linux/drivers/firmware/efi/libstub/arm-stub.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * EFI stub implementation that is shared by arm and arm64 architectures.
   4 * This should be #included by the EFI stub implementation files.
   5 *
   6 * Copyright (C) 2013,2014 Linaro Limited
   7 *     Roy Franz <roy.franz@linaro.org
   8 * Copyright (C) 2013 Red Hat, Inc.
   9 *     Mark Salter <msalter@redhat.com>
  10 */
  11
  12#include <linux/efi.h>
  13#include <linux/sort.h>
  14#include <asm/efi.h>
  15
  16#include "efistub.h"
  17
  18/*
  19 * This is the base address at which to start allocating virtual memory ranges
  20 * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
  21 * any allocation we choose, and eliminate the risk of a conflict after kexec.
  22 * The value chosen is the largest non-zero power of 2 suitable for this purpose
  23 * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
  24 * be mapped efficiently.
  25 * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
  26 * map everything below 1 GB. (512 MB is a reasonable upper bound for the
  27 * entire footprint of the UEFI runtime services memory regions)
  28 */
  29#define EFI_RT_VIRTUAL_BASE     SZ_512M
  30#define EFI_RT_VIRTUAL_SIZE     SZ_512M
  31
  32#ifdef CONFIG_ARM64
  33# define EFI_RT_VIRTUAL_LIMIT   DEFAULT_MAP_WINDOW_64
  34#else
  35# define EFI_RT_VIRTUAL_LIMIT   TASK_SIZE
  36#endif
  37
  38static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
  39
  40void efi_char16_printk(efi_system_table_t *sys_table_arg,
  41                              efi_char16_t *str)
  42{
  43        struct efi_simple_text_output_protocol *out;
  44
  45        out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
  46        out->output_string(out, str);
  47}
  48
  49static struct screen_info *setup_graphics(efi_system_table_t *sys_table_arg)
  50{
  51        efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
  52        efi_status_t status;
  53        unsigned long size;
  54        void **gop_handle = NULL;
  55        struct screen_info *si = NULL;
  56
  57        size = 0;
  58        status = efi_call_early(locate_handle, EFI_LOCATE_BY_PROTOCOL,
  59                                &gop_proto, NULL, &size, gop_handle);
  60        if (status == EFI_BUFFER_TOO_SMALL) {
  61                si = alloc_screen_info(sys_table_arg);
  62                if (!si)
  63                        return NULL;
  64                efi_setup_gop(sys_table_arg, si, &gop_proto, size);
  65        }
  66        return si;
  67}
  68
  69void install_memreserve_table(efi_system_table_t *sys_table_arg)
  70{
  71        struct linux_efi_memreserve *rsv;
  72        efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
  73        efi_status_t status;
  74
  75        status = efi_call_early(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
  76                                (void **)&rsv);
  77        if (status != EFI_SUCCESS) {
  78                pr_efi_err(sys_table_arg, "Failed to allocate memreserve entry!\n");
  79                return;
  80        }
  81
  82        rsv->next = 0;
  83        rsv->size = 0;
  84        atomic_set(&rsv->count, 0);
  85
  86        status = efi_call_early(install_configuration_table,
  87                                &memreserve_table_guid,
  88                                rsv);
  89        if (status != EFI_SUCCESS)
  90                pr_efi_err(sys_table_arg, "Failed to install memreserve config table!\n");
  91}
  92
  93
  94/*
  95 * This function handles the architcture specific differences between arm and
  96 * arm64 regarding where the kernel image must be loaded and any memory that
  97 * must be reserved. On failure it is required to free all
  98 * all allocations it has made.
  99 */
 100efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
 101                                 unsigned long *image_addr,
 102                                 unsigned long *image_size,
 103                                 unsigned long *reserve_addr,
 104                                 unsigned long *reserve_size,
 105                                 unsigned long dram_base,
 106                                 efi_loaded_image_t *image);
 107/*
 108 * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
 109 * that is described in the PE/COFF header.  Most of the code is the same
 110 * for both archictectures, with the arch-specific code provided in the
 111 * handle_kernel_image() function.
 112 */
 113unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
 114                               unsigned long *image_addr)
 115{
 116        efi_loaded_image_t *image;
 117        efi_status_t status;
 118        unsigned long image_size = 0;
 119        unsigned long dram_base;
 120        /* addr/point and size pairs for memory management*/
 121        unsigned long initrd_addr;
 122        u64 initrd_size = 0;
 123        unsigned long fdt_addr = 0;  /* Original DTB */
 124        unsigned long fdt_size = 0;
 125        char *cmdline_ptr = NULL;
 126        int cmdline_size = 0;
 127        unsigned long new_fdt_addr;
 128        efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
 129        unsigned long reserve_addr = 0;
 130        unsigned long reserve_size = 0;
 131        enum efi_secureboot_mode secure_boot;
 132        struct screen_info *si;
 133
 134        /* Check if we were booted by the EFI firmware */
 135        if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
 136                goto fail;
 137
 138        status = check_platform_features(sys_table);
 139        if (status != EFI_SUCCESS)
 140                goto fail;
 141
 142        /*
 143         * Get a handle to the loaded image protocol.  This is used to get
 144         * information about the running image, such as size and the command
 145         * line.
 146         */
 147        status = sys_table->boottime->handle_protocol(handle,
 148                                        &loaded_image_proto, (void *)&image);
 149        if (status != EFI_SUCCESS) {
 150                pr_efi_err(sys_table, "Failed to get loaded image protocol\n");
 151                goto fail;
 152        }
 153
 154        dram_base = get_dram_base(sys_table);
 155        if (dram_base == EFI_ERROR) {
 156                pr_efi_err(sys_table, "Failed to find DRAM base\n");
 157                goto fail;
 158        }
 159
 160        /*
 161         * Get the command line from EFI, using the LOADED_IMAGE
 162         * protocol. We are going to copy the command line into the
 163         * device tree, so this can be allocated anywhere.
 164         */
 165        cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size);
 166        if (!cmdline_ptr) {
 167                pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n");
 168                goto fail;
 169        }
 170
 171        if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
 172            IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
 173            cmdline_size == 0)
 174                efi_parse_options(CONFIG_CMDLINE);
 175
 176        if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0)
 177                efi_parse_options(cmdline_ptr);
 178
 179        pr_efi(sys_table, "Booting Linux Kernel...\n");
 180
 181        si = setup_graphics(sys_table);
 182
 183        status = handle_kernel_image(sys_table, image_addr, &image_size,
 184                                     &reserve_addr,
 185                                     &reserve_size,
 186                                     dram_base, image);
 187        if (status != EFI_SUCCESS) {
 188                pr_efi_err(sys_table, "Failed to relocate kernel\n");
 189                goto fail_free_cmdline;
 190        }
 191
 192        /* Ask the firmware to clear memory on unclean shutdown */
 193        efi_enable_reset_attack_mitigation(sys_table);
 194
 195        secure_boot = efi_get_secureboot(sys_table);
 196
 197        /*
 198         * Unauthenticated device tree data is a security hazard, so ignore
 199         * 'dtb=' unless UEFI Secure Boot is disabled.  We assume that secure
 200         * boot is enabled if we can't determine its state.
 201         */
 202        if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
 203             secure_boot != efi_secureboot_mode_disabled) {
 204                if (strstr(cmdline_ptr, "dtb="))
 205                        pr_efi(sys_table, "Ignoring DTB from command line.\n");
 206        } else {
 207                status = handle_cmdline_files(sys_table, image, cmdline_ptr,
 208                                              "dtb=",
 209                                              ~0UL, &fdt_addr, &fdt_size);
 210
 211                if (status != EFI_SUCCESS) {
 212                        pr_efi_err(sys_table, "Failed to load device tree!\n");
 213                        goto fail_free_image;
 214                }
 215        }
 216
 217        if (fdt_addr) {
 218                pr_efi(sys_table, "Using DTB from command line\n");
 219        } else {
 220                /* Look for a device tree configuration table entry. */
 221                fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size);
 222                if (fdt_addr)
 223                        pr_efi(sys_table, "Using DTB from configuration table\n");
 224        }
 225
 226        if (!fdt_addr)
 227                pr_efi(sys_table, "Generating empty DTB\n");
 228
 229        status = handle_cmdline_files(sys_table, image, cmdline_ptr, "initrd=",
 230                                      efi_get_max_initrd_addr(dram_base,
 231                                                              *image_addr),
 232                                      (unsigned long *)&initrd_addr,
 233                                      (unsigned long *)&initrd_size);
 234        if (status != EFI_SUCCESS)
 235                pr_efi_err(sys_table, "Failed initrd from command line!\n");
 236
 237        efi_random_get_seed(sys_table);
 238
 239        /* hibernation expects the runtime regions to stay in the same place */
 240        if (!IS_ENABLED(CONFIG_HIBERNATION) && !nokaslr()) {
 241                /*
 242                 * Randomize the base of the UEFI runtime services region.
 243                 * Preserve the 2 MB alignment of the region by taking a
 244                 * shift of 21 bit positions into account when scaling
 245                 * the headroom value using a 32-bit random value.
 246                 */
 247                static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
 248                                            EFI_RT_VIRTUAL_BASE -
 249                                            EFI_RT_VIRTUAL_SIZE;
 250                u32 rnd;
 251
 252                status = efi_get_random_bytes(sys_table, sizeof(rnd),
 253                                              (u8 *)&rnd);
 254                if (status == EFI_SUCCESS) {
 255                        virtmap_base = EFI_RT_VIRTUAL_BASE +
 256                                       (((headroom >> 21) * rnd) >> (32 - 21));
 257                }
 258        }
 259
 260        install_memreserve_table(sys_table);
 261
 262        new_fdt_addr = fdt_addr;
 263        status = allocate_new_fdt_and_exit_boot(sys_table, handle,
 264                                &new_fdt_addr, efi_get_max_fdt_addr(dram_base),
 265                                initrd_addr, initrd_size, cmdline_ptr,
 266                                fdt_addr, fdt_size);
 267
 268        /*
 269         * If all went well, we need to return the FDT address to the
 270         * calling function so it can be passed to kernel as part of
 271         * the kernel boot protocol.
 272         */
 273        if (status == EFI_SUCCESS)
 274                return new_fdt_addr;
 275
 276        pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n");
 277
 278        efi_free(sys_table, initrd_size, initrd_addr);
 279        efi_free(sys_table, fdt_size, fdt_addr);
 280
 281fail_free_image:
 282        efi_free(sys_table, image_size, *image_addr);
 283        efi_free(sys_table, reserve_size, reserve_addr);
 284fail_free_cmdline:
 285        free_screen_info(sys_table, si);
 286        efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr);
 287fail:
 288        return EFI_ERROR;
 289}
 290
 291static int cmp_mem_desc(const void *l, const void *r)
 292{
 293        const efi_memory_desc_t *left = l, *right = r;
 294
 295        return (left->phys_addr > right->phys_addr) ? 1 : -1;
 296}
 297
 298/*
 299 * Returns whether region @left ends exactly where region @right starts,
 300 * or false if either argument is NULL.
 301 */
 302static bool regions_are_adjacent(efi_memory_desc_t *left,
 303                                 efi_memory_desc_t *right)
 304{
 305        u64 left_end;
 306
 307        if (left == NULL || right == NULL)
 308                return false;
 309
 310        left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE;
 311
 312        return left_end == right->phys_addr;
 313}
 314
 315/*
 316 * Returns whether region @left and region @right have compatible memory type
 317 * mapping attributes, and are both EFI_MEMORY_RUNTIME regions.
 318 */
 319static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left,
 320                                                      efi_memory_desc_t *right)
 321{
 322        static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT |
 323                                         EFI_MEMORY_WC | EFI_MEMORY_UC |
 324                                         EFI_MEMORY_RUNTIME;
 325
 326        return ((left->attribute ^ right->attribute) & mem_type_mask) == 0;
 327}
 328
 329/*
 330 * efi_get_virtmap() - create a virtual mapping for the EFI memory map
 331 *
 332 * This function populates the virt_addr fields of all memory region descriptors
 333 * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
 334 * are also copied to @runtime_map, and their total count is returned in @count.
 335 */
 336void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
 337                     unsigned long desc_size, efi_memory_desc_t *runtime_map,
 338                     int *count)
 339{
 340        u64 efi_virt_base = virtmap_base;
 341        efi_memory_desc_t *in, *prev = NULL, *out = runtime_map;
 342        int l;
 343
 344        /*
 345         * To work around potential issues with the Properties Table feature
 346         * introduced in UEFI 2.5, which may split PE/COFF executable images
 347         * in memory into several RuntimeServicesCode and RuntimeServicesData
 348         * regions, we need to preserve the relative offsets between adjacent
 349         * EFI_MEMORY_RUNTIME regions with the same memory type attributes.
 350         * The easiest way to find adjacent regions is to sort the memory map
 351         * before traversing it.
 352         */
 353        if (IS_ENABLED(CONFIG_ARM64))
 354                sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc,
 355                     NULL);
 356
 357        for (l = 0; l < map_size; l += desc_size, prev = in) {
 358                u64 paddr, size;
 359
 360                in = (void *)memory_map + l;
 361                if (!(in->attribute & EFI_MEMORY_RUNTIME))
 362                        continue;
 363
 364                paddr = in->phys_addr;
 365                size = in->num_pages * EFI_PAGE_SIZE;
 366
 367                if (novamap()) {
 368                        in->virt_addr = in->phys_addr;
 369                        continue;
 370                }
 371
 372                /*
 373                 * Make the mapping compatible with 64k pages: this allows
 374                 * a 4k page size kernel to kexec a 64k page size kernel and
 375                 * vice versa.
 376                 */
 377                if ((IS_ENABLED(CONFIG_ARM64) &&
 378                     !regions_are_adjacent(prev, in)) ||
 379                    !regions_have_compatible_memory_type_attrs(prev, in)) {
 380
 381                        paddr = round_down(in->phys_addr, SZ_64K);
 382                        size += in->phys_addr - paddr;
 383
 384                        /*
 385                         * Avoid wasting memory on PTEs by choosing a virtual
 386                         * base that is compatible with section mappings if this
 387                         * region has the appropriate size and physical
 388                         * alignment. (Sections are 2 MB on 4k granule kernels)
 389                         */
 390                        if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
 391                                efi_virt_base = round_up(efi_virt_base, SZ_2M);
 392                        else
 393                                efi_virt_base = round_up(efi_virt_base, SZ_64K);
 394                }
 395
 396                in->virt_addr = efi_virt_base + in->phys_addr - paddr;
 397                efi_virt_base += size;
 398
 399                memcpy(out, in, desc_size);
 400                out = (void *)out + desc_size;
 401                ++*count;
 402        }
 403}
 404