linux/drivers/firewire/ohci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for OHCI 1394 controllers
   4 *
   5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
   6 */
   7
   8#include <linux/bitops.h>
   9#include <linux/bug.h>
  10#include <linux/compiler.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/firewire.h>
  15#include <linux/firewire-constants.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/list.h>
  21#include <linux/mm.h>
  22#include <linux/module.h>
  23#include <linux/moduleparam.h>
  24#include <linux/mutex.h>
  25#include <linux/pci.h>
  26#include <linux/pci_ids.h>
  27#include <linux/slab.h>
  28#include <linux/spinlock.h>
  29#include <linux/string.h>
  30#include <linux/time.h>
  31#include <linux/vmalloc.h>
  32#include <linux/workqueue.h>
  33
  34#include <asm/byteorder.h>
  35#include <asm/page.h>
  36
  37#ifdef CONFIG_PPC_PMAC
  38#include <asm/pmac_feature.h>
  39#endif
  40
  41#include "core.h"
  42#include "ohci.h"
  43
  44#define ohci_info(ohci, f, args...)     dev_info(ohci->card.device, f, ##args)
  45#define ohci_notice(ohci, f, args...)   dev_notice(ohci->card.device, f, ##args)
  46#define ohci_err(ohci, f, args...)      dev_err(ohci->card.device, f, ##args)
  47
  48#define DESCRIPTOR_OUTPUT_MORE          0
  49#define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
  50#define DESCRIPTOR_INPUT_MORE           (2 << 12)
  51#define DESCRIPTOR_INPUT_LAST           (3 << 12)
  52#define DESCRIPTOR_STATUS               (1 << 11)
  53#define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
  54#define DESCRIPTOR_PING                 (1 << 7)
  55#define DESCRIPTOR_YY                   (1 << 6)
  56#define DESCRIPTOR_NO_IRQ               (0 << 4)
  57#define DESCRIPTOR_IRQ_ERROR            (1 << 4)
  58#define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
  59#define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
  60#define DESCRIPTOR_WAIT                 (3 << 0)
  61
  62#define DESCRIPTOR_CMD                  (0xf << 12)
  63
  64struct descriptor {
  65        __le16 req_count;
  66        __le16 control;
  67        __le32 data_address;
  68        __le32 branch_address;
  69        __le16 res_count;
  70        __le16 transfer_status;
  71} __attribute__((aligned(16)));
  72
  73#define CONTROL_SET(regs)       (regs)
  74#define CONTROL_CLEAR(regs)     ((regs) + 4)
  75#define COMMAND_PTR(regs)       ((regs) + 12)
  76#define CONTEXT_MATCH(regs)     ((regs) + 16)
  77
  78#define AR_BUFFER_SIZE  (32*1024)
  79#define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  80/* we need at least two pages for proper list management */
  81#define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  82
  83#define MAX_ASYNC_PAYLOAD       4096
  84#define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
  85#define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  86
  87struct ar_context {
  88        struct fw_ohci *ohci;
  89        struct page *pages[AR_BUFFERS];
  90        void *buffer;
  91        struct descriptor *descriptors;
  92        dma_addr_t descriptors_bus;
  93        void *pointer;
  94        unsigned int last_buffer_index;
  95        u32 regs;
  96        struct tasklet_struct tasklet;
  97};
  98
  99struct context;
 100
 101typedef int (*descriptor_callback_t)(struct context *ctx,
 102                                     struct descriptor *d,
 103                                     struct descriptor *last);
 104
 105/*
 106 * A buffer that contains a block of DMA-able coherent memory used for
 107 * storing a portion of a DMA descriptor program.
 108 */
 109struct descriptor_buffer {
 110        struct list_head list;
 111        dma_addr_t buffer_bus;
 112        size_t buffer_size;
 113        size_t used;
 114        struct descriptor buffer[0];
 115};
 116
 117struct context {
 118        struct fw_ohci *ohci;
 119        u32 regs;
 120        int total_allocation;
 121        u32 current_bus;
 122        bool running;
 123        bool flushing;
 124
 125        /*
 126         * List of page-sized buffers for storing DMA descriptors.
 127         * Head of list contains buffers in use and tail of list contains
 128         * free buffers.
 129         */
 130        struct list_head buffer_list;
 131
 132        /*
 133         * Pointer to a buffer inside buffer_list that contains the tail
 134         * end of the current DMA program.
 135         */
 136        struct descriptor_buffer *buffer_tail;
 137
 138        /*
 139         * The descriptor containing the branch address of the first
 140         * descriptor that has not yet been filled by the device.
 141         */
 142        struct descriptor *last;
 143
 144        /*
 145         * The last descriptor block in the DMA program. It contains the branch
 146         * address that must be updated upon appending a new descriptor.
 147         */
 148        struct descriptor *prev;
 149        int prev_z;
 150
 151        descriptor_callback_t callback;
 152
 153        struct tasklet_struct tasklet;
 154};
 155
 156#define IT_HEADER_SY(v)          ((v) <<  0)
 157#define IT_HEADER_TCODE(v)       ((v) <<  4)
 158#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
 159#define IT_HEADER_TAG(v)         ((v) << 14)
 160#define IT_HEADER_SPEED(v)       ((v) << 16)
 161#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
 162
 163struct iso_context {
 164        struct fw_iso_context base;
 165        struct context context;
 166        void *header;
 167        size_t header_length;
 168        unsigned long flushing_completions;
 169        u32 mc_buffer_bus;
 170        u16 mc_completed;
 171        u16 last_timestamp;
 172        u8 sync;
 173        u8 tags;
 174};
 175
 176#define CONFIG_ROM_SIZE 1024
 177
 178struct fw_ohci {
 179        struct fw_card card;
 180
 181        __iomem char *registers;
 182        int node_id;
 183        int generation;
 184        int request_generation; /* for timestamping incoming requests */
 185        unsigned quirks;
 186        unsigned int pri_req_max;
 187        u32 bus_time;
 188        bool bus_time_running;
 189        bool is_root;
 190        bool csr_state_setclear_abdicate;
 191        int n_ir;
 192        int n_it;
 193        /*
 194         * Spinlock for accessing fw_ohci data.  Never call out of
 195         * this driver with this lock held.
 196         */
 197        spinlock_t lock;
 198
 199        struct mutex phy_reg_mutex;
 200
 201        void *misc_buffer;
 202        dma_addr_t misc_buffer_bus;
 203
 204        struct ar_context ar_request_ctx;
 205        struct ar_context ar_response_ctx;
 206        struct context at_request_ctx;
 207        struct context at_response_ctx;
 208
 209        u32 it_context_support;
 210        u32 it_context_mask;     /* unoccupied IT contexts */
 211        struct iso_context *it_context_list;
 212        u64 ir_context_channels; /* unoccupied channels */
 213        u32 ir_context_support;
 214        u32 ir_context_mask;     /* unoccupied IR contexts */
 215        struct iso_context *ir_context_list;
 216        u64 mc_channels; /* channels in use by the multichannel IR context */
 217        bool mc_allocated;
 218
 219        __be32    *config_rom;
 220        dma_addr_t config_rom_bus;
 221        __be32    *next_config_rom;
 222        dma_addr_t next_config_rom_bus;
 223        __be32     next_header;
 224
 225        __le32    *self_id;
 226        dma_addr_t self_id_bus;
 227        struct work_struct bus_reset_work;
 228
 229        u32 self_id_buffer[512];
 230};
 231
 232static struct workqueue_struct *selfid_workqueue;
 233
 234static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 235{
 236        return container_of(card, struct fw_ohci, card);
 237}
 238
 239#define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
 240#define IR_CONTEXT_BUFFER_FILL          0x80000000
 241#define IR_CONTEXT_ISOCH_HEADER         0x40000000
 242#define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
 243#define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
 244#define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
 245
 246#define CONTEXT_RUN     0x8000
 247#define CONTEXT_WAKE    0x1000
 248#define CONTEXT_DEAD    0x0800
 249#define CONTEXT_ACTIVE  0x0400
 250
 251#define OHCI1394_MAX_AT_REQ_RETRIES     0xf
 252#define OHCI1394_MAX_AT_RESP_RETRIES    0x2
 253#define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
 254
 255#define OHCI1394_REGISTER_SIZE          0x800
 256#define OHCI1394_PCI_HCI_Control        0x40
 257#define SELF_ID_BUF_SIZE                0x800
 258#define OHCI_TCODE_PHY_PACKET           0x0e
 259#define OHCI_VERSION_1_1                0x010010
 260
 261static char ohci_driver_name[] = KBUILD_MODNAME;
 262
 263#define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
 264#define PCI_DEVICE_ID_AGERE_FW643       0x5901
 265#define PCI_DEVICE_ID_CREATIVE_SB1394   0x4001
 266#define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
 267#define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
 268#define PCI_DEVICE_ID_TI_TSB12LV26      0x8020
 269#define PCI_DEVICE_ID_TI_TSB82AA2       0x8025
 270#define PCI_DEVICE_ID_VIA_VT630X        0x3044
 271#define PCI_REV_ID_VIA_VT6306           0x46
 272#define PCI_DEVICE_ID_VIA_VT6315        0x3403
 273
 274#define QUIRK_CYCLE_TIMER               0x1
 275#define QUIRK_RESET_PACKET              0x2
 276#define QUIRK_BE_HEADERS                0x4
 277#define QUIRK_NO_1394A                  0x8
 278#define QUIRK_NO_MSI                    0x10
 279#define QUIRK_TI_SLLZ059                0x20
 280#define QUIRK_IR_WAKE                   0x40
 281
 282/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 283static const struct {
 284        unsigned short vendor, device, revision, flags;
 285} ohci_quirks[] = {
 286        {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 287                QUIRK_CYCLE_TIMER},
 288
 289        {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 290                QUIRK_BE_HEADERS},
 291
 292        {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 293                QUIRK_NO_MSI},
 294
 295        {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
 296                QUIRK_RESET_PACKET},
 297
 298        {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 299                QUIRK_NO_MSI},
 300
 301        {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 302                QUIRK_CYCLE_TIMER},
 303
 304        {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
 305                QUIRK_NO_MSI},
 306
 307        {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 308                QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 309
 310        {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 311                QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 312
 313        {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
 314                QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 315
 316        {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
 317                QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 318
 319        {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 320                QUIRK_RESET_PACKET},
 321
 322        {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
 323                QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
 324
 325        {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
 326                QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
 327
 328        {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
 329                QUIRK_NO_MSI},
 330
 331        {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 332                QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 333};
 334
 335/* This overrides anything that was found in ohci_quirks[]. */
 336static int param_quirks;
 337module_param_named(quirks, param_quirks, int, 0644);
 338MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 339        ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
 340        ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
 341        ", AR/selfID endianness = "     __stringify(QUIRK_BE_HEADERS)
 342        ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
 343        ", disable MSI = "              __stringify(QUIRK_NO_MSI)
 344        ", TI SLLZ059 erratum = "       __stringify(QUIRK_TI_SLLZ059)
 345        ", IR wake unreliable = "       __stringify(QUIRK_IR_WAKE)
 346        ")");
 347
 348#define OHCI_PARAM_DEBUG_AT_AR          1
 349#define OHCI_PARAM_DEBUG_SELFIDS        2
 350#define OHCI_PARAM_DEBUG_IRQS           4
 351#define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
 352
 353static int param_debug;
 354module_param_named(debug, param_debug, int, 0644);
 355MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
 356        ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
 357        ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
 358        ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
 359        ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
 360        ", or a combination, or all = -1)");
 361
 362static bool param_remote_dma;
 363module_param_named(remote_dma, param_remote_dma, bool, 0444);
 364MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
 365
 366static void log_irqs(struct fw_ohci *ohci, u32 evt)
 367{
 368        if (likely(!(param_debug &
 369                        (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
 370                return;
 371
 372        if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
 373            !(evt & OHCI1394_busReset))
 374                return;
 375
 376        ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 377            evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
 378            evt & OHCI1394_RQPkt                ? " AR_req"             : "",
 379            evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
 380            evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
 381            evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
 382            evt & OHCI1394_isochRx              ? " IR"                 : "",
 383            evt & OHCI1394_isochTx              ? " IT"                 : "",
 384            evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
 385            evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
 386            evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
 387            evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
 388            evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
 389            evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
 390            evt & OHCI1394_busReset             ? " busReset"           : "",
 391            evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 392                    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 393                    OHCI1394_respTxComplete | OHCI1394_isochRx |
 394                    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 395                    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 396                    OHCI1394_cycleInconsistent |
 397                    OHCI1394_regAccessFail | OHCI1394_busReset)
 398                                                ? " ?"                  : "");
 399}
 400
 401static const char *speed[] = {
 402        [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 403};
 404static const char *power[] = {
 405        [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 406        [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 407};
 408static const char port[] = { '.', '-', 'p', 'c', };
 409
 410static char _p(u32 *s, int shift)
 411{
 412        return port[*s >> shift & 3];
 413}
 414
 415static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
 416{
 417        u32 *s;
 418
 419        if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 420                return;
 421
 422        ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
 423                    self_id_count, generation, ohci->node_id);
 424
 425        for (s = ohci->self_id_buffer; self_id_count--; ++s)
 426                if ((*s & 1 << 23) == 0)
 427                        ohci_notice(ohci,
 428                            "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
 429                            *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
 430                            speed[*s >> 14 & 3], *s >> 16 & 63,
 431                            power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 432                            *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 433                else
 434                        ohci_notice(ohci,
 435                            "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 436                            *s, *s >> 24 & 63,
 437                            _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
 438                            _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
 439}
 440
 441static const char *evts[] = {
 442        [0x00] = "evt_no_status",       [0x01] = "-reserved-",
 443        [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
 444        [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
 445        [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
 446        [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
 447        [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
 448        [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
 449        [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
 450        [0x10] = "-reserved-",          [0x11] = "ack_complete",
 451        [0x12] = "ack_pending ",        [0x13] = "-reserved-",
 452        [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
 453        [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
 454        [0x18] = "-reserved-",          [0x19] = "-reserved-",
 455        [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
 456        [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
 457        [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
 458        [0x20] = "pending/cancelled",
 459};
 460static const char *tcodes[] = {
 461        [0x0] = "QW req",               [0x1] = "BW req",
 462        [0x2] = "W resp",               [0x3] = "-reserved-",
 463        [0x4] = "QR req",               [0x5] = "BR req",
 464        [0x6] = "QR resp",              [0x7] = "BR resp",
 465        [0x8] = "cycle start",          [0x9] = "Lk req",
 466        [0xa] = "async stream packet",  [0xb] = "Lk resp",
 467        [0xc] = "-reserved-",           [0xd] = "-reserved-",
 468        [0xe] = "link internal",        [0xf] = "-reserved-",
 469};
 470
 471static void log_ar_at_event(struct fw_ohci *ohci,
 472                            char dir, int speed, u32 *header, int evt)
 473{
 474        int tcode = header[0] >> 4 & 0xf;
 475        char specific[12];
 476
 477        if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 478                return;
 479
 480        if (unlikely(evt >= ARRAY_SIZE(evts)))
 481                        evt = 0x1f;
 482
 483        if (evt == OHCI1394_evt_bus_reset) {
 484                ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
 485                            dir, (header[2] >> 16) & 0xff);
 486                return;
 487        }
 488
 489        switch (tcode) {
 490        case 0x0: case 0x6: case 0x8:
 491                snprintf(specific, sizeof(specific), " = %08x",
 492                         be32_to_cpu((__force __be32)header[3]));
 493                break;
 494        case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
 495                snprintf(specific, sizeof(specific), " %x,%x",
 496                         header[3] >> 16, header[3] & 0xffff);
 497                break;
 498        default:
 499                specific[0] = '\0';
 500        }
 501
 502        switch (tcode) {
 503        case 0xa:
 504                ohci_notice(ohci, "A%c %s, %s\n",
 505                            dir, evts[evt], tcodes[tcode]);
 506                break;
 507        case 0xe:
 508                ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
 509                            dir, evts[evt], header[1], header[2]);
 510                break;
 511        case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
 512                ohci_notice(ohci,
 513                            "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
 514                            dir, speed, header[0] >> 10 & 0x3f,
 515                            header[1] >> 16, header[0] >> 16, evts[evt],
 516                            tcodes[tcode], header[1] & 0xffff, header[2], specific);
 517                break;
 518        default:
 519                ohci_notice(ohci,
 520                            "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
 521                            dir, speed, header[0] >> 10 & 0x3f,
 522                            header[1] >> 16, header[0] >> 16, evts[evt],
 523                            tcodes[tcode], specific);
 524        }
 525}
 526
 527static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 528{
 529        writel(data, ohci->registers + offset);
 530}
 531
 532static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 533{
 534        return readl(ohci->registers + offset);
 535}
 536
 537static inline void flush_writes(const struct fw_ohci *ohci)
 538{
 539        /* Do a dummy read to flush writes. */
 540        reg_read(ohci, OHCI1394_Version);
 541}
 542
 543/*
 544 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 545 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 546 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 547 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 548 */
 549static int read_phy_reg(struct fw_ohci *ohci, int addr)
 550{
 551        u32 val;
 552        int i;
 553
 554        reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 555        for (i = 0; i < 3 + 100; i++) {
 556                val = reg_read(ohci, OHCI1394_PhyControl);
 557                if (!~val)
 558                        return -ENODEV; /* Card was ejected. */
 559
 560                if (val & OHCI1394_PhyControl_ReadDone)
 561                        return OHCI1394_PhyControl_ReadData(val);
 562
 563                /*
 564                 * Try a few times without waiting.  Sleeping is necessary
 565                 * only when the link/PHY interface is busy.
 566                 */
 567                if (i >= 3)
 568                        msleep(1);
 569        }
 570        ohci_err(ohci, "failed to read phy reg %d\n", addr);
 571        dump_stack();
 572
 573        return -EBUSY;
 574}
 575
 576static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 577{
 578        int i;
 579
 580        reg_write(ohci, OHCI1394_PhyControl,
 581                  OHCI1394_PhyControl_Write(addr, val));
 582        for (i = 0; i < 3 + 100; i++) {
 583                val = reg_read(ohci, OHCI1394_PhyControl);
 584                if (!~val)
 585                        return -ENODEV; /* Card was ejected. */
 586
 587                if (!(val & OHCI1394_PhyControl_WritePending))
 588                        return 0;
 589
 590                if (i >= 3)
 591                        msleep(1);
 592        }
 593        ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
 594        dump_stack();
 595
 596        return -EBUSY;
 597}
 598
 599static int update_phy_reg(struct fw_ohci *ohci, int addr,
 600                          int clear_bits, int set_bits)
 601{
 602        int ret = read_phy_reg(ohci, addr);
 603        if (ret < 0)
 604                return ret;
 605
 606        /*
 607         * The interrupt status bits are cleared by writing a one bit.
 608         * Avoid clearing them unless explicitly requested in set_bits.
 609         */
 610        if (addr == 5)
 611                clear_bits |= PHY_INT_STATUS_BITS;
 612
 613        return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 614}
 615
 616static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 617{
 618        int ret;
 619
 620        ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 621        if (ret < 0)
 622                return ret;
 623
 624        return read_phy_reg(ohci, addr);
 625}
 626
 627static int ohci_read_phy_reg(struct fw_card *card, int addr)
 628{
 629        struct fw_ohci *ohci = fw_ohci(card);
 630        int ret;
 631
 632        mutex_lock(&ohci->phy_reg_mutex);
 633        ret = read_phy_reg(ohci, addr);
 634        mutex_unlock(&ohci->phy_reg_mutex);
 635
 636        return ret;
 637}
 638
 639static int ohci_update_phy_reg(struct fw_card *card, int addr,
 640                               int clear_bits, int set_bits)
 641{
 642        struct fw_ohci *ohci = fw_ohci(card);
 643        int ret;
 644
 645        mutex_lock(&ohci->phy_reg_mutex);
 646        ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
 647        mutex_unlock(&ohci->phy_reg_mutex);
 648
 649        return ret;
 650}
 651
 652static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 653{
 654        return page_private(ctx->pages[i]);
 655}
 656
 657static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 658{
 659        struct descriptor *d;
 660
 661        d = &ctx->descriptors[index];
 662        d->branch_address  &= cpu_to_le32(~0xf);
 663        d->res_count       =  cpu_to_le16(PAGE_SIZE);
 664        d->transfer_status =  0;
 665
 666        wmb(); /* finish init of new descriptors before branch_address update */
 667        d = &ctx->descriptors[ctx->last_buffer_index];
 668        d->branch_address  |= cpu_to_le32(1);
 669
 670        ctx->last_buffer_index = index;
 671
 672        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 673}
 674
 675static void ar_context_release(struct ar_context *ctx)
 676{
 677        unsigned int i;
 678
 679        vunmap(ctx->buffer);
 680
 681        for (i = 0; i < AR_BUFFERS; i++)
 682                if (ctx->pages[i]) {
 683                        dma_unmap_page(ctx->ohci->card.device,
 684                                       ar_buffer_bus(ctx, i),
 685                                       PAGE_SIZE, DMA_FROM_DEVICE);
 686                        __free_page(ctx->pages[i]);
 687                }
 688}
 689
 690static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 691{
 692        struct fw_ohci *ohci = ctx->ohci;
 693
 694        if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 695                reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 696                flush_writes(ohci);
 697
 698                ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
 699        }
 700        /* FIXME: restart? */
 701}
 702
 703static inline unsigned int ar_next_buffer_index(unsigned int index)
 704{
 705        return (index + 1) % AR_BUFFERS;
 706}
 707
 708static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 709{
 710        return ar_next_buffer_index(ctx->last_buffer_index);
 711}
 712
 713/*
 714 * We search for the buffer that contains the last AR packet DMA data written
 715 * by the controller.
 716 */
 717static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 718                                                 unsigned int *buffer_offset)
 719{
 720        unsigned int i, next_i, last = ctx->last_buffer_index;
 721        __le16 res_count, next_res_count;
 722
 723        i = ar_first_buffer_index(ctx);
 724        res_count = READ_ONCE(ctx->descriptors[i].res_count);
 725
 726        /* A buffer that is not yet completely filled must be the last one. */
 727        while (i != last && res_count == 0) {
 728
 729                /* Peek at the next descriptor. */
 730                next_i = ar_next_buffer_index(i);
 731                rmb(); /* read descriptors in order */
 732                next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 733                /*
 734                 * If the next descriptor is still empty, we must stop at this
 735                 * descriptor.
 736                 */
 737                if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 738                        /*
 739                         * The exception is when the DMA data for one packet is
 740                         * split over three buffers; in this case, the middle
 741                         * buffer's descriptor might be never updated by the
 742                         * controller and look still empty, and we have to peek
 743                         * at the third one.
 744                         */
 745                        if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 746                                next_i = ar_next_buffer_index(next_i);
 747                                rmb();
 748                                next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
 749                                if (next_res_count != cpu_to_le16(PAGE_SIZE))
 750                                        goto next_buffer_is_active;
 751                        }
 752
 753                        break;
 754                }
 755
 756next_buffer_is_active:
 757                i = next_i;
 758                res_count = next_res_count;
 759        }
 760
 761        rmb(); /* read res_count before the DMA data */
 762
 763        *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 764        if (*buffer_offset > PAGE_SIZE) {
 765                *buffer_offset = 0;
 766                ar_context_abort(ctx, "corrupted descriptor");
 767        }
 768
 769        return i;
 770}
 771
 772static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 773                                    unsigned int end_buffer_index,
 774                                    unsigned int end_buffer_offset)
 775{
 776        unsigned int i;
 777
 778        i = ar_first_buffer_index(ctx);
 779        while (i != end_buffer_index) {
 780                dma_sync_single_for_cpu(ctx->ohci->card.device,
 781                                        ar_buffer_bus(ctx, i),
 782                                        PAGE_SIZE, DMA_FROM_DEVICE);
 783                i = ar_next_buffer_index(i);
 784        }
 785        if (end_buffer_offset > 0)
 786                dma_sync_single_for_cpu(ctx->ohci->card.device,
 787                                        ar_buffer_bus(ctx, i),
 788                                        end_buffer_offset, DMA_FROM_DEVICE);
 789}
 790
 791#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 792#define cond_le32_to_cpu(v) \
 793        (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
 794#else
 795#define cond_le32_to_cpu(v) le32_to_cpu(v)
 796#endif
 797
 798static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 799{
 800        struct fw_ohci *ohci = ctx->ohci;
 801        struct fw_packet p;
 802        u32 status, length, tcode;
 803        int evt;
 804
 805        p.header[0] = cond_le32_to_cpu(buffer[0]);
 806        p.header[1] = cond_le32_to_cpu(buffer[1]);
 807        p.header[2] = cond_le32_to_cpu(buffer[2]);
 808
 809        tcode = (p.header[0] >> 4) & 0x0f;
 810        switch (tcode) {
 811        case TCODE_WRITE_QUADLET_REQUEST:
 812        case TCODE_READ_QUADLET_RESPONSE:
 813                p.header[3] = (__force __u32) buffer[3];
 814                p.header_length = 16;
 815                p.payload_length = 0;
 816                break;
 817
 818        case TCODE_READ_BLOCK_REQUEST :
 819                p.header[3] = cond_le32_to_cpu(buffer[3]);
 820                p.header_length = 16;
 821                p.payload_length = 0;
 822                break;
 823
 824        case TCODE_WRITE_BLOCK_REQUEST:
 825        case TCODE_READ_BLOCK_RESPONSE:
 826        case TCODE_LOCK_REQUEST:
 827        case TCODE_LOCK_RESPONSE:
 828                p.header[3] = cond_le32_to_cpu(buffer[3]);
 829                p.header_length = 16;
 830                p.payload_length = p.header[3] >> 16;
 831                if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 832                        ar_context_abort(ctx, "invalid packet length");
 833                        return NULL;
 834                }
 835                break;
 836
 837        case TCODE_WRITE_RESPONSE:
 838        case TCODE_READ_QUADLET_REQUEST:
 839        case OHCI_TCODE_PHY_PACKET:
 840                p.header_length = 12;
 841                p.payload_length = 0;
 842                break;
 843
 844        default:
 845                ar_context_abort(ctx, "invalid tcode");
 846                return NULL;
 847        }
 848
 849        p.payload = (void *) buffer + p.header_length;
 850
 851        /* FIXME: What to do about evt_* errors? */
 852        length = (p.header_length + p.payload_length + 3) / 4;
 853        status = cond_le32_to_cpu(buffer[length]);
 854        evt    = (status >> 16) & 0x1f;
 855
 856        p.ack        = evt - 16;
 857        p.speed      = (status >> 21) & 0x7;
 858        p.timestamp  = status & 0xffff;
 859        p.generation = ohci->request_generation;
 860
 861        log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
 862
 863        /*
 864         * Several controllers, notably from NEC and VIA, forget to
 865         * write ack_complete status at PHY packet reception.
 866         */
 867        if (evt == OHCI1394_evt_no_status &&
 868            (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
 869                p.ack = ACK_COMPLETE;
 870
 871        /*
 872         * The OHCI bus reset handler synthesizes a PHY packet with
 873         * the new generation number when a bus reset happens (see
 874         * section 8.4.2.3).  This helps us determine when a request
 875         * was received and make sure we send the response in the same
 876         * generation.  We only need this for requests; for responses
 877         * we use the unique tlabel for finding the matching
 878         * request.
 879         *
 880         * Alas some chips sometimes emit bus reset packets with a
 881         * wrong generation.  We set the correct generation for these
 882         * at a slightly incorrect time (in bus_reset_work).
 883         */
 884        if (evt == OHCI1394_evt_bus_reset) {
 885                if (!(ohci->quirks & QUIRK_RESET_PACKET))
 886                        ohci->request_generation = (p.header[2] >> 16) & 0xff;
 887        } else if (ctx == &ohci->ar_request_ctx) {
 888                fw_core_handle_request(&ohci->card, &p);
 889        } else {
 890                fw_core_handle_response(&ohci->card, &p);
 891        }
 892
 893        return buffer + length + 1;
 894}
 895
 896static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 897{
 898        void *next;
 899
 900        while (p < end) {
 901                next = handle_ar_packet(ctx, p);
 902                if (!next)
 903                        return p;
 904                p = next;
 905        }
 906
 907        return p;
 908}
 909
 910static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
 911{
 912        unsigned int i;
 913
 914        i = ar_first_buffer_index(ctx);
 915        while (i != end_buffer) {
 916                dma_sync_single_for_device(ctx->ohci->card.device,
 917                                           ar_buffer_bus(ctx, i),
 918                                           PAGE_SIZE, DMA_FROM_DEVICE);
 919                ar_context_link_page(ctx, i);
 920                i = ar_next_buffer_index(i);
 921        }
 922}
 923
 924static void ar_context_tasklet(unsigned long data)
 925{
 926        struct ar_context *ctx = (struct ar_context *)data;
 927        unsigned int end_buffer_index, end_buffer_offset;
 928        void *p, *end;
 929
 930        p = ctx->pointer;
 931        if (!p)
 932                return;
 933
 934        end_buffer_index = ar_search_last_active_buffer(ctx,
 935                                                        &end_buffer_offset);
 936        ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
 937        end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
 938
 939        if (end_buffer_index < ar_first_buffer_index(ctx)) {
 940                /*
 941                 * The filled part of the overall buffer wraps around; handle
 942                 * all packets up to the buffer end here.  If the last packet
 943                 * wraps around, its tail will be visible after the buffer end
 944                 * because the buffer start pages are mapped there again.
 945                 */
 946                void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
 947                p = handle_ar_packets(ctx, p, buffer_end);
 948                if (p < buffer_end)
 949                        goto error;
 950                /* adjust p to point back into the actual buffer */
 951                p -= AR_BUFFERS * PAGE_SIZE;
 952        }
 953
 954        p = handle_ar_packets(ctx, p, end);
 955        if (p != end) {
 956                if (p > end)
 957                        ar_context_abort(ctx, "inconsistent descriptor");
 958                goto error;
 959        }
 960
 961        ctx->pointer = p;
 962        ar_recycle_buffers(ctx, end_buffer_index);
 963
 964        return;
 965
 966error:
 967        ctx->pointer = NULL;
 968}
 969
 970static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
 971                           unsigned int descriptors_offset, u32 regs)
 972{
 973        unsigned int i;
 974        dma_addr_t dma_addr;
 975        struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
 976        struct descriptor *d;
 977
 978        ctx->regs        = regs;
 979        ctx->ohci        = ohci;
 980        tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
 981
 982        for (i = 0; i < AR_BUFFERS; i++) {
 983                ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
 984                if (!ctx->pages[i])
 985                        goto out_of_memory;
 986                dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
 987                                        0, PAGE_SIZE, DMA_FROM_DEVICE);
 988                if (dma_mapping_error(ohci->card.device, dma_addr)) {
 989                        __free_page(ctx->pages[i]);
 990                        ctx->pages[i] = NULL;
 991                        goto out_of_memory;
 992                }
 993                set_page_private(ctx->pages[i], dma_addr);
 994        }
 995
 996        for (i = 0; i < AR_BUFFERS; i++)
 997                pages[i]              = ctx->pages[i];
 998        for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
 999                pages[AR_BUFFERS + i] = ctx->pages[i];
1000        ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1001        if (!ctx->buffer)
1002                goto out_of_memory;
1003
1004        ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1005        ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1006
1007        for (i = 0; i < AR_BUFFERS; i++) {
1008                d = &ctx->descriptors[i];
1009                d->req_count      = cpu_to_le16(PAGE_SIZE);
1010                d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1011                                                DESCRIPTOR_STATUS |
1012                                                DESCRIPTOR_BRANCH_ALWAYS);
1013                d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1014                d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1015                        ar_next_buffer_index(i) * sizeof(struct descriptor));
1016        }
1017
1018        return 0;
1019
1020out_of_memory:
1021        ar_context_release(ctx);
1022
1023        return -ENOMEM;
1024}
1025
1026static void ar_context_run(struct ar_context *ctx)
1027{
1028        unsigned int i;
1029
1030        for (i = 0; i < AR_BUFFERS; i++)
1031                ar_context_link_page(ctx, i);
1032
1033        ctx->pointer = ctx->buffer;
1034
1035        reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1036        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1037}
1038
1039static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1040{
1041        __le16 branch;
1042
1043        branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1044
1045        /* figure out which descriptor the branch address goes in */
1046        if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1047                return d;
1048        else
1049                return d + z - 1;
1050}
1051
1052static void context_tasklet(unsigned long data)
1053{
1054        struct context *ctx = (struct context *) data;
1055        struct descriptor *d, *last;
1056        u32 address;
1057        int z;
1058        struct descriptor_buffer *desc;
1059
1060        desc = list_entry(ctx->buffer_list.next,
1061                        struct descriptor_buffer, list);
1062        last = ctx->last;
1063        while (last->branch_address != 0) {
1064                struct descriptor_buffer *old_desc = desc;
1065                address = le32_to_cpu(last->branch_address);
1066                z = address & 0xf;
1067                address &= ~0xf;
1068                ctx->current_bus = address;
1069
1070                /* If the branch address points to a buffer outside of the
1071                 * current buffer, advance to the next buffer. */
1072                if (address < desc->buffer_bus ||
1073                                address >= desc->buffer_bus + desc->used)
1074                        desc = list_entry(desc->list.next,
1075                                        struct descriptor_buffer, list);
1076                d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1077                last = find_branch_descriptor(d, z);
1078
1079                if (!ctx->callback(ctx, d, last))
1080                        break;
1081
1082                if (old_desc != desc) {
1083                        /* If we've advanced to the next buffer, move the
1084                         * previous buffer to the free list. */
1085                        unsigned long flags;
1086                        old_desc->used = 0;
1087                        spin_lock_irqsave(&ctx->ohci->lock, flags);
1088                        list_move_tail(&old_desc->list, &ctx->buffer_list);
1089                        spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1090                }
1091                ctx->last = last;
1092        }
1093}
1094
1095/*
1096 * Allocate a new buffer and add it to the list of free buffers for this
1097 * context.  Must be called with ohci->lock held.
1098 */
1099static int context_add_buffer(struct context *ctx)
1100{
1101        struct descriptor_buffer *desc;
1102        dma_addr_t uninitialized_var(bus_addr);
1103        int offset;
1104
1105        /*
1106         * 16MB of descriptors should be far more than enough for any DMA
1107         * program.  This will catch run-away userspace or DoS attacks.
1108         */
1109        if (ctx->total_allocation >= 16*1024*1024)
1110                return -ENOMEM;
1111
1112        desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1113                        &bus_addr, GFP_ATOMIC);
1114        if (!desc)
1115                return -ENOMEM;
1116
1117        offset = (void *)&desc->buffer - (void *)desc;
1118        /*
1119         * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1120         * for descriptors, even 0x10-byte ones. This can cause page faults when
1121         * an IOMMU is in use and the oversized read crosses a page boundary.
1122         * Work around this by always leaving at least 0x10 bytes of padding.
1123         */
1124        desc->buffer_size = PAGE_SIZE - offset - 0x10;
1125        desc->buffer_bus = bus_addr + offset;
1126        desc->used = 0;
1127
1128        list_add_tail(&desc->list, &ctx->buffer_list);
1129        ctx->total_allocation += PAGE_SIZE;
1130
1131        return 0;
1132}
1133
1134static int context_init(struct context *ctx, struct fw_ohci *ohci,
1135                        u32 regs, descriptor_callback_t callback)
1136{
1137        ctx->ohci = ohci;
1138        ctx->regs = regs;
1139        ctx->total_allocation = 0;
1140
1141        INIT_LIST_HEAD(&ctx->buffer_list);
1142        if (context_add_buffer(ctx) < 0)
1143                return -ENOMEM;
1144
1145        ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1146                        struct descriptor_buffer, list);
1147
1148        tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1149        ctx->callback = callback;
1150
1151        /*
1152         * We put a dummy descriptor in the buffer that has a NULL
1153         * branch address and looks like it's been sent.  That way we
1154         * have a descriptor to append DMA programs to.
1155         */
1156        memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1157        ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1158        ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1159        ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1160        ctx->last = ctx->buffer_tail->buffer;
1161        ctx->prev = ctx->buffer_tail->buffer;
1162        ctx->prev_z = 1;
1163
1164        return 0;
1165}
1166
1167static void context_release(struct context *ctx)
1168{
1169        struct fw_card *card = &ctx->ohci->card;
1170        struct descriptor_buffer *desc, *tmp;
1171
1172        list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1173                dma_free_coherent(card->device, PAGE_SIZE, desc,
1174                        desc->buffer_bus -
1175                        ((void *)&desc->buffer - (void *)desc));
1176}
1177
1178/* Must be called with ohci->lock held */
1179static struct descriptor *context_get_descriptors(struct context *ctx,
1180                                                  int z, dma_addr_t *d_bus)
1181{
1182        struct descriptor *d = NULL;
1183        struct descriptor_buffer *desc = ctx->buffer_tail;
1184
1185        if (z * sizeof(*d) > desc->buffer_size)
1186                return NULL;
1187
1188        if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1189                /* No room for the descriptor in this buffer, so advance to the
1190                 * next one. */
1191
1192                if (desc->list.next == &ctx->buffer_list) {
1193                        /* If there is no free buffer next in the list,
1194                         * allocate one. */
1195                        if (context_add_buffer(ctx) < 0)
1196                                return NULL;
1197                }
1198                desc = list_entry(desc->list.next,
1199                                struct descriptor_buffer, list);
1200                ctx->buffer_tail = desc;
1201        }
1202
1203        d = desc->buffer + desc->used / sizeof(*d);
1204        memset(d, 0, z * sizeof(*d));
1205        *d_bus = desc->buffer_bus + desc->used;
1206
1207        return d;
1208}
1209
1210static void context_run(struct context *ctx, u32 extra)
1211{
1212        struct fw_ohci *ohci = ctx->ohci;
1213
1214        reg_write(ohci, COMMAND_PTR(ctx->regs),
1215                  le32_to_cpu(ctx->last->branch_address));
1216        reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1217        reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1218        ctx->running = true;
1219        flush_writes(ohci);
1220}
1221
1222static void context_append(struct context *ctx,
1223                           struct descriptor *d, int z, int extra)
1224{
1225        dma_addr_t d_bus;
1226        struct descriptor_buffer *desc = ctx->buffer_tail;
1227        struct descriptor *d_branch;
1228
1229        d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1230
1231        desc->used += (z + extra) * sizeof(*d);
1232
1233        wmb(); /* finish init of new descriptors before branch_address update */
1234
1235        d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1236        d_branch->branch_address = cpu_to_le32(d_bus | z);
1237
1238        /*
1239         * VT6306 incorrectly checks only the single descriptor at the
1240         * CommandPtr when the wake bit is written, so if it's a
1241         * multi-descriptor block starting with an INPUT_MORE, put a copy of
1242         * the branch address in the first descriptor.
1243         *
1244         * Not doing this for transmit contexts since not sure how it interacts
1245         * with skip addresses.
1246         */
1247        if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1248            d_branch != ctx->prev &&
1249            (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1250             cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1251                ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1252        }
1253
1254        ctx->prev = d;
1255        ctx->prev_z = z;
1256}
1257
1258static void context_stop(struct context *ctx)
1259{
1260        struct fw_ohci *ohci = ctx->ohci;
1261        u32 reg;
1262        int i;
1263
1264        reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1265        ctx->running = false;
1266
1267        for (i = 0; i < 1000; i++) {
1268                reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1269                if ((reg & CONTEXT_ACTIVE) == 0)
1270                        return;
1271
1272                if (i)
1273                        udelay(10);
1274        }
1275        ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1276}
1277
1278struct driver_data {
1279        u8 inline_data[8];
1280        struct fw_packet *packet;
1281};
1282
1283/*
1284 * This function apppends a packet to the DMA queue for transmission.
1285 * Must always be called with the ochi->lock held to ensure proper
1286 * generation handling and locking around packet queue manipulation.
1287 */
1288static int at_context_queue_packet(struct context *ctx,
1289                                   struct fw_packet *packet)
1290{
1291        struct fw_ohci *ohci = ctx->ohci;
1292        dma_addr_t d_bus, uninitialized_var(payload_bus);
1293        struct driver_data *driver_data;
1294        struct descriptor *d, *last;
1295        __le32 *header;
1296        int z, tcode;
1297
1298        d = context_get_descriptors(ctx, 4, &d_bus);
1299        if (d == NULL) {
1300                packet->ack = RCODE_SEND_ERROR;
1301                return -1;
1302        }
1303
1304        d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1305        d[0].res_count = cpu_to_le16(packet->timestamp);
1306
1307        /*
1308         * The DMA format for asynchronous link packets is different
1309         * from the IEEE1394 layout, so shift the fields around
1310         * accordingly.
1311         */
1312
1313        tcode = (packet->header[0] >> 4) & 0x0f;
1314        header = (__le32 *) &d[1];
1315        switch (tcode) {
1316        case TCODE_WRITE_QUADLET_REQUEST:
1317        case TCODE_WRITE_BLOCK_REQUEST:
1318        case TCODE_WRITE_RESPONSE:
1319        case TCODE_READ_QUADLET_REQUEST:
1320        case TCODE_READ_BLOCK_REQUEST:
1321        case TCODE_READ_QUADLET_RESPONSE:
1322        case TCODE_READ_BLOCK_RESPONSE:
1323        case TCODE_LOCK_REQUEST:
1324        case TCODE_LOCK_RESPONSE:
1325                header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1326                                        (packet->speed << 16));
1327                header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1328                                        (packet->header[0] & 0xffff0000));
1329                header[2] = cpu_to_le32(packet->header[2]);
1330
1331                if (TCODE_IS_BLOCK_PACKET(tcode))
1332                        header[3] = cpu_to_le32(packet->header[3]);
1333                else
1334                        header[3] = (__force __le32) packet->header[3];
1335
1336                d[0].req_count = cpu_to_le16(packet->header_length);
1337                break;
1338
1339        case TCODE_LINK_INTERNAL:
1340                header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1341                                        (packet->speed << 16));
1342                header[1] = cpu_to_le32(packet->header[1]);
1343                header[2] = cpu_to_le32(packet->header[2]);
1344                d[0].req_count = cpu_to_le16(12);
1345
1346                if (is_ping_packet(&packet->header[1]))
1347                        d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1348                break;
1349
1350        case TCODE_STREAM_DATA:
1351                header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1352                                        (packet->speed << 16));
1353                header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1354                d[0].req_count = cpu_to_le16(8);
1355                break;
1356
1357        default:
1358                /* BUG(); */
1359                packet->ack = RCODE_SEND_ERROR;
1360                return -1;
1361        }
1362
1363        BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1364        driver_data = (struct driver_data *) &d[3];
1365        driver_data->packet = packet;
1366        packet->driver_data = driver_data;
1367
1368        if (packet->payload_length > 0) {
1369                if (packet->payload_length > sizeof(driver_data->inline_data)) {
1370                        payload_bus = dma_map_single(ohci->card.device,
1371                                                     packet->payload,
1372                                                     packet->payload_length,
1373                                                     DMA_TO_DEVICE);
1374                        if (dma_mapping_error(ohci->card.device, payload_bus)) {
1375                                packet->ack = RCODE_SEND_ERROR;
1376                                return -1;
1377                        }
1378                        packet->payload_bus     = payload_bus;
1379                        packet->payload_mapped  = true;
1380                } else {
1381                        memcpy(driver_data->inline_data, packet->payload,
1382                               packet->payload_length);
1383                        payload_bus = d_bus + 3 * sizeof(*d);
1384                }
1385
1386                d[2].req_count    = cpu_to_le16(packet->payload_length);
1387                d[2].data_address = cpu_to_le32(payload_bus);
1388                last = &d[2];
1389                z = 3;
1390        } else {
1391                last = &d[0];
1392                z = 2;
1393        }
1394
1395        last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1396                                     DESCRIPTOR_IRQ_ALWAYS |
1397                                     DESCRIPTOR_BRANCH_ALWAYS);
1398
1399        /* FIXME: Document how the locking works. */
1400        if (ohci->generation != packet->generation) {
1401                if (packet->payload_mapped)
1402                        dma_unmap_single(ohci->card.device, payload_bus,
1403                                         packet->payload_length, DMA_TO_DEVICE);
1404                packet->ack = RCODE_GENERATION;
1405                return -1;
1406        }
1407
1408        context_append(ctx, d, z, 4 - z);
1409
1410        if (ctx->running)
1411                reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1412        else
1413                context_run(ctx, 0);
1414
1415        return 0;
1416}
1417
1418static void at_context_flush(struct context *ctx)
1419{
1420        tasklet_disable(&ctx->tasklet);
1421
1422        ctx->flushing = true;
1423        context_tasklet((unsigned long)ctx);
1424        ctx->flushing = false;
1425
1426        tasklet_enable(&ctx->tasklet);
1427}
1428
1429static int handle_at_packet(struct context *context,
1430                            struct descriptor *d,
1431                            struct descriptor *last)
1432{
1433        struct driver_data *driver_data;
1434        struct fw_packet *packet;
1435        struct fw_ohci *ohci = context->ohci;
1436        int evt;
1437
1438        if (last->transfer_status == 0 && !context->flushing)
1439                /* This descriptor isn't done yet, stop iteration. */
1440                return 0;
1441
1442        driver_data = (struct driver_data *) &d[3];
1443        packet = driver_data->packet;
1444        if (packet == NULL)
1445                /* This packet was cancelled, just continue. */
1446                return 1;
1447
1448        if (packet->payload_mapped)
1449                dma_unmap_single(ohci->card.device, packet->payload_bus,
1450                                 packet->payload_length, DMA_TO_DEVICE);
1451
1452        evt = le16_to_cpu(last->transfer_status) & 0x1f;
1453        packet->timestamp = le16_to_cpu(last->res_count);
1454
1455        log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1456
1457        switch (evt) {
1458        case OHCI1394_evt_timeout:
1459                /* Async response transmit timed out. */
1460                packet->ack = RCODE_CANCELLED;
1461                break;
1462
1463        case OHCI1394_evt_flushed:
1464                /*
1465                 * The packet was flushed should give same error as
1466                 * when we try to use a stale generation count.
1467                 */
1468                packet->ack = RCODE_GENERATION;
1469                break;
1470
1471        case OHCI1394_evt_missing_ack:
1472                if (context->flushing)
1473                        packet->ack = RCODE_GENERATION;
1474                else {
1475                        /*
1476                         * Using a valid (current) generation count, but the
1477                         * node is not on the bus or not sending acks.
1478                         */
1479                        packet->ack = RCODE_NO_ACK;
1480                }
1481                break;
1482
1483        case ACK_COMPLETE + 0x10:
1484        case ACK_PENDING + 0x10:
1485        case ACK_BUSY_X + 0x10:
1486        case ACK_BUSY_A + 0x10:
1487        case ACK_BUSY_B + 0x10:
1488        case ACK_DATA_ERROR + 0x10:
1489        case ACK_TYPE_ERROR + 0x10:
1490                packet->ack = evt - 0x10;
1491                break;
1492
1493        case OHCI1394_evt_no_status:
1494                if (context->flushing) {
1495                        packet->ack = RCODE_GENERATION;
1496                        break;
1497                }
1498                /* fall through */
1499
1500        default:
1501                packet->ack = RCODE_SEND_ERROR;
1502                break;
1503        }
1504
1505        packet->callback(packet, &ohci->card, packet->ack);
1506
1507        return 1;
1508}
1509
1510#define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1511#define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1512#define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1513#define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1514#define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1515
1516static void handle_local_rom(struct fw_ohci *ohci,
1517                             struct fw_packet *packet, u32 csr)
1518{
1519        struct fw_packet response;
1520        int tcode, length, i;
1521
1522        tcode = HEADER_GET_TCODE(packet->header[0]);
1523        if (TCODE_IS_BLOCK_PACKET(tcode))
1524                length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1525        else
1526                length = 4;
1527
1528        i = csr - CSR_CONFIG_ROM;
1529        if (i + length > CONFIG_ROM_SIZE) {
1530                fw_fill_response(&response, packet->header,
1531                                 RCODE_ADDRESS_ERROR, NULL, 0);
1532        } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1533                fw_fill_response(&response, packet->header,
1534                                 RCODE_TYPE_ERROR, NULL, 0);
1535        } else {
1536                fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1537                                 (void *) ohci->config_rom + i, length);
1538        }
1539
1540        fw_core_handle_response(&ohci->card, &response);
1541}
1542
1543static void handle_local_lock(struct fw_ohci *ohci,
1544                              struct fw_packet *packet, u32 csr)
1545{
1546        struct fw_packet response;
1547        int tcode, length, ext_tcode, sel, try;
1548        __be32 *payload, lock_old;
1549        u32 lock_arg, lock_data;
1550
1551        tcode = HEADER_GET_TCODE(packet->header[0]);
1552        length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1553        payload = packet->payload;
1554        ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1555
1556        if (tcode == TCODE_LOCK_REQUEST &&
1557            ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1558                lock_arg = be32_to_cpu(payload[0]);
1559                lock_data = be32_to_cpu(payload[1]);
1560        } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1561                lock_arg = 0;
1562                lock_data = 0;
1563        } else {
1564                fw_fill_response(&response, packet->header,
1565                                 RCODE_TYPE_ERROR, NULL, 0);
1566                goto out;
1567        }
1568
1569        sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1570        reg_write(ohci, OHCI1394_CSRData, lock_data);
1571        reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1572        reg_write(ohci, OHCI1394_CSRControl, sel);
1573
1574        for (try = 0; try < 20; try++)
1575                if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1576                        lock_old = cpu_to_be32(reg_read(ohci,
1577                                                        OHCI1394_CSRData));
1578                        fw_fill_response(&response, packet->header,
1579                                         RCODE_COMPLETE,
1580                                         &lock_old, sizeof(lock_old));
1581                        goto out;
1582                }
1583
1584        ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1585        fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1586
1587 out:
1588        fw_core_handle_response(&ohci->card, &response);
1589}
1590
1591static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1592{
1593        u64 offset, csr;
1594
1595        if (ctx == &ctx->ohci->at_request_ctx) {
1596                packet->ack = ACK_PENDING;
1597                packet->callback(packet, &ctx->ohci->card, packet->ack);
1598        }
1599
1600        offset =
1601                ((unsigned long long)
1602                 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1603                packet->header[2];
1604        csr = offset - CSR_REGISTER_BASE;
1605
1606        /* Handle config rom reads. */
1607        if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1608                handle_local_rom(ctx->ohci, packet, csr);
1609        else switch (csr) {
1610        case CSR_BUS_MANAGER_ID:
1611        case CSR_BANDWIDTH_AVAILABLE:
1612        case CSR_CHANNELS_AVAILABLE_HI:
1613        case CSR_CHANNELS_AVAILABLE_LO:
1614                handle_local_lock(ctx->ohci, packet, csr);
1615                break;
1616        default:
1617                if (ctx == &ctx->ohci->at_request_ctx)
1618                        fw_core_handle_request(&ctx->ohci->card, packet);
1619                else
1620                        fw_core_handle_response(&ctx->ohci->card, packet);
1621                break;
1622        }
1623
1624        if (ctx == &ctx->ohci->at_response_ctx) {
1625                packet->ack = ACK_COMPLETE;
1626                packet->callback(packet, &ctx->ohci->card, packet->ack);
1627        }
1628}
1629
1630static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1631{
1632        unsigned long flags;
1633        int ret;
1634
1635        spin_lock_irqsave(&ctx->ohci->lock, flags);
1636
1637        if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1638            ctx->ohci->generation == packet->generation) {
1639                spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1640                handle_local_request(ctx, packet);
1641                return;
1642        }
1643
1644        ret = at_context_queue_packet(ctx, packet);
1645        spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1646
1647        if (ret < 0)
1648                packet->callback(packet, &ctx->ohci->card, packet->ack);
1649
1650}
1651
1652static void detect_dead_context(struct fw_ohci *ohci,
1653                                const char *name, unsigned int regs)
1654{
1655        u32 ctl;
1656
1657        ctl = reg_read(ohci, CONTROL_SET(regs));
1658        if (ctl & CONTEXT_DEAD)
1659                ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1660                        name, evts[ctl & 0x1f]);
1661}
1662
1663static void handle_dead_contexts(struct fw_ohci *ohci)
1664{
1665        unsigned int i;
1666        char name[8];
1667
1668        detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1669        detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1670        detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1671        detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1672        for (i = 0; i < 32; ++i) {
1673                if (!(ohci->it_context_support & (1 << i)))
1674                        continue;
1675                sprintf(name, "IT%u", i);
1676                detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1677        }
1678        for (i = 0; i < 32; ++i) {
1679                if (!(ohci->ir_context_support & (1 << i)))
1680                        continue;
1681                sprintf(name, "IR%u", i);
1682                detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1683        }
1684        /* TODO: maybe try to flush and restart the dead contexts */
1685}
1686
1687static u32 cycle_timer_ticks(u32 cycle_timer)
1688{
1689        u32 ticks;
1690
1691        ticks = cycle_timer & 0xfff;
1692        ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1693        ticks += (3072 * 8000) * (cycle_timer >> 25);
1694
1695        return ticks;
1696}
1697
1698/*
1699 * Some controllers exhibit one or more of the following bugs when updating the
1700 * iso cycle timer register:
1701 *  - When the lowest six bits are wrapping around to zero, a read that happens
1702 *    at the same time will return garbage in the lowest ten bits.
1703 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1704 *    not incremented for about 60 ns.
1705 *  - Occasionally, the entire register reads zero.
1706 *
1707 * To catch these, we read the register three times and ensure that the
1708 * difference between each two consecutive reads is approximately the same, i.e.
1709 * less than twice the other.  Furthermore, any negative difference indicates an
1710 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1711 * execute, so we have enough precision to compute the ratio of the differences.)
1712 */
1713static u32 get_cycle_time(struct fw_ohci *ohci)
1714{
1715        u32 c0, c1, c2;
1716        u32 t0, t1, t2;
1717        s32 diff01, diff12;
1718        int i;
1719
1720        c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1721
1722        if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1723                i = 0;
1724                c1 = c2;
1725                c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1726                do {
1727                        c0 = c1;
1728                        c1 = c2;
1729                        c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1730                        t0 = cycle_timer_ticks(c0);
1731                        t1 = cycle_timer_ticks(c1);
1732                        t2 = cycle_timer_ticks(c2);
1733                        diff01 = t1 - t0;
1734                        diff12 = t2 - t1;
1735                } while ((diff01 <= 0 || diff12 <= 0 ||
1736                          diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1737                         && i++ < 20);
1738        }
1739
1740        return c2;
1741}
1742
1743/*
1744 * This function has to be called at least every 64 seconds.  The bus_time
1745 * field stores not only the upper 25 bits of the BUS_TIME register but also
1746 * the most significant bit of the cycle timer in bit 6 so that we can detect
1747 * changes in this bit.
1748 */
1749static u32 update_bus_time(struct fw_ohci *ohci)
1750{
1751        u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1752
1753        if (unlikely(!ohci->bus_time_running)) {
1754                reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1755                ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1756                                 (cycle_time_seconds & 0x40);
1757                ohci->bus_time_running = true;
1758        }
1759
1760        if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1761                ohci->bus_time += 0x40;
1762
1763        return ohci->bus_time | cycle_time_seconds;
1764}
1765
1766static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1767{
1768        int reg;
1769
1770        mutex_lock(&ohci->phy_reg_mutex);
1771        reg = write_phy_reg(ohci, 7, port_index);
1772        if (reg >= 0)
1773                reg = read_phy_reg(ohci, 8);
1774        mutex_unlock(&ohci->phy_reg_mutex);
1775        if (reg < 0)
1776                return reg;
1777
1778        switch (reg & 0x0f) {
1779        case 0x06:
1780                return 2;       /* is child node (connected to parent node) */
1781        case 0x0e:
1782                return 3;       /* is parent node (connected to child node) */
1783        }
1784        return 1;               /* not connected */
1785}
1786
1787static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1788        int self_id_count)
1789{
1790        int i;
1791        u32 entry;
1792
1793        for (i = 0; i < self_id_count; i++) {
1794                entry = ohci->self_id_buffer[i];
1795                if ((self_id & 0xff000000) == (entry & 0xff000000))
1796                        return -1;
1797                if ((self_id & 0xff000000) < (entry & 0xff000000))
1798                        return i;
1799        }
1800        return i;
1801}
1802
1803static int initiated_reset(struct fw_ohci *ohci)
1804{
1805        int reg;
1806        int ret = 0;
1807
1808        mutex_lock(&ohci->phy_reg_mutex);
1809        reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1810        if (reg >= 0) {
1811                reg = read_phy_reg(ohci, 8);
1812                reg |= 0x40;
1813                reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1814                if (reg >= 0) {
1815                        reg = read_phy_reg(ohci, 12); /* read register 12 */
1816                        if (reg >= 0) {
1817                                if ((reg & 0x08) == 0x08) {
1818                                        /* bit 3 indicates "initiated reset" */
1819                                        ret = 0x2;
1820                                }
1821                        }
1822                }
1823        }
1824        mutex_unlock(&ohci->phy_reg_mutex);
1825        return ret;
1826}
1827
1828/*
1829 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1830 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1831 * Construct the selfID from phy register contents.
1832 */
1833static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1834{
1835        int reg, i, pos, status;
1836        /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1837        u32 self_id = 0x8040c800;
1838
1839        reg = reg_read(ohci, OHCI1394_NodeID);
1840        if (!(reg & OHCI1394_NodeID_idValid)) {
1841                ohci_notice(ohci,
1842                            "node ID not valid, new bus reset in progress\n");
1843                return -EBUSY;
1844        }
1845        self_id |= ((reg & 0x3f) << 24); /* phy ID */
1846
1847        reg = ohci_read_phy_reg(&ohci->card, 4);
1848        if (reg < 0)
1849                return reg;
1850        self_id |= ((reg & 0x07) << 8); /* power class */
1851
1852        reg = ohci_read_phy_reg(&ohci->card, 1);
1853        if (reg < 0)
1854                return reg;
1855        self_id |= ((reg & 0x3f) << 16); /* gap count */
1856
1857        for (i = 0; i < 3; i++) {
1858                status = get_status_for_port(ohci, i);
1859                if (status < 0)
1860                        return status;
1861                self_id |= ((status & 0x3) << (6 - (i * 2)));
1862        }
1863
1864        self_id |= initiated_reset(ohci);
1865
1866        pos = get_self_id_pos(ohci, self_id, self_id_count);
1867        if (pos >= 0) {
1868                memmove(&(ohci->self_id_buffer[pos+1]),
1869                        &(ohci->self_id_buffer[pos]),
1870                        (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1871                ohci->self_id_buffer[pos] = self_id;
1872                self_id_count++;
1873        }
1874        return self_id_count;
1875}
1876
1877static void bus_reset_work(struct work_struct *work)
1878{
1879        struct fw_ohci *ohci =
1880                container_of(work, struct fw_ohci, bus_reset_work);
1881        int self_id_count, generation, new_generation, i, j;
1882        u32 reg;
1883        void *free_rom = NULL;
1884        dma_addr_t free_rom_bus = 0;
1885        bool is_new_root;
1886
1887        reg = reg_read(ohci, OHCI1394_NodeID);
1888        if (!(reg & OHCI1394_NodeID_idValid)) {
1889                ohci_notice(ohci,
1890                            "node ID not valid, new bus reset in progress\n");
1891                return;
1892        }
1893        if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1894                ohci_notice(ohci, "malconfigured bus\n");
1895                return;
1896        }
1897        ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1898                               OHCI1394_NodeID_nodeNumber);
1899
1900        is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1901        if (!(ohci->is_root && is_new_root))
1902                reg_write(ohci, OHCI1394_LinkControlSet,
1903                          OHCI1394_LinkControl_cycleMaster);
1904        ohci->is_root = is_new_root;
1905
1906        reg = reg_read(ohci, OHCI1394_SelfIDCount);
1907        if (reg & OHCI1394_SelfIDCount_selfIDError) {
1908                ohci_notice(ohci, "self ID receive error\n");
1909                return;
1910        }
1911        /*
1912         * The count in the SelfIDCount register is the number of
1913         * bytes in the self ID receive buffer.  Since we also receive
1914         * the inverted quadlets and a header quadlet, we shift one
1915         * bit extra to get the actual number of self IDs.
1916         */
1917        self_id_count = (reg >> 3) & 0xff;
1918
1919        if (self_id_count > 252) {
1920                ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1921                return;
1922        }
1923
1924        generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1925        rmb();
1926
1927        for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1928                u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1929                u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1930
1931                if (id != ~id2) {
1932                        /*
1933                         * If the invalid data looks like a cycle start packet,
1934                         * it's likely to be the result of the cycle master
1935                         * having a wrong gap count.  In this case, the self IDs
1936                         * so far are valid and should be processed so that the
1937                         * bus manager can then correct the gap count.
1938                         */
1939                        if (id == 0xffff008f) {
1940                                ohci_notice(ohci, "ignoring spurious self IDs\n");
1941                                self_id_count = j;
1942                                break;
1943                        }
1944
1945                        ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1946                                    j, self_id_count, id, id2);
1947                        return;
1948                }
1949                ohci->self_id_buffer[j] = id;
1950        }
1951
1952        if (ohci->quirks & QUIRK_TI_SLLZ059) {
1953                self_id_count = find_and_insert_self_id(ohci, self_id_count);
1954                if (self_id_count < 0) {
1955                        ohci_notice(ohci,
1956                                    "could not construct local self ID\n");
1957                        return;
1958                }
1959        }
1960
1961        if (self_id_count == 0) {
1962                ohci_notice(ohci, "no self IDs\n");
1963                return;
1964        }
1965        rmb();
1966
1967        /*
1968         * Check the consistency of the self IDs we just read.  The
1969         * problem we face is that a new bus reset can start while we
1970         * read out the self IDs from the DMA buffer. If this happens,
1971         * the DMA buffer will be overwritten with new self IDs and we
1972         * will read out inconsistent data.  The OHCI specification
1973         * (section 11.2) recommends a technique similar to
1974         * linux/seqlock.h, where we remember the generation of the
1975         * self IDs in the buffer before reading them out and compare
1976         * it to the current generation after reading them out.  If
1977         * the two generations match we know we have a consistent set
1978         * of self IDs.
1979         */
1980
1981        new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1982        if (new_generation != generation) {
1983                ohci_notice(ohci, "new bus reset, discarding self ids\n");
1984                return;
1985        }
1986
1987        /* FIXME: Document how the locking works. */
1988        spin_lock_irq(&ohci->lock);
1989
1990        ohci->generation = -1; /* prevent AT packet queueing */
1991        context_stop(&ohci->at_request_ctx);
1992        context_stop(&ohci->at_response_ctx);
1993
1994        spin_unlock_irq(&ohci->lock);
1995
1996        /*
1997         * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1998         * packets in the AT queues and software needs to drain them.
1999         * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2000         */
2001        at_context_flush(&ohci->at_request_ctx);
2002        at_context_flush(&ohci->at_response_ctx);
2003
2004        spin_lock_irq(&ohci->lock);
2005
2006        ohci->generation = generation;
2007        reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2008
2009        if (ohci->quirks & QUIRK_RESET_PACKET)
2010                ohci->request_generation = generation;
2011
2012        /*
2013         * This next bit is unrelated to the AT context stuff but we
2014         * have to do it under the spinlock also.  If a new config rom
2015         * was set up before this reset, the old one is now no longer
2016         * in use and we can free it. Update the config rom pointers
2017         * to point to the current config rom and clear the
2018         * next_config_rom pointer so a new update can take place.
2019         */
2020
2021        if (ohci->next_config_rom != NULL) {
2022                if (ohci->next_config_rom != ohci->config_rom) {
2023                        free_rom      = ohci->config_rom;
2024                        free_rom_bus  = ohci->config_rom_bus;
2025                }
2026                ohci->config_rom      = ohci->next_config_rom;
2027                ohci->config_rom_bus  = ohci->next_config_rom_bus;
2028                ohci->next_config_rom = NULL;
2029
2030                /*
2031                 * Restore config_rom image and manually update
2032                 * config_rom registers.  Writing the header quadlet
2033                 * will indicate that the config rom is ready, so we
2034                 * do that last.
2035                 */
2036                reg_write(ohci, OHCI1394_BusOptions,
2037                          be32_to_cpu(ohci->config_rom[2]));
2038                ohci->config_rom[0] = ohci->next_header;
2039                reg_write(ohci, OHCI1394_ConfigROMhdr,
2040                          be32_to_cpu(ohci->next_header));
2041        }
2042
2043        if (param_remote_dma) {
2044                reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2045                reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2046        }
2047
2048        spin_unlock_irq(&ohci->lock);
2049
2050        if (free_rom)
2051                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2052                                  free_rom, free_rom_bus);
2053
2054        log_selfids(ohci, generation, self_id_count);
2055
2056        fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2057                                 self_id_count, ohci->self_id_buffer,
2058                                 ohci->csr_state_setclear_abdicate);
2059        ohci->csr_state_setclear_abdicate = false;
2060}
2061
2062static irqreturn_t irq_handler(int irq, void *data)
2063{
2064        struct fw_ohci *ohci = data;
2065        u32 event, iso_event;
2066        int i;
2067
2068        event = reg_read(ohci, OHCI1394_IntEventClear);
2069
2070        if (!event || !~event)
2071                return IRQ_NONE;
2072
2073        /*
2074         * busReset and postedWriteErr must not be cleared yet
2075         * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2076         */
2077        reg_write(ohci, OHCI1394_IntEventClear,
2078                  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2079        log_irqs(ohci, event);
2080
2081        if (event & OHCI1394_selfIDComplete)
2082                queue_work(selfid_workqueue, &ohci->bus_reset_work);
2083
2084        if (event & OHCI1394_RQPkt)
2085                tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2086
2087        if (event & OHCI1394_RSPkt)
2088                tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2089
2090        if (event & OHCI1394_reqTxComplete)
2091                tasklet_schedule(&ohci->at_request_ctx.tasklet);
2092
2093        if (event & OHCI1394_respTxComplete)
2094                tasklet_schedule(&ohci->at_response_ctx.tasklet);
2095
2096        if (event & OHCI1394_isochRx) {
2097                iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2098                reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2099
2100                while (iso_event) {
2101                        i = ffs(iso_event) - 1;
2102                        tasklet_schedule(
2103                                &ohci->ir_context_list[i].context.tasklet);
2104                        iso_event &= ~(1 << i);
2105                }
2106        }
2107
2108        if (event & OHCI1394_isochTx) {
2109                iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2110                reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2111
2112                while (iso_event) {
2113                        i = ffs(iso_event) - 1;
2114                        tasklet_schedule(
2115                                &ohci->it_context_list[i].context.tasklet);
2116                        iso_event &= ~(1 << i);
2117                }
2118        }
2119
2120        if (unlikely(event & OHCI1394_regAccessFail))
2121                ohci_err(ohci, "register access failure\n");
2122
2123        if (unlikely(event & OHCI1394_postedWriteErr)) {
2124                reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2125                reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2126                reg_write(ohci, OHCI1394_IntEventClear,
2127                          OHCI1394_postedWriteErr);
2128                if (printk_ratelimit())
2129                        ohci_err(ohci, "PCI posted write error\n");
2130        }
2131
2132        if (unlikely(event & OHCI1394_cycleTooLong)) {
2133                if (printk_ratelimit())
2134                        ohci_notice(ohci, "isochronous cycle too long\n");
2135                reg_write(ohci, OHCI1394_LinkControlSet,
2136                          OHCI1394_LinkControl_cycleMaster);
2137        }
2138
2139        if (unlikely(event & OHCI1394_cycleInconsistent)) {
2140                /*
2141                 * We need to clear this event bit in order to make
2142                 * cycleMatch isochronous I/O work.  In theory we should
2143                 * stop active cycleMatch iso contexts now and restart
2144                 * them at least two cycles later.  (FIXME?)
2145                 */
2146                if (printk_ratelimit())
2147                        ohci_notice(ohci, "isochronous cycle inconsistent\n");
2148        }
2149
2150        if (unlikely(event & OHCI1394_unrecoverableError))
2151                handle_dead_contexts(ohci);
2152
2153        if (event & OHCI1394_cycle64Seconds) {
2154                spin_lock(&ohci->lock);
2155                update_bus_time(ohci);
2156                spin_unlock(&ohci->lock);
2157        } else
2158                flush_writes(ohci);
2159
2160        return IRQ_HANDLED;
2161}
2162
2163static int software_reset(struct fw_ohci *ohci)
2164{
2165        u32 val;
2166        int i;
2167
2168        reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2169        for (i = 0; i < 500; i++) {
2170                val = reg_read(ohci, OHCI1394_HCControlSet);
2171                if (!~val)
2172                        return -ENODEV; /* Card was ejected. */
2173
2174                if (!(val & OHCI1394_HCControl_softReset))
2175                        return 0;
2176
2177                msleep(1);
2178        }
2179
2180        return -EBUSY;
2181}
2182
2183static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2184{
2185        size_t size = length * 4;
2186
2187        memcpy(dest, src, size);
2188        if (size < CONFIG_ROM_SIZE)
2189                memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2190}
2191
2192static int configure_1394a_enhancements(struct fw_ohci *ohci)
2193{
2194        bool enable_1394a;
2195        int ret, clear, set, offset;
2196
2197        /* Check if the driver should configure link and PHY. */
2198        if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2199              OHCI1394_HCControl_programPhyEnable))
2200                return 0;
2201
2202        /* Paranoia: check whether the PHY supports 1394a, too. */
2203        enable_1394a = false;
2204        ret = read_phy_reg(ohci, 2);
2205        if (ret < 0)
2206                return ret;
2207        if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2208                ret = read_paged_phy_reg(ohci, 1, 8);
2209                if (ret < 0)
2210                        return ret;
2211                if (ret >= 1)
2212                        enable_1394a = true;
2213        }
2214
2215        if (ohci->quirks & QUIRK_NO_1394A)
2216                enable_1394a = false;
2217
2218        /* Configure PHY and link consistently. */
2219        if (enable_1394a) {
2220                clear = 0;
2221                set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2222        } else {
2223                clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2224                set = 0;
2225        }
2226        ret = update_phy_reg(ohci, 5, clear, set);
2227        if (ret < 0)
2228                return ret;
2229
2230        if (enable_1394a)
2231                offset = OHCI1394_HCControlSet;
2232        else
2233                offset = OHCI1394_HCControlClear;
2234        reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2235
2236        /* Clean up: configuration has been taken care of. */
2237        reg_write(ohci, OHCI1394_HCControlClear,
2238                  OHCI1394_HCControl_programPhyEnable);
2239
2240        return 0;
2241}
2242
2243static int probe_tsb41ba3d(struct fw_ohci *ohci)
2244{
2245        /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2246        static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2247        int reg, i;
2248
2249        reg = read_phy_reg(ohci, 2);
2250        if (reg < 0)
2251                return reg;
2252        if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2253                return 0;
2254
2255        for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2256                reg = read_paged_phy_reg(ohci, 1, i + 10);
2257                if (reg < 0)
2258                        return reg;
2259                if (reg != id[i])
2260                        return 0;
2261        }
2262        return 1;
2263}
2264
2265static int ohci_enable(struct fw_card *card,
2266                       const __be32 *config_rom, size_t length)
2267{
2268        struct fw_ohci *ohci = fw_ohci(card);
2269        u32 lps, version, irqs;
2270        int i, ret;
2271
2272        ret = software_reset(ohci);
2273        if (ret < 0) {
2274                ohci_err(ohci, "failed to reset ohci card\n");
2275                return ret;
2276        }
2277
2278        /*
2279         * Now enable LPS, which we need in order to start accessing
2280         * most of the registers.  In fact, on some cards (ALI M5251),
2281         * accessing registers in the SClk domain without LPS enabled
2282         * will lock up the machine.  Wait 50msec to make sure we have
2283         * full link enabled.  However, with some cards (well, at least
2284         * a JMicron PCIe card), we have to try again sometimes.
2285         *
2286         * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2287         * cannot actually use the phy at that time.  These need tens of
2288         * millisecods pause between LPS write and first phy access too.
2289         */
2290
2291        reg_write(ohci, OHCI1394_HCControlSet,
2292                  OHCI1394_HCControl_LPS |
2293                  OHCI1394_HCControl_postedWriteEnable);
2294        flush_writes(ohci);
2295
2296        for (lps = 0, i = 0; !lps && i < 3; i++) {
2297                msleep(50);
2298                lps = reg_read(ohci, OHCI1394_HCControlSet) &
2299                      OHCI1394_HCControl_LPS;
2300        }
2301
2302        if (!lps) {
2303                ohci_err(ohci, "failed to set Link Power Status\n");
2304                return -EIO;
2305        }
2306
2307        if (ohci->quirks & QUIRK_TI_SLLZ059) {
2308                ret = probe_tsb41ba3d(ohci);
2309                if (ret < 0)
2310                        return ret;
2311                if (ret)
2312                        ohci_notice(ohci, "local TSB41BA3D phy\n");
2313                else
2314                        ohci->quirks &= ~QUIRK_TI_SLLZ059;
2315        }
2316
2317        reg_write(ohci, OHCI1394_HCControlClear,
2318                  OHCI1394_HCControl_noByteSwapData);
2319
2320        reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2321        reg_write(ohci, OHCI1394_LinkControlSet,
2322                  OHCI1394_LinkControl_cycleTimerEnable |
2323                  OHCI1394_LinkControl_cycleMaster);
2324
2325        reg_write(ohci, OHCI1394_ATRetries,
2326                  OHCI1394_MAX_AT_REQ_RETRIES |
2327                  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2328                  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2329                  (200 << 16));
2330
2331        ohci->bus_time_running = false;
2332
2333        for (i = 0; i < 32; i++)
2334                if (ohci->ir_context_support & (1 << i))
2335                        reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2336                                  IR_CONTEXT_MULTI_CHANNEL_MODE);
2337
2338        version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2339        if (version >= OHCI_VERSION_1_1) {
2340                reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2341                          0xfffffffe);
2342                card->broadcast_channel_auto_allocated = true;
2343        }
2344
2345        /* Get implemented bits of the priority arbitration request counter. */
2346        reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2347        ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2348        reg_write(ohci, OHCI1394_FairnessControl, 0);
2349        card->priority_budget_implemented = ohci->pri_req_max != 0;
2350
2351        reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2352        reg_write(ohci, OHCI1394_IntEventClear, ~0);
2353        reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2354
2355        ret = configure_1394a_enhancements(ohci);
2356        if (ret < 0)
2357                return ret;
2358
2359        /* Activate link_on bit and contender bit in our self ID packets.*/
2360        ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2361        if (ret < 0)
2362                return ret;
2363
2364        /*
2365         * When the link is not yet enabled, the atomic config rom
2366         * update mechanism described below in ohci_set_config_rom()
2367         * is not active.  We have to update ConfigRomHeader and
2368         * BusOptions manually, and the write to ConfigROMmap takes
2369         * effect immediately.  We tie this to the enabling of the
2370         * link, so we have a valid config rom before enabling - the
2371         * OHCI requires that ConfigROMhdr and BusOptions have valid
2372         * values before enabling.
2373         *
2374         * However, when the ConfigROMmap is written, some controllers
2375         * always read back quadlets 0 and 2 from the config rom to
2376         * the ConfigRomHeader and BusOptions registers on bus reset.
2377         * They shouldn't do that in this initial case where the link
2378         * isn't enabled.  This means we have to use the same
2379         * workaround here, setting the bus header to 0 and then write
2380         * the right values in the bus reset tasklet.
2381         */
2382
2383        if (config_rom) {
2384                ohci->next_config_rom =
2385                        dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2386                                           &ohci->next_config_rom_bus,
2387                                           GFP_KERNEL);
2388                if (ohci->next_config_rom == NULL)
2389                        return -ENOMEM;
2390
2391                copy_config_rom(ohci->next_config_rom, config_rom, length);
2392        } else {
2393                /*
2394                 * In the suspend case, config_rom is NULL, which
2395                 * means that we just reuse the old config rom.
2396                 */
2397                ohci->next_config_rom = ohci->config_rom;
2398                ohci->next_config_rom_bus = ohci->config_rom_bus;
2399        }
2400
2401        ohci->next_header = ohci->next_config_rom[0];
2402        ohci->next_config_rom[0] = 0;
2403        reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2404        reg_write(ohci, OHCI1394_BusOptions,
2405                  be32_to_cpu(ohci->next_config_rom[2]));
2406        reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2407
2408        reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2409
2410        irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2411                OHCI1394_RQPkt | OHCI1394_RSPkt |
2412                OHCI1394_isochTx | OHCI1394_isochRx |
2413                OHCI1394_postedWriteErr |
2414                OHCI1394_selfIDComplete |
2415                OHCI1394_regAccessFail |
2416                OHCI1394_cycleInconsistent |
2417                OHCI1394_unrecoverableError |
2418                OHCI1394_cycleTooLong |
2419                OHCI1394_masterIntEnable;
2420        if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2421                irqs |= OHCI1394_busReset;
2422        reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2423
2424        reg_write(ohci, OHCI1394_HCControlSet,
2425                  OHCI1394_HCControl_linkEnable |
2426                  OHCI1394_HCControl_BIBimageValid);
2427
2428        reg_write(ohci, OHCI1394_LinkControlSet,
2429                  OHCI1394_LinkControl_rcvSelfID |
2430                  OHCI1394_LinkControl_rcvPhyPkt);
2431
2432        ar_context_run(&ohci->ar_request_ctx);
2433        ar_context_run(&ohci->ar_response_ctx);
2434
2435        flush_writes(ohci);
2436
2437        /* We are ready to go, reset bus to finish initialization. */
2438        fw_schedule_bus_reset(&ohci->card, false, true);
2439
2440        return 0;
2441}
2442
2443static int ohci_set_config_rom(struct fw_card *card,
2444                               const __be32 *config_rom, size_t length)
2445{
2446        struct fw_ohci *ohci;
2447        __be32 *next_config_rom;
2448        dma_addr_t uninitialized_var(next_config_rom_bus);
2449
2450        ohci = fw_ohci(card);
2451
2452        /*
2453         * When the OHCI controller is enabled, the config rom update
2454         * mechanism is a bit tricky, but easy enough to use.  See
2455         * section 5.5.6 in the OHCI specification.
2456         *
2457         * The OHCI controller caches the new config rom address in a
2458         * shadow register (ConfigROMmapNext) and needs a bus reset
2459         * for the changes to take place.  When the bus reset is
2460         * detected, the controller loads the new values for the
2461         * ConfigRomHeader and BusOptions registers from the specified
2462         * config rom and loads ConfigROMmap from the ConfigROMmapNext
2463         * shadow register. All automatically and atomically.
2464         *
2465         * Now, there's a twist to this story.  The automatic load of
2466         * ConfigRomHeader and BusOptions doesn't honor the
2467         * noByteSwapData bit, so with a be32 config rom, the
2468         * controller will load be32 values in to these registers
2469         * during the atomic update, even on litte endian
2470         * architectures.  The workaround we use is to put a 0 in the
2471         * header quadlet; 0 is endian agnostic and means that the
2472         * config rom isn't ready yet.  In the bus reset tasklet we
2473         * then set up the real values for the two registers.
2474         *
2475         * We use ohci->lock to avoid racing with the code that sets
2476         * ohci->next_config_rom to NULL (see bus_reset_work).
2477         */
2478
2479        next_config_rom =
2480                dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2481                                   &next_config_rom_bus, GFP_KERNEL);
2482        if (next_config_rom == NULL)
2483                return -ENOMEM;
2484
2485        spin_lock_irq(&ohci->lock);
2486
2487        /*
2488         * If there is not an already pending config_rom update,
2489         * push our new allocation into the ohci->next_config_rom
2490         * and then mark the local variable as null so that we
2491         * won't deallocate the new buffer.
2492         *
2493         * OTOH, if there is a pending config_rom update, just
2494         * use that buffer with the new config_rom data, and
2495         * let this routine free the unused DMA allocation.
2496         */
2497
2498        if (ohci->next_config_rom == NULL) {
2499                ohci->next_config_rom = next_config_rom;
2500                ohci->next_config_rom_bus = next_config_rom_bus;
2501                next_config_rom = NULL;
2502        }
2503
2504        copy_config_rom(ohci->next_config_rom, config_rom, length);
2505
2506        ohci->next_header = config_rom[0];
2507        ohci->next_config_rom[0] = 0;
2508
2509        reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2510
2511        spin_unlock_irq(&ohci->lock);
2512
2513        /* If we didn't use the DMA allocation, delete it. */
2514        if (next_config_rom != NULL)
2515                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2516                                  next_config_rom, next_config_rom_bus);
2517
2518        /*
2519         * Now initiate a bus reset to have the changes take
2520         * effect. We clean up the old config rom memory and DMA
2521         * mappings in the bus reset tasklet, since the OHCI
2522         * controller could need to access it before the bus reset
2523         * takes effect.
2524         */
2525
2526        fw_schedule_bus_reset(&ohci->card, true, true);
2527
2528        return 0;
2529}
2530
2531static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2532{
2533        struct fw_ohci *ohci = fw_ohci(card);
2534
2535        at_context_transmit(&ohci->at_request_ctx, packet);
2536}
2537
2538static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2539{
2540        struct fw_ohci *ohci = fw_ohci(card);
2541
2542        at_context_transmit(&ohci->at_response_ctx, packet);
2543}
2544
2545static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2546{
2547        struct fw_ohci *ohci = fw_ohci(card);
2548        struct context *ctx = &ohci->at_request_ctx;
2549        struct driver_data *driver_data = packet->driver_data;
2550        int ret = -ENOENT;
2551
2552        tasklet_disable(&ctx->tasklet);
2553
2554        if (packet->ack != 0)
2555                goto out;
2556
2557        if (packet->payload_mapped)
2558                dma_unmap_single(ohci->card.device, packet->payload_bus,
2559                                 packet->payload_length, DMA_TO_DEVICE);
2560
2561        log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2562        driver_data->packet = NULL;
2563        packet->ack = RCODE_CANCELLED;
2564        packet->callback(packet, &ohci->card, packet->ack);
2565        ret = 0;
2566 out:
2567        tasklet_enable(&ctx->tasklet);
2568
2569        return ret;
2570}
2571
2572static int ohci_enable_phys_dma(struct fw_card *card,
2573                                int node_id, int generation)
2574{
2575        struct fw_ohci *ohci = fw_ohci(card);
2576        unsigned long flags;
2577        int n, ret = 0;
2578
2579        if (param_remote_dma)
2580                return 0;
2581
2582        /*
2583         * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2584         * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2585         */
2586
2587        spin_lock_irqsave(&ohci->lock, flags);
2588
2589        if (ohci->generation != generation) {
2590                ret = -ESTALE;
2591                goto out;
2592        }
2593
2594        /*
2595         * Note, if the node ID contains a non-local bus ID, physical DMA is
2596         * enabled for _all_ nodes on remote buses.
2597         */
2598
2599        n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2600        if (n < 32)
2601                reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2602        else
2603                reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2604
2605        flush_writes(ohci);
2606 out:
2607        spin_unlock_irqrestore(&ohci->lock, flags);
2608
2609        return ret;
2610}
2611
2612static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2613{
2614        struct fw_ohci *ohci = fw_ohci(card);
2615        unsigned long flags;
2616        u32 value;
2617
2618        switch (csr_offset) {
2619        case CSR_STATE_CLEAR:
2620        case CSR_STATE_SET:
2621                if (ohci->is_root &&
2622                    (reg_read(ohci, OHCI1394_LinkControlSet) &
2623                     OHCI1394_LinkControl_cycleMaster))
2624                        value = CSR_STATE_BIT_CMSTR;
2625                else
2626                        value = 0;
2627                if (ohci->csr_state_setclear_abdicate)
2628                        value |= CSR_STATE_BIT_ABDICATE;
2629
2630                return value;
2631
2632        case CSR_NODE_IDS:
2633                return reg_read(ohci, OHCI1394_NodeID) << 16;
2634
2635        case CSR_CYCLE_TIME:
2636                return get_cycle_time(ohci);
2637
2638        case CSR_BUS_TIME:
2639                /*
2640                 * We might be called just after the cycle timer has wrapped
2641                 * around but just before the cycle64Seconds handler, so we
2642                 * better check here, too, if the bus time needs to be updated.
2643                 */
2644                spin_lock_irqsave(&ohci->lock, flags);
2645                value = update_bus_time(ohci);
2646                spin_unlock_irqrestore(&ohci->lock, flags);
2647                return value;
2648
2649        case CSR_BUSY_TIMEOUT:
2650                value = reg_read(ohci, OHCI1394_ATRetries);
2651                return (value >> 4) & 0x0ffff00f;
2652
2653        case CSR_PRIORITY_BUDGET:
2654                return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2655                        (ohci->pri_req_max << 8);
2656
2657        default:
2658                WARN_ON(1);
2659                return 0;
2660        }
2661}
2662
2663static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2664{
2665        struct fw_ohci *ohci = fw_ohci(card);
2666        unsigned long flags;
2667
2668        switch (csr_offset) {
2669        case CSR_STATE_CLEAR:
2670                if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2671                        reg_write(ohci, OHCI1394_LinkControlClear,
2672                                  OHCI1394_LinkControl_cycleMaster);
2673                        flush_writes(ohci);
2674                }
2675                if (value & CSR_STATE_BIT_ABDICATE)
2676                        ohci->csr_state_setclear_abdicate = false;
2677                break;
2678
2679        case CSR_STATE_SET:
2680                if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2681                        reg_write(ohci, OHCI1394_LinkControlSet,
2682                                  OHCI1394_LinkControl_cycleMaster);
2683                        flush_writes(ohci);
2684                }
2685                if (value & CSR_STATE_BIT_ABDICATE)
2686                        ohci->csr_state_setclear_abdicate = true;
2687                break;
2688
2689        case CSR_NODE_IDS:
2690                reg_write(ohci, OHCI1394_NodeID, value >> 16);
2691                flush_writes(ohci);
2692                break;
2693
2694        case CSR_CYCLE_TIME:
2695                reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2696                reg_write(ohci, OHCI1394_IntEventSet,
2697                          OHCI1394_cycleInconsistent);
2698                flush_writes(ohci);
2699                break;
2700
2701        case CSR_BUS_TIME:
2702                spin_lock_irqsave(&ohci->lock, flags);
2703                ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2704                                 (value & ~0x7f);
2705                spin_unlock_irqrestore(&ohci->lock, flags);
2706                break;
2707
2708        case CSR_BUSY_TIMEOUT:
2709                value = (value & 0xf) | ((value & 0xf) << 4) |
2710                        ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2711                reg_write(ohci, OHCI1394_ATRetries, value);
2712                flush_writes(ohci);
2713                break;
2714
2715        case CSR_PRIORITY_BUDGET:
2716                reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2717                flush_writes(ohci);
2718                break;
2719
2720        default:
2721                WARN_ON(1);
2722                break;
2723        }
2724}
2725
2726static void flush_iso_completions(struct iso_context *ctx)
2727{
2728        ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2729                              ctx->header_length, ctx->header,
2730                              ctx->base.callback_data);
2731        ctx->header_length = 0;
2732}
2733
2734static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2735{
2736        u32 *ctx_hdr;
2737
2738        if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2739                if (ctx->base.drop_overflow_headers)
2740                        return;
2741                flush_iso_completions(ctx);
2742        }
2743
2744        ctx_hdr = ctx->header + ctx->header_length;
2745        ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2746
2747        /*
2748         * The two iso header quadlets are byteswapped to little
2749         * endian by the controller, but we want to present them
2750         * as big endian for consistency with the bus endianness.
2751         */
2752        if (ctx->base.header_size > 0)
2753                ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2754        if (ctx->base.header_size > 4)
2755                ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2756        if (ctx->base.header_size > 8)
2757                memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2758        ctx->header_length += ctx->base.header_size;
2759}
2760
2761static int handle_ir_packet_per_buffer(struct context *context,
2762                                       struct descriptor *d,
2763                                       struct descriptor *last)
2764{
2765        struct iso_context *ctx =
2766                container_of(context, struct iso_context, context);
2767        struct descriptor *pd;
2768        u32 buffer_dma;
2769
2770        for (pd = d; pd <= last; pd++)
2771                if (pd->transfer_status)
2772                        break;
2773        if (pd > last)
2774                /* Descriptor(s) not done yet, stop iteration */
2775                return 0;
2776
2777        while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2778                d++;
2779                buffer_dma = le32_to_cpu(d->data_address);
2780                dma_sync_single_range_for_cpu(context->ohci->card.device,
2781                                              buffer_dma & PAGE_MASK,
2782                                              buffer_dma & ~PAGE_MASK,
2783                                              le16_to_cpu(d->req_count),
2784                                              DMA_FROM_DEVICE);
2785        }
2786
2787        copy_iso_headers(ctx, (u32 *) (last + 1));
2788
2789        if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2790                flush_iso_completions(ctx);
2791
2792        return 1;
2793}
2794
2795/* d == last because each descriptor block is only a single descriptor. */
2796static int handle_ir_buffer_fill(struct context *context,
2797                                 struct descriptor *d,
2798                                 struct descriptor *last)
2799{
2800        struct iso_context *ctx =
2801                container_of(context, struct iso_context, context);
2802        unsigned int req_count, res_count, completed;
2803        u32 buffer_dma;
2804
2805        req_count = le16_to_cpu(last->req_count);
2806        res_count = le16_to_cpu(READ_ONCE(last->res_count));
2807        completed = req_count - res_count;
2808        buffer_dma = le32_to_cpu(last->data_address);
2809
2810        if (completed > 0) {
2811                ctx->mc_buffer_bus = buffer_dma;
2812                ctx->mc_completed = completed;
2813        }
2814
2815        if (res_count != 0)
2816                /* Descriptor(s) not done yet, stop iteration */
2817                return 0;
2818
2819        dma_sync_single_range_for_cpu(context->ohci->card.device,
2820                                      buffer_dma & PAGE_MASK,
2821                                      buffer_dma & ~PAGE_MASK,
2822                                      completed, DMA_FROM_DEVICE);
2823
2824        if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2825                ctx->base.callback.mc(&ctx->base,
2826                                      buffer_dma + completed,
2827                                      ctx->base.callback_data);
2828                ctx->mc_completed = 0;
2829        }
2830
2831        return 1;
2832}
2833
2834static void flush_ir_buffer_fill(struct iso_context *ctx)
2835{
2836        dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2837                                      ctx->mc_buffer_bus & PAGE_MASK,
2838                                      ctx->mc_buffer_bus & ~PAGE_MASK,
2839                                      ctx->mc_completed, DMA_FROM_DEVICE);
2840
2841        ctx->base.callback.mc(&ctx->base,
2842                              ctx->mc_buffer_bus + ctx->mc_completed,
2843                              ctx->base.callback_data);
2844        ctx->mc_completed = 0;
2845}
2846
2847static inline void sync_it_packet_for_cpu(struct context *context,
2848                                          struct descriptor *pd)
2849{
2850        __le16 control;
2851        u32 buffer_dma;
2852
2853        /* only packets beginning with OUTPUT_MORE* have data buffers */
2854        if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2855                return;
2856
2857        /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2858        pd += 2;
2859
2860        /*
2861         * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2862         * data buffer is in the context program's coherent page and must not
2863         * be synced.
2864         */
2865        if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2866            (context->current_bus          & PAGE_MASK)) {
2867                if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2868                        return;
2869                pd++;
2870        }
2871
2872        do {
2873                buffer_dma = le32_to_cpu(pd->data_address);
2874                dma_sync_single_range_for_cpu(context->ohci->card.device,
2875                                              buffer_dma & PAGE_MASK,
2876                                              buffer_dma & ~PAGE_MASK,
2877                                              le16_to_cpu(pd->req_count),
2878                                              DMA_TO_DEVICE);
2879                control = pd->control;
2880                pd++;
2881        } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2882}
2883
2884static int handle_it_packet(struct context *context,
2885                            struct descriptor *d,
2886                            struct descriptor *last)
2887{
2888        struct iso_context *ctx =
2889                container_of(context, struct iso_context, context);
2890        struct descriptor *pd;
2891        __be32 *ctx_hdr;
2892
2893        for (pd = d; pd <= last; pd++)
2894                if (pd->transfer_status)
2895                        break;
2896        if (pd > last)
2897                /* Descriptor(s) not done yet, stop iteration */
2898                return 0;
2899
2900        sync_it_packet_for_cpu(context, d);
2901
2902        if (ctx->header_length + 4 > PAGE_SIZE) {
2903                if (ctx->base.drop_overflow_headers)
2904                        return 1;
2905                flush_iso_completions(ctx);
2906        }
2907
2908        ctx_hdr = ctx->header + ctx->header_length;
2909        ctx->last_timestamp = le16_to_cpu(last->res_count);
2910        /* Present this value as big-endian to match the receive code */
2911        *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2912                               le16_to_cpu(pd->res_count));
2913        ctx->header_length += 4;
2914
2915        if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2916                flush_iso_completions(ctx);
2917
2918        return 1;
2919}
2920
2921static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2922{
2923        u32 hi = channels >> 32, lo = channels;
2924
2925        reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2926        reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2927        reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2928        reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2929        ohci->mc_channels = channels;
2930}
2931
2932static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2933                                int type, int channel, size_t header_size)
2934{
2935        struct fw_ohci *ohci = fw_ohci(card);
2936        struct iso_context *uninitialized_var(ctx);
2937        descriptor_callback_t uninitialized_var(callback);
2938        u64 *uninitialized_var(channels);
2939        u32 *uninitialized_var(mask), uninitialized_var(regs);
2940        int index, ret = -EBUSY;
2941
2942        spin_lock_irq(&ohci->lock);
2943
2944        switch (type) {
2945        case FW_ISO_CONTEXT_TRANSMIT:
2946                mask     = &ohci->it_context_mask;
2947                callback = handle_it_packet;
2948                index    = ffs(*mask) - 1;
2949                if (index >= 0) {
2950                        *mask &= ~(1 << index);
2951                        regs = OHCI1394_IsoXmitContextBase(index);
2952                        ctx  = &ohci->it_context_list[index];
2953                }
2954                break;
2955
2956        case FW_ISO_CONTEXT_RECEIVE:
2957                channels = &ohci->ir_context_channels;
2958                mask     = &ohci->ir_context_mask;
2959                callback = handle_ir_packet_per_buffer;
2960                index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2961                if (index >= 0) {
2962                        *channels &= ~(1ULL << channel);
2963                        *mask     &= ~(1 << index);
2964                        regs = OHCI1394_IsoRcvContextBase(index);
2965                        ctx  = &ohci->ir_context_list[index];
2966                }
2967                break;
2968
2969        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2970                mask     = &ohci->ir_context_mask;
2971                callback = handle_ir_buffer_fill;
2972                index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2973                if (index >= 0) {
2974                        ohci->mc_allocated = true;
2975                        *mask &= ~(1 << index);
2976                        regs = OHCI1394_IsoRcvContextBase(index);
2977                        ctx  = &ohci->ir_context_list[index];
2978                }
2979                break;
2980
2981        default:
2982                index = -1;
2983                ret = -ENOSYS;
2984        }
2985
2986        spin_unlock_irq(&ohci->lock);
2987
2988        if (index < 0)
2989                return ERR_PTR(ret);
2990
2991        memset(ctx, 0, sizeof(*ctx));
2992        ctx->header_length = 0;
2993        ctx->header = (void *) __get_free_page(GFP_KERNEL);
2994        if (ctx->header == NULL) {
2995                ret = -ENOMEM;
2996                goto out;
2997        }
2998        ret = context_init(&ctx->context, ohci, regs, callback);
2999        if (ret < 0)
3000                goto out_with_header;
3001
3002        if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3003                set_multichannel_mask(ohci, 0);
3004                ctx->mc_completed = 0;
3005        }
3006
3007        return &ctx->base;
3008
3009 out_with_header:
3010        free_page((unsigned long)ctx->header);
3011 out:
3012        spin_lock_irq(&ohci->lock);
3013
3014        switch (type) {
3015        case FW_ISO_CONTEXT_RECEIVE:
3016                *channels |= 1ULL << channel;
3017                break;
3018
3019        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3020                ohci->mc_allocated = false;
3021                break;
3022        }
3023        *mask |= 1 << index;
3024
3025        spin_unlock_irq(&ohci->lock);
3026
3027        return ERR_PTR(ret);
3028}
3029
3030static int ohci_start_iso(struct fw_iso_context *base,
3031                          s32 cycle, u32 sync, u32 tags)
3032{
3033        struct iso_context *ctx = container_of(base, struct iso_context, base);
3034        struct fw_ohci *ohci = ctx->context.ohci;
3035        u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3036        int index;
3037
3038        /* the controller cannot start without any queued packets */
3039        if (ctx->context.last->branch_address == 0)
3040                return -ENODATA;
3041
3042        switch (ctx->base.type) {
3043        case FW_ISO_CONTEXT_TRANSMIT:
3044                index = ctx - ohci->it_context_list;
3045                match = 0;
3046                if (cycle >= 0)
3047                        match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3048                                (cycle & 0x7fff) << 16;
3049
3050                reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3051                reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3052                context_run(&ctx->context, match);
3053                break;
3054
3055        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3056                control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3057                /* fall through */
3058        case FW_ISO_CONTEXT_RECEIVE:
3059                index = ctx - ohci->ir_context_list;
3060                match = (tags << 28) | (sync << 8) | ctx->base.channel;
3061                if (cycle >= 0) {
3062                        match |= (cycle & 0x07fff) << 12;
3063                        control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3064                }
3065
3066                reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3067                reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3068                reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3069                context_run(&ctx->context, control);
3070
3071                ctx->sync = sync;
3072                ctx->tags = tags;
3073
3074                break;
3075        }
3076
3077        return 0;
3078}
3079
3080static int ohci_stop_iso(struct fw_iso_context *base)
3081{
3082        struct fw_ohci *ohci = fw_ohci(base->card);
3083        struct iso_context *ctx = container_of(base, struct iso_context, base);
3084        int index;
3085
3086        switch (ctx->base.type) {
3087        case FW_ISO_CONTEXT_TRANSMIT:
3088                index = ctx - ohci->it_context_list;
3089                reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3090                break;
3091
3092        case FW_ISO_CONTEXT_RECEIVE:
3093        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3094                index = ctx - ohci->ir_context_list;
3095                reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3096                break;
3097        }
3098        flush_writes(ohci);
3099        context_stop(&ctx->context);
3100        tasklet_kill(&ctx->context.tasklet);
3101
3102        return 0;
3103}
3104
3105static void ohci_free_iso_context(struct fw_iso_context *base)
3106{
3107        struct fw_ohci *ohci = fw_ohci(base->card);
3108        struct iso_context *ctx = container_of(base, struct iso_context, base);
3109        unsigned long flags;
3110        int index;
3111
3112        ohci_stop_iso(base);
3113        context_release(&ctx->context);
3114        free_page((unsigned long)ctx->header);
3115
3116        spin_lock_irqsave(&ohci->lock, flags);
3117
3118        switch (base->type) {
3119        case FW_ISO_CONTEXT_TRANSMIT:
3120                index = ctx - ohci->it_context_list;
3121                ohci->it_context_mask |= 1 << index;
3122                break;
3123
3124        case FW_ISO_CONTEXT_RECEIVE:
3125                index = ctx - ohci->ir_context_list;
3126                ohci->ir_context_mask |= 1 << index;
3127                ohci->ir_context_channels |= 1ULL << base->channel;
3128                break;
3129
3130        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3131                index = ctx - ohci->ir_context_list;
3132                ohci->ir_context_mask |= 1 << index;
3133                ohci->ir_context_channels |= ohci->mc_channels;
3134                ohci->mc_channels = 0;
3135                ohci->mc_allocated = false;
3136                break;
3137        }
3138
3139        spin_unlock_irqrestore(&ohci->lock, flags);
3140}
3141
3142static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3143{
3144        struct fw_ohci *ohci = fw_ohci(base->card);
3145        unsigned long flags;
3146        int ret;
3147
3148        switch (base->type) {
3149        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3150
3151                spin_lock_irqsave(&ohci->lock, flags);
3152
3153                /* Don't allow multichannel to grab other contexts' channels. */
3154                if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3155                        *channels = ohci->ir_context_channels;
3156                        ret = -EBUSY;
3157                } else {
3158                        set_multichannel_mask(ohci, *channels);
3159                        ret = 0;
3160                }
3161
3162                spin_unlock_irqrestore(&ohci->lock, flags);
3163
3164                break;
3165        default:
3166                ret = -EINVAL;
3167        }
3168
3169        return ret;
3170}
3171
3172#ifdef CONFIG_PM
3173static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3174{
3175        int i;
3176        struct iso_context *ctx;
3177
3178        for (i = 0 ; i < ohci->n_ir ; i++) {
3179                ctx = &ohci->ir_context_list[i];
3180                if (ctx->context.running)
3181                        ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3182        }
3183
3184        for (i = 0 ; i < ohci->n_it ; i++) {
3185                ctx = &ohci->it_context_list[i];
3186                if (ctx->context.running)
3187                        ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3188        }
3189}
3190#endif
3191
3192static int queue_iso_transmit(struct iso_context *ctx,
3193                              struct fw_iso_packet *packet,
3194                              struct fw_iso_buffer *buffer,
3195                              unsigned long payload)
3196{
3197        struct descriptor *d, *last, *pd;
3198        struct fw_iso_packet *p;
3199        __le32 *header;
3200        dma_addr_t d_bus, page_bus;
3201        u32 z, header_z, payload_z, irq;
3202        u32 payload_index, payload_end_index, next_page_index;
3203        int page, end_page, i, length, offset;
3204
3205        p = packet;
3206        payload_index = payload;
3207
3208        if (p->skip)
3209                z = 1;
3210        else
3211                z = 2;
3212        if (p->header_length > 0)
3213                z++;
3214
3215        /* Determine the first page the payload isn't contained in. */
3216        end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3217        if (p->payload_length > 0)
3218                payload_z = end_page - (payload_index >> PAGE_SHIFT);
3219        else
3220                payload_z = 0;
3221
3222        z += payload_z;
3223
3224        /* Get header size in number of descriptors. */
3225        header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3226
3227        d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3228        if (d == NULL)
3229                return -ENOMEM;
3230
3231        if (!p->skip) {
3232                d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3233                d[0].req_count = cpu_to_le16(8);
3234                /*
3235                 * Link the skip address to this descriptor itself.  This causes
3236                 * a context to skip a cycle whenever lost cycles or FIFO
3237                 * overruns occur, without dropping the data.  The application
3238                 * should then decide whether this is an error condition or not.
3239                 * FIXME:  Make the context's cycle-lost behaviour configurable?
3240                 */
3241                d[0].branch_address = cpu_to_le32(d_bus | z);
3242
3243                header = (__le32 *) &d[1];
3244                header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3245                                        IT_HEADER_TAG(p->tag) |
3246                                        IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3247                                        IT_HEADER_CHANNEL(ctx->base.channel) |
3248                                        IT_HEADER_SPEED(ctx->base.speed));
3249                header[1] =
3250                        cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3251                                                          p->payload_length));
3252        }
3253
3254        if (p->header_length > 0) {
3255                d[2].req_count    = cpu_to_le16(p->header_length);
3256                d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3257                memcpy(&d[z], p->header, p->header_length);
3258        }
3259
3260        pd = d + z - payload_z;
3261        payload_end_index = payload_index + p->payload_length;
3262        for (i = 0; i < payload_z; i++) {
3263                page               = payload_index >> PAGE_SHIFT;
3264                offset             = payload_index & ~PAGE_MASK;
3265                next_page_index    = (page + 1) << PAGE_SHIFT;
3266                length             =
3267                        min(next_page_index, payload_end_index) - payload_index;
3268                pd[i].req_count    = cpu_to_le16(length);
3269
3270                page_bus = page_private(buffer->pages[page]);
3271                pd[i].data_address = cpu_to_le32(page_bus + offset);
3272
3273                dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3274                                                 page_bus, offset, length,
3275                                                 DMA_TO_DEVICE);
3276
3277                payload_index += length;
3278        }
3279
3280        if (p->interrupt)
3281                irq = DESCRIPTOR_IRQ_ALWAYS;
3282        else
3283                irq = DESCRIPTOR_NO_IRQ;
3284
3285        last = z == 2 ? d : d + z - 1;
3286        last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3287                                     DESCRIPTOR_STATUS |
3288                                     DESCRIPTOR_BRANCH_ALWAYS |
3289                                     irq);
3290
3291        context_append(&ctx->context, d, z, header_z);
3292
3293        return 0;
3294}
3295
3296static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3297                                       struct fw_iso_packet *packet,
3298                                       struct fw_iso_buffer *buffer,
3299                                       unsigned long payload)
3300{
3301        struct device *device = ctx->context.ohci->card.device;
3302        struct descriptor *d, *pd;
3303        dma_addr_t d_bus, page_bus;
3304        u32 z, header_z, rest;
3305        int i, j, length;
3306        int page, offset, packet_count, header_size, payload_per_buffer;
3307
3308        /*
3309         * The OHCI controller puts the isochronous header and trailer in the
3310         * buffer, so we need at least 8 bytes.
3311         */
3312        packet_count = packet->header_length / ctx->base.header_size;
3313        header_size  = max(ctx->base.header_size, (size_t)8);
3314
3315        /* Get header size in number of descriptors. */
3316        header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3317        page     = payload >> PAGE_SHIFT;
3318        offset   = payload & ~PAGE_MASK;
3319        payload_per_buffer = packet->payload_length / packet_count;
3320
3321        for (i = 0; i < packet_count; i++) {
3322                /* d points to the header descriptor */
3323                z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3324                d = context_get_descriptors(&ctx->context,
3325                                z + header_z, &d_bus);
3326                if (d == NULL)
3327                        return -ENOMEM;
3328
3329                d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3330                                              DESCRIPTOR_INPUT_MORE);
3331                if (packet->skip && i == 0)
3332                        d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3333                d->req_count    = cpu_to_le16(header_size);
3334                d->res_count    = d->req_count;
3335                d->transfer_status = 0;
3336                d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3337
3338                rest = payload_per_buffer;
3339                pd = d;
3340                for (j = 1; j < z; j++) {
3341                        pd++;
3342                        pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3343                                                  DESCRIPTOR_INPUT_MORE);
3344
3345                        if (offset + rest < PAGE_SIZE)
3346                                length = rest;
3347                        else
3348                                length = PAGE_SIZE - offset;
3349                        pd->req_count = cpu_to_le16(length);
3350                        pd->res_count = pd->req_count;
3351                        pd->transfer_status = 0;
3352
3353                        page_bus = page_private(buffer->pages[page]);
3354                        pd->data_address = cpu_to_le32(page_bus + offset);
3355
3356                        dma_sync_single_range_for_device(device, page_bus,
3357                                                         offset, length,
3358                                                         DMA_FROM_DEVICE);
3359
3360                        offset = (offset + length) & ~PAGE_MASK;
3361                        rest -= length;
3362                        if (offset == 0)
3363                                page++;
3364                }
3365                pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3366                                          DESCRIPTOR_INPUT_LAST |
3367                                          DESCRIPTOR_BRANCH_ALWAYS);
3368                if (packet->interrupt && i == packet_count - 1)
3369                        pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3370
3371                context_append(&ctx->context, d, z, header_z);
3372        }
3373
3374        return 0;
3375}
3376
3377static int queue_iso_buffer_fill(struct iso_context *ctx,
3378                                 struct fw_iso_packet *packet,
3379                                 struct fw_iso_buffer *buffer,
3380                                 unsigned long payload)
3381{
3382        struct descriptor *d;
3383        dma_addr_t d_bus, page_bus;
3384        int page, offset, rest, z, i, length;
3385
3386        page   = payload >> PAGE_SHIFT;
3387        offset = payload & ~PAGE_MASK;
3388        rest   = packet->payload_length;
3389
3390        /* We need one descriptor for each page in the buffer. */
3391        z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3392
3393        if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3394                return -EFAULT;
3395
3396        for (i = 0; i < z; i++) {
3397                d = context_get_descriptors(&ctx->context, 1, &d_bus);
3398                if (d == NULL)
3399                        return -ENOMEM;
3400
3401                d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3402                                         DESCRIPTOR_BRANCH_ALWAYS);
3403                if (packet->skip && i == 0)
3404                        d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3405                if (packet->interrupt && i == z - 1)
3406                        d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3407
3408                if (offset + rest < PAGE_SIZE)
3409                        length = rest;
3410                else
3411                        length = PAGE_SIZE - offset;
3412                d->req_count = cpu_to_le16(length);
3413                d->res_count = d->req_count;
3414                d->transfer_status = 0;
3415
3416                page_bus = page_private(buffer->pages[page]);
3417                d->data_address = cpu_to_le32(page_bus + offset);
3418
3419                dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3420                                                 page_bus, offset, length,
3421                                                 DMA_FROM_DEVICE);
3422
3423                rest -= length;
3424                offset = 0;
3425                page++;
3426
3427                context_append(&ctx->context, d, 1, 0);
3428        }
3429
3430        return 0;
3431}
3432
3433static int ohci_queue_iso(struct fw_iso_context *base,
3434                          struct fw_iso_packet *packet,
3435                          struct fw_iso_buffer *buffer,
3436                          unsigned long payload)
3437{
3438        struct iso_context *ctx = container_of(base, struct iso_context, base);
3439        unsigned long flags;
3440        int ret = -ENOSYS;
3441
3442        spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3443        switch (base->type) {
3444        case FW_ISO_CONTEXT_TRANSMIT:
3445                ret = queue_iso_transmit(ctx, packet, buffer, payload);
3446                break;
3447        case FW_ISO_CONTEXT_RECEIVE:
3448                ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3449                break;
3450        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3451                ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3452                break;
3453        }
3454        spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3455
3456        return ret;
3457}
3458
3459static void ohci_flush_queue_iso(struct fw_iso_context *base)
3460{
3461        struct context *ctx =
3462                        &container_of(base, struct iso_context, base)->context;
3463
3464        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3465}
3466
3467static int ohci_flush_iso_completions(struct fw_iso_context *base)
3468{
3469        struct iso_context *ctx = container_of(base, struct iso_context, base);
3470        int ret = 0;
3471
3472        tasklet_disable(&ctx->context.tasklet);
3473
3474        if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3475                context_tasklet((unsigned long)&ctx->context);
3476
3477                switch (base->type) {
3478                case FW_ISO_CONTEXT_TRANSMIT:
3479                case FW_ISO_CONTEXT_RECEIVE:
3480                        if (ctx->header_length != 0)
3481                                flush_iso_completions(ctx);
3482                        break;
3483                case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3484                        if (ctx->mc_completed != 0)
3485                                flush_ir_buffer_fill(ctx);
3486                        break;
3487                default:
3488                        ret = -ENOSYS;
3489                }
3490
3491                clear_bit_unlock(0, &ctx->flushing_completions);
3492                smp_mb__after_atomic();
3493        }
3494
3495        tasklet_enable(&ctx->context.tasklet);
3496
3497        return ret;
3498}
3499
3500static const struct fw_card_driver ohci_driver = {
3501        .enable                 = ohci_enable,
3502        .read_phy_reg           = ohci_read_phy_reg,
3503        .update_phy_reg         = ohci_update_phy_reg,
3504        .set_config_rom         = ohci_set_config_rom,
3505        .send_request           = ohci_send_request,
3506        .send_response          = ohci_send_response,
3507        .cancel_packet          = ohci_cancel_packet,
3508        .enable_phys_dma        = ohci_enable_phys_dma,
3509        .read_csr               = ohci_read_csr,
3510        .write_csr              = ohci_write_csr,
3511
3512        .allocate_iso_context   = ohci_allocate_iso_context,
3513        .free_iso_context       = ohci_free_iso_context,
3514        .set_iso_channels       = ohci_set_iso_channels,
3515        .queue_iso              = ohci_queue_iso,
3516        .flush_queue_iso        = ohci_flush_queue_iso,
3517        .flush_iso_completions  = ohci_flush_iso_completions,
3518        .start_iso              = ohci_start_iso,
3519        .stop_iso               = ohci_stop_iso,
3520};
3521
3522#ifdef CONFIG_PPC_PMAC
3523static void pmac_ohci_on(struct pci_dev *dev)
3524{
3525        if (machine_is(powermac)) {
3526                struct device_node *ofn = pci_device_to_OF_node(dev);
3527
3528                if (ofn) {
3529                        pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3530                        pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3531                }
3532        }
3533}
3534
3535static void pmac_ohci_off(struct pci_dev *dev)
3536{
3537        if (machine_is(powermac)) {
3538                struct device_node *ofn = pci_device_to_OF_node(dev);
3539
3540                if (ofn) {
3541                        pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3542                        pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3543                }
3544        }
3545}
3546#else
3547static inline void pmac_ohci_on(struct pci_dev *dev) {}
3548static inline void pmac_ohci_off(struct pci_dev *dev) {}
3549#endif /* CONFIG_PPC_PMAC */
3550
3551static int pci_probe(struct pci_dev *dev,
3552                               const struct pci_device_id *ent)
3553{
3554        struct fw_ohci *ohci;
3555        u32 bus_options, max_receive, link_speed, version;
3556        u64 guid;
3557        int i, err;
3558        size_t size;
3559
3560        if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3561                dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3562                return -ENOSYS;
3563        }
3564
3565        ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3566        if (ohci == NULL) {
3567                err = -ENOMEM;
3568                goto fail;
3569        }
3570
3571        fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3572
3573        pmac_ohci_on(dev);
3574
3575        err = pci_enable_device(dev);
3576        if (err) {
3577                dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3578                goto fail_free;
3579        }
3580
3581        pci_set_master(dev);
3582        pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3583        pci_set_drvdata(dev, ohci);
3584
3585        spin_lock_init(&ohci->lock);
3586        mutex_init(&ohci->phy_reg_mutex);
3587
3588        INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3589
3590        if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3591            pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3592                ohci_err(ohci, "invalid MMIO resource\n");
3593                err = -ENXIO;
3594                goto fail_disable;
3595        }
3596
3597        err = pci_request_region(dev, 0, ohci_driver_name);
3598        if (err) {
3599                ohci_err(ohci, "MMIO resource unavailable\n");
3600                goto fail_disable;
3601        }
3602
3603        ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3604        if (ohci->registers == NULL) {
3605                ohci_err(ohci, "failed to remap registers\n");
3606                err = -ENXIO;
3607                goto fail_iomem;
3608        }
3609
3610        for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3611                if ((ohci_quirks[i].vendor == dev->vendor) &&
3612                    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3613                     ohci_quirks[i].device == dev->device) &&
3614                    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3615                     ohci_quirks[i].revision >= dev->revision)) {
3616                        ohci->quirks = ohci_quirks[i].flags;
3617                        break;
3618                }
3619        if (param_quirks)
3620                ohci->quirks = param_quirks;
3621
3622        /*
3623         * Because dma_alloc_coherent() allocates at least one page,
3624         * we save space by using a common buffer for the AR request/
3625         * response descriptors and the self IDs buffer.
3626         */
3627        BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3628        BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3629        ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3630                                               PAGE_SIZE,
3631                                               &ohci->misc_buffer_bus,
3632                                               GFP_KERNEL);
3633        if (!ohci->misc_buffer) {
3634                err = -ENOMEM;
3635                goto fail_iounmap;
3636        }
3637
3638        err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3639                              OHCI1394_AsReqRcvContextControlSet);
3640        if (err < 0)
3641                goto fail_misc_buf;
3642
3643        err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3644                              OHCI1394_AsRspRcvContextControlSet);
3645        if (err < 0)
3646                goto fail_arreq_ctx;
3647
3648        err = context_init(&ohci->at_request_ctx, ohci,
3649                           OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3650        if (err < 0)
3651                goto fail_arrsp_ctx;
3652
3653        err = context_init(&ohci->at_response_ctx, ohci,
3654                           OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3655        if (err < 0)
3656                goto fail_atreq_ctx;
3657
3658        reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3659        ohci->ir_context_channels = ~0ULL;
3660        ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3661        reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3662        ohci->ir_context_mask = ohci->ir_context_support;
3663        ohci->n_ir = hweight32(ohci->ir_context_mask);
3664        size = sizeof(struct iso_context) * ohci->n_ir;
3665        ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3666
3667        reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3668        ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3669        /* JMicron JMB38x often shows 0 at first read, just ignore it */
3670        if (!ohci->it_context_support) {
3671                ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3672                ohci->it_context_support = 0xf;
3673        }
3674        reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3675        ohci->it_context_mask = ohci->it_context_support;
3676        ohci->n_it = hweight32(ohci->it_context_mask);
3677        size = sizeof(struct iso_context) * ohci->n_it;
3678        ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3679
3680        if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3681                err = -ENOMEM;
3682                goto fail_contexts;
3683        }
3684
3685        ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3686        ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3687
3688        bus_options = reg_read(ohci, OHCI1394_BusOptions);
3689        max_receive = (bus_options >> 12) & 0xf;
3690        link_speed = bus_options & 0x7;
3691        guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3692                reg_read(ohci, OHCI1394_GUIDLo);
3693
3694        if (!(ohci->quirks & QUIRK_NO_MSI))
3695                pci_enable_msi(dev);
3696        if (request_irq(dev->irq, irq_handler,
3697                        pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3698                        ohci_driver_name, ohci)) {
3699                ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3700                err = -EIO;
3701                goto fail_msi;
3702        }
3703
3704        err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3705        if (err)
3706                goto fail_irq;
3707
3708        version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3709        ohci_notice(ohci,
3710                    "added OHCI v%x.%x device as card %d, "
3711                    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3712                    version >> 16, version & 0xff, ohci->card.index,
3713                    ohci->n_ir, ohci->n_it, ohci->quirks,
3714                    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3715                        ", physUB" : "");
3716
3717        return 0;
3718
3719 fail_irq:
3720        free_irq(dev->irq, ohci);
3721 fail_msi:
3722        pci_disable_msi(dev);
3723 fail_contexts:
3724        kfree(ohci->ir_context_list);
3725        kfree(ohci->it_context_list);
3726        context_release(&ohci->at_response_ctx);
3727 fail_atreq_ctx:
3728        context_release(&ohci->at_request_ctx);
3729 fail_arrsp_ctx:
3730        ar_context_release(&ohci->ar_response_ctx);
3731 fail_arreq_ctx:
3732        ar_context_release(&ohci->ar_request_ctx);
3733 fail_misc_buf:
3734        dma_free_coherent(ohci->card.device, PAGE_SIZE,
3735                          ohci->misc_buffer, ohci->misc_buffer_bus);
3736 fail_iounmap:
3737        pci_iounmap(dev, ohci->registers);
3738 fail_iomem:
3739        pci_release_region(dev, 0);
3740 fail_disable:
3741        pci_disable_device(dev);
3742 fail_free:
3743        kfree(ohci);
3744        pmac_ohci_off(dev);
3745 fail:
3746        return err;
3747}
3748
3749static void pci_remove(struct pci_dev *dev)
3750{
3751        struct fw_ohci *ohci = pci_get_drvdata(dev);
3752
3753        /*
3754         * If the removal is happening from the suspend state, LPS won't be
3755         * enabled and host registers (eg., IntMaskClear) won't be accessible.
3756         */
3757        if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3758                reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3759                flush_writes(ohci);
3760        }
3761        cancel_work_sync(&ohci->bus_reset_work);
3762        fw_core_remove_card(&ohci->card);
3763
3764        /*
3765         * FIXME: Fail all pending packets here, now that the upper
3766         * layers can't queue any more.
3767         */
3768
3769        software_reset(ohci);
3770        free_irq(dev->irq, ohci);
3771
3772        if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3773                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3774                                  ohci->next_config_rom, ohci->next_config_rom_bus);
3775        if (ohci->config_rom)
3776                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3777                                  ohci->config_rom, ohci->config_rom_bus);
3778        ar_context_release(&ohci->ar_request_ctx);
3779        ar_context_release(&ohci->ar_response_ctx);
3780        dma_free_coherent(ohci->card.device, PAGE_SIZE,
3781                          ohci->misc_buffer, ohci->misc_buffer_bus);
3782        context_release(&ohci->at_request_ctx);
3783        context_release(&ohci->at_response_ctx);
3784        kfree(ohci->it_context_list);
3785        kfree(ohci->ir_context_list);
3786        pci_disable_msi(dev);
3787        pci_iounmap(dev, ohci->registers);
3788        pci_release_region(dev, 0);
3789        pci_disable_device(dev);
3790        kfree(ohci);
3791        pmac_ohci_off(dev);
3792
3793        dev_notice(&dev->dev, "removed fw-ohci device\n");
3794}
3795
3796#ifdef CONFIG_PM
3797static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3798{
3799        struct fw_ohci *ohci = pci_get_drvdata(dev);
3800        int err;
3801
3802        software_reset(ohci);
3803        err = pci_save_state(dev);
3804        if (err) {
3805                ohci_err(ohci, "pci_save_state failed\n");
3806                return err;
3807        }
3808        err = pci_set_power_state(dev, pci_choose_state(dev, state));
3809        if (err)
3810                ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3811        pmac_ohci_off(dev);
3812
3813        return 0;
3814}
3815
3816static int pci_resume(struct pci_dev *dev)
3817{
3818        struct fw_ohci *ohci = pci_get_drvdata(dev);
3819        int err;
3820
3821        pmac_ohci_on(dev);
3822        pci_set_power_state(dev, PCI_D0);
3823        pci_restore_state(dev);
3824        err = pci_enable_device(dev);
3825        if (err) {
3826                ohci_err(ohci, "pci_enable_device failed\n");
3827                return err;
3828        }
3829
3830        /* Some systems don't setup GUID register on resume from ram  */
3831        if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3832                                        !reg_read(ohci, OHCI1394_GUIDHi)) {
3833                reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3834                reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3835        }
3836
3837        err = ohci_enable(&ohci->card, NULL, 0);
3838        if (err)
3839                return err;
3840
3841        ohci_resume_iso_dma(ohci);
3842
3843        return 0;
3844}
3845#endif
3846
3847static const struct pci_device_id pci_table[] = {
3848        { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3849        { }
3850};
3851
3852MODULE_DEVICE_TABLE(pci, pci_table);
3853
3854static struct pci_driver fw_ohci_pci_driver = {
3855        .name           = ohci_driver_name,
3856        .id_table       = pci_table,
3857        .probe          = pci_probe,
3858        .remove         = pci_remove,
3859#ifdef CONFIG_PM
3860        .resume         = pci_resume,
3861        .suspend        = pci_suspend,
3862#endif
3863};
3864
3865static int __init fw_ohci_init(void)
3866{
3867        selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3868        if (!selfid_workqueue)
3869                return -ENOMEM;
3870
3871        return pci_register_driver(&fw_ohci_pci_driver);
3872}
3873
3874static void __exit fw_ohci_cleanup(void)
3875{
3876        pci_unregister_driver(&fw_ohci_pci_driver);
3877        destroy_workqueue(selfid_workqueue);
3878}
3879
3880module_init(fw_ohci_init);
3881module_exit(fw_ohci_cleanup);
3882
3883MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3884MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3885MODULE_LICENSE("GPL");
3886
3887/* Provide a module alias so root-on-sbp2 initrds don't break. */
3888MODULE_ALIAS("ohci1394");
3889