found:
 249        SKX_GET_ILV(d, i, ilv);
 250
 251        switch (SKX_SAD_INTERLEAVE(sad)) {
 252        case 0:
 253                idx = GET_BITFIELD(addr, 6, 8);
 254                break;
 255        case 1:
 256                idx = GET_BITFIELD(addr, 8, 10);
 257                break;
 258        case 2:
 259                idx = GET_BITFIELD(addr, 12, 14);
 260                break;
 261        case 3:
 262                idx = GET_BITFIELD(addr, 30, 32);
 263                break;
 264        }
 265
 266        tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
 267
 268        /* If point to another node, find it and start over */
 269        if (SKX_ILV_REMOTE(tgt)) {
 270                if (remote) {
 271                        edac_dbg(0, "Double remote!\n");
 272                        return false;
 273                }
 274                remote = 1;
 275                list_for_each_entry(d, skx_edac_list, list) {
 276                        if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
 277                                goto restart;
 278                }
 279                edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
 280                return false;
 281        }
 282
 283        if (SKX_SAD_MOD3(sad) == 0) {
 284                lchan = SKX_ILV_TARGET(tgt);
 285        } else {
 286                switch (SKX_SAD_MOD3MODE(sad)) {
 287                case 0:
 288                        shift = 6;
 289                        break;
 290                case 1:
 291                        shift = 8;
 292                        break;
 293                case 2:
 294                        shift = 12;
 295                        break;
 296                default:
 297                        edac_dbg(0, "illegal mod3mode\n");
 298                        return false;
 299                }
 300                switch (SKX_SAD_MOD3ASMOD2(sad)) {
 301                case 0:
 302                        lchan = (addr >> shift) % 3;
 303                        break;
 304                case 1:
 305                        lchan = (addr >> shift) % 2;
 306                        break;
 307                case 2:
 308                        lchan = (addr >> shift) % 2;
 309                        lchan = (lchan << 1) | !lchan;
 310                        break;
 311                case 3:
 312                        lchan = ((addr >> shift) % 2) << 1;
 313                        break;
 314                }
 315                lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
 316        }
 317
 318        res->dev = d;
 319        res->socket = d->imc[0].src_id;
 320        res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
 321        res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
 322
 323        edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n",
 324                 res->addr, res->socket, res->imc, res->channel);
 325        return true;
 326}
 327
 328#define SKX_MAX_TAD 8
 329
 330#define SKX_GET_TADBASE(d, mc, i, reg)                  \
 331        pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &(reg))
 332#define SKX_GET_TADWAYNESS(d, mc, i, reg)               \
 333        pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &(reg))
 334#define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg)      \
 335        pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &(reg))
 336
 337#define SKX_TAD_BASE(b)         ((u64)GET_BITFIELD((b), 12, 31) << 26)
 338#define SKX_TAD_SKT_GRAN(b)     GET_BITFIELD((b), 4, 5)
 339#define SKX_TAD_CHN_GRAN(b)     GET_BITFIELD((b), 6, 7)
 340#define SKX_TAD_LIMIT(b)        (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
 341#define SKX_TAD_OFFSET(b)       ((u64)GET_BITFIELD((b), 4, 23) << 26)
 342#define SKX_TAD_SKTWAYS(b)      (1 << GET_BITFIELD((b), 10, 11))
 343#define SKX_TAD_CHNWAYS(b)      (GET_BITFIELD((b), 8, 9) + 1)
 344
 345/* which bit used for both socket and channel interleave */
 346static int skx_granularity[] = { 6, 8, 12, 30 };
 347
 348static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
 349{
 350        addr >>= shift;
 351        addr /= ways;
 352        addr <<= shift;
 353
 354        return addr | (lowbits & ((1ull << shift) - 1));
 355}
 356
 357static bool skx_tad_decode(struct decoded_addr *res)
 358{
 359        int i;
 360        u32 base, wayness, chnilvoffset;
 361        int skt_interleave_bit, chn_interleave_bit;
 362        u64 channel_addr;
 363
 364        for (i = 0; i < SKX_MAX_TAD; i++) {
 365                SKX_GET_TADBASE(res->dev, res->imc, i, base);
 366                SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
 367                if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
 368                        goto tad_found;
 369        }
 370        edac_dbg(0, "No TAD entry for 0x%llx\n", res->addr);
 371        return false;
 372
 373tad_found:
 374        res->sktways = SKX_TAD_SKTWAYS(wayness);
 375        res->chanways = SKX_TAD_CHNWAYS(wayness);
 376        skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
 377        chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
 378
 379        SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
 380        channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
 381
 382        if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
 383                /* Must handle channel first, then socket */
 384                channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
 385                                                 res->chanways, channel_addr);
 386                channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
 387                                                 res->sktways, channel_addr);
 388        } else {
 389                /* Handle socket then channel. Preserve low bits from original address */
 390                channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
 391                                                 res->sktways, res->addr);
 392                channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
 393                                                 res->chanways, res->addr);
 394        }
 395
 396        res->chan_addr = channel_addr;
 397
 398        edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n",
 399                 res->addr, res->chan_addr, res->sktways, res->chanways);
 400        return true;
 401}
 402
 403#define SKX_MAX_RIR 4
 404
 405#define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg)           \
 406        pci_read_config_dword((d)->imc[mc].chan[ch].cdev,       \
 407                              0x108 + 4 * (i), &(reg))
 408#define SKX_GET_RIRILV(d, mc, ch, idx, i, reg)          \
 409        pci_read_config_dword((d)->imc[mc].chan[ch].cdev,       \
 410                              0x120 + 16 * (idx) + 4 * (i), &(reg))
 411
 412#define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
 413#define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
 414#define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
 415#define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
 416#define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
 417
 418static bool skx_rir_decode(struct decoded_addr *res)
 419{
 420        int i, idx, chan_rank;
 421        int shift;
 422        u32 rirway, rirlv;
 423        u64 rank_addr, prev_limit = 0, limit;
 424
 425        if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
 426                shift = 6;
 427        else
 428                shift = 13;
 429
 430        for (i = 0; i < SKX_MAX_RIR; i++) {
 431                SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
 432                limit = SKX_RIR_LIMIT(rirway);
 433                if (SKX_RIR_VALID(rirway)) {
 434                        if (prev_limit <= res->chan_addr &&
 435                            res->chan_addr <= limit)
 436                                goto rir_found;
 437                }
 438                prev_limit = limit;
 439        }
 440        edac_dbg(0, "No RIR entry for 0x%llx\n", res->addr);
 441        return false;
 442
 443rir_found:
 444        rank_addr = res->chan_addr >> shift;
 445        rank_addr /= SKX_RIR_WAYS(rirway);
 446        rank_addr <<= shift;
 447        rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
 448
 449        res->rank_address = rank_addr;
 450        idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
 451
 452        SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
 453        res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
 454        chan_rank = SKX_RIR_CHAN_RANK(rirlv);
 455        res->channel_rank = chan_rank;
 456        res->dimm = chan_rank / 4;
 457        res->rank = chan_rank % 4;
 458
 459        edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n",
 460                 res->addr, res->dimm, res->rank,
 461                 res->channel_rank, res->rank_address);
 462        return true;
 463}
 464
 465static u8 skx_close_row[] = {
 466        15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
 467};
 468
 469static u8 skx_close_column[] = {
 470        3, 4, 5, 14, 19, 23, 24, 25, 26, 27
 471};
 472
 473static u8 skx_open_row[] = {
 474        14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
 475};
 476
 477static u8 skx_open_column[] = {
 478        3, 4, 5, 6, 7, 8, 9, 10, 11, 12
 479};
 480
 481static u8 skx_open_fine_column[] = {
 482        3, 4, 5, 7, 8, 9, 10, 11, 12, 13
 483};
 484
 485static int skx_bits(u64 addr, int nbits, u8 *bits)
 486{
 487        int i, res = 0;
 488
 489        for (i = 0; i < nbits; i++)
 490                res |= ((addr >> bits[i]) & 1) << i;
 491        return res;
 492}
 493
 494static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
 495{
 496        int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
 497
 498        if (do_xor)
 499                ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
 500
 501        return ret;
 502}
 503
 504static bool skx_mad_decode(struct decoded_addr *r)
 505{
 506        struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
 507        int bg0 = dimm->fine_grain_bank ? 6 : 13;
 508
 509        if (dimm->close_pg) {
 510                r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
 511                r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
 512                r->column |= 0x400; /* C10 is autoprecharge, always set */
 513                r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
 514                r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
 515        } else {
 516                r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
 517                if (dimm->fine_grain_bank)
 518                        r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
 519                else
 520                        r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
 521                r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
 522                r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
 523        }
 524        r->row &= (1u << dimm->rowbits) - 1;
 525
 526        edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n",
 527                 r->addr, r->row, r->column, r->bank_address,
 528                 r->bank_group);
 529        return true;
 530}
 531
 532static bool skx_decode(struct decoded_addr *res)
 533{
 534        return skx_sad_decode(res) && skx_tad_decode(res) &&
 535                skx_rir_decode(res) && skx_mad_decode(res);
 536}
 537
 538static struct notifier_block skx_mce_dec = {
 539        .notifier_call  = skx_mce_check_error,
 540        .priority       = MCE_PRIO_EDAC,
 541};
 542
 543#ifdef CONFIG_EDAC_DEBUG
 544/*
 545 * Debug feature.
 546 * Exercise the address decode logic by writing an address to
 547 * /sys/kernel/debug/edac/skx_test/addr.
 548 */
 549static struct dentry *skx_test;
 550
 551static int debugfs_u64_set(void *data, u64 val)
 552{
 553        struct mce m;
 554
 555        pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
 556
 557        memset(&m, 0, sizeof(m));
 558        /* ADDRV + MemRd + Unknown channel */
 559        m.status = MCI_STATUS_ADDRV + 0x90;
 560        /* One corrected error */
 561        m.status |= BIT_ULL(MCI_STATUS_CEC_SHIFT);
 562        m.addr = val;
 563        skx_mce_check_error(NULL, 0, &m);
 564
 565        return 0;
 566}
 567DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
 568
 569static void setup_skx_debug(void)
 570{
 571        skx_test = edac_debugfs_create_dir("skx_test");
 572        if (!skx_test)
 573                return;
 574
 575        if (!edac_debugfs_create_file("addr", 0200, skx_test,
 576                                      NULL, &fops_u64_wo)) {
 577                debugfs_remove(skx_test);
 578                skx_test = NULL;
 579        }
 580}
 581
 582static void teardown_skx_debug(void)
 583{
 584        debugfs_remove_recursive(skx_test);
 585}
 586#else
 587static inline void setup_skx_debug(void) {}
 588static inline void teardown_skx_debug(void) {}
 589#endif /*CONFIG_EDAC_DEBUG*/
 590
 591/*
 592 * skx_init:
 593 *      make sure we are running on the correct cpu model
 594 *      search for all the devices we need
 595 *      check which DIMMs are present.
 596 */
 597static int __init skx_init(void)
 598{
 599        const struct x86_cpu_id *id;
 600        const struct munit *m;
 601        const char *owner;
 602        int rc = 0, i, off[3] = {0xd0, 0xd4, 0xd8};
 603        u8 mc = 0, src_id, node_id;
 604        struct skx_dev *d;
 605
 606        edac_dbg(2, "\n");
 607
 608        owner = edac_get_owner();
 609        if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
 610                return -EBUSY;
 611
 612        id = x86_match_cpu(skx_cpuids);
 613        if (!id)
 614                return -ENODEV;
 615
 616        rc = skx_get_hi_lo(0x2034, off, &skx_tolm, &skx_tohm);
 617        if (rc)
 618                return rc;
 619
 620        rc = skx_get_all_bus_mappings(0x2016, 0xcc, SKX, &skx_edac_list);
 621        if (rc < 0)
 622                goto fail;
 623        if (rc == 0) {
 624                edac_dbg(2, "No memory controllers found\n");
 625                return -ENODEV;
 626        }
 627        skx_num_sockets = rc;
 628
 629        for (m = skx_all_munits; m->did; m++) {
 630                rc = get_all_munits(m);
 631                if (rc < 0)
 632                        goto fail;
 633                if (rc != m->per_socket * skx_num_sockets) {
 634                        edac_dbg(2, "Expected %d, got %d of 0x%x\n",
 635                                 m->per_socket * skx_num_sockets, rc, m->did);
 636                        rc = -ENODEV;
 637                        goto fail;
 638                }
 639        }
 640
 641        list_for_each_entry(d, skx_edac_list, list) {
 642                rc = skx_get_src_id(d, 0xf0, &src_id);
 643                if (rc < 0)
 644                        goto fail;
 645                rc = skx_get_node_id(d, &node_id);
 646                if (rc < 0)
 647                        goto fail;
 648                edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
 649                for (i = 0; i < SKX_NUM_IMC; i++) {
 650                        d->imc[i].mc = mc++;
 651                        d->imc[i].lmc = i;
 652                        d->imc[i].src_id = src_id;
 653                        d->imc[i].node_id = node_id;
 654                        rc = skx_register_mci(&d->imc[i], d->imc[i].chan[0].cdev,
 655                                              "Skylake Socket", EDAC_MOD_STR,
 656                                              skx_get_dimm_config);
 657                        if (rc < 0)
 658                                goto fail;
 659                }
 660        }
 661
 662        skx_set_decode(skx_decode);
 663
 664        if (nvdimm_count && skx_adxl_get() == -ENODEV)
 665                skx_printk(KERN_NOTICE, "Only decoding DDR4 address!\n");
 666
 667        /* Ensure that the OPSTATE is set correctly for POLL or NMI */
 668        opstate_init();
 669
 670        setup_skx_debug();
 671
 672        mce_register_decode_chain(&skx_mce_dec);
 673
 674        return 0;
 675fail:
 676        skx_remove();
 677        return rc;
 678}
 679
 680static void __exit skx_exit(void)
 681{
 682        edac_dbg(2, "\n");
 683        mce_unregister_decode_chain(&skx_mce_dec);
 684        teardown_skx_debug();
 685        if (nvdimm_count)
 686                skx_adxl_put();
 687        skx_remove();
 688}
 689
 690module_init(skx_init);
 691module_exit(skx_exit);
 692
 693module_param(edac_op_state, int, 0444);
 694MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
 695
 696MODULE_LICENSE("GPL v2");
 697MODULE_AUTHOR("Tony Luck");
 698MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");
 699