linux/drivers/gpu/drm/amd/powerplay/vega20_ppt.c
<<
>>
Prefs
   1/*
   2 * Copyright 2019 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 */
  23
  24#include "pp_debug.h"
  25#include <linux/firmware.h>
  26#include "amdgpu.h"
  27#include "amdgpu_smu.h"
  28#include "atomfirmware.h"
  29#include "amdgpu_atomfirmware.h"
  30#include "smu_v11_0.h"
  31#include "smu11_driver_if.h"
  32#include "soc15_common.h"
  33#include "atom.h"
  34#include "power_state.h"
  35#include "vega20_ppt.h"
  36#include "vega20_pptable.h"
  37#include "vega20_ppsmc.h"
  38#include "nbio/nbio_7_4_sh_mask.h"
  39#include "asic_reg/thm/thm_11_0_2_offset.h"
  40#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
  41
  42#define smnPCIE_LC_SPEED_CNTL                   0x11140290
  43#define smnPCIE_LC_LINK_WIDTH_CNTL              0x11140288
  44
  45#define CTF_OFFSET_EDGE                 5
  46#define CTF_OFFSET_HOTSPOT              5
  47#define CTF_OFFSET_HBM                  5
  48
  49#define MSG_MAP(msg) \
  50        [SMU_MSG_##msg] = PPSMC_MSG_##msg
  51
  52#define SMC_DPM_FEATURE (FEATURE_DPM_PREFETCHER_MASK | \
  53                         FEATURE_DPM_GFXCLK_MASK | \
  54                         FEATURE_DPM_UCLK_MASK | \
  55                         FEATURE_DPM_SOCCLK_MASK | \
  56                         FEATURE_DPM_UVD_MASK | \
  57                         FEATURE_DPM_VCE_MASK | \
  58                         FEATURE_DPM_MP0CLK_MASK | \
  59                         FEATURE_DPM_LINK_MASK | \
  60                         FEATURE_DPM_DCEFCLK_MASK)
  61
  62static int vega20_message_map[SMU_MSG_MAX_COUNT] = {
  63        MSG_MAP(TestMessage),
  64        MSG_MAP(GetSmuVersion),
  65        MSG_MAP(GetDriverIfVersion),
  66        MSG_MAP(SetAllowedFeaturesMaskLow),
  67        MSG_MAP(SetAllowedFeaturesMaskHigh),
  68        MSG_MAP(EnableAllSmuFeatures),
  69        MSG_MAP(DisableAllSmuFeatures),
  70        MSG_MAP(EnableSmuFeaturesLow),
  71        MSG_MAP(EnableSmuFeaturesHigh),
  72        MSG_MAP(DisableSmuFeaturesLow),
  73        MSG_MAP(DisableSmuFeaturesHigh),
  74        MSG_MAP(GetEnabledSmuFeaturesLow),
  75        MSG_MAP(GetEnabledSmuFeaturesHigh),
  76        MSG_MAP(SetWorkloadMask),
  77        MSG_MAP(SetPptLimit),
  78        MSG_MAP(SetDriverDramAddrHigh),
  79        MSG_MAP(SetDriverDramAddrLow),
  80        MSG_MAP(SetToolsDramAddrHigh),
  81        MSG_MAP(SetToolsDramAddrLow),
  82        MSG_MAP(TransferTableSmu2Dram),
  83        MSG_MAP(TransferTableDram2Smu),
  84        MSG_MAP(UseDefaultPPTable),
  85        MSG_MAP(UseBackupPPTable),
  86        MSG_MAP(RunBtc),
  87        MSG_MAP(RequestI2CBus),
  88        MSG_MAP(ReleaseI2CBus),
  89        MSG_MAP(SetFloorSocVoltage),
  90        MSG_MAP(SoftReset),
  91        MSG_MAP(StartBacoMonitor),
  92        MSG_MAP(CancelBacoMonitor),
  93        MSG_MAP(EnterBaco),
  94        MSG_MAP(SetSoftMinByFreq),
  95        MSG_MAP(SetSoftMaxByFreq),
  96        MSG_MAP(SetHardMinByFreq),
  97        MSG_MAP(SetHardMaxByFreq),
  98        MSG_MAP(GetMinDpmFreq),
  99        MSG_MAP(GetMaxDpmFreq),
 100        MSG_MAP(GetDpmFreqByIndex),
 101        MSG_MAP(GetDpmClockFreq),
 102        MSG_MAP(GetSsVoltageByDpm),
 103        MSG_MAP(SetMemoryChannelConfig),
 104        MSG_MAP(SetGeminiMode),
 105        MSG_MAP(SetGeminiApertureHigh),
 106        MSG_MAP(SetGeminiApertureLow),
 107        MSG_MAP(SetMinLinkDpmByIndex),
 108        MSG_MAP(OverridePcieParameters),
 109        MSG_MAP(OverDriveSetPercentage),
 110        MSG_MAP(SetMinDeepSleepDcefclk),
 111        MSG_MAP(ReenableAcDcInterrupt),
 112        MSG_MAP(NotifyPowerSource),
 113        MSG_MAP(SetUclkFastSwitch),
 114        MSG_MAP(SetUclkDownHyst),
 115        MSG_MAP(GetCurrentRpm),
 116        MSG_MAP(SetVideoFps),
 117        MSG_MAP(SetTjMax),
 118        MSG_MAP(SetFanTemperatureTarget),
 119        MSG_MAP(PrepareMp1ForUnload),
 120        MSG_MAP(DramLogSetDramAddrHigh),
 121        MSG_MAP(DramLogSetDramAddrLow),
 122        MSG_MAP(DramLogSetDramSize),
 123        MSG_MAP(SetFanMaxRpm),
 124        MSG_MAP(SetFanMinPwm),
 125        MSG_MAP(ConfigureGfxDidt),
 126        MSG_MAP(NumOfDisplays),
 127        MSG_MAP(RemoveMargins),
 128        MSG_MAP(ReadSerialNumTop32),
 129        MSG_MAP(ReadSerialNumBottom32),
 130        MSG_MAP(SetSystemVirtualDramAddrHigh),
 131        MSG_MAP(SetSystemVirtualDramAddrLow),
 132        MSG_MAP(WaflTest),
 133        MSG_MAP(SetFclkGfxClkRatio),
 134        MSG_MAP(AllowGfxOff),
 135        MSG_MAP(DisallowGfxOff),
 136        MSG_MAP(GetPptLimit),
 137        MSG_MAP(GetDcModeMaxDpmFreq),
 138        MSG_MAP(GetDebugData),
 139        MSG_MAP(SetXgmiMode),
 140        MSG_MAP(RunAfllBtc),
 141        MSG_MAP(ExitBaco),
 142        MSG_MAP(PrepareMp1ForReset),
 143        MSG_MAP(PrepareMp1ForShutdown),
 144        MSG_MAP(SetMGpuFanBoostLimitRpm),
 145        MSG_MAP(GetAVFSVoltageByDpm),
 146};
 147
 148static int vega20_clk_map[SMU_CLK_COUNT] = {
 149        CLK_MAP(GFXCLK, PPCLK_GFXCLK),
 150        CLK_MAP(VCLK, PPCLK_VCLK),
 151        CLK_MAP(DCLK, PPCLK_DCLK),
 152        CLK_MAP(ECLK, PPCLK_ECLK),
 153        CLK_MAP(SOCCLK, PPCLK_SOCCLK),
 154        CLK_MAP(UCLK, PPCLK_UCLK),
 155        CLK_MAP(DCEFCLK, PPCLK_DCEFCLK),
 156        CLK_MAP(DISPCLK, PPCLK_DISPCLK),
 157        CLK_MAP(PIXCLK, PPCLK_PIXCLK),
 158        CLK_MAP(PHYCLK, PPCLK_PHYCLK),
 159        CLK_MAP(FCLK, PPCLK_FCLK),
 160};
 161
 162static int vega20_feature_mask_map[SMU_FEATURE_COUNT] = {
 163        FEA_MAP(DPM_PREFETCHER),
 164        FEA_MAP(DPM_GFXCLK),
 165        FEA_MAP(DPM_UCLK),
 166        FEA_MAP(DPM_SOCCLK),
 167        FEA_MAP(DPM_UVD),
 168        FEA_MAP(DPM_VCE),
 169        FEA_MAP(ULV),
 170        FEA_MAP(DPM_MP0CLK),
 171        FEA_MAP(DPM_LINK),
 172        FEA_MAP(DPM_DCEFCLK),
 173        FEA_MAP(DS_GFXCLK),
 174        FEA_MAP(DS_SOCCLK),
 175        FEA_MAP(DS_LCLK),
 176        FEA_MAP(PPT),
 177        FEA_MAP(TDC),
 178        FEA_MAP(THERMAL),
 179        FEA_MAP(GFX_PER_CU_CG),
 180        FEA_MAP(RM),
 181        FEA_MAP(DS_DCEFCLK),
 182        FEA_MAP(ACDC),
 183        FEA_MAP(VR0HOT),
 184        FEA_MAP(VR1HOT),
 185        FEA_MAP(FW_CTF),
 186        FEA_MAP(LED_DISPLAY),
 187        FEA_MAP(FAN_CONTROL),
 188        FEA_MAP(GFX_EDC),
 189        FEA_MAP(GFXOFF),
 190        FEA_MAP(CG),
 191        FEA_MAP(DPM_FCLK),
 192        FEA_MAP(DS_FCLK),
 193        FEA_MAP(DS_MP1CLK),
 194        FEA_MAP(DS_MP0CLK),
 195        FEA_MAP(XGMI),
 196};
 197
 198static int vega20_table_map[SMU_TABLE_COUNT] = {
 199        TAB_MAP(PPTABLE),
 200        TAB_MAP(WATERMARKS),
 201        TAB_MAP(AVFS),
 202        TAB_MAP(AVFS_PSM_DEBUG),
 203        TAB_MAP(AVFS_FUSE_OVERRIDE),
 204        TAB_MAP(PMSTATUSLOG),
 205        TAB_MAP(SMU_METRICS),
 206        TAB_MAP(DRIVER_SMU_CONFIG),
 207        TAB_MAP(ACTIVITY_MONITOR_COEFF),
 208        TAB_MAP(OVERDRIVE),
 209};
 210
 211static int vega20_pwr_src_map[SMU_POWER_SOURCE_COUNT] = {
 212        PWR_MAP(AC),
 213        PWR_MAP(DC),
 214};
 215
 216static int vega20_workload_map[] = {
 217        WORKLOAD_MAP(PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT,       WORKLOAD_DEFAULT_BIT),
 218        WORKLOAD_MAP(PP_SMC_POWER_PROFILE_FULLSCREEN3D,         WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT),
 219        WORKLOAD_MAP(PP_SMC_POWER_PROFILE_POWERSAVING,          WORKLOAD_PPLIB_POWER_SAVING_BIT),
 220        WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO,                WORKLOAD_PPLIB_VIDEO_BIT),
 221        WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VR,                   WORKLOAD_PPLIB_VR_BIT),
 222        WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE,              WORKLOAD_PPLIB_CUSTOM_BIT),
 223        WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM,               WORKLOAD_PPLIB_CUSTOM_BIT),
 224};
 225
 226static int vega20_get_smu_table_index(struct smu_context *smc, uint32_t index)
 227{
 228        int val;
 229        if (index >= SMU_TABLE_COUNT)
 230                return -EINVAL;
 231
 232        val = vega20_table_map[index];
 233        if (val >= TABLE_COUNT)
 234                return -EINVAL;
 235
 236        return val;
 237}
 238
 239static int vega20_get_pwr_src_index(struct smu_context *smc, uint32_t index)
 240{
 241        int val;
 242        if (index >= SMU_POWER_SOURCE_COUNT)
 243                return -EINVAL;
 244
 245        val = vega20_pwr_src_map[index];
 246        if (val >= POWER_SOURCE_COUNT)
 247                return -EINVAL;
 248
 249        return val;
 250}
 251
 252static int vega20_get_smu_feature_index(struct smu_context *smc, uint32_t index)
 253{
 254        int val;
 255        if (index >= SMU_FEATURE_COUNT)
 256                return -EINVAL;
 257
 258        val = vega20_feature_mask_map[index];
 259        if (val > 64)
 260                return -EINVAL;
 261
 262        return val;
 263}
 264
 265static int vega20_get_smu_clk_index(struct smu_context *smc, uint32_t index)
 266{
 267        int val;
 268        if (index >= SMU_CLK_COUNT)
 269                return -EINVAL;
 270
 271        val = vega20_clk_map[index];
 272        if (val >= PPCLK_COUNT)
 273                return -EINVAL;
 274
 275        return val;
 276}
 277
 278static int vega20_get_smu_msg_index(struct smu_context *smc, uint32_t index)
 279{
 280        int val;
 281
 282        if (index >= SMU_MSG_MAX_COUNT)
 283                return -EINVAL;
 284
 285        val = vega20_message_map[index];
 286        if (val > PPSMC_Message_Count)
 287                return -EINVAL;
 288
 289        return val;
 290}
 291
 292static int vega20_get_workload_type(struct smu_context *smu, enum PP_SMC_POWER_PROFILE profile)
 293{
 294        int val;
 295        if (profile > PP_SMC_POWER_PROFILE_CUSTOM)
 296                return -EINVAL;
 297
 298        val = vega20_workload_map[profile];
 299
 300        return val;
 301}
 302
 303static int vega20_tables_init(struct smu_context *smu, struct smu_table *tables)
 304{
 305        struct smu_table_context *smu_table = &smu->smu_table;
 306
 307        SMU_TABLE_INIT(tables, SMU_TABLE_PPTABLE, sizeof(PPTable_t),
 308                       PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
 309        SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t),
 310                       PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
 311        SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t),
 312                       PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
 313        SMU_TABLE_INIT(tables, SMU_TABLE_OVERDRIVE, sizeof(OverDriveTable_t),
 314                       PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
 315        SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU11_TOOL_SIZE,
 316                       PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
 317        SMU_TABLE_INIT(tables, SMU_TABLE_ACTIVITY_MONITOR_COEFF,
 318                       sizeof(DpmActivityMonitorCoeffInt_t), PAGE_SIZE,
 319                       AMDGPU_GEM_DOMAIN_VRAM);
 320
 321        smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
 322        if (!smu_table->metrics_table)
 323                return -ENOMEM;
 324        smu_table->metrics_time = 0;
 325
 326        return 0;
 327}
 328
 329static int vega20_allocate_dpm_context(struct smu_context *smu)
 330{
 331        struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
 332
 333        if (smu_dpm->dpm_context)
 334                return -EINVAL;
 335
 336        smu_dpm->dpm_context = kzalloc(sizeof(struct vega20_dpm_table),
 337                                       GFP_KERNEL);
 338        if (!smu_dpm->dpm_context)
 339                return -ENOMEM;
 340
 341        if (smu_dpm->golden_dpm_context)
 342                return -EINVAL;
 343
 344        smu_dpm->golden_dpm_context = kzalloc(sizeof(struct vega20_dpm_table),
 345                                              GFP_KERNEL);
 346        if (!smu_dpm->golden_dpm_context)
 347                return -ENOMEM;
 348
 349        smu_dpm->dpm_context_size = sizeof(struct vega20_dpm_table);
 350
 351        smu_dpm->dpm_current_power_state = kzalloc(sizeof(struct smu_power_state),
 352                                       GFP_KERNEL);
 353        if (!smu_dpm->dpm_current_power_state)
 354                return -ENOMEM;
 355
 356        smu_dpm->dpm_request_power_state = kzalloc(sizeof(struct smu_power_state),
 357                                       GFP_KERNEL);
 358        if (!smu_dpm->dpm_request_power_state)
 359                return -ENOMEM;
 360
 361        return 0;
 362}
 363
 364static int vega20_setup_od8_information(struct smu_context *smu)
 365{
 366        ATOM_Vega20_POWERPLAYTABLE *powerplay_table = NULL;
 367        struct smu_table_context *table_context = &smu->smu_table;
 368        struct vega20_od8_settings *od8_settings = (struct vega20_od8_settings *)smu->od_settings;
 369
 370        uint32_t od_feature_count, od_feature_array_size,
 371                 od_setting_count, od_setting_array_size;
 372
 373        if (!table_context->power_play_table)
 374                return -EINVAL;
 375
 376        powerplay_table = table_context->power_play_table;
 377
 378        if (powerplay_table->OverDrive8Table.ucODTableRevision == 1) {
 379                /* Setup correct ODFeatureCount, and store ODFeatureArray from
 380                 * powerplay table to od_feature_capabilities */
 381                od_feature_count =
 382                        (le32_to_cpu(powerplay_table->OverDrive8Table.ODFeatureCount) >
 383                         ATOM_VEGA20_ODFEATURE_COUNT) ?
 384                        ATOM_VEGA20_ODFEATURE_COUNT :
 385                        le32_to_cpu(powerplay_table->OverDrive8Table.ODFeatureCount);
 386
 387                od_feature_array_size = sizeof(uint8_t) * od_feature_count;
 388
 389                if (od8_settings->od_feature_capabilities)
 390                        return -EINVAL;
 391
 392                od8_settings->od_feature_capabilities = kmemdup(&powerplay_table->OverDrive8Table.ODFeatureCapabilities,
 393                                                                 od_feature_array_size,
 394                                                                 GFP_KERNEL);
 395                if (!od8_settings->od_feature_capabilities)
 396                        return -ENOMEM;
 397
 398                /* Setup correct ODSettingCount, and store ODSettingArray from
 399                 * powerplay table to od_settings_max and od_setting_min */
 400                od_setting_count =
 401                        (le32_to_cpu(powerplay_table->OverDrive8Table.ODSettingCount) >
 402                         ATOM_VEGA20_ODSETTING_COUNT) ?
 403                        ATOM_VEGA20_ODSETTING_COUNT :
 404                        le32_to_cpu(powerplay_table->OverDrive8Table.ODSettingCount);
 405
 406                od_setting_array_size = sizeof(uint32_t) * od_setting_count;
 407
 408                if (od8_settings->od_settings_max)
 409                        return -EINVAL;
 410
 411                od8_settings->od_settings_max = kmemdup(&powerplay_table->OverDrive8Table.ODSettingsMax,
 412                                                         od_setting_array_size,
 413                                                         GFP_KERNEL);
 414
 415                if (!od8_settings->od_settings_max) {
 416                        kfree(od8_settings->od_feature_capabilities);
 417                        od8_settings->od_feature_capabilities = NULL;
 418                        return -ENOMEM;
 419                }
 420
 421                if (od8_settings->od_settings_min)
 422                        return -EINVAL;
 423
 424                od8_settings->od_settings_min = kmemdup(&powerplay_table->OverDrive8Table.ODSettingsMin,
 425                                                         od_setting_array_size,
 426                                                         GFP_KERNEL);
 427
 428                if (!od8_settings->od_settings_min) {
 429                        kfree(od8_settings->od_feature_capabilities);
 430                        od8_settings->od_feature_capabilities = NULL;
 431                        kfree(od8_settings->od_settings_max);
 432                        od8_settings->od_settings_max = NULL;
 433                        return -ENOMEM;
 434                }
 435        }
 436
 437        return 0;
 438}
 439
 440static int vega20_store_powerplay_table(struct smu_context *smu)
 441{
 442        ATOM_Vega20_POWERPLAYTABLE *powerplay_table = NULL;
 443        struct smu_table_context *table_context = &smu->smu_table;
 444
 445        if (!table_context->power_play_table)
 446                return -EINVAL;
 447
 448        powerplay_table = table_context->power_play_table;
 449
 450        memcpy(table_context->driver_pptable, &powerplay_table->smcPPTable,
 451               sizeof(PPTable_t));
 452
 453        table_context->thermal_controller_type = powerplay_table->ucThermalControllerType;
 454        table_context->TDPODLimit = le32_to_cpu(powerplay_table->OverDrive8Table.ODSettingsMax[ATOM_VEGA20_ODSETTING_POWERPERCENTAGE]);
 455
 456        return 0;
 457}
 458
 459static int vega20_append_powerplay_table(struct smu_context *smu)
 460{
 461        struct smu_table_context *table_context = &smu->smu_table;
 462        PPTable_t *smc_pptable = table_context->driver_pptable;
 463        struct atom_smc_dpm_info_v4_4 *smc_dpm_table;
 464        int index, i, ret;
 465
 466        index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
 467                                           smc_dpm_info);
 468
 469        ret = smu_get_atom_data_table(smu, index, NULL, NULL, NULL,
 470                                      (uint8_t **)&smc_dpm_table);
 471        if (ret)
 472                return ret;
 473
 474        smc_pptable->MaxVoltageStepGfx = smc_dpm_table->maxvoltagestepgfx;
 475        smc_pptable->MaxVoltageStepSoc = smc_dpm_table->maxvoltagestepsoc;
 476
 477        smc_pptable->VddGfxVrMapping = smc_dpm_table->vddgfxvrmapping;
 478        smc_pptable->VddSocVrMapping = smc_dpm_table->vddsocvrmapping;
 479        smc_pptable->VddMem0VrMapping = smc_dpm_table->vddmem0vrmapping;
 480        smc_pptable->VddMem1VrMapping = smc_dpm_table->vddmem1vrmapping;
 481
 482        smc_pptable->GfxUlvPhaseSheddingMask = smc_dpm_table->gfxulvphasesheddingmask;
 483        smc_pptable->SocUlvPhaseSheddingMask = smc_dpm_table->soculvphasesheddingmask;
 484        smc_pptable->ExternalSensorPresent = smc_dpm_table->externalsensorpresent;
 485
 486        smc_pptable->GfxMaxCurrent = smc_dpm_table->gfxmaxcurrent;
 487        smc_pptable->GfxOffset = smc_dpm_table->gfxoffset;
 488        smc_pptable->Padding_TelemetryGfx = smc_dpm_table->padding_telemetrygfx;
 489
 490        smc_pptable->SocMaxCurrent = smc_dpm_table->socmaxcurrent;
 491        smc_pptable->SocOffset = smc_dpm_table->socoffset;
 492        smc_pptable->Padding_TelemetrySoc = smc_dpm_table->padding_telemetrysoc;
 493
 494        smc_pptable->Mem0MaxCurrent = smc_dpm_table->mem0maxcurrent;
 495        smc_pptable->Mem0Offset = smc_dpm_table->mem0offset;
 496        smc_pptable->Padding_TelemetryMem0 = smc_dpm_table->padding_telemetrymem0;
 497
 498        smc_pptable->Mem1MaxCurrent = smc_dpm_table->mem1maxcurrent;
 499        smc_pptable->Mem1Offset = smc_dpm_table->mem1offset;
 500        smc_pptable->Padding_TelemetryMem1 = smc_dpm_table->padding_telemetrymem1;
 501
 502        smc_pptable->AcDcGpio = smc_dpm_table->acdcgpio;
 503        smc_pptable->AcDcPolarity = smc_dpm_table->acdcpolarity;
 504        smc_pptable->VR0HotGpio = smc_dpm_table->vr0hotgpio;
 505        smc_pptable->VR0HotPolarity = smc_dpm_table->vr0hotpolarity;
 506
 507        smc_pptable->VR1HotGpio = smc_dpm_table->vr1hotgpio;
 508        smc_pptable->VR1HotPolarity = smc_dpm_table->vr1hotpolarity;
 509        smc_pptable->Padding1 = smc_dpm_table->padding1;
 510        smc_pptable->Padding2 = smc_dpm_table->padding2;
 511
 512        smc_pptable->LedPin0 = smc_dpm_table->ledpin0;
 513        smc_pptable->LedPin1 = smc_dpm_table->ledpin1;
 514        smc_pptable->LedPin2 = smc_dpm_table->ledpin2;
 515
 516        smc_pptable->PllGfxclkSpreadEnabled = smc_dpm_table->pllgfxclkspreadenabled;
 517        smc_pptable->PllGfxclkSpreadPercent = smc_dpm_table->pllgfxclkspreadpercent;
 518        smc_pptable->PllGfxclkSpreadFreq = smc_dpm_table->pllgfxclkspreadfreq;
 519
 520        smc_pptable->UclkSpreadEnabled = 0;
 521        smc_pptable->UclkSpreadPercent = smc_dpm_table->uclkspreadpercent;
 522        smc_pptable->UclkSpreadFreq = smc_dpm_table->uclkspreadfreq;
 523
 524        smc_pptable->FclkSpreadEnabled = smc_dpm_table->fclkspreadenabled;
 525        smc_pptable->FclkSpreadPercent = smc_dpm_table->fclkspreadpercent;
 526        smc_pptable->FclkSpreadFreq = smc_dpm_table->fclkspreadfreq;
 527
 528        smc_pptable->FllGfxclkSpreadEnabled = smc_dpm_table->fllgfxclkspreadenabled;
 529        smc_pptable->FllGfxclkSpreadPercent = smc_dpm_table->fllgfxclkspreadpercent;
 530        smc_pptable->FllGfxclkSpreadFreq = smc_dpm_table->fllgfxclkspreadfreq;
 531
 532        for (i = 0; i < I2C_CONTROLLER_NAME_COUNT; i++) {
 533                smc_pptable->I2cControllers[i].Enabled =
 534                        smc_dpm_table->i2ccontrollers[i].enabled;
 535                smc_pptable->I2cControllers[i].SlaveAddress =
 536                        smc_dpm_table->i2ccontrollers[i].slaveaddress;
 537                smc_pptable->I2cControllers[i].ControllerPort =
 538                        smc_dpm_table->i2ccontrollers[i].controllerport;
 539                smc_pptable->I2cControllers[i].ThermalThrottler =
 540                        smc_dpm_table->i2ccontrollers[i].thermalthrottler;
 541                smc_pptable->I2cControllers[i].I2cProtocol =
 542                        smc_dpm_table->i2ccontrollers[i].i2cprotocol;
 543                smc_pptable->I2cControllers[i].I2cSpeed =
 544                        smc_dpm_table->i2ccontrollers[i].i2cspeed;
 545        }
 546
 547        return 0;
 548}
 549
 550static int vega20_check_powerplay_table(struct smu_context *smu)
 551{
 552        ATOM_Vega20_POWERPLAYTABLE *powerplay_table = NULL;
 553        struct smu_table_context *table_context = &smu->smu_table;
 554
 555        powerplay_table = table_context->power_play_table;
 556
 557        if (powerplay_table->sHeader.format_revision < ATOM_VEGA20_TABLE_REVISION_VEGA20) {
 558                pr_err("Unsupported PPTable format!");
 559                return -EINVAL;
 560        }
 561
 562        if (!powerplay_table->sHeader.structuresize) {
 563                pr_err("Invalid PowerPlay Table!");
 564                return -EINVAL;
 565        }
 566
 567        return 0;
 568}
 569
 570static int vega20_run_btc_afll(struct smu_context *smu)
 571{
 572        return smu_send_smc_msg(smu, SMU_MSG_RunAfllBtc);
 573}
 574
 575#define FEATURE_MASK(feature) (1ULL << feature)
 576static int
 577vega20_get_allowed_feature_mask(struct smu_context *smu,
 578                                  uint32_t *feature_mask, uint32_t num)
 579{
 580        if (num > 2)
 581                return -EINVAL;
 582
 583        memset(feature_mask, 0, sizeof(uint32_t) * num);
 584
 585        *(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_PREFETCHER_BIT)
 586                                | FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT)
 587                                | FEATURE_MASK(FEATURE_DPM_UCLK_BIT)
 588                                | FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT)
 589                                | FEATURE_MASK(FEATURE_DPM_UVD_BIT)
 590                                | FEATURE_MASK(FEATURE_DPM_VCE_BIT)
 591                                | FEATURE_MASK(FEATURE_ULV_BIT)
 592                                | FEATURE_MASK(FEATURE_DPM_MP0CLK_BIT)
 593                                | FEATURE_MASK(FEATURE_DPM_LINK_BIT)
 594                                | FEATURE_MASK(FEATURE_DPM_DCEFCLK_BIT)
 595                                | FEATURE_MASK(FEATURE_PPT_BIT)
 596                                | FEATURE_MASK(FEATURE_TDC_BIT)
 597                                | FEATURE_MASK(FEATURE_THERMAL_BIT)
 598                                | FEATURE_MASK(FEATURE_GFX_PER_CU_CG_BIT)
 599                                | FEATURE_MASK(FEATURE_RM_BIT)
 600                                | FEATURE_MASK(FEATURE_ACDC_BIT)
 601                                | FEATURE_MASK(FEATURE_VR0HOT_BIT)
 602                                | FEATURE_MASK(FEATURE_VR1HOT_BIT)
 603                                | FEATURE_MASK(FEATURE_FW_CTF_BIT)
 604                                | FEATURE_MASK(FEATURE_LED_DISPLAY_BIT)
 605                                | FEATURE_MASK(FEATURE_FAN_CONTROL_BIT)
 606                                | FEATURE_MASK(FEATURE_GFX_EDC_BIT)
 607                                | FEATURE_MASK(FEATURE_GFXOFF_BIT)
 608                                | FEATURE_MASK(FEATURE_CG_BIT)
 609                                | FEATURE_MASK(FEATURE_DPM_FCLK_BIT)
 610                                | FEATURE_MASK(FEATURE_XGMI_BIT);
 611        return 0;
 612}
 613
 614static enum
 615amd_pm_state_type vega20_get_current_power_state(struct smu_context *smu)
 616{
 617        enum amd_pm_state_type pm_type;
 618        struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
 619
 620        if (!smu_dpm_ctx->dpm_context ||
 621            !smu_dpm_ctx->dpm_current_power_state)
 622                return -EINVAL;
 623
 624        mutex_lock(&(smu->mutex));
 625        switch (smu_dpm_ctx->dpm_current_power_state->classification.ui_label) {
 626        case SMU_STATE_UI_LABEL_BATTERY:
 627                pm_type = POWER_STATE_TYPE_BATTERY;
 628                break;
 629        case SMU_STATE_UI_LABEL_BALLANCED:
 630                pm_type = POWER_STATE_TYPE_BALANCED;
 631                break;
 632        case SMU_STATE_UI_LABEL_PERFORMANCE:
 633                pm_type = POWER_STATE_TYPE_PERFORMANCE;
 634                break;
 635        default:
 636                if (smu_dpm_ctx->dpm_current_power_state->classification.flags & SMU_STATE_CLASSIFICATION_FLAG_BOOT)
 637                        pm_type = POWER_STATE_TYPE_INTERNAL_BOOT;
 638                else
 639                        pm_type = POWER_STATE_TYPE_DEFAULT;
 640                break;
 641        }
 642        mutex_unlock(&(smu->mutex));
 643
 644        return pm_type;
 645}
 646
 647static int
 648vega20_set_single_dpm_table(struct smu_context *smu,
 649                            struct vega20_single_dpm_table *single_dpm_table,
 650                            PPCLK_e clk_id)
 651{
 652        int ret = 0;
 653        uint32_t i, num_of_levels = 0, clk;
 654
 655        ret = smu_send_smc_msg_with_param(smu,
 656                        SMU_MSG_GetDpmFreqByIndex,
 657                        (clk_id << 16 | 0xFF));
 658        if (ret) {
 659                pr_err("[GetNumOfDpmLevel] failed to get dpm levels!");
 660                return ret;
 661        }
 662
 663        smu_read_smc_arg(smu, &num_of_levels);
 664        if (!num_of_levels) {
 665                pr_err("[GetNumOfDpmLevel] number of clk levels is invalid!");
 666                return -EINVAL;
 667        }
 668
 669        single_dpm_table->count = num_of_levels;
 670
 671        for (i = 0; i < num_of_levels; i++) {
 672                ret = smu_send_smc_msg_with_param(smu,
 673                                SMU_MSG_GetDpmFreqByIndex,
 674                                (clk_id << 16 | i));
 675                if (ret) {
 676                        pr_err("[GetDpmFreqByIndex] failed to get dpm freq by index!");
 677                        return ret;
 678                }
 679                smu_read_smc_arg(smu, &clk);
 680                if (!clk) {
 681                        pr_err("[GetDpmFreqByIndex] clk value is invalid!");
 682                        return -EINVAL;
 683                }
 684                single_dpm_table->dpm_levels[i].value = clk;
 685                single_dpm_table->dpm_levels[i].enabled = true;
 686        }
 687        return 0;
 688}
 689
 690static void vega20_init_single_dpm_state(struct vega20_dpm_state *dpm_state)
 691{
 692        dpm_state->soft_min_level = 0x0;
 693        dpm_state->soft_max_level = 0xffff;
 694        dpm_state->hard_min_level = 0x0;
 695        dpm_state->hard_max_level = 0xffff;
 696}
 697
 698static int vega20_set_default_dpm_table(struct smu_context *smu)
 699{
 700        int ret;
 701
 702        struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
 703        struct vega20_dpm_table *dpm_table = NULL;
 704        struct vega20_single_dpm_table *single_dpm_table;
 705
 706        dpm_table = smu_dpm->dpm_context;
 707
 708        /* socclk */
 709        single_dpm_table = &(dpm_table->soc_table);
 710
 711        if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
 712                ret = vega20_set_single_dpm_table(smu, single_dpm_table,
 713                                                  PPCLK_SOCCLK);
 714                if (ret) {
 715                        pr_err("[SetupDefaultDpmTable] failed to get socclk dpm levels!");
 716                        return ret;
 717                }
 718        } else {
 719                single_dpm_table->count = 1;
 720                single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.socclk / 100;
 721        }
 722        vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
 723
 724        /* gfxclk */
 725        single_dpm_table = &(dpm_table->gfx_table);
 726
 727        if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) {
 728                ret = vega20_set_single_dpm_table(smu, single_dpm_table,
 729                                                  PPCLK_GFXCLK);
 730                if (ret) {
 731                        pr_err("[SetupDefaultDpmTable] failed to get gfxclk dpm levels!");
 732                        return ret;
 733                }
 734        } else {
 735                single_dpm_table->count = 1;
 736                single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100;
 737        }
 738        vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
 739
 740        /* memclk */
 741        single_dpm_table = &(dpm_table->mem_table);
 742
 743        if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
 744                ret = vega20_set_single_dpm_table(smu, single_dpm_table,
 745                                                  PPCLK_UCLK);
 746                if (ret) {
 747                        pr_err("[SetupDefaultDpmTable] failed to get memclk dpm levels!");
 748                        return ret;
 749                }
 750        } else {
 751                single_dpm_table->count = 1;
 752                single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.uclk / 100;
 753        }
 754        vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
 755
 756        /* eclk */
 757        single_dpm_table = &(dpm_table->eclk_table);
 758
 759        if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT)) {
 760                ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_ECLK);
 761                if (ret) {
 762                        pr_err("[SetupDefaultDpmTable] failed to get eclk dpm levels!");
 763                        return ret;
 764                }
 765        } else {
 766                single_dpm_table->count = 1;
 767                single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.eclk / 100;
 768        }
 769        vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
 770
 771        /* vclk */
 772        single_dpm_table = &(dpm_table->vclk_table);
 773
 774        if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT)) {
 775                ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_VCLK);
 776                if (ret) {
 777                        pr_err("[SetupDefaultDpmTable] failed to get vclk dpm levels!");
 778                        return ret;
 779                }
 780        } else {
 781                single_dpm_table->count = 1;
 782                single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.vclk / 100;
 783        }
 784        vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
 785
 786        /* dclk */
 787        single_dpm_table = &(dpm_table->dclk_table);
 788
 789        if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT)) {
 790                ret = vega20_set_single_dpm_table(smu, single_dpm_table, PPCLK_DCLK);
 791                if (ret) {
 792                        pr_err("[SetupDefaultDpmTable] failed to get dclk dpm levels!");
 793                        return ret;
 794                }
 795        } else {
 796                single_dpm_table->count = 1;
 797                single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dclk / 100;
 798        }
 799        vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
 800
 801        /* dcefclk */
 802        single_dpm_table = &(dpm_table->dcef_table);
 803
 804        if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
 805                ret = vega20_set_single_dpm_table(smu, single_dpm_table,
 806                                                  PPCLK_DCEFCLK);
 807                if (ret) {
 808                        pr_err("[SetupDefaultDpmTable] failed to get dcefclk dpm levels!");
 809                        return ret;
 810                }
 811        } else {
 812                single_dpm_table->count = 1;
 813                single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100;
 814        }
 815        vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
 816
 817        /* pixclk */
 818        single_dpm_table = &(dpm_table->pixel_table);
 819
 820        if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
 821                ret = vega20_set_single_dpm_table(smu, single_dpm_table,
 822                                                  PPCLK_PIXCLK);
 823                if (ret) {
 824                        pr_err("[SetupDefaultDpmTable] failed to get pixclk dpm levels!");
 825                        return ret;
 826                }
 827        } else {
 828                single_dpm_table->count = 0;
 829        }
 830        vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
 831
 832        /* dispclk */
 833        single_dpm_table = &(dpm_table->display_table);
 834
 835        if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
 836                ret = vega20_set_single_dpm_table(smu, single_dpm_table,
 837                                                  PPCLK_DISPCLK);
 838                if (ret) {
 839                        pr_err("[SetupDefaultDpmTable] failed to get dispclk dpm levels!");
 840                        return ret;
 841                }
 842        } else {
 843                single_dpm_table->count = 0;
 844        }
 845        vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
 846
 847        /* phyclk */
 848        single_dpm_table = &(dpm_table->phy_table);
 849
 850        if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
 851                ret = vega20_set_single_dpm_table(smu, single_dpm_table,
 852                                                  PPCLK_PHYCLK);
 853                if (ret) {
 854                        pr_err("[SetupDefaultDpmTable] failed to get phyclk dpm levels!");
 855                        return ret;
 856                }
 857        } else {
 858                single_dpm_table->count = 0;
 859        }
 860        vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
 861
 862        /* fclk */
 863        single_dpm_table = &(dpm_table->fclk_table);
 864
 865        if (smu_feature_is_enabled(smu,FEATURE_DPM_FCLK_BIT)) {
 866                ret = vega20_set_single_dpm_table(smu, single_dpm_table,
 867                                                  PPCLK_FCLK);
 868                if (ret) {
 869                        pr_err("[SetupDefaultDpmTable] failed to get fclk dpm levels!");
 870                        return ret;
 871                }
 872        } else {
 873                single_dpm_table->count = 0;
 874        }
 875        vega20_init_single_dpm_state(&(single_dpm_table->dpm_state));
 876
 877        memcpy(smu_dpm->golden_dpm_context, dpm_table,
 878               sizeof(struct vega20_dpm_table));
 879
 880        return 0;
 881}
 882
 883static int vega20_populate_umd_state_clk(struct smu_context *smu)
 884{
 885        struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
 886        struct vega20_dpm_table *dpm_table = NULL;
 887        struct vega20_single_dpm_table *gfx_table = NULL;
 888        struct vega20_single_dpm_table *mem_table = NULL;
 889
 890        dpm_table = smu_dpm->dpm_context;
 891        gfx_table = &(dpm_table->gfx_table);
 892        mem_table = &(dpm_table->mem_table);
 893
 894        smu->pstate_sclk = gfx_table->dpm_levels[0].value;
 895        smu->pstate_mclk = mem_table->dpm_levels[0].value;
 896
 897        if (gfx_table->count > VEGA20_UMD_PSTATE_GFXCLK_LEVEL &&
 898            mem_table->count > VEGA20_UMD_PSTATE_MCLK_LEVEL) {
 899                smu->pstate_sclk = gfx_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value;
 900                smu->pstate_mclk = mem_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value;
 901        }
 902
 903        smu->pstate_sclk = smu->pstate_sclk * 100;
 904        smu->pstate_mclk = smu->pstate_mclk * 100;
 905
 906        return 0;
 907}
 908
 909static int vega20_get_clk_table(struct smu_context *smu,
 910                        struct pp_clock_levels_with_latency *clocks,
 911                        struct vega20_single_dpm_table *dpm_table)
 912{
 913        int i, count;
 914
 915        count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count;
 916        clocks->num_levels = count;
 917
 918        for (i = 0; i < count; i++) {
 919                clocks->data[i].clocks_in_khz =
 920                        dpm_table->dpm_levels[i].value * 1000;
 921                clocks->data[i].latency_in_us = 0;
 922        }
 923
 924        return 0;
 925}
 926
 927static int vega20_print_clk_levels(struct smu_context *smu,
 928                        enum smu_clk_type type, char *buf)
 929{
 930        int i, now, size = 0;
 931        int ret = 0;
 932        uint32_t gen_speed, lane_width;
 933        struct amdgpu_device *adev = smu->adev;
 934        struct pp_clock_levels_with_latency clocks;
 935        struct vega20_single_dpm_table *single_dpm_table;
 936        struct smu_table_context *table_context = &smu->smu_table;
 937        struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
 938        struct vega20_dpm_table *dpm_table = NULL;
 939        struct vega20_od8_settings *od8_settings =
 940                (struct vega20_od8_settings *)smu->od_settings;
 941        OverDriveTable_t *od_table =
 942                (OverDriveTable_t *)(table_context->overdrive_table);
 943        PPTable_t *pptable = (PPTable_t *)table_context->driver_pptable;
 944
 945        dpm_table = smu_dpm->dpm_context;
 946
 947        switch (type) {
 948        case SMU_SCLK:
 949                ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, &now);
 950                if (ret) {
 951                        pr_err("Attempt to get current gfx clk Failed!");
 952                        return ret;
 953                }
 954
 955                single_dpm_table = &(dpm_table->gfx_table);
 956                ret = vega20_get_clk_table(smu, &clocks, single_dpm_table);
 957                if (ret) {
 958                        pr_err("Attempt to get gfx clk levels Failed!");
 959                        return ret;
 960                }
 961
 962                for (i = 0; i < clocks.num_levels; i++)
 963                        size += sprintf(buf + size, "%d: %uMhz %s\n", i,
 964                                        clocks.data[i].clocks_in_khz / 1000,
 965                                        (clocks.data[i].clocks_in_khz == now * 10)
 966                                        ? "*" : "");
 967                break;
 968
 969        case SMU_MCLK:
 970                ret = smu_get_current_clk_freq(smu, SMU_UCLK, &now);
 971                if (ret) {
 972                        pr_err("Attempt to get current mclk Failed!");
 973                        return ret;
 974                }
 975
 976                single_dpm_table = &(dpm_table->mem_table);
 977                ret = vega20_get_clk_table(smu, &clocks, single_dpm_table);
 978                if (ret) {
 979                        pr_err("Attempt to get memory clk levels Failed!");
 980                        return ret;
 981                }
 982
 983                for (i = 0; i < clocks.num_levels; i++)
 984                        size += sprintf(buf + size, "%d: %uMhz %s\n",
 985                                i, clocks.data[i].clocks_in_khz / 1000,
 986                                (clocks.data[i].clocks_in_khz == now * 10)
 987                                ? "*" : "");
 988                break;
 989
 990        case SMU_SOCCLK:
 991                ret = smu_get_current_clk_freq(smu, SMU_SOCCLK, &now);
 992                if (ret) {
 993                        pr_err("Attempt to get current socclk Failed!");
 994                        return ret;
 995                }
 996
 997                single_dpm_table = &(dpm_table->soc_table);
 998                ret = vega20_get_clk_table(smu, &clocks, single_dpm_table);
 999                if (ret) {
1000                        pr_err("Attempt to get socclk levels Failed!");
1001                        return ret;
1002                }
1003
1004                for (i = 0; i < clocks.num_levels; i++)
1005                        size += sprintf(buf + size, "%d: %uMhz %s\n",
1006                                i, clocks.data[i].clocks_in_khz / 1000,
1007                                (clocks.data[i].clocks_in_khz == now * 10)
1008                                ? "*" : "");
1009                break;
1010
1011        case SMU_FCLK:
1012                ret = smu_get_current_clk_freq(smu, SMU_FCLK, &now);
1013                if (ret) {
1014                        pr_err("Attempt to get current fclk Failed!");
1015                        return ret;
1016                }
1017
1018                single_dpm_table = &(dpm_table->fclk_table);
1019                for (i = 0; i < single_dpm_table->count; i++)
1020                        size += sprintf(buf + size, "%d: %uMhz %s\n",
1021                                i, single_dpm_table->dpm_levels[i].value,
1022                                (single_dpm_table->dpm_levels[i].value == now / 100)
1023                                ? "*" : "");
1024                break;
1025
1026        case SMU_DCEFCLK:
1027                ret = smu_get_current_clk_freq(smu, SMU_DCEFCLK, &now);
1028                if (ret) {
1029                        pr_err("Attempt to get current dcefclk Failed!");
1030                        return ret;
1031                }
1032
1033                single_dpm_table = &(dpm_table->dcef_table);
1034                ret = vega20_get_clk_table(smu, &clocks, single_dpm_table);
1035                if (ret) {
1036                        pr_err("Attempt to get dcefclk levels Failed!");
1037                        return ret;
1038                }
1039
1040                for (i = 0; i < clocks.num_levels; i++)
1041                        size += sprintf(buf + size, "%d: %uMhz %s\n",
1042                                i, clocks.data[i].clocks_in_khz / 1000,
1043                                (clocks.data[i].clocks_in_khz == now * 10) ? "*" : "");
1044                break;
1045
1046        case SMU_PCIE:
1047                gen_speed = (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) &
1048                             PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK)
1049                        >> PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT;
1050                lane_width = (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) &
1051                              PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK)
1052                        >> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT;
1053                for (i = 0; i < NUM_LINK_LEVELS; i++)
1054                        size += sprintf(buf + size, "%d: %s %s %dMhz %s\n", i,
1055                                        (pptable->PcieGenSpeed[i] == 0) ? "2.5GT/s," :
1056                                        (pptable->PcieGenSpeed[i] == 1) ? "5.0GT/s," :
1057                                        (pptable->PcieGenSpeed[i] == 2) ? "8.0GT/s," :
1058                                        (pptable->PcieGenSpeed[i] == 3) ? "16.0GT/s," : "",
1059                                        (pptable->PcieLaneCount[i] == 1) ? "x1" :
1060                                        (pptable->PcieLaneCount[i] == 2) ? "x2" :
1061                                        (pptable->PcieLaneCount[i] == 3) ? "x4" :
1062                                        (pptable->PcieLaneCount[i] == 4) ? "x8" :
1063                                        (pptable->PcieLaneCount[i] == 5) ? "x12" :
1064                                        (pptable->PcieLaneCount[i] == 6) ? "x16" : "",
1065                                        pptable->LclkFreq[i],
1066                                        (gen_speed == pptable->PcieGenSpeed[i]) &&
1067                                        (lane_width == pptable->PcieLaneCount[i]) ?
1068                                        "*" : "");
1069                break;
1070
1071        case SMU_OD_SCLK:
1072                if (od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id &&
1073                    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id) {
1074                        size = sprintf(buf, "%s:\n", "OD_SCLK");
1075                        size += sprintf(buf + size, "0: %10uMhz\n",
1076                                        od_table->GfxclkFmin);
1077                        size += sprintf(buf + size, "1: %10uMhz\n",
1078                                        od_table->GfxclkFmax);
1079                }
1080
1081                break;
1082
1083        case SMU_OD_MCLK:
1084                if (od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id) {
1085                        size = sprintf(buf, "%s:\n", "OD_MCLK");
1086                        size += sprintf(buf + size, "1: %10uMhz\n",
1087                                         od_table->UclkFmax);
1088                }
1089
1090                break;
1091
1092        case SMU_OD_VDDC_CURVE:
1093                if (od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id &&
1094                    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id &&
1095                    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id &&
1096                    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id &&
1097                    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id &&
1098                    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id) {
1099                        size = sprintf(buf, "%s:\n", "OD_VDDC_CURVE");
1100                        size += sprintf(buf + size, "0: %10uMhz %10dmV\n",
1101                                        od_table->GfxclkFreq1,
1102                                        od_table->GfxclkVolt1 / VOLTAGE_SCALE);
1103                        size += sprintf(buf + size, "1: %10uMhz %10dmV\n",
1104                                        od_table->GfxclkFreq2,
1105                                        od_table->GfxclkVolt2 / VOLTAGE_SCALE);
1106                        size += sprintf(buf + size, "2: %10uMhz %10dmV\n",
1107                                        od_table->GfxclkFreq3,
1108                                        od_table->GfxclkVolt3 / VOLTAGE_SCALE);
1109                }
1110
1111                break;
1112
1113        case SMU_OD_RANGE:
1114                size = sprintf(buf, "%s:\n", "OD_RANGE");
1115
1116                if (od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id &&
1117                    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id) {
1118                        size += sprintf(buf + size, "SCLK: %7uMhz %10uMhz\n",
1119                                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].min_value,
1120                                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].max_value);
1121                }
1122
1123                if (od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id) {
1124                        single_dpm_table = &(dpm_table->mem_table);
1125                        ret = vega20_get_clk_table(smu, &clocks, single_dpm_table);
1126                        if (ret) {
1127                                pr_err("Attempt to get memory clk levels Failed!");
1128                                return ret;
1129                        }
1130
1131                        size += sprintf(buf + size, "MCLK: %7uMhz %10uMhz\n",
1132                                        clocks.data[0].clocks_in_khz / 1000,
1133                                        od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].max_value);
1134                }
1135
1136                if (od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id &&
1137                    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id &&
1138                    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id &&
1139                    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id &&
1140                    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id &&
1141                    od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id) {
1142                        size += sprintf(buf + size, "VDDC_CURVE_SCLK[0]: %7uMhz %10uMhz\n",
1143                                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].min_value,
1144                                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].max_value);
1145                        size += sprintf(buf + size, "VDDC_CURVE_VOLT[0]: %7dmV %11dmV\n",
1146                                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].min_value,
1147                                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].max_value);
1148                        size += sprintf(buf + size, "VDDC_CURVE_SCLK[1]: %7uMhz %10uMhz\n",
1149                                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].min_value,
1150                                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].max_value);
1151                        size += sprintf(buf + size, "VDDC_CURVE_VOLT[1]: %7dmV %11dmV\n",
1152                                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].min_value,
1153                                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].max_value);
1154                        size += sprintf(buf + size, "VDDC_CURVE_SCLK[2]: %7uMhz %10uMhz\n",
1155                                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].min_value,
1156                                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].max_value);
1157                        size += sprintf(buf + size, "VDDC_CURVE_VOLT[2]: %7dmV %11dmV\n",
1158                                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].min_value,
1159                                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].max_value);
1160                }
1161
1162                break;
1163
1164        default:
1165                break;
1166        }
1167        return size;
1168}
1169
1170static int vega20_upload_dpm_level(struct smu_context *smu, bool max,
1171                                   uint32_t feature_mask)
1172{
1173        struct vega20_dpm_table *dpm_table;
1174        struct vega20_single_dpm_table *single_dpm_table;
1175        uint32_t freq;
1176        int ret = 0;
1177
1178        dpm_table = smu->smu_dpm.dpm_context;
1179
1180        if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT) &&
1181            (feature_mask & FEATURE_DPM_GFXCLK_MASK)) {
1182                single_dpm_table = &(dpm_table->gfx_table);
1183                freq = max ? single_dpm_table->dpm_state.soft_max_level :
1184                        single_dpm_table->dpm_state.soft_min_level;
1185                ret = smu_send_smc_msg_with_param(smu,
1186                        (max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
1187                        (PPCLK_GFXCLK << 16) | (freq & 0xffff));
1188                if (ret) {
1189                        pr_err("Failed to set soft %s gfxclk !\n",
1190                                                max ? "max" : "min");
1191                        return ret;
1192                }
1193        }
1194
1195        if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
1196            (feature_mask & FEATURE_DPM_UCLK_MASK)) {
1197                single_dpm_table = &(dpm_table->mem_table);
1198                freq = max ? single_dpm_table->dpm_state.soft_max_level :
1199                        single_dpm_table->dpm_state.soft_min_level;
1200                ret = smu_send_smc_msg_with_param(smu,
1201                        (max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
1202                        (PPCLK_UCLK << 16) | (freq & 0xffff));
1203                if (ret) {
1204                        pr_err("Failed to set soft %s memclk !\n",
1205                                                max ? "max" : "min");
1206                        return ret;
1207                }
1208        }
1209
1210        if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT) &&
1211            (feature_mask & FEATURE_DPM_SOCCLK_MASK)) {
1212                single_dpm_table = &(dpm_table->soc_table);
1213                freq = max ? single_dpm_table->dpm_state.soft_max_level :
1214                        single_dpm_table->dpm_state.soft_min_level;
1215                ret = smu_send_smc_msg_with_param(smu,
1216                        (max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
1217                        (PPCLK_SOCCLK << 16) | (freq & 0xffff));
1218                if (ret) {
1219                        pr_err("Failed to set soft %s socclk !\n",
1220                                                max ? "max" : "min");
1221                        return ret;
1222                }
1223        }
1224
1225        if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_FCLK_BIT) &&
1226            (feature_mask & FEATURE_DPM_FCLK_MASK)) {
1227                single_dpm_table = &(dpm_table->fclk_table);
1228                freq = max ? single_dpm_table->dpm_state.soft_max_level :
1229                        single_dpm_table->dpm_state.soft_min_level;
1230                ret = smu_send_smc_msg_with_param(smu,
1231                        (max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
1232                        (PPCLK_FCLK << 16) | (freq & 0xffff));
1233                if (ret) {
1234                        pr_err("Failed to set soft %s fclk !\n",
1235                                                max ? "max" : "min");
1236                        return ret;
1237                }
1238        }
1239
1240        if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
1241            (feature_mask & FEATURE_DPM_DCEFCLK_MASK)) {
1242                single_dpm_table = &(dpm_table->dcef_table);
1243                freq = single_dpm_table->dpm_state.hard_min_level;
1244                if (!max) {
1245                        ret = smu_send_smc_msg_with_param(smu,
1246                                SMU_MSG_SetHardMinByFreq,
1247                                (PPCLK_DCEFCLK << 16) | (freq & 0xffff));
1248                        if (ret) {
1249                                pr_err("Failed to set hard min dcefclk !\n");
1250                                return ret;
1251                        }
1252                }
1253        }
1254
1255        return ret;
1256}
1257
1258static int vega20_force_clk_levels(struct smu_context *smu,
1259                        enum  smu_clk_type clk_type, uint32_t mask)
1260{
1261        struct vega20_dpm_table *dpm_table;
1262        struct vega20_single_dpm_table *single_dpm_table;
1263        uint32_t soft_min_level, soft_max_level, hard_min_level;
1264        struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
1265        int ret = 0;
1266
1267        if (smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
1268                pr_info("force clock level is for dpm manual mode only.\n");
1269                return -EINVAL;
1270        }
1271
1272        mutex_lock(&(smu->mutex));
1273
1274        soft_min_level = mask ? (ffs(mask) - 1) : 0;
1275        soft_max_level = mask ? (fls(mask) - 1) : 0;
1276
1277        dpm_table = smu->smu_dpm.dpm_context;
1278
1279        switch (clk_type) {
1280        case SMU_SCLK:
1281                single_dpm_table = &(dpm_table->gfx_table);
1282
1283                if (soft_max_level >= single_dpm_table->count) {
1284                        pr_err("Clock level specified %d is over max allowed %d\n",
1285                                        soft_max_level, single_dpm_table->count - 1);
1286                        ret = -EINVAL;
1287                        break;
1288                }
1289
1290                single_dpm_table->dpm_state.soft_min_level =
1291                        single_dpm_table->dpm_levels[soft_min_level].value;
1292                single_dpm_table->dpm_state.soft_max_level =
1293                        single_dpm_table->dpm_levels[soft_max_level].value;
1294
1295                ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_GFXCLK_MASK);
1296                if (ret) {
1297                        pr_err("Failed to upload boot level to lowest!\n");
1298                        break;
1299                }
1300
1301                ret = vega20_upload_dpm_level(smu, true, FEATURE_DPM_GFXCLK_MASK);
1302                if (ret)
1303                        pr_err("Failed to upload dpm max level to highest!\n");
1304
1305                break;
1306
1307        case SMU_MCLK:
1308                single_dpm_table = &(dpm_table->mem_table);
1309
1310                if (soft_max_level >= single_dpm_table->count) {
1311                        pr_err("Clock level specified %d is over max allowed %d\n",
1312                                        soft_max_level, single_dpm_table->count - 1);
1313                        ret = -EINVAL;
1314                        break;
1315                }
1316
1317                single_dpm_table->dpm_state.soft_min_level =
1318                        single_dpm_table->dpm_levels[soft_min_level].value;
1319                single_dpm_table->dpm_state.soft_max_level =
1320                        single_dpm_table->dpm_levels[soft_max_level].value;
1321
1322                ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_UCLK_MASK);
1323                if (ret) {
1324                        pr_err("Failed to upload boot level to lowest!\n");
1325                        break;
1326                }
1327
1328                ret = vega20_upload_dpm_level(smu, true, FEATURE_DPM_UCLK_MASK);
1329                if (ret)
1330                        pr_err("Failed to upload dpm max level to highest!\n");
1331
1332                break;
1333
1334        case SMU_SOCCLK:
1335                single_dpm_table = &(dpm_table->soc_table);
1336
1337                if (soft_max_level >= single_dpm_table->count) {
1338                        pr_err("Clock level specified %d is over max allowed %d\n",
1339                                        soft_max_level, single_dpm_table->count - 1);
1340                        ret = -EINVAL;
1341                        break;
1342                }
1343
1344                single_dpm_table->dpm_state.soft_min_level =
1345                        single_dpm_table->dpm_levels[soft_min_level].value;
1346                single_dpm_table->dpm_state.soft_max_level =
1347                        single_dpm_table->dpm_levels[soft_max_level].value;
1348
1349                ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_SOCCLK_MASK);
1350                if (ret) {
1351                        pr_err("Failed to upload boot level to lowest!\n");
1352                        break;
1353                }
1354
1355                ret = vega20_upload_dpm_level(smu, true, FEATURE_DPM_SOCCLK_MASK);
1356                if (ret)
1357                        pr_err("Failed to upload dpm max level to highest!\n");
1358
1359                break;
1360
1361        case SMU_FCLK:
1362                single_dpm_table = &(dpm_table->fclk_table);
1363
1364                if (soft_max_level >= single_dpm_table->count) {
1365                        pr_err("Clock level specified %d is over max allowed %d\n",
1366                                        soft_max_level, single_dpm_table->count - 1);
1367                        ret = -EINVAL;
1368                        break;
1369                }
1370
1371                single_dpm_table->dpm_state.soft_min_level =
1372                        single_dpm_table->dpm_levels[soft_min_level].value;
1373                single_dpm_table->dpm_state.soft_max_level =
1374                        single_dpm_table->dpm_levels[soft_max_level].value;
1375
1376                ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_FCLK_MASK);
1377                if (ret) {
1378                        pr_err("Failed to upload boot level to lowest!\n");
1379                        break;
1380                }
1381
1382                ret = vega20_upload_dpm_level(smu, true, FEATURE_DPM_FCLK_MASK);
1383                if (ret)
1384                        pr_err("Failed to upload dpm max level to highest!\n");
1385
1386                break;
1387
1388        case SMU_DCEFCLK:
1389                hard_min_level = soft_min_level;
1390                single_dpm_table = &(dpm_table->dcef_table);
1391
1392                if (hard_min_level >= single_dpm_table->count) {
1393                        pr_err("Clock level specified %d is over max allowed %d\n",
1394                                        hard_min_level, single_dpm_table->count - 1);
1395                        ret = -EINVAL;
1396                        break;
1397                }
1398
1399                single_dpm_table->dpm_state.hard_min_level =
1400                        single_dpm_table->dpm_levels[hard_min_level].value;
1401
1402                ret = vega20_upload_dpm_level(smu, false, FEATURE_DPM_DCEFCLK_MASK);
1403                if (ret)
1404                        pr_err("Failed to upload boot level to lowest!\n");
1405
1406                break;
1407
1408        case SMU_PCIE:
1409                if (soft_min_level >= NUM_LINK_LEVELS ||
1410                    soft_max_level >= NUM_LINK_LEVELS) {
1411                        ret = -EINVAL;
1412                        break;
1413                }
1414
1415                ret = smu_send_smc_msg_with_param(smu,
1416                                SMU_MSG_SetMinLinkDpmByIndex, soft_min_level);
1417                if (ret)
1418                        pr_err("Failed to set min link dpm level!\n");
1419
1420                break;
1421
1422        default:
1423                break;
1424        }
1425
1426        mutex_unlock(&(smu->mutex));
1427        return ret;
1428}
1429
1430static int vega20_get_clock_by_type_with_latency(struct smu_context *smu,
1431                                                 enum smu_clk_type clk_type,
1432                                                 struct pp_clock_levels_with_latency *clocks)
1433{
1434        int ret;
1435        struct vega20_single_dpm_table *single_dpm_table;
1436        struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
1437        struct vega20_dpm_table *dpm_table = NULL;
1438
1439        dpm_table = smu_dpm->dpm_context;
1440
1441        mutex_lock(&smu->mutex);
1442
1443        switch (clk_type) {
1444        case SMU_GFXCLK:
1445                single_dpm_table = &(dpm_table->gfx_table);
1446                ret = vega20_get_clk_table(smu, clocks, single_dpm_table);
1447                break;
1448        case SMU_MCLK:
1449                single_dpm_table = &(dpm_table->mem_table);
1450                ret = vega20_get_clk_table(smu, clocks, single_dpm_table);
1451                break;
1452        case SMU_DCEFCLK:
1453                single_dpm_table = &(dpm_table->dcef_table);
1454                ret = vega20_get_clk_table(smu, clocks, single_dpm_table);
1455                break;
1456        case SMU_SOCCLK:
1457                single_dpm_table = &(dpm_table->soc_table);
1458                ret = vega20_get_clk_table(smu, clocks, single_dpm_table);
1459                break;
1460        default:
1461                ret = -EINVAL;
1462        }
1463
1464        mutex_unlock(&smu->mutex);
1465        return ret;
1466}
1467
1468static int vega20_overdrive_get_gfx_clk_base_voltage(struct smu_context *smu,
1469                                                     uint32_t *voltage,
1470                                                     uint32_t freq)
1471{
1472        int ret;
1473
1474        ret = smu_send_smc_msg_with_param(smu,
1475                        SMU_MSG_GetAVFSVoltageByDpm,
1476                        ((AVFS_CURVE << 24) | (OD8_HOTCURVE_TEMPERATURE << 16) | freq));
1477        if (ret) {
1478                pr_err("[GetBaseVoltage] failed to get GFXCLK AVFS voltage from SMU!");
1479                return ret;
1480        }
1481
1482        smu_read_smc_arg(smu, voltage);
1483        *voltage = *voltage / VOLTAGE_SCALE;
1484
1485        return 0;
1486}
1487
1488static int vega20_set_default_od8_setttings(struct smu_context *smu)
1489{
1490        struct smu_table_context *table_context = &smu->smu_table;
1491        OverDriveTable_t *od_table = (OverDriveTable_t *)(table_context->overdrive_table);
1492        struct vega20_od8_settings *od8_settings = NULL;
1493        PPTable_t *smc_pptable = table_context->driver_pptable;
1494        int i, ret;
1495
1496        if (smu->od_settings)
1497                return -EINVAL;
1498
1499        od8_settings = kzalloc(sizeof(struct vega20_od8_settings), GFP_KERNEL);
1500
1501        if (!od8_settings)
1502                return -ENOMEM;
1503
1504        smu->od_settings = (void *)od8_settings;
1505
1506        ret = vega20_setup_od8_information(smu);
1507        if (ret) {
1508                pr_err("Retrieve board OD limits failed!\n");
1509                return ret;
1510        }
1511
1512        if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
1513                if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_GFXCLK_LIMITS] &&
1514                    od8_settings->od_settings_max[OD8_SETTING_GFXCLK_FMAX] > 0 &&
1515                    od8_settings->od_settings_min[OD8_SETTING_GFXCLK_FMIN] > 0 &&
1516                    (od8_settings->od_settings_max[OD8_SETTING_GFXCLK_FMAX] >=
1517                     od8_settings->od_settings_min[OD8_SETTING_GFXCLK_FMIN])) {
1518                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id =
1519                                OD8_GFXCLK_LIMITS;
1520                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id =
1521                                OD8_GFXCLK_LIMITS;
1522                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].default_value =
1523                                od_table->GfxclkFmin;
1524                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].default_value =
1525                                od_table->GfxclkFmax;
1526                }
1527
1528                if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_GFXCLK_CURVE] &&
1529                    (od8_settings->od_settings_min[OD8_SETTING_GFXCLK_VOLTAGE1] >=
1530                     smc_pptable->MinVoltageGfx / VOLTAGE_SCALE) &&
1531                    (od8_settings->od_settings_max[OD8_SETTING_GFXCLK_VOLTAGE3] <=
1532                     smc_pptable->MaxVoltageGfx / VOLTAGE_SCALE) &&
1533                    (od8_settings->od_settings_min[OD8_SETTING_GFXCLK_VOLTAGE1] <=
1534                     od8_settings->od_settings_max[OD8_SETTING_GFXCLK_VOLTAGE3])) {
1535                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id =
1536                                OD8_GFXCLK_CURVE;
1537                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id =
1538                                OD8_GFXCLK_CURVE;
1539                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id =
1540                                OD8_GFXCLK_CURVE;
1541                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id =
1542                                OD8_GFXCLK_CURVE;
1543                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id =
1544                                OD8_GFXCLK_CURVE;
1545                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id =
1546                                OD8_GFXCLK_CURVE;
1547
1548                        od_table->GfxclkFreq1 = od_table->GfxclkFmin;
1549                        od_table->GfxclkFreq2 = (od_table->GfxclkFmin + od_table->GfxclkFmax) / 2;
1550                        od_table->GfxclkFreq3 = od_table->GfxclkFmax;
1551                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].default_value =
1552                                od_table->GfxclkFreq1;
1553                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].default_value =
1554                                od_table->GfxclkFreq2;
1555                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].default_value =
1556                                od_table->GfxclkFreq3;
1557
1558                        ret = vega20_overdrive_get_gfx_clk_base_voltage(smu,
1559                                &od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value,
1560                                od_table->GfxclkFreq1);
1561                        if (ret)
1562                                od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value = 0;
1563                        od_table->GfxclkVolt1 =
1564                                od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value
1565                                * VOLTAGE_SCALE;
1566                        ret = vega20_overdrive_get_gfx_clk_base_voltage(smu,
1567                                &od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value,
1568                                od_table->GfxclkFreq2);
1569                        if (ret)
1570                                od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value = 0;
1571                        od_table->GfxclkVolt2 =
1572                                od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value
1573                                * VOLTAGE_SCALE;
1574                        ret = vega20_overdrive_get_gfx_clk_base_voltage(smu,
1575                                &od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value,
1576                                od_table->GfxclkFreq3);
1577                        if (ret)
1578                                od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value = 0;
1579                        od_table->GfxclkVolt3 =
1580                                od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value
1581                                * VOLTAGE_SCALE;
1582                }
1583        }
1584
1585        if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1586                if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_UCLK_MAX] &&
1587                    od8_settings->od_settings_min[OD8_SETTING_UCLK_FMAX] > 0 &&
1588                    od8_settings->od_settings_max[OD8_SETTING_UCLK_FMAX] > 0 &&
1589                    (od8_settings->od_settings_max[OD8_SETTING_UCLK_FMAX] >=
1590                     od8_settings->od_settings_min[OD8_SETTING_UCLK_FMAX])) {
1591                        od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id =
1592                                OD8_UCLK_MAX;
1593                        od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].default_value =
1594                                od_table->UclkFmax;
1595                }
1596        }
1597
1598        if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_POWER_LIMIT] &&
1599            od8_settings->od_settings_min[OD8_SETTING_POWER_PERCENTAGE] > 0 &&
1600            od8_settings->od_settings_min[OD8_SETTING_POWER_PERCENTAGE] <= 100 &&
1601            od8_settings->od_settings_max[OD8_SETTING_POWER_PERCENTAGE] > 0 &&
1602            od8_settings->od_settings_max[OD8_SETTING_POWER_PERCENTAGE] <= 100) {
1603                od8_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].feature_id =
1604                        OD8_POWER_LIMIT;
1605                od8_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].default_value =
1606                        od_table->OverDrivePct;
1607        }
1608
1609        if (smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT)) {
1610                if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_ACOUSTIC_LIMIT] &&
1611                    od8_settings->od_settings_min[OD8_SETTING_FAN_ACOUSTIC_LIMIT] > 0 &&
1612                    od8_settings->od_settings_max[OD8_SETTING_FAN_ACOUSTIC_LIMIT] > 0 &&
1613                    (od8_settings->od_settings_max[OD8_SETTING_FAN_ACOUSTIC_LIMIT] >=
1614                     od8_settings->od_settings_min[OD8_SETTING_FAN_ACOUSTIC_LIMIT])) {
1615                        od8_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].feature_id =
1616                                OD8_ACOUSTIC_LIMIT_SCLK;
1617                        od8_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].default_value =
1618                                od_table->FanMaximumRpm;
1619                }
1620
1621                if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_SPEED_MIN] &&
1622                    od8_settings->od_settings_min[OD8_SETTING_FAN_MIN_SPEED] > 0 &&
1623                    od8_settings->od_settings_max[OD8_SETTING_FAN_MIN_SPEED] > 0 &&
1624                    (od8_settings->od_settings_max[OD8_SETTING_FAN_MIN_SPEED] >=
1625                     od8_settings->od_settings_min[OD8_SETTING_FAN_MIN_SPEED])) {
1626                        od8_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].feature_id =
1627                                OD8_FAN_SPEED_MIN;
1628                        od8_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].default_value =
1629                                od_table->FanMinimumPwm * smc_pptable->FanMaximumRpm / 100;
1630                }
1631        }
1632
1633        if (smu_feature_is_enabled(smu, SMU_FEATURE_THERMAL_BIT)) {
1634                if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_TEMPERATURE_FAN] &&
1635                    od8_settings->od_settings_min[OD8_SETTING_FAN_TARGET_TEMP] > 0 &&
1636                    od8_settings->od_settings_max[OD8_SETTING_FAN_TARGET_TEMP] > 0 &&
1637                    (od8_settings->od_settings_max[OD8_SETTING_FAN_TARGET_TEMP] >=
1638                     od8_settings->od_settings_min[OD8_SETTING_FAN_TARGET_TEMP])) {
1639                        od8_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].feature_id =
1640                                OD8_TEMPERATURE_FAN;
1641                        od8_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].default_value =
1642                                od_table->FanTargetTemperature;
1643                }
1644
1645                if (od8_settings->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_TEMPERATURE_SYSTEM] &&
1646                    od8_settings->od_settings_min[OD8_SETTING_OPERATING_TEMP_MAX] > 0 &&
1647                    od8_settings->od_settings_max[OD8_SETTING_OPERATING_TEMP_MAX] > 0 &&
1648                    (od8_settings->od_settings_max[OD8_SETTING_OPERATING_TEMP_MAX] >=
1649                     od8_settings->od_settings_min[OD8_SETTING_OPERATING_TEMP_MAX])) {
1650                        od8_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].feature_id =
1651                                OD8_TEMPERATURE_SYSTEM;
1652                        od8_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].default_value =
1653                                od_table->MaxOpTemp;
1654                }
1655        }
1656
1657        for (i = 0; i < OD8_SETTING_COUNT; i++) {
1658                if (od8_settings->od8_settings_array[i].feature_id) {
1659                        od8_settings->od8_settings_array[i].min_value =
1660                                od8_settings->od_settings_min[i];
1661                        od8_settings->od8_settings_array[i].max_value =
1662                                od8_settings->od_settings_max[i];
1663                        od8_settings->od8_settings_array[i].current_value =
1664                                od8_settings->od8_settings_array[i].default_value;
1665                } else {
1666                        od8_settings->od8_settings_array[i].min_value = 0;
1667                        od8_settings->od8_settings_array[i].max_value = 0;
1668                        od8_settings->od8_settings_array[i].current_value = 0;
1669                }
1670        }
1671
1672        return 0;
1673}
1674
1675static int vega20_get_metrics_table(struct smu_context *smu,
1676                                    SmuMetrics_t *metrics_table)
1677{
1678        struct smu_table_context *smu_table= &smu->smu_table;
1679        int ret = 0;
1680
1681        if (!smu_table->metrics_time || time_after(jiffies, smu_table->metrics_time + HZ / 1000)) {
1682                ret = smu_update_table(smu, SMU_TABLE_SMU_METRICS, 0,
1683                                (void *)smu_table->metrics_table, false);
1684                if (ret) {
1685                        pr_info("Failed to export SMU metrics table!\n");
1686                        return ret;
1687                }
1688                smu_table->metrics_time = jiffies;
1689        }
1690
1691        memcpy(metrics_table, smu_table->metrics_table, sizeof(SmuMetrics_t));
1692
1693        return ret;
1694}
1695
1696static int vega20_set_default_od_settings(struct smu_context *smu,
1697                                          bool initialize)
1698{
1699        struct smu_table_context *table_context = &smu->smu_table;
1700        int ret;
1701
1702        if (initialize) {
1703                if (table_context->overdrive_table)
1704                        return -EINVAL;
1705
1706                table_context->overdrive_table = kzalloc(sizeof(OverDriveTable_t), GFP_KERNEL);
1707
1708                if (!table_context->overdrive_table)
1709                        return -ENOMEM;
1710
1711                ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0,
1712                                       table_context->overdrive_table, false);
1713                if (ret) {
1714                        pr_err("Failed to export over drive table!\n");
1715                        return ret;
1716                }
1717
1718                ret = vega20_set_default_od8_setttings(smu);
1719                if (ret)
1720                        return ret;
1721        }
1722
1723        ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0,
1724                               table_context->overdrive_table, true);
1725        if (ret) {
1726                pr_err("Failed to import over drive table!\n");
1727                return ret;
1728        }
1729
1730        return 0;
1731}
1732
1733static int vega20_get_od_percentage(struct smu_context *smu,
1734                                    enum smu_clk_type clk_type)
1735{
1736        struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
1737        struct vega20_dpm_table *dpm_table = NULL;
1738        struct vega20_dpm_table *golden_table = NULL;
1739        struct vega20_single_dpm_table *single_dpm_table;
1740        struct vega20_single_dpm_table *golden_dpm_table;
1741        int value, golden_value;
1742
1743        dpm_table = smu_dpm->dpm_context;
1744        golden_table = smu_dpm->golden_dpm_context;
1745
1746        switch (clk_type) {
1747        case SMU_OD_SCLK:
1748                single_dpm_table = &(dpm_table->gfx_table);
1749                golden_dpm_table = &(golden_table->gfx_table);
1750                break;
1751        case SMU_OD_MCLK:
1752                single_dpm_table = &(dpm_table->mem_table);
1753                golden_dpm_table = &(golden_table->mem_table);
1754                break;
1755        default:
1756                return -EINVAL;
1757                break;
1758        }
1759
1760        value = single_dpm_table->dpm_levels[single_dpm_table->count - 1].value;
1761        golden_value = golden_dpm_table->dpm_levels[golden_dpm_table->count - 1].value;
1762
1763        value -= golden_value;
1764        value = DIV_ROUND_UP(value * 100, golden_value);
1765
1766        return value;
1767}
1768
1769static int vega20_get_power_profile_mode(struct smu_context *smu, char *buf)
1770{
1771        DpmActivityMonitorCoeffInt_t activity_monitor;
1772        uint32_t i, size = 0;
1773        uint16_t workload_type = 0;
1774        static const char *profile_name[] = {
1775                                        "BOOTUP_DEFAULT",
1776                                        "3D_FULL_SCREEN",
1777                                        "POWER_SAVING",
1778                                        "VIDEO",
1779                                        "VR",
1780                                        "COMPUTE",
1781                                        "CUSTOM"};
1782        static const char *title[] = {
1783                        "PROFILE_INDEX(NAME)",
1784                        "CLOCK_TYPE(NAME)",
1785                        "FPS",
1786                        "UseRlcBusy",
1787                        "MinActiveFreqType",
1788                        "MinActiveFreq",
1789                        "BoosterFreqType",
1790                        "BoosterFreq",
1791                        "PD_Data_limit_c",
1792                        "PD_Data_error_coeff",
1793                        "PD_Data_error_rate_coeff"};
1794        int result = 0;
1795
1796        if (!smu->pm_enabled || !buf)
1797                return -EINVAL;
1798
1799        size += sprintf(buf + size, "%16s %s %s %s %s %s %s %s %s %s %s\n",
1800                        title[0], title[1], title[2], title[3], title[4], title[5],
1801                        title[6], title[7], title[8], title[9], title[10]);
1802
1803        for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) {
1804                /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
1805                workload_type = smu_workload_get_type(smu, i);
1806                result = smu_update_table(smu,
1807                                          SMU_TABLE_ACTIVITY_MONITOR_COEFF, workload_type,
1808                                          (void *)(&activity_monitor), false);
1809                if (result) {
1810                        pr_err("[%s] Failed to get activity monitor!", __func__);
1811                        return result;
1812                }
1813
1814                size += sprintf(buf + size, "%2d %14s%s:\n",
1815                        i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " ");
1816
1817                size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
1818                        " ",
1819                        0,
1820                        "GFXCLK",
1821                        activity_monitor.Gfx_FPS,
1822                        activity_monitor.Gfx_UseRlcBusy,
1823                        activity_monitor.Gfx_MinActiveFreqType,
1824                        activity_monitor.Gfx_MinActiveFreq,
1825                        activity_monitor.Gfx_BoosterFreqType,
1826                        activity_monitor.Gfx_BoosterFreq,
1827                        activity_monitor.Gfx_PD_Data_limit_c,
1828                        activity_monitor.Gfx_PD_Data_error_coeff,
1829                        activity_monitor.Gfx_PD_Data_error_rate_coeff);
1830
1831                size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
1832                        " ",
1833                        1,
1834                        "SOCCLK",
1835                        activity_monitor.Soc_FPS,
1836                        activity_monitor.Soc_UseRlcBusy,
1837                        activity_monitor.Soc_MinActiveFreqType,
1838                        activity_monitor.Soc_MinActiveFreq,
1839                        activity_monitor.Soc_BoosterFreqType,
1840                        activity_monitor.Soc_BoosterFreq,
1841                        activity_monitor.Soc_PD_Data_limit_c,
1842                        activity_monitor.Soc_PD_Data_error_coeff,
1843                        activity_monitor.Soc_PD_Data_error_rate_coeff);
1844
1845                size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
1846                        " ",
1847                        2,
1848                        "UCLK",
1849                        activity_monitor.Mem_FPS,
1850                        activity_monitor.Mem_UseRlcBusy,
1851                        activity_monitor.Mem_MinActiveFreqType,
1852                        activity_monitor.Mem_MinActiveFreq,
1853                        activity_monitor.Mem_BoosterFreqType,
1854                        activity_monitor.Mem_BoosterFreq,
1855                        activity_monitor.Mem_PD_Data_limit_c,
1856                        activity_monitor.Mem_PD_Data_error_coeff,
1857                        activity_monitor.Mem_PD_Data_error_rate_coeff);
1858
1859                size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
1860                        " ",
1861                        3,
1862                        "FCLK",
1863                        activity_monitor.Fclk_FPS,
1864                        activity_monitor.Fclk_UseRlcBusy,
1865                        activity_monitor.Fclk_MinActiveFreqType,
1866                        activity_monitor.Fclk_MinActiveFreq,
1867                        activity_monitor.Fclk_BoosterFreqType,
1868                        activity_monitor.Fclk_BoosterFreq,
1869                        activity_monitor.Fclk_PD_Data_limit_c,
1870                        activity_monitor.Fclk_PD_Data_error_coeff,
1871                        activity_monitor.Fclk_PD_Data_error_rate_coeff);
1872        }
1873
1874        return size;
1875}
1876
1877static int vega20_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size)
1878{
1879        DpmActivityMonitorCoeffInt_t activity_monitor;
1880        int workload_type = 0, ret = 0;
1881
1882        smu->power_profile_mode = input[size];
1883
1884        if (!smu->pm_enabled)
1885                return ret;
1886        if (smu->power_profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) {
1887                pr_err("Invalid power profile mode %d\n", smu->power_profile_mode);
1888                return -EINVAL;
1889        }
1890
1891        if (smu->power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
1892                ret = smu_update_table(smu,
1893                                       SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT,
1894                                       (void *)(&activity_monitor), false);
1895                if (ret) {
1896                        pr_err("[%s] Failed to get activity monitor!", __func__);
1897                        return ret;
1898                }
1899
1900                switch (input[0]) {
1901                case 0: /* Gfxclk */
1902                        activity_monitor.Gfx_FPS = input[1];
1903                        activity_monitor.Gfx_UseRlcBusy = input[2];
1904                        activity_monitor.Gfx_MinActiveFreqType = input[3];
1905                        activity_monitor.Gfx_MinActiveFreq = input[4];
1906                        activity_monitor.Gfx_BoosterFreqType = input[5];
1907                        activity_monitor.Gfx_BoosterFreq = input[6];
1908                        activity_monitor.Gfx_PD_Data_limit_c = input[7];
1909                        activity_monitor.Gfx_PD_Data_error_coeff = input[8];
1910                        activity_monitor.Gfx_PD_Data_error_rate_coeff = input[9];
1911                        break;
1912                case 1: /* Socclk */
1913                        activity_monitor.Soc_FPS = input[1];
1914                        activity_monitor.Soc_UseRlcBusy = input[2];
1915                        activity_monitor.Soc_MinActiveFreqType = input[3];
1916                        activity_monitor.Soc_MinActiveFreq = input[4];
1917                        activity_monitor.Soc_BoosterFreqType = input[5];
1918                        activity_monitor.Soc_BoosterFreq = input[6];
1919                        activity_monitor.Soc_PD_Data_limit_c = input[7];
1920                        activity_monitor.Soc_PD_Data_error_coeff = input[8];
1921                        activity_monitor.Soc_PD_Data_error_rate_coeff = input[9];
1922                        break;
1923                case 2: /* Uclk */
1924                        activity_monitor.Mem_FPS = input[1];
1925                        activity_monitor.Mem_UseRlcBusy = input[2];
1926                        activity_monitor.Mem_MinActiveFreqType = input[3];
1927                        activity_monitor.Mem_MinActiveFreq = input[4];
1928                        activity_monitor.Mem_BoosterFreqType = input[5];
1929                        activity_monitor.Mem_BoosterFreq = input[6];
1930                        activity_monitor.Mem_PD_Data_limit_c = input[7];
1931                        activity_monitor.Mem_PD_Data_error_coeff = input[8];
1932                        activity_monitor.Mem_PD_Data_error_rate_coeff = input[9];
1933                        break;
1934                case 3: /* Fclk */
1935                        activity_monitor.Fclk_FPS = input[1];
1936                        activity_monitor.Fclk_UseRlcBusy = input[2];
1937                        activity_monitor.Fclk_MinActiveFreqType = input[3];
1938                        activity_monitor.Fclk_MinActiveFreq = input[4];
1939                        activity_monitor.Fclk_BoosterFreqType = input[5];
1940                        activity_monitor.Fclk_BoosterFreq = input[6];
1941                        activity_monitor.Fclk_PD_Data_limit_c = input[7];
1942                        activity_monitor.Fclk_PD_Data_error_coeff = input[8];
1943                        activity_monitor.Fclk_PD_Data_error_rate_coeff = input[9];
1944                        break;
1945                }
1946
1947                ret = smu_update_table(smu,
1948                                       SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT,
1949                                       (void *)(&activity_monitor), true);
1950                if (ret) {
1951                        pr_err("[%s] Failed to set activity monitor!", __func__);
1952                        return ret;
1953                }
1954        }
1955
1956        /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
1957        workload_type = smu_workload_get_type(smu, smu->power_profile_mode);
1958        smu_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask,
1959                                    1 << workload_type);
1960
1961        return ret;
1962}
1963
1964static int
1965vega20_get_profiling_clk_mask(struct smu_context *smu,
1966                              enum amd_dpm_forced_level level,
1967                              uint32_t *sclk_mask,
1968                              uint32_t *mclk_mask,
1969                              uint32_t *soc_mask)
1970{
1971        struct vega20_dpm_table *dpm_table = (struct vega20_dpm_table *)smu->smu_dpm.dpm_context;
1972        struct vega20_single_dpm_table *gfx_dpm_table;
1973        struct vega20_single_dpm_table *mem_dpm_table;
1974        struct vega20_single_dpm_table *soc_dpm_table;
1975
1976        if (!smu->smu_dpm.dpm_context)
1977                return -EINVAL;
1978
1979        gfx_dpm_table = &dpm_table->gfx_table;
1980        mem_dpm_table = &dpm_table->mem_table;
1981        soc_dpm_table = &dpm_table->soc_table;
1982
1983        *sclk_mask = 0;
1984        *mclk_mask = 0;
1985        *soc_mask  = 0;
1986
1987        if (gfx_dpm_table->count > VEGA20_UMD_PSTATE_GFXCLK_LEVEL &&
1988            mem_dpm_table->count > VEGA20_UMD_PSTATE_MCLK_LEVEL &&
1989            soc_dpm_table->count > VEGA20_UMD_PSTATE_SOCCLK_LEVEL) {
1990                *sclk_mask = VEGA20_UMD_PSTATE_GFXCLK_LEVEL;
1991                *mclk_mask = VEGA20_UMD_PSTATE_MCLK_LEVEL;
1992                *soc_mask  = VEGA20_UMD_PSTATE_SOCCLK_LEVEL;
1993        }
1994
1995        if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
1996                *sclk_mask = 0;
1997        } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
1998                *mclk_mask = 0;
1999        } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
2000                *sclk_mask = gfx_dpm_table->count - 1;
2001                *mclk_mask = mem_dpm_table->count - 1;
2002                *soc_mask  = soc_dpm_table->count - 1;
2003        }
2004
2005        return 0;
2006}
2007
2008static int
2009vega20_set_uclk_to_highest_dpm_level(struct smu_context *smu,
2010                                     struct vega20_single_dpm_table *dpm_table)
2011{
2012        int ret = 0;
2013        struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
2014        if (!smu_dpm_ctx->dpm_context)
2015                return -EINVAL;
2016
2017        if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
2018                if (dpm_table->count <= 0) {
2019                        pr_err("[%s] Dpm table has no entry!", __func__);
2020                                return -EINVAL;
2021                }
2022
2023                if (dpm_table->count > NUM_UCLK_DPM_LEVELS) {
2024                        pr_err("[%s] Dpm table has too many entries!", __func__);
2025                                return -EINVAL;
2026                }
2027
2028                dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2029                ret = smu_send_smc_msg_with_param(smu,
2030                                SMU_MSG_SetHardMinByFreq,
2031                                (PPCLK_UCLK << 16) | dpm_table->dpm_state.hard_min_level);
2032                if (ret) {
2033                        pr_err("[%s] Set hard min uclk failed!", __func__);
2034                                return ret;
2035                }
2036        }
2037
2038        return ret;
2039}
2040
2041static int vega20_pre_display_config_changed(struct smu_context *smu)
2042{
2043        int ret = 0;
2044        struct vega20_dpm_table *dpm_table = smu->smu_dpm.dpm_context;
2045
2046        if (!smu->smu_dpm.dpm_context)
2047                return -EINVAL;
2048
2049        smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, 0);
2050        ret = vega20_set_uclk_to_highest_dpm_level(smu,
2051                                                   &dpm_table->mem_table);
2052        if (ret)
2053                pr_err("Failed to set uclk to highest dpm level");
2054        return ret;
2055}
2056
2057static int vega20_display_config_changed(struct smu_context *smu)
2058{
2059        int ret = 0;
2060
2061        if ((smu->watermarks_bitmap & WATERMARKS_EXIST) &&
2062            !(smu->watermarks_bitmap & WATERMARKS_LOADED)) {
2063                ret = smu_write_watermarks_table(smu);
2064                if (ret) {
2065                        pr_err("Failed to update WMTABLE!");
2066                        return ret;
2067                }
2068                smu->watermarks_bitmap |= WATERMARKS_LOADED;
2069        }
2070
2071        if ((smu->watermarks_bitmap & WATERMARKS_EXIST) &&
2072            smu_feature_is_supported(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
2073            smu_feature_is_supported(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
2074                smu_send_smc_msg_with_param(smu,
2075                                            SMU_MSG_NumOfDisplays,
2076                                            smu->display_config->num_display);
2077        }
2078
2079        return ret;
2080}
2081
2082static int vega20_apply_clocks_adjust_rules(struct smu_context *smu)
2083{
2084        struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
2085        struct vega20_dpm_table *dpm_ctx = (struct vega20_dpm_table *)(smu_dpm_ctx->dpm_context);
2086        struct vega20_single_dpm_table *dpm_table;
2087        bool vblank_too_short = false;
2088        bool disable_mclk_switching;
2089        uint32_t i, latency;
2090
2091        disable_mclk_switching = ((1 < smu->display_config->num_display) &&
2092                                  !smu->display_config->multi_monitor_in_sync) || vblank_too_short;
2093        latency = smu->display_config->dce_tolerable_mclk_in_active_latency;
2094
2095        /* gfxclk */
2096        dpm_table = &(dpm_ctx->gfx_table);
2097        dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
2098        dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2099        dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
2100        dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2101
2102                if (VEGA20_UMD_PSTATE_GFXCLK_LEVEL < dpm_table->count) {
2103                        dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value;
2104                        dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value;
2105                }
2106
2107                if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
2108                        dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
2109                        dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value;
2110                }
2111
2112                if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
2113                        dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2114                        dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2115                }
2116
2117        /* memclk */
2118        dpm_table = &(dpm_ctx->mem_table);
2119        dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
2120        dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2121        dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
2122        dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2123
2124                if (VEGA20_UMD_PSTATE_MCLK_LEVEL < dpm_table->count) {
2125                        dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value;
2126                        dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value;
2127                }
2128
2129                if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
2130                        dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
2131                        dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value;
2132                }
2133
2134                if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
2135                        dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2136                        dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2137                }
2138
2139        /* honour DAL's UCLK Hardmin */
2140        if (dpm_table->dpm_state.hard_min_level < (smu->display_config->min_mem_set_clock / 100))
2141                dpm_table->dpm_state.hard_min_level = smu->display_config->min_mem_set_clock / 100;
2142
2143        /* Hardmin is dependent on displayconfig */
2144        if (disable_mclk_switching) {
2145                dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2146                for (i = 0; i < smu_dpm_ctx->mclk_latency_table->count - 1; i++) {
2147                        if (smu_dpm_ctx->mclk_latency_table->entries[i].latency <= latency) {
2148                                if (dpm_table->dpm_levels[i].value >= (smu->display_config->min_mem_set_clock / 100)) {
2149                                        dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[i].value;
2150                                        break;
2151                                }
2152                        }
2153                }
2154        }
2155
2156        if (smu->display_config->nb_pstate_switch_disable)
2157                dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2158
2159        /* vclk */
2160        dpm_table = &(dpm_ctx->vclk_table);
2161        dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
2162        dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2163        dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
2164        dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2165
2166                if (VEGA20_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) {
2167                        dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value;
2168                        dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value;
2169                }
2170
2171                if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
2172                        dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2173                        dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2174                }
2175
2176        /* dclk */
2177        dpm_table = &(dpm_ctx->dclk_table);
2178        dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
2179        dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2180        dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
2181        dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2182
2183                if (VEGA20_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) {
2184                        dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value;
2185                        dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value;
2186                }
2187
2188                if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
2189                        dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2190                        dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2191                }
2192
2193        /* socclk */
2194        dpm_table = &(dpm_ctx->soc_table);
2195        dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
2196        dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2197        dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
2198        dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2199
2200                if (VEGA20_UMD_PSTATE_SOCCLK_LEVEL < dpm_table->count) {
2201                        dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_SOCCLK_LEVEL].value;
2202                        dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_SOCCLK_LEVEL].value;
2203                }
2204
2205                if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
2206                        dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2207                        dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2208                }
2209
2210        /* eclk */
2211        dpm_table = &(dpm_ctx->eclk_table);
2212        dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
2213        dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2214        dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
2215        dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2216
2217                if (VEGA20_UMD_PSTATE_VCEMCLK_LEVEL < dpm_table->count) {
2218                        dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_VCEMCLK_LEVEL].value;
2219                        dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_VCEMCLK_LEVEL].value;
2220                }
2221
2222                if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
2223                        dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2224                        dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
2225                }
2226        return 0;
2227}
2228
2229static int
2230vega20_notify_smc_dispaly_config(struct smu_context *smu)
2231{
2232        struct vega20_dpm_table *dpm_table = smu->smu_dpm.dpm_context;
2233        struct vega20_single_dpm_table *memtable = &dpm_table->mem_table;
2234        struct smu_clocks min_clocks = {0};
2235        struct pp_display_clock_request clock_req;
2236        int ret = 0;
2237
2238        min_clocks.dcef_clock = smu->display_config->min_dcef_set_clk;
2239        min_clocks.dcef_clock_in_sr = smu->display_config->min_dcef_deep_sleep_set_clk;
2240        min_clocks.memory_clock = smu->display_config->min_mem_set_clock;
2241
2242        if (smu_feature_is_supported(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
2243                clock_req.clock_type = amd_pp_dcef_clock;
2244                clock_req.clock_freq_in_khz = min_clocks.dcef_clock * 10;
2245                if (!smu->funcs->display_clock_voltage_request(smu, &clock_req)) {
2246                        if (smu_feature_is_supported(smu, SMU_FEATURE_DS_DCEFCLK_BIT)) {
2247                                ret = smu_send_smc_msg_with_param(smu,
2248                                                                  SMU_MSG_SetMinDeepSleepDcefclk,
2249                                                                  min_clocks.dcef_clock_in_sr/100);
2250                                if (ret) {
2251                                        pr_err("Attempt to set divider for DCEFCLK Failed!");
2252                                        return ret;
2253                                }
2254                        }
2255                } else {
2256                        pr_info("Attempt to set Hard Min for DCEFCLK Failed!");
2257                }
2258        }
2259
2260        if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
2261                memtable->dpm_state.hard_min_level = min_clocks.memory_clock/100;
2262                ret = smu_send_smc_msg_with_param(smu,
2263                                                  SMU_MSG_SetHardMinByFreq,
2264                                                  (PPCLK_UCLK << 16) | memtable->dpm_state.hard_min_level);
2265                if (ret) {
2266                        pr_err("[%s] Set hard min uclk failed!", __func__);
2267                        return ret;
2268                }
2269        }
2270
2271        return 0;
2272}
2273
2274static uint32_t vega20_find_lowest_dpm_level(struct vega20_single_dpm_table *table)
2275{
2276        uint32_t i;
2277
2278        for (i = 0; i < table->count; i++) {
2279                if (table->dpm_levels[i].enabled)
2280                        break;
2281        }
2282        if (i >= table->count) {
2283                i = 0;
2284                table->dpm_levels[i].enabled = true;
2285        }
2286
2287        return i;
2288}
2289
2290static uint32_t vega20_find_highest_dpm_level(struct vega20_single_dpm_table *table)
2291{
2292        int i = 0;
2293
2294        if (!table) {
2295                pr_err("[%s] DPM Table does not exist!", __func__);
2296                return 0;
2297        }
2298        if (table->count <= 0) {
2299                pr_err("[%s] DPM Table has no entry!", __func__);
2300                return 0;
2301        }
2302        if (table->count > MAX_REGULAR_DPM_NUMBER) {
2303                pr_err("[%s] DPM Table has too many entries!", __func__);
2304                return MAX_REGULAR_DPM_NUMBER - 1;
2305        }
2306
2307        for (i = table->count - 1; i >= 0; i--) {
2308                if (table->dpm_levels[i].enabled)
2309                        break;
2310        }
2311        if (i < 0) {
2312                i = 0;
2313                table->dpm_levels[i].enabled = true;
2314        }
2315
2316        return i;
2317}
2318
2319static int vega20_force_dpm_limit_value(struct smu_context *smu, bool highest)
2320{
2321        uint32_t soft_level;
2322        int ret = 0;
2323        struct vega20_dpm_table *dpm_table =
2324                (struct vega20_dpm_table *)smu->smu_dpm.dpm_context;
2325
2326        if (highest)
2327                soft_level = vega20_find_highest_dpm_level(&(dpm_table->gfx_table));
2328        else
2329                soft_level = vega20_find_lowest_dpm_level(&(dpm_table->gfx_table));
2330
2331        dpm_table->gfx_table.dpm_state.soft_min_level =
2332                dpm_table->gfx_table.dpm_state.soft_max_level =
2333                dpm_table->gfx_table.dpm_levels[soft_level].value;
2334
2335        if (highest)
2336                soft_level = vega20_find_highest_dpm_level(&(dpm_table->mem_table));
2337        else
2338                soft_level = vega20_find_lowest_dpm_level(&(dpm_table->mem_table));
2339
2340        dpm_table->mem_table.dpm_state.soft_min_level =
2341                dpm_table->mem_table.dpm_state.soft_max_level =
2342                dpm_table->mem_table.dpm_levels[soft_level].value;
2343
2344        if (highest)
2345                soft_level = vega20_find_highest_dpm_level(&(dpm_table->soc_table));
2346        else
2347                soft_level = vega20_find_lowest_dpm_level(&(dpm_table->soc_table));
2348
2349        dpm_table->soc_table.dpm_state.soft_min_level =
2350                dpm_table->soc_table.dpm_state.soft_max_level =
2351                dpm_table->soc_table.dpm_levels[soft_level].value;
2352
2353        ret = vega20_upload_dpm_level(smu, false, 0xFFFFFFFF);
2354        if (ret) {
2355                pr_err("Failed to upload boot level to %s!\n",
2356                                highest ? "highest" : "lowest");
2357                return ret;
2358        }
2359
2360        ret = vega20_upload_dpm_level(smu, true, 0xFFFFFFFF);
2361        if (ret) {
2362                pr_err("Failed to upload dpm max level to %s!\n!",
2363                                highest ? "highest" : "lowest");
2364                return ret;
2365        }
2366
2367        return ret;
2368}
2369
2370static int vega20_unforce_dpm_levels(struct smu_context *smu)
2371{
2372        uint32_t soft_min_level, soft_max_level;
2373        int ret = 0;
2374        struct vega20_dpm_table *dpm_table =
2375                (struct vega20_dpm_table *)smu->smu_dpm.dpm_context;
2376
2377        soft_min_level = vega20_find_lowest_dpm_level(&(dpm_table->gfx_table));
2378        soft_max_level = vega20_find_highest_dpm_level(&(dpm_table->gfx_table));
2379        dpm_table->gfx_table.dpm_state.soft_min_level =
2380                dpm_table->gfx_table.dpm_levels[soft_min_level].value;
2381        dpm_table->gfx_table.dpm_state.soft_max_level =
2382                dpm_table->gfx_table.dpm_levels[soft_max_level].value;
2383
2384        soft_min_level = vega20_find_lowest_dpm_level(&(dpm_table->mem_table));
2385        soft_max_level = vega20_find_highest_dpm_level(&(dpm_table->mem_table));
2386        dpm_table->mem_table.dpm_state.soft_min_level =
2387                dpm_table->gfx_table.dpm_levels[soft_min_level].value;
2388        dpm_table->mem_table.dpm_state.soft_max_level =
2389                dpm_table->gfx_table.dpm_levels[soft_max_level].value;
2390
2391        soft_min_level = vega20_find_lowest_dpm_level(&(dpm_table->soc_table));
2392        soft_max_level = vega20_find_highest_dpm_level(&(dpm_table->soc_table));
2393        dpm_table->soc_table.dpm_state.soft_min_level =
2394                dpm_table->soc_table.dpm_levels[soft_min_level].value;
2395        dpm_table->soc_table.dpm_state.soft_max_level =
2396                dpm_table->soc_table.dpm_levels[soft_max_level].value;
2397
2398        ret = vega20_upload_dpm_level(smu, false, 0xFFFFFFFF);
2399        if (ret) {
2400                pr_err("Failed to upload DPM Bootup Levels!");
2401                return ret;
2402        }
2403
2404        ret = vega20_upload_dpm_level(smu, true, 0xFFFFFFFF);
2405        if (ret) {
2406                pr_err("Failed to upload DPM Max Levels!");
2407                return ret;
2408        }
2409
2410        return ret;
2411}
2412
2413static int vega20_update_specified_od8_value(struct smu_context *smu,
2414                                             uint32_t index,
2415                                             uint32_t value)
2416{
2417        struct smu_table_context *table_context = &smu->smu_table;
2418        OverDriveTable_t *od_table =
2419                (OverDriveTable_t *)(table_context->overdrive_table);
2420        struct vega20_od8_settings *od8_settings =
2421                (struct vega20_od8_settings *)smu->od_settings;
2422
2423        switch (index) {
2424        case OD8_SETTING_GFXCLK_FMIN:
2425                od_table->GfxclkFmin = (uint16_t)value;
2426                break;
2427
2428        case OD8_SETTING_GFXCLK_FMAX:
2429                if (value < od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].min_value ||
2430                    value > od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].max_value)
2431                        return -EINVAL;
2432                od_table->GfxclkFmax = (uint16_t)value;
2433                break;
2434
2435        case OD8_SETTING_GFXCLK_FREQ1:
2436                od_table->GfxclkFreq1 = (uint16_t)value;
2437                break;
2438
2439        case OD8_SETTING_GFXCLK_VOLTAGE1:
2440                od_table->GfxclkVolt1 = (uint16_t)value;
2441                break;
2442
2443        case OD8_SETTING_GFXCLK_FREQ2:
2444                od_table->GfxclkFreq2 = (uint16_t)value;
2445                break;
2446
2447        case OD8_SETTING_GFXCLK_VOLTAGE2:
2448                od_table->GfxclkVolt2 = (uint16_t)value;
2449                break;
2450
2451        case OD8_SETTING_GFXCLK_FREQ3:
2452                od_table->GfxclkFreq3 = (uint16_t)value;
2453                break;
2454
2455        case OD8_SETTING_GFXCLK_VOLTAGE3:
2456                od_table->GfxclkVolt3 = (uint16_t)value;
2457                break;
2458
2459        case OD8_SETTING_UCLK_FMAX:
2460                if (value < od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].min_value ||
2461                    value > od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].max_value)
2462                        return -EINVAL;
2463                od_table->UclkFmax = (uint16_t)value;
2464                break;
2465
2466        case OD8_SETTING_POWER_PERCENTAGE:
2467                od_table->OverDrivePct = (int16_t)value;
2468                break;
2469
2470        case OD8_SETTING_FAN_ACOUSTIC_LIMIT:
2471                od_table->FanMaximumRpm = (uint16_t)value;
2472                break;
2473
2474        case OD8_SETTING_FAN_MIN_SPEED:
2475                od_table->FanMinimumPwm = (uint16_t)value;
2476                break;
2477
2478        case OD8_SETTING_FAN_TARGET_TEMP:
2479                od_table->FanTargetTemperature = (uint16_t)value;
2480                break;
2481
2482        case OD8_SETTING_OPERATING_TEMP_MAX:
2483                od_table->MaxOpTemp = (uint16_t)value;
2484                break;
2485        }
2486
2487        return 0;
2488}
2489
2490static int vega20_update_od8_settings(struct smu_context *smu,
2491                                      uint32_t index,
2492                                      uint32_t value)
2493{
2494        struct smu_table_context *table_context = &smu->smu_table;
2495        int ret;
2496
2497        ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0,
2498                               table_context->overdrive_table, false);
2499        if (ret) {
2500                pr_err("Failed to export over drive table!\n");
2501                return ret;
2502        }
2503
2504        ret = vega20_update_specified_od8_value(smu, index, value);
2505        if (ret)
2506                return ret;
2507
2508        ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0,
2509                               table_context->overdrive_table, true);
2510        if (ret) {
2511                pr_err("Failed to import over drive table!\n");
2512                return ret;
2513        }
2514
2515        return 0;
2516}
2517
2518static int vega20_set_od_percentage(struct smu_context *smu,
2519                                    enum smu_clk_type clk_type,
2520                                    uint32_t value)
2521{
2522        struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
2523        struct vega20_dpm_table *dpm_table = NULL;
2524        struct vega20_dpm_table *golden_table = NULL;
2525        struct vega20_single_dpm_table *single_dpm_table;
2526        struct vega20_single_dpm_table *golden_dpm_table;
2527        uint32_t od_clk, index;
2528        int ret = 0;
2529        int feature_enabled;
2530        PPCLK_e clk_id;
2531
2532        mutex_lock(&(smu->mutex));
2533
2534        dpm_table = smu_dpm->dpm_context;
2535        golden_table = smu_dpm->golden_dpm_context;
2536
2537        switch (clk_type) {
2538        case SMU_OD_SCLK:
2539                single_dpm_table = &(dpm_table->gfx_table);
2540                golden_dpm_table = &(golden_table->gfx_table);
2541                feature_enabled = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT);
2542                clk_id = PPCLK_GFXCLK;
2543                index = OD8_SETTING_GFXCLK_FMAX;
2544                break;
2545        case SMU_OD_MCLK:
2546                single_dpm_table = &(dpm_table->mem_table);
2547                golden_dpm_table = &(golden_table->mem_table);
2548                feature_enabled = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT);
2549                clk_id = PPCLK_UCLK;
2550                index = OD8_SETTING_UCLK_FMAX;
2551                break;
2552        default:
2553                ret = -EINVAL;
2554                break;
2555        }
2556
2557        if (ret)
2558                goto set_od_failed;
2559
2560        od_clk = golden_dpm_table->dpm_levels[golden_dpm_table->count - 1].value * value;
2561        od_clk /= 100;
2562        od_clk += golden_dpm_table->dpm_levels[golden_dpm_table->count - 1].value;
2563
2564        ret = vega20_update_od8_settings(smu, index, od_clk);
2565        if (ret) {
2566                pr_err("[Setoverdrive] failed to set od clk!\n");
2567                goto set_od_failed;
2568        }
2569
2570        if (feature_enabled) {
2571                ret = vega20_set_single_dpm_table(smu, single_dpm_table,
2572                                                  clk_id);
2573                if (ret) {
2574                        pr_err("[Setoverdrive] failed to refresh dpm table!\n");
2575                        goto set_od_failed;
2576                }
2577        } else {
2578                single_dpm_table->count = 1;
2579                single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100;
2580        }
2581
2582        ret = smu_handle_task(smu, smu_dpm->dpm_level,
2583                              AMD_PP_TASK_READJUST_POWER_STATE);
2584
2585set_od_failed:
2586        mutex_unlock(&(smu->mutex));
2587
2588        return ret;
2589}
2590
2591static int vega20_odn_edit_dpm_table(struct smu_context *smu,
2592                                     enum PP_OD_DPM_TABLE_COMMAND type,
2593                                     long *input, uint32_t size)
2594{
2595        struct smu_table_context *table_context = &smu->smu_table;
2596        OverDriveTable_t *od_table =
2597                (OverDriveTable_t *)(table_context->overdrive_table);
2598        struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
2599        struct vega20_dpm_table *dpm_table = NULL;
2600        struct vega20_single_dpm_table *single_dpm_table;
2601        struct vega20_od8_settings *od8_settings =
2602                (struct vega20_od8_settings *)smu->od_settings;
2603        struct pp_clock_levels_with_latency clocks;
2604        int32_t input_index, input_clk, input_vol, i;
2605        int od8_id;
2606        int ret = 0;
2607
2608        dpm_table = smu_dpm->dpm_context;
2609
2610        if (!input) {
2611                pr_warn("NULL user input for clock and voltage\n");
2612                return -EINVAL;
2613        }
2614
2615        switch (type) {
2616        case PP_OD_EDIT_SCLK_VDDC_TABLE:
2617                if (!(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id &&
2618                      od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id)) {
2619                        pr_info("Sclk min/max frequency overdrive not supported\n");
2620                        return -EOPNOTSUPP;
2621                }
2622
2623                for (i = 0; i < size; i += 2) {
2624                        if (i + 2 > size) {
2625                                pr_info("invalid number of input parameters %d\n", size);
2626                                return -EINVAL;
2627                        }
2628
2629                        input_index = input[i];
2630                        input_clk = input[i + 1];
2631
2632                        if (input_index != 0 && input_index != 1) {
2633                                pr_info("Invalid index %d\n", input_index);
2634                                pr_info("Support min/max sclk frequency settingonly which index by 0/1\n");
2635                                return -EINVAL;
2636                        }
2637
2638                        if (input_clk < od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].min_value ||
2639                            input_clk > od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].max_value) {
2640                                pr_info("clock freq %d is not within allowed range [%d - %d]\n",
2641                                        input_clk,
2642                                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].min_value,
2643                                        od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].max_value);
2644                                return -EINVAL;
2645                        }
2646
2647                        if (input_index == 0 && od_table->GfxclkFmin != input_clk) {
2648                                od_table->GfxclkFmin = input_clk;
2649                                od8_settings->od_gfxclk_update = true;
2650                        } else if (input_index == 1 && od_table->GfxclkFmax != input_clk) {
2651                                od_table->GfxclkFmax = input_clk;
2652                                od8_settings->od_gfxclk_update = true;
2653                        }
2654                }
2655
2656                break;
2657
2658        case PP_OD_EDIT_MCLK_VDDC_TABLE:
2659                if (!od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id) {
2660                        pr_info("Mclk max frequency overdrive not supported\n");
2661                        return -EOPNOTSUPP;
2662                }
2663
2664                single_dpm_table = &(dpm_table->mem_table);
2665                ret = vega20_get_clk_table(smu, &clocks, single_dpm_table);
2666                if (ret) {
2667                        pr_err("Attempt to get memory clk levels Failed!");
2668                        return ret;
2669                }
2670
2671                for (i = 0; i < size; i += 2) {
2672                        if (i + 2 > size) {
2673                                pr_info("invalid number of input parameters %d\n",
2674                                         size);
2675                                return -EINVAL;
2676                        }
2677
2678                        input_index = input[i];
2679                        input_clk = input[i + 1];
2680
2681                        if (input_index != 1) {
2682                                pr_info("Invalid index %d\n", input_index);
2683                                pr_info("Support max Mclk frequency setting only which index by 1\n");
2684                                return -EINVAL;
2685                        }
2686
2687                        if (input_clk < clocks.data[0].clocks_in_khz / 1000 ||
2688                            input_clk > od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].max_value) {
2689                                pr_info("clock freq %d is not within allowed range [%d - %d]\n",
2690                                        input_clk,
2691                                        clocks.data[0].clocks_in_khz / 1000,
2692                                        od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].max_value);
2693                                return -EINVAL;
2694                        }
2695
2696                        if (input_index == 1 && od_table->UclkFmax != input_clk) {
2697                                od8_settings->od_gfxclk_update = true;
2698                                od_table->UclkFmax = input_clk;
2699                        }
2700                }
2701
2702                break;
2703
2704        case PP_OD_EDIT_VDDC_CURVE:
2705                if (!(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id &&
2706                      od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id &&
2707                      od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id &&
2708                      od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id &&
2709                      od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id &&
2710                      od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id)) {
2711                        pr_info("Voltage curve calibrate not supported\n");
2712                        return -EOPNOTSUPP;
2713                }
2714
2715                for (i = 0; i < size; i += 3) {
2716                        if (i + 3 > size) {
2717                                pr_info("invalid number of input parameters %d\n",
2718                                        size);
2719                                return -EINVAL;
2720                        }
2721
2722                        input_index = input[i];
2723                        input_clk = input[i + 1];
2724                        input_vol = input[i + 2];
2725
2726                        if (input_index > 2) {
2727                                pr_info("Setting for point %d is not supported\n",
2728                                        input_index + 1);
2729                                pr_info("Three supported points index by 0, 1, 2\n");
2730                                return -EINVAL;
2731                        }
2732
2733                        od8_id = OD8_SETTING_GFXCLK_FREQ1 + 2 * input_index;
2734                        if (input_clk < od8_settings->od8_settings_array[od8_id].min_value ||
2735                            input_clk > od8_settings->od8_settings_array[od8_id].max_value) {
2736                                pr_info("clock freq %d is not within allowed range [%d - %d]\n",
2737                                        input_clk,
2738                                        od8_settings->od8_settings_array[od8_id].min_value,
2739                                        od8_settings->od8_settings_array[od8_id].max_value);
2740                                return -EINVAL;
2741                        }
2742
2743                        od8_id = OD8_SETTING_GFXCLK_VOLTAGE1 + 2 * input_index;
2744                        if (input_vol < od8_settings->od8_settings_array[od8_id].min_value ||
2745                            input_vol > od8_settings->od8_settings_array[od8_id].max_value) {
2746                                pr_info("clock voltage %d is not within allowed range [%d- %d]\n",
2747                                        input_vol,
2748                                        od8_settings->od8_settings_array[od8_id].min_value,
2749                                        od8_settings->od8_settings_array[od8_id].max_value);
2750                                return -EINVAL;
2751                        }
2752
2753                        switch (input_index) {
2754                        case 0:
2755                                od_table->GfxclkFreq1 = input_clk;
2756                                od_table->GfxclkVolt1 = input_vol * VOLTAGE_SCALE;
2757                                break;
2758                        case 1:
2759                                od_table->GfxclkFreq2 = input_clk;
2760                                od_table->GfxclkVolt2 = input_vol * VOLTAGE_SCALE;
2761                                break;
2762                        case 2:
2763                                od_table->GfxclkFreq3 = input_clk;
2764                                od_table->GfxclkVolt3 = input_vol * VOLTAGE_SCALE;
2765                                break;
2766                        }
2767                }
2768
2769                break;
2770
2771        case PP_OD_RESTORE_DEFAULT_TABLE:
2772                ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, false);
2773                if (ret) {
2774                        pr_err("Failed to export over drive table!\n");
2775                        return ret;
2776                }
2777
2778                break;
2779
2780        case PP_OD_COMMIT_DPM_TABLE:
2781                ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, true);
2782                if (ret) {
2783                        pr_err("Failed to import over drive table!\n");
2784                        return ret;
2785                }
2786
2787                /* retrieve updated gfxclk table */
2788                if (od8_settings->od_gfxclk_update) {
2789                        od8_settings->od_gfxclk_update = false;
2790                        single_dpm_table = &(dpm_table->gfx_table);
2791
2792                        if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) {
2793                                ret = vega20_set_single_dpm_table(smu, single_dpm_table,
2794                                                                  PPCLK_GFXCLK);
2795                                if (ret) {
2796                                        pr_err("[Setoverdrive] failed to refresh dpm table!\n");
2797                                        return ret;
2798                                }
2799                        } else {
2800                                single_dpm_table->count = 1;
2801                                single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100;
2802                        }
2803                }
2804
2805                break;
2806
2807        default:
2808                return -EINVAL;
2809        }
2810
2811        if (type == PP_OD_COMMIT_DPM_TABLE) {
2812                mutex_lock(&(smu->mutex));
2813                ret = smu_handle_task(smu, smu_dpm->dpm_level,
2814                                      AMD_PP_TASK_READJUST_POWER_STATE);
2815                mutex_unlock(&(smu->mutex));
2816        }
2817
2818        return ret;
2819}
2820
2821static int vega20_dpm_set_uvd_enable(struct smu_context *smu, bool enable)
2822{
2823        if (!smu_feature_is_supported(smu, SMU_FEATURE_DPM_UVD_BIT))
2824                return 0;
2825
2826        if (enable == smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT))
2827                return 0;
2828
2829        return smu_feature_set_enabled(smu, SMU_FEATURE_DPM_UVD_BIT, enable);
2830}
2831
2832static int vega20_dpm_set_vce_enable(struct smu_context *smu, bool enable)
2833{
2834        if (!smu_feature_is_supported(smu, SMU_FEATURE_DPM_VCE_BIT))
2835                return 0;
2836
2837        if (enable == smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT))
2838                return 0;
2839
2840        return smu_feature_set_enabled(smu, SMU_FEATURE_DPM_VCE_BIT, enable);
2841}
2842
2843static int vega20_get_enabled_smc_features(struct smu_context *smu,
2844                uint64_t *features_enabled)
2845{
2846        uint32_t feature_mask[2] = {0, 0};
2847        int ret = 0;
2848
2849        ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
2850        if (ret)
2851                return ret;
2852
2853        *features_enabled = ((((uint64_t)feature_mask[0] << SMU_FEATURES_LOW_SHIFT) & SMU_FEATURES_LOW_MASK) |
2854                        (((uint64_t)feature_mask[1] << SMU_FEATURES_HIGH_SHIFT) & SMU_FEATURES_HIGH_MASK));
2855
2856        return ret;
2857}
2858
2859static int vega20_enable_smc_features(struct smu_context *smu,
2860                bool enable, uint64_t feature_mask)
2861{
2862        uint32_t smu_features_low, smu_features_high;
2863        int ret = 0;
2864
2865        smu_features_low = (uint32_t)((feature_mask & SMU_FEATURES_LOW_MASK) >> SMU_FEATURES_LOW_SHIFT);
2866        smu_features_high = (uint32_t)((feature_mask & SMU_FEATURES_HIGH_MASK) >> SMU_FEATURES_HIGH_SHIFT);
2867
2868        if (enable) {
2869                ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow,
2870                                                  smu_features_low);
2871                if (ret)
2872                        return ret;
2873                ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh,
2874                                                  smu_features_high);
2875                if (ret)
2876                        return ret;
2877        } else {
2878                ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow,
2879                                                  smu_features_low);
2880                if (ret)
2881                        return ret;
2882                ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh,
2883                                                  smu_features_high);
2884                if (ret)
2885                        return ret;
2886        }
2887
2888        return 0;
2889
2890}
2891
2892static int vega20_get_ppfeature_status(struct smu_context *smu, char *buf)
2893{
2894        static const char *ppfeature_name[] = {
2895                                "DPM_PREFETCHER",
2896                                "GFXCLK_DPM",
2897                                "UCLK_DPM",
2898                                "SOCCLK_DPM",
2899                                "UVD_DPM",
2900                                "VCE_DPM",
2901                                "ULV",
2902                                "MP0CLK_DPM",
2903                                "LINK_DPM",
2904                                "DCEFCLK_DPM",
2905                                "GFXCLK_DS",
2906                                "SOCCLK_DS",
2907                                "LCLK_DS",
2908                                "PPT",
2909                                "TDC",
2910                                "THERMAL",
2911                                "GFX_PER_CU_CG",
2912                                "RM",
2913                                "DCEFCLK_DS",
2914                                "ACDC",
2915                                "VR0HOT",
2916                                "VR1HOT",
2917                                "FW_CTF",
2918                                "LED_DISPLAY",
2919                                "FAN_CONTROL",
2920                                "GFX_EDC",
2921                                "GFXOFF",
2922                                "CG",
2923                                "FCLK_DPM",
2924                                "FCLK_DS",
2925                                "MP1CLK_DS",
2926                                "MP0CLK_DS",
2927                                "XGMI",
2928                                "ECC"};
2929        static const char *output_title[] = {
2930                                "FEATURES",
2931                                "BITMASK",
2932                                "ENABLEMENT"};
2933        uint64_t features_enabled;
2934        int i;
2935        int ret = 0;
2936        int size = 0;
2937
2938        ret = vega20_get_enabled_smc_features(smu, &features_enabled);
2939        if (ret)
2940                return ret;
2941
2942        size += sprintf(buf + size, "Current ppfeatures: 0x%016llx\n", features_enabled);
2943        size += sprintf(buf + size, "%-19s %-22s %s\n",
2944                                output_title[0],
2945                                output_title[1],
2946                                output_title[2]);
2947        for (i = 0; i < GNLD_FEATURES_MAX; i++) {
2948                size += sprintf(buf + size, "%-19s 0x%016llx %6s\n",
2949                                        ppfeature_name[i],
2950                                        1ULL << i,
2951                                        (features_enabled & (1ULL << i)) ? "Y" : "N");
2952        }
2953
2954        return size;
2955}
2956
2957static int vega20_set_ppfeature_status(struct smu_context *smu, uint64_t new_ppfeature_masks)
2958{
2959        uint64_t features_enabled;
2960        uint64_t features_to_enable;
2961        uint64_t features_to_disable;
2962        int ret = 0;
2963
2964        if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX))
2965                return -EINVAL;
2966
2967        ret = vega20_get_enabled_smc_features(smu, &features_enabled);
2968        if (ret)
2969                return ret;
2970
2971        features_to_disable =
2972                features_enabled & ~new_ppfeature_masks;
2973        features_to_enable =
2974                ~features_enabled & new_ppfeature_masks;
2975
2976        pr_debug("features_to_disable 0x%llx\n", features_to_disable);
2977        pr_debug("features_to_enable 0x%llx\n", features_to_enable);
2978
2979        if (features_to_disable) {
2980                ret = vega20_enable_smc_features(smu, false, features_to_disable);
2981                if (ret)
2982                        return ret;
2983        }
2984
2985        if (features_to_enable) {
2986                ret = vega20_enable_smc_features(smu, true, features_to_enable);
2987                if (ret)
2988                        return ret;
2989        }
2990
2991        return 0;
2992}
2993
2994static bool vega20_is_dpm_running(struct smu_context *smu)
2995{
2996        int ret = 0;
2997        uint32_t feature_mask[2];
2998        unsigned long feature_enabled;
2999        ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
3000        feature_enabled = (unsigned long)((uint64_t)feature_mask[0] |
3001                           ((uint64_t)feature_mask[1] << 32));
3002        return !!(feature_enabled & SMC_DPM_FEATURE);
3003}
3004
3005static int vega20_set_thermal_fan_table(struct smu_context *smu)
3006{
3007        int ret;
3008        struct smu_table_context *table_context = &smu->smu_table;
3009        PPTable_t *pptable = table_context->driver_pptable;
3010
3011        ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetFanTemperatureTarget,
3012                        (uint32_t)pptable->FanTargetTemperature);
3013
3014        return ret;
3015}
3016
3017static int vega20_get_fan_speed_rpm(struct smu_context *smu,
3018                                    uint32_t *speed)
3019{
3020        int ret;
3021
3022        ret = smu_send_smc_msg(smu, SMU_MSG_GetCurrentRpm);
3023
3024        if (ret) {
3025                pr_err("Attempt to get current RPM from SMC Failed!\n");
3026                return ret;
3027        }
3028
3029        smu_read_smc_arg(smu, speed);
3030
3031        return 0;
3032}
3033
3034static int vega20_get_fan_speed_percent(struct smu_context *smu,
3035                                        uint32_t *speed)
3036{
3037        int ret = 0;
3038        uint32_t current_rpm = 0, percent = 0;
3039        PPTable_t *pptable = smu->smu_table.driver_pptable;
3040
3041        ret = vega20_get_fan_speed_rpm(smu, &current_rpm);
3042        if (ret)
3043                return ret;
3044
3045        percent = current_rpm * 100 / pptable->FanMaximumRpm;
3046        *speed = percent > 100 ? 100 : percent;
3047
3048        return 0;
3049}
3050
3051static int vega20_get_gpu_power(struct smu_context *smu, uint32_t *value)
3052{
3053        uint32_t smu_version;
3054        int ret = 0;
3055        SmuMetrics_t metrics;
3056
3057        if (!value)
3058                return -EINVAL;
3059
3060        ret = vega20_get_metrics_table(smu, &metrics);
3061        if (ret)
3062                return ret;
3063
3064        ret = smu_get_smc_version(smu, NULL, &smu_version);
3065        if (ret)
3066                return ret;
3067
3068        /* For the 40.46 release, they changed the value name */
3069        if (smu_version == 0x282e00)
3070                *value = metrics.AverageSocketPower << 8;
3071        else
3072                *value = metrics.CurrSocketPower << 8;
3073
3074        return 0;
3075}
3076
3077static int vega20_get_current_activity_percent(struct smu_context *smu,
3078                                               enum amd_pp_sensors sensor,
3079                                               uint32_t *value)
3080{
3081        int ret = 0;
3082        SmuMetrics_t metrics;
3083
3084        if (!value)
3085                return -EINVAL;
3086
3087        ret = vega20_get_metrics_table(smu, &metrics);
3088        if (ret)
3089                return ret;
3090
3091        switch (sensor) {
3092        case AMDGPU_PP_SENSOR_GPU_LOAD:
3093                *value = metrics.AverageGfxActivity;
3094                break;
3095        case AMDGPU_PP_SENSOR_MEM_LOAD:
3096                *value = metrics.AverageUclkActivity;
3097                break;
3098        default:
3099                pr_err("Invalid sensor for retrieving clock activity\n");
3100                return -EINVAL;
3101        }
3102
3103        return 0;
3104}
3105
3106static int vega20_thermal_get_temperature(struct smu_context *smu,
3107                                             enum amd_pp_sensors sensor,
3108                                             uint32_t *value)
3109{
3110        struct amdgpu_device *adev = smu->adev;
3111        SmuMetrics_t metrics;
3112        uint32_t temp = 0;
3113        int ret = 0;
3114
3115        if (!value)
3116                return -EINVAL;
3117
3118        ret = vega20_get_metrics_table(smu, &metrics);
3119        if (ret)
3120                return ret;
3121
3122        switch (sensor) {
3123        case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
3124                temp = RREG32_SOC15(THM, 0, mmCG_MULT_THERMAL_STATUS);
3125                temp = (temp & CG_MULT_THERMAL_STATUS__CTF_TEMP_MASK) >>
3126                                CG_MULT_THERMAL_STATUS__CTF_TEMP__SHIFT;
3127
3128                temp = temp & 0x1ff;
3129                temp *= SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
3130
3131                *value = temp;
3132                break;
3133        case AMDGPU_PP_SENSOR_EDGE_TEMP:
3134                *value = metrics.TemperatureEdge *
3135                        SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
3136                break;
3137        case AMDGPU_PP_SENSOR_MEM_TEMP:
3138                *value = metrics.TemperatureHBM *
3139                        SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
3140                break;
3141        default:
3142                pr_err("Invalid sensor for retrieving temp\n");
3143                return -EINVAL;
3144        }
3145
3146        return 0;
3147}
3148static int vega20_read_sensor(struct smu_context *smu,
3149                                 enum amd_pp_sensors sensor,
3150                                 void *data, uint32_t *size)
3151{
3152        int ret = 0;
3153        struct smu_table_context *table_context = &smu->smu_table;
3154        PPTable_t *pptable = table_context->driver_pptable;
3155
3156        switch (sensor) {
3157        case AMDGPU_PP_SENSOR_MAX_FAN_RPM:
3158                *(uint32_t *)data = pptable->FanMaximumRpm;
3159                *size = 4;
3160                break;
3161        case AMDGPU_PP_SENSOR_MEM_LOAD:
3162        case AMDGPU_PP_SENSOR_GPU_LOAD:
3163                ret = vega20_get_current_activity_percent(smu,
3164                                                sensor,
3165                                                (uint32_t *)data);
3166                *size = 4;
3167                break;
3168        case AMDGPU_PP_SENSOR_GPU_POWER:
3169                ret = vega20_get_gpu_power(smu, (uint32_t *)data);
3170                *size = 4;
3171                break;
3172        case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
3173        case AMDGPU_PP_SENSOR_EDGE_TEMP:
3174        case AMDGPU_PP_SENSOR_MEM_TEMP:
3175                ret = vega20_thermal_get_temperature(smu, sensor, (uint32_t *)data);
3176                *size = 4;
3177                break;
3178        default:
3179                return -EINVAL;
3180        }
3181
3182        return ret;
3183}
3184
3185static int vega20_set_watermarks_table(struct smu_context *smu,
3186                                       void *watermarks, struct
3187                                       dm_pp_wm_sets_with_clock_ranges_soc15
3188                                       *clock_ranges)
3189{
3190        int i;
3191        Watermarks_t *table = watermarks;
3192
3193        if (!table || !clock_ranges)
3194                return -EINVAL;
3195
3196        if (clock_ranges->num_wm_dmif_sets > 4 ||
3197            clock_ranges->num_wm_mcif_sets > 4)
3198                return -EINVAL;
3199
3200        for (i = 0; i < clock_ranges->num_wm_dmif_sets; i++) {
3201                table->WatermarkRow[1][i].MinClock =
3202                        cpu_to_le16((uint16_t)
3203                        (clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz /
3204                        1000));
3205                table->WatermarkRow[1][i].MaxClock =
3206                        cpu_to_le16((uint16_t)
3207                        (clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz /
3208                        1000));
3209                table->WatermarkRow[1][i].MinUclk =
3210                        cpu_to_le16((uint16_t)
3211                        (clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz /
3212                        1000));
3213                table->WatermarkRow[1][i].MaxUclk =
3214                        cpu_to_le16((uint16_t)
3215                        (clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz /
3216                        1000));
3217                table->WatermarkRow[1][i].WmSetting = (uint8_t)
3218                                clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id;
3219        }
3220
3221        for (i = 0; i < clock_ranges->num_wm_mcif_sets; i++) {
3222                table->WatermarkRow[0][i].MinClock =
3223                        cpu_to_le16((uint16_t)
3224                        (clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz /
3225                        1000));
3226                table->WatermarkRow[0][i].MaxClock =
3227                        cpu_to_le16((uint16_t)
3228                        (clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz /
3229                        1000));
3230                table->WatermarkRow[0][i].MinUclk =
3231                        cpu_to_le16((uint16_t)
3232                        (clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz /
3233                        1000));
3234                table->WatermarkRow[0][i].MaxUclk =
3235                        cpu_to_le16((uint16_t)
3236                        (clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz /
3237                        1000));
3238                table->WatermarkRow[0][i].WmSetting = (uint8_t)
3239                                clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id;
3240        }
3241
3242        return 0;
3243}
3244
3245static int vega20_get_thermal_temperature_range(struct smu_context *smu,
3246                                                struct smu_temperature_range *range)
3247{
3248        struct smu_table_context *table_context = &smu->smu_table;
3249        ATOM_Vega20_POWERPLAYTABLE *powerplay_table = table_context->power_play_table;
3250        PPTable_t *pptable = smu->smu_table.driver_pptable;
3251
3252        if (!range || !powerplay_table)
3253                return -EINVAL;
3254
3255        /* The unit is temperature */
3256        range->min = 0;
3257        range->max = powerplay_table->usSoftwareShutdownTemp;
3258        range->edge_emergency_max = (pptable->TedgeLimit + CTF_OFFSET_EDGE);
3259        range->hotspot_crit_max = pptable->ThotspotLimit;
3260        range->hotspot_emergency_max = (pptable->ThotspotLimit + CTF_OFFSET_HOTSPOT);
3261        range->mem_crit_max = pptable->ThbmLimit;
3262        range->mem_emergency_max = (pptable->ThbmLimit + CTF_OFFSET_HBM);
3263
3264
3265        return 0;
3266}
3267
3268static const struct pptable_funcs vega20_ppt_funcs = {
3269        .tables_init = vega20_tables_init,
3270        .alloc_dpm_context = vega20_allocate_dpm_context,
3271        .store_powerplay_table = vega20_store_powerplay_table,
3272        .check_powerplay_table = vega20_check_powerplay_table,
3273        .append_powerplay_table = vega20_append_powerplay_table,
3274        .get_smu_msg_index = vega20_get_smu_msg_index,
3275        .get_smu_clk_index = vega20_get_smu_clk_index,
3276        .get_smu_feature_index = vega20_get_smu_feature_index,
3277        .get_smu_table_index = vega20_get_smu_table_index,
3278        .get_smu_power_index = vega20_get_pwr_src_index,
3279        .get_workload_type = vega20_get_workload_type,
3280        .run_afll_btc = vega20_run_btc_afll,
3281        .get_allowed_feature_mask = vega20_get_allowed_feature_mask,
3282        .get_current_power_state = vega20_get_current_power_state,
3283        .set_default_dpm_table = vega20_set_default_dpm_table,
3284        .set_power_state = NULL,
3285        .populate_umd_state_clk = vega20_populate_umd_state_clk,
3286        .print_clk_levels = vega20_print_clk_levels,
3287        .force_clk_levels = vega20_force_clk_levels,
3288        .get_clock_by_type_with_latency = vega20_get_clock_by_type_with_latency,
3289        .get_od_percentage = vega20_get_od_percentage,
3290        .get_power_profile_mode = vega20_get_power_profile_mode,
3291        .set_power_profile_mode = vega20_set_power_profile_mode,
3292        .set_od_percentage = vega20_set_od_percentage,
3293        .set_default_od_settings = vega20_set_default_od_settings,
3294        .od_edit_dpm_table = vega20_odn_edit_dpm_table,
3295        .dpm_set_uvd_enable = vega20_dpm_set_uvd_enable,
3296        .dpm_set_vce_enable = vega20_dpm_set_vce_enable,
3297        .read_sensor = vega20_read_sensor,
3298        .pre_display_config_changed = vega20_pre_display_config_changed,
3299        .display_config_changed = vega20_display_config_changed,
3300        .apply_clocks_adjust_rules = vega20_apply_clocks_adjust_rules,
3301        .notify_smc_dispaly_config = vega20_notify_smc_dispaly_config,
3302        .force_dpm_limit_value = vega20_force_dpm_limit_value,
3303        .unforce_dpm_levels = vega20_unforce_dpm_levels,
3304        .get_profiling_clk_mask = vega20_get_profiling_clk_mask,
3305        .set_ppfeature_status = vega20_set_ppfeature_status,
3306        .get_ppfeature_status = vega20_get_ppfeature_status,
3307        .is_dpm_running = vega20_is_dpm_running,
3308        .set_thermal_fan_table = vega20_set_thermal_fan_table,
3309        .get_fan_speed_percent = vega20_get_fan_speed_percent,
3310        .get_fan_speed_rpm = vega20_get_fan_speed_rpm,
3311        .set_watermarks_table = vega20_set_watermarks_table,
3312        .get_thermal_temperature_range = vega20_get_thermal_temperature_range
3313};
3314
3315void vega20_set_ppt_funcs(struct smu_context *smu)
3316{
3317        struct smu_table_context *smu_table = &smu->smu_table;
3318
3319        smu->ppt_funcs = &vega20_ppt_funcs;
3320        smu->smc_if_version = SMU11_DRIVER_IF_VERSION;
3321        smu_table->table_count = TABLE_COUNT;
3322}
3323