linux/drivers/gpu/drm/drm_mm.c
<<
>>
Prefs
   1/**************************************************************************
   2 *
   3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
   4 * Copyright 2016 Intel Corporation
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 *
  28 **************************************************************************/
  29
  30/*
  31 * Generic simple memory manager implementation. Intended to be used as a base
  32 * class implementation for more advanced memory managers.
  33 *
  34 * Note that the algorithm used is quite simple and there might be substantial
  35 * performance gains if a smarter free list is implemented. Currently it is
  36 * just an unordered stack of free regions. This could easily be improved if
  37 * an RB-tree is used instead. At least if we expect heavy fragmentation.
  38 *
  39 * Aligned allocations can also see improvement.
  40 *
  41 * Authors:
  42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
  43 */
  44
  45#include <linux/export.h>
  46#include <linux/interval_tree_generic.h>
  47#include <linux/seq_file.h>
  48#include <linux/slab.h>
  49#include <linux/stacktrace.h>
  50
  51#include <drm/drm_mm.h>
  52
  53/**
  54 * DOC: Overview
  55 *
  56 * drm_mm provides a simple range allocator. The drivers are free to use the
  57 * resource allocator from the linux core if it suits them, the upside of drm_mm
  58 * is that it's in the DRM core. Which means that it's easier to extend for
  59 * some of the crazier special purpose needs of gpus.
  60 *
  61 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
  62 * Drivers are free to embed either of them into their own suitable
  63 * datastructures. drm_mm itself will not do any memory allocations of its own,
  64 * so if drivers choose not to embed nodes they need to still allocate them
  65 * themselves.
  66 *
  67 * The range allocator also supports reservation of preallocated blocks. This is
  68 * useful for taking over initial mode setting configurations from the firmware,
  69 * where an object needs to be created which exactly matches the firmware's
  70 * scanout target. As long as the range is still free it can be inserted anytime
  71 * after the allocator is initialized, which helps with avoiding looped
  72 * dependencies in the driver load sequence.
  73 *
  74 * drm_mm maintains a stack of most recently freed holes, which of all
  75 * simplistic datastructures seems to be a fairly decent approach to clustering
  76 * allocations and avoiding too much fragmentation. This means free space
  77 * searches are O(num_holes). Given that all the fancy features drm_mm supports
  78 * something better would be fairly complex and since gfx thrashing is a fairly
  79 * steep cliff not a real concern. Removing a node again is O(1).
  80 *
  81 * drm_mm supports a few features: Alignment and range restrictions can be
  82 * supplied. Furthermore every &drm_mm_node has a color value (which is just an
  83 * opaque unsigned long) which in conjunction with a driver callback can be used
  84 * to implement sophisticated placement restrictions. The i915 DRM driver uses
  85 * this to implement guard pages between incompatible caching domains in the
  86 * graphics TT.
  87 *
  88 * Two behaviors are supported for searching and allocating: bottom-up and
  89 * top-down. The default is bottom-up. Top-down allocation can be used if the
  90 * memory area has different restrictions, or just to reduce fragmentation.
  91 *
  92 * Finally iteration helpers to walk all nodes and all holes are provided as are
  93 * some basic allocator dumpers for debugging.
  94 *
  95 * Note that this range allocator is not thread-safe, drivers need to protect
  96 * modifications with their own locking. The idea behind this is that for a full
  97 * memory manager additional data needs to be protected anyway, hence internal
  98 * locking would be fully redundant.
  99 */
 100
 101#ifdef CONFIG_DRM_DEBUG_MM
 102#include <linux/stackdepot.h>
 103
 104#define STACKDEPTH 32
 105#define BUFSZ 4096
 106
 107static noinline void save_stack(struct drm_mm_node *node)
 108{
 109        unsigned long entries[STACKDEPTH];
 110        unsigned int n;
 111
 112        n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
 113
 114        /* May be called under spinlock, so avoid sleeping */
 115        node->stack = stack_depot_save(entries, n, GFP_NOWAIT);
 116}
 117
 118static void show_leaks(struct drm_mm *mm)
 119{
 120        struct drm_mm_node *node;
 121        unsigned long *entries;
 122        unsigned int nr_entries;
 123        char *buf;
 124
 125        buf = kmalloc(BUFSZ, GFP_KERNEL);
 126        if (!buf)
 127                return;
 128
 129        list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
 130                if (!node->stack) {
 131                        DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
 132                                  node->start, node->size);
 133                        continue;
 134                }
 135
 136                nr_entries = stack_depot_fetch(node->stack, &entries);
 137                stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0);
 138                DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
 139                          node->start, node->size, buf);
 140        }
 141
 142        kfree(buf);
 143}
 144
 145#undef STACKDEPTH
 146#undef BUFSZ
 147#else
 148static void save_stack(struct drm_mm_node *node) { }
 149static void show_leaks(struct drm_mm *mm) { }
 150#endif
 151
 152#define START(node) ((node)->start)
 153#define LAST(node)  ((node)->start + (node)->size - 1)
 154
 155INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
 156                     u64, __subtree_last,
 157                     START, LAST, static inline, drm_mm_interval_tree)
 158
 159struct drm_mm_node *
 160__drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
 161{
 162        return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
 163                                               start, last) ?: (struct drm_mm_node *)&mm->head_node;
 164}
 165EXPORT_SYMBOL(__drm_mm_interval_first);
 166
 167static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
 168                                          struct drm_mm_node *node)
 169{
 170        struct drm_mm *mm = hole_node->mm;
 171        struct rb_node **link, *rb;
 172        struct drm_mm_node *parent;
 173        bool leftmost;
 174
 175        node->__subtree_last = LAST(node);
 176
 177        if (hole_node->allocated) {
 178                rb = &hole_node->rb;
 179                while (rb) {
 180                        parent = rb_entry(rb, struct drm_mm_node, rb);
 181                        if (parent->__subtree_last >= node->__subtree_last)
 182                                break;
 183
 184                        parent->__subtree_last = node->__subtree_last;
 185                        rb = rb_parent(rb);
 186                }
 187
 188                rb = &hole_node->rb;
 189                link = &hole_node->rb.rb_right;
 190                leftmost = false;
 191        } else {
 192                rb = NULL;
 193                link = &mm->interval_tree.rb_root.rb_node;
 194                leftmost = true;
 195        }
 196
 197        while (*link) {
 198                rb = *link;
 199                parent = rb_entry(rb, struct drm_mm_node, rb);
 200                if (parent->__subtree_last < node->__subtree_last)
 201                        parent->__subtree_last = node->__subtree_last;
 202                if (node->start < parent->start) {
 203                        link = &parent->rb.rb_left;
 204                } else {
 205                        link = &parent->rb.rb_right;
 206                        leftmost = false;
 207                }
 208        }
 209
 210        rb_link_node(&node->rb, rb, link);
 211        rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
 212                                   &drm_mm_interval_tree_augment);
 213}
 214
 215#define RB_INSERT(root, member, expr) do { \
 216        struct rb_node **link = &root.rb_node, *rb = NULL; \
 217        u64 x = expr(node); \
 218        while (*link) { \
 219                rb = *link; \
 220                if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \
 221                        link = &rb->rb_left; \
 222                else \
 223                        link = &rb->rb_right; \
 224        } \
 225        rb_link_node(&node->member, rb, link); \
 226        rb_insert_color(&node->member, &root); \
 227} while (0)
 228
 229#define HOLE_SIZE(NODE) ((NODE)->hole_size)
 230#define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
 231
 232static u64 rb_to_hole_size(struct rb_node *rb)
 233{
 234        return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
 235}
 236
 237static void insert_hole_size(struct rb_root_cached *root,
 238                             struct drm_mm_node *node)
 239{
 240        struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
 241        u64 x = node->hole_size;
 242        bool first = true;
 243
 244        while (*link) {
 245                rb = *link;
 246                if (x > rb_to_hole_size(rb)) {
 247                        link = &rb->rb_left;
 248                } else {
 249                        link = &rb->rb_right;
 250                        first = false;
 251                }
 252        }
 253
 254        rb_link_node(&node->rb_hole_size, rb, link);
 255        rb_insert_color_cached(&node->rb_hole_size, root, first);
 256}
 257
 258static void add_hole(struct drm_mm_node *node)
 259{
 260        struct drm_mm *mm = node->mm;
 261
 262        node->hole_size =
 263                __drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
 264        DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
 265
 266        insert_hole_size(&mm->holes_size, node);
 267        RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR);
 268
 269        list_add(&node->hole_stack, &mm->hole_stack);
 270}
 271
 272static void rm_hole(struct drm_mm_node *node)
 273{
 274        DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
 275
 276        list_del(&node->hole_stack);
 277        rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size);
 278        rb_erase(&node->rb_hole_addr, &node->mm->holes_addr);
 279        node->hole_size = 0;
 280
 281        DRM_MM_BUG_ON(drm_mm_hole_follows(node));
 282}
 283
 284static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
 285{
 286        return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
 287}
 288
 289static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
 290{
 291        return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
 292}
 293
 294static inline u64 rb_hole_size(struct rb_node *rb)
 295{
 296        return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
 297}
 298
 299static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
 300{
 301        struct rb_node *rb = mm->holes_size.rb_root.rb_node;
 302        struct drm_mm_node *best = NULL;
 303
 304        do {
 305                struct drm_mm_node *node =
 306                        rb_entry(rb, struct drm_mm_node, rb_hole_size);
 307
 308                if (size <= node->hole_size) {
 309                        best = node;
 310                        rb = rb->rb_right;
 311                } else {
 312                        rb = rb->rb_left;
 313                }
 314        } while (rb);
 315
 316        return best;
 317}
 318
 319static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr)
 320{
 321        struct rb_node *rb = mm->holes_addr.rb_node;
 322        struct drm_mm_node *node = NULL;
 323
 324        while (rb) {
 325                u64 hole_start;
 326
 327                node = rb_hole_addr_to_node(rb);
 328                hole_start = __drm_mm_hole_node_start(node);
 329
 330                if (addr < hole_start)
 331                        rb = node->rb_hole_addr.rb_left;
 332                else if (addr > hole_start + node->hole_size)
 333                        rb = node->rb_hole_addr.rb_right;
 334                else
 335                        break;
 336        }
 337
 338        return node;
 339}
 340
 341static struct drm_mm_node *
 342first_hole(struct drm_mm *mm,
 343           u64 start, u64 end, u64 size,
 344           enum drm_mm_insert_mode mode)
 345{
 346        switch (mode) {
 347        default:
 348        case DRM_MM_INSERT_BEST:
 349                return best_hole(mm, size);
 350
 351        case DRM_MM_INSERT_LOW:
 352                return find_hole(mm, start);
 353
 354        case DRM_MM_INSERT_HIGH:
 355                return find_hole(mm, end);
 356
 357        case DRM_MM_INSERT_EVICT:
 358                return list_first_entry_or_null(&mm->hole_stack,
 359                                                struct drm_mm_node,
 360                                                hole_stack);
 361        }
 362}
 363
 364static struct drm_mm_node *
 365next_hole(struct drm_mm *mm,
 366          struct drm_mm_node *node,
 367          enum drm_mm_insert_mode mode)
 368{
 369        switch (mode) {
 370        default:
 371        case DRM_MM_INSERT_BEST:
 372                return rb_hole_size_to_node(rb_prev(&node->rb_hole_size));
 373
 374        case DRM_MM_INSERT_LOW:
 375                return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr));
 376
 377        case DRM_MM_INSERT_HIGH:
 378                return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr));
 379
 380        case DRM_MM_INSERT_EVICT:
 381                node = list_next_entry(node, hole_stack);
 382                return &node->hole_stack == &mm->hole_stack ? NULL : node;
 383        }
 384}
 385
 386/**
 387 * drm_mm_reserve_node - insert an pre-initialized node
 388 * @mm: drm_mm allocator to insert @node into
 389 * @node: drm_mm_node to insert
 390 *
 391 * This functions inserts an already set-up &drm_mm_node into the allocator,
 392 * meaning that start, size and color must be set by the caller. All other
 393 * fields must be cleared to 0. This is useful to initialize the allocator with
 394 * preallocated objects which must be set-up before the range allocator can be
 395 * set-up, e.g. when taking over a firmware framebuffer.
 396 *
 397 * Returns:
 398 * 0 on success, -ENOSPC if there's no hole where @node is.
 399 */
 400int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
 401{
 402        u64 end = node->start + node->size;
 403        struct drm_mm_node *hole;
 404        u64 hole_start, hole_end;
 405        u64 adj_start, adj_end;
 406
 407        end = node->start + node->size;
 408        if (unlikely(end <= node->start))
 409                return -ENOSPC;
 410
 411        /* Find the relevant hole to add our node to */
 412        hole = find_hole(mm, node->start);
 413        if (!hole)
 414                return -ENOSPC;
 415
 416        adj_start = hole_start = __drm_mm_hole_node_start(hole);
 417        adj_end = hole_end = hole_start + hole->hole_size;
 418
 419        if (mm->color_adjust)
 420                mm->color_adjust(hole, node->color, &adj_start, &adj_end);
 421
 422        if (adj_start > node->start || adj_end < end)
 423                return -ENOSPC;
 424
 425        node->mm = mm;
 426
 427        list_add(&node->node_list, &hole->node_list);
 428        drm_mm_interval_tree_add_node(hole, node);
 429        node->allocated = true;
 430        node->hole_size = 0;
 431
 432        rm_hole(hole);
 433        if (node->start > hole_start)
 434                add_hole(hole);
 435        if (end < hole_end)
 436                add_hole(node);
 437
 438        save_stack(node);
 439        return 0;
 440}
 441EXPORT_SYMBOL(drm_mm_reserve_node);
 442
 443static u64 rb_to_hole_size_or_zero(struct rb_node *rb)
 444{
 445        return rb ? rb_to_hole_size(rb) : 0;
 446}
 447
 448/**
 449 * drm_mm_insert_node_in_range - ranged search for space and insert @node
 450 * @mm: drm_mm to allocate from
 451 * @node: preallocate node to insert
 452 * @size: size of the allocation
 453 * @alignment: alignment of the allocation
 454 * @color: opaque tag value to use for this node
 455 * @range_start: start of the allowed range for this node
 456 * @range_end: end of the allowed range for this node
 457 * @mode: fine-tune the allocation search and placement
 458 *
 459 * The preallocated @node must be cleared to 0.
 460 *
 461 * Returns:
 462 * 0 on success, -ENOSPC if there's no suitable hole.
 463 */
 464int drm_mm_insert_node_in_range(struct drm_mm * const mm,
 465                                struct drm_mm_node * const node,
 466                                u64 size, u64 alignment,
 467                                unsigned long color,
 468                                u64 range_start, u64 range_end,
 469                                enum drm_mm_insert_mode mode)
 470{
 471        struct drm_mm_node *hole;
 472        u64 remainder_mask;
 473        bool once;
 474
 475        DRM_MM_BUG_ON(range_start >= range_end);
 476
 477        if (unlikely(size == 0 || range_end - range_start < size))
 478                return -ENOSPC;
 479
 480        if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size)
 481                return -ENOSPC;
 482
 483        if (alignment <= 1)
 484                alignment = 0;
 485
 486        once = mode & DRM_MM_INSERT_ONCE;
 487        mode &= ~DRM_MM_INSERT_ONCE;
 488
 489        remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
 490        for (hole = first_hole(mm, range_start, range_end, size, mode);
 491             hole;
 492             hole = once ? NULL : next_hole(mm, hole, mode)) {
 493                u64 hole_start = __drm_mm_hole_node_start(hole);
 494                u64 hole_end = hole_start + hole->hole_size;
 495                u64 adj_start, adj_end;
 496                u64 col_start, col_end;
 497
 498                if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
 499                        break;
 500
 501                if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
 502                        break;
 503
 504                col_start = hole_start;
 505                col_end = hole_end;
 506                if (mm->color_adjust)
 507                        mm->color_adjust(hole, color, &col_start, &col_end);
 508
 509                adj_start = max(col_start, range_start);
 510                adj_end = min(col_end, range_end);
 511
 512                if (adj_end <= adj_start || adj_end - adj_start < size)
 513                        continue;
 514
 515                if (mode == DRM_MM_INSERT_HIGH)
 516                        adj_start = adj_end - size;
 517
 518                if (alignment) {
 519                        u64 rem;
 520
 521                        if (likely(remainder_mask))
 522                                rem = adj_start & remainder_mask;
 523                        else
 524                                div64_u64_rem(adj_start, alignment, &rem);
 525                        if (rem) {
 526                                adj_start -= rem;
 527                                if (mode != DRM_MM_INSERT_HIGH)
 528                                        adj_start += alignment;
 529
 530                                if (adj_start < max(col_start, range_start) ||
 531                                    min(col_end, range_end) - adj_start < size)
 532                                        continue;
 533
 534                                if (adj_end <= adj_start ||
 535                                    adj_end - adj_start < size)
 536                                        continue;
 537                        }
 538                }
 539
 540                node->mm = mm;
 541                node->size = size;
 542                node->start = adj_start;
 543                node->color = color;
 544                node->hole_size = 0;
 545
 546                list_add(&node->node_list, &hole->node_list);
 547                drm_mm_interval_tree_add_node(hole, node);
 548                node->allocated = true;
 549
 550                rm_hole(hole);
 551                if (adj_start > hole_start)
 552                        add_hole(hole);
 553                if (adj_start + size < hole_end)
 554                        add_hole(node);
 555
 556                save_stack(node);
 557                return 0;
 558        }
 559
 560        return -ENOSPC;
 561}
 562EXPORT_SYMBOL(drm_mm_insert_node_in_range);
 563
 564/**
 565 * drm_mm_remove_node - Remove a memory node from the allocator.
 566 * @node: drm_mm_node to remove
 567 *
 568 * This just removes a node from its drm_mm allocator. The node does not need to
 569 * be cleared again before it can be re-inserted into this or any other drm_mm
 570 * allocator. It is a bug to call this function on a unallocated node.
 571 */
 572void drm_mm_remove_node(struct drm_mm_node *node)
 573{
 574        struct drm_mm *mm = node->mm;
 575        struct drm_mm_node *prev_node;
 576
 577        DRM_MM_BUG_ON(!node->allocated);
 578        DRM_MM_BUG_ON(node->scanned_block);
 579
 580        prev_node = list_prev_entry(node, node_list);
 581
 582        if (drm_mm_hole_follows(node))
 583                rm_hole(node);
 584
 585        drm_mm_interval_tree_remove(node, &mm->interval_tree);
 586        list_del(&node->node_list);
 587        node->allocated = false;
 588
 589        if (drm_mm_hole_follows(prev_node))
 590                rm_hole(prev_node);
 591        add_hole(prev_node);
 592}
 593EXPORT_SYMBOL(drm_mm_remove_node);
 594
 595/**
 596 * drm_mm_replace_node - move an allocation from @old to @new
 597 * @old: drm_mm_node to remove from the allocator
 598 * @new: drm_mm_node which should inherit @old's allocation
 599 *
 600 * This is useful for when drivers embed the drm_mm_node structure and hence
 601 * can't move allocations by reassigning pointers. It's a combination of remove
 602 * and insert with the guarantee that the allocation start will match.
 603 */
 604void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
 605{
 606        struct drm_mm *mm = old->mm;
 607
 608        DRM_MM_BUG_ON(!old->allocated);
 609
 610        *new = *old;
 611
 612        list_replace(&old->node_list, &new->node_list);
 613        rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree);
 614
 615        if (drm_mm_hole_follows(old)) {
 616                list_replace(&old->hole_stack, &new->hole_stack);
 617                rb_replace_node_cached(&old->rb_hole_size,
 618                                       &new->rb_hole_size,
 619                                       &mm->holes_size);
 620                rb_replace_node(&old->rb_hole_addr,
 621                                &new->rb_hole_addr,
 622                                &mm->holes_addr);
 623        }
 624
 625        old->allocated = false;
 626        new->allocated = true;
 627}
 628EXPORT_SYMBOL(drm_mm_replace_node);
 629
 630/**
 631 * DOC: lru scan roster
 632 *
 633 * Very often GPUs need to have continuous allocations for a given object. When
 634 * evicting objects to make space for a new one it is therefore not most
 635 * efficient when we simply start to select all objects from the tail of an LRU
 636 * until there's a suitable hole: Especially for big objects or nodes that
 637 * otherwise have special allocation constraints there's a good chance we evict
 638 * lots of (smaller) objects unnecessarily.
 639 *
 640 * The DRM range allocator supports this use-case through the scanning
 641 * interfaces. First a scan operation needs to be initialized with
 642 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
 643 * objects to the roster, probably by walking an LRU list, but this can be
 644 * freely implemented. Eviction candiates are added using
 645 * drm_mm_scan_add_block() until a suitable hole is found or there are no
 646 * further evictable objects. Eviction roster metadata is tracked in &struct
 647 * drm_mm_scan.
 648 *
 649 * The driver must walk through all objects again in exactly the reverse
 650 * order to restore the allocator state. Note that while the allocator is used
 651 * in the scan mode no other operation is allowed.
 652 *
 653 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
 654 * reported true) in the scan, and any overlapping nodes after color adjustment
 655 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
 656 * since freeing a node is also O(1) the overall complexity is
 657 * O(scanned_objects). So like the free stack which needs to be walked before a
 658 * scan operation even begins this is linear in the number of objects. It
 659 * doesn't seem to hurt too badly.
 660 */
 661
 662/**
 663 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
 664 * @scan: scan state
 665 * @mm: drm_mm to scan
 666 * @size: size of the allocation
 667 * @alignment: alignment of the allocation
 668 * @color: opaque tag value to use for the allocation
 669 * @start: start of the allowed range for the allocation
 670 * @end: end of the allowed range for the allocation
 671 * @mode: fine-tune the allocation search and placement
 672 *
 673 * This simply sets up the scanning routines with the parameters for the desired
 674 * hole.
 675 *
 676 * Warning:
 677 * As long as the scan list is non-empty, no other operations than
 678 * adding/removing nodes to/from the scan list are allowed.
 679 */
 680void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
 681                                 struct drm_mm *mm,
 682                                 u64 size,
 683                                 u64 alignment,
 684                                 unsigned long color,
 685                                 u64 start,
 686                                 u64 end,
 687                                 enum drm_mm_insert_mode mode)
 688{
 689        DRM_MM_BUG_ON(start >= end);
 690        DRM_MM_BUG_ON(!size || size > end - start);
 691        DRM_MM_BUG_ON(mm->scan_active);
 692
 693        scan->mm = mm;
 694
 695        if (alignment <= 1)
 696                alignment = 0;
 697
 698        scan->color = color;
 699        scan->alignment = alignment;
 700        scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
 701        scan->size = size;
 702        scan->mode = mode;
 703
 704        DRM_MM_BUG_ON(end <= start);
 705        scan->range_start = start;
 706        scan->range_end = end;
 707
 708        scan->hit_start = U64_MAX;
 709        scan->hit_end = 0;
 710}
 711EXPORT_SYMBOL(drm_mm_scan_init_with_range);
 712
 713/**
 714 * drm_mm_scan_add_block - add a node to the scan list
 715 * @scan: the active drm_mm scanner
 716 * @node: drm_mm_node to add
 717 *
 718 * Add a node to the scan list that might be freed to make space for the desired
 719 * hole.
 720 *
 721 * Returns:
 722 * True if a hole has been found, false otherwise.
 723 */
 724bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
 725                           struct drm_mm_node *node)
 726{
 727        struct drm_mm *mm = scan->mm;
 728        struct drm_mm_node *hole;
 729        u64 hole_start, hole_end;
 730        u64 col_start, col_end;
 731        u64 adj_start, adj_end;
 732
 733        DRM_MM_BUG_ON(node->mm != mm);
 734        DRM_MM_BUG_ON(!node->allocated);
 735        DRM_MM_BUG_ON(node->scanned_block);
 736        node->scanned_block = true;
 737        mm->scan_active++;
 738
 739        /* Remove this block from the node_list so that we enlarge the hole
 740         * (distance between the end of our previous node and the start of
 741         * or next), without poisoning the link so that we can restore it
 742         * later in drm_mm_scan_remove_block().
 743         */
 744        hole = list_prev_entry(node, node_list);
 745        DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
 746        __list_del_entry(&node->node_list);
 747
 748        hole_start = __drm_mm_hole_node_start(hole);
 749        hole_end = __drm_mm_hole_node_end(hole);
 750
 751        col_start = hole_start;
 752        col_end = hole_end;
 753        if (mm->color_adjust)
 754                mm->color_adjust(hole, scan->color, &col_start, &col_end);
 755
 756        adj_start = max(col_start, scan->range_start);
 757        adj_end = min(col_end, scan->range_end);
 758        if (adj_end <= adj_start || adj_end - adj_start < scan->size)
 759                return false;
 760
 761        if (scan->mode == DRM_MM_INSERT_HIGH)
 762                adj_start = adj_end - scan->size;
 763
 764        if (scan->alignment) {
 765                u64 rem;
 766
 767                if (likely(scan->remainder_mask))
 768                        rem = adj_start & scan->remainder_mask;
 769                else
 770                        div64_u64_rem(adj_start, scan->alignment, &rem);
 771                if (rem) {
 772                        adj_start -= rem;
 773                        if (scan->mode != DRM_MM_INSERT_HIGH)
 774                                adj_start += scan->alignment;
 775                        if (adj_start < max(col_start, scan->range_start) ||
 776                            min(col_end, scan->range_end) - adj_start < scan->size)
 777                                return false;
 778
 779                        if (adj_end <= adj_start ||
 780                            adj_end - adj_start < scan->size)
 781                                return false;
 782                }
 783        }
 784
 785        scan->hit_start = adj_start;
 786        scan->hit_end = adj_start + scan->size;
 787
 788        DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
 789        DRM_MM_BUG_ON(scan->hit_start < hole_start);
 790        DRM_MM_BUG_ON(scan->hit_end > hole_end);
 791
 792        return true;
 793}
 794EXPORT_SYMBOL(drm_mm_scan_add_block);
 795
 796/**
 797 * drm_mm_scan_remove_block - remove a node from the scan list
 798 * @scan: the active drm_mm scanner
 799 * @node: drm_mm_node to remove
 800 *
 801 * Nodes **must** be removed in exactly the reverse order from the scan list as
 802 * they have been added (e.g. using list_add() as they are added and then
 803 * list_for_each() over that eviction list to remove), otherwise the internal
 804 * state of the memory manager will be corrupted.
 805 *
 806 * When the scan list is empty, the selected memory nodes can be freed. An
 807 * immediately following drm_mm_insert_node_in_range_generic() or one of the
 808 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
 809 * the just freed block (because it's at the top of the free_stack list).
 810 *
 811 * Returns:
 812 * True if this block should be evicted, false otherwise. Will always
 813 * return false when no hole has been found.
 814 */
 815bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
 816                              struct drm_mm_node *node)
 817{
 818        struct drm_mm_node *prev_node;
 819
 820        DRM_MM_BUG_ON(node->mm != scan->mm);
 821        DRM_MM_BUG_ON(!node->scanned_block);
 822        node->scanned_block = false;
 823
 824        DRM_MM_BUG_ON(!node->mm->scan_active);
 825        node->mm->scan_active--;
 826
 827        /* During drm_mm_scan_add_block() we decoupled this node leaving
 828         * its pointers intact. Now that the caller is walking back along
 829         * the eviction list we can restore this block into its rightful
 830         * place on the full node_list. To confirm that the caller is walking
 831         * backwards correctly we check that prev_node->next == node->next,
 832         * i.e. both believe the same node should be on the other side of the
 833         * hole.
 834         */
 835        prev_node = list_prev_entry(node, node_list);
 836        DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
 837                      list_next_entry(node, node_list));
 838        list_add(&node->node_list, &prev_node->node_list);
 839
 840        return (node->start + node->size > scan->hit_start &&
 841                node->start < scan->hit_end);
 842}
 843EXPORT_SYMBOL(drm_mm_scan_remove_block);
 844
 845/**
 846 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
 847 * @scan: drm_mm scan with target hole
 848 *
 849 * After completing an eviction scan and removing the selected nodes, we may
 850 * need to remove a few more nodes from either side of the target hole if
 851 * mm.color_adjust is being used.
 852 *
 853 * Returns:
 854 * A node to evict, or NULL if there are no overlapping nodes.
 855 */
 856struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
 857{
 858        struct drm_mm *mm = scan->mm;
 859        struct drm_mm_node *hole;
 860        u64 hole_start, hole_end;
 861
 862        DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
 863
 864        if (!mm->color_adjust)
 865                return NULL;
 866
 867        /*
 868         * The hole found during scanning should ideally be the first element
 869         * in the hole_stack list, but due to side-effects in the driver it
 870         * may not be.
 871         */
 872        list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
 873                hole_start = __drm_mm_hole_node_start(hole);
 874                hole_end = hole_start + hole->hole_size;
 875
 876                if (hole_start <= scan->hit_start &&
 877                    hole_end >= scan->hit_end)
 878                        break;
 879        }
 880
 881        /* We should only be called after we found the hole previously */
 882        DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
 883        if (unlikely(&hole->hole_stack == &mm->hole_stack))
 884                return NULL;
 885
 886        DRM_MM_BUG_ON(hole_start > scan->hit_start);
 887        DRM_MM_BUG_ON(hole_end < scan->hit_end);
 888
 889        mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
 890        if (hole_start > scan->hit_start)
 891                return hole;
 892        if (hole_end < scan->hit_end)
 893                return list_next_entry(hole, node_list);
 894
 895        return NULL;
 896}
 897EXPORT_SYMBOL(drm_mm_scan_color_evict);
 898
 899/**
 900 * drm_mm_init - initialize a drm-mm allocator
 901 * @mm: the drm_mm structure to initialize
 902 * @start: start of the range managed by @mm
 903 * @size: end of the range managed by @mm
 904 *
 905 * Note that @mm must be cleared to 0 before calling this function.
 906 */
 907void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
 908{
 909        DRM_MM_BUG_ON(start + size <= start);
 910
 911        mm->color_adjust = NULL;
 912
 913        INIT_LIST_HEAD(&mm->hole_stack);
 914        mm->interval_tree = RB_ROOT_CACHED;
 915        mm->holes_size = RB_ROOT_CACHED;
 916        mm->holes_addr = RB_ROOT;
 917
 918        /* Clever trick to avoid a special case in the free hole tracking. */
 919        INIT_LIST_HEAD(&mm->head_node.node_list);
 920        mm->head_node.allocated = false;
 921        mm->head_node.mm = mm;
 922        mm->head_node.start = start + size;
 923        mm->head_node.size = -size;
 924        add_hole(&mm->head_node);
 925
 926        mm->scan_active = 0;
 927}
 928EXPORT_SYMBOL(drm_mm_init);
 929
 930/**
 931 * drm_mm_takedown - clean up a drm_mm allocator
 932 * @mm: drm_mm allocator to clean up
 933 *
 934 * Note that it is a bug to call this function on an allocator which is not
 935 * clean.
 936 */
 937void drm_mm_takedown(struct drm_mm *mm)
 938{
 939        if (WARN(!drm_mm_clean(mm),
 940                 "Memory manager not clean during takedown.\n"))
 941                show_leaks(mm);
 942}
 943EXPORT_SYMBOL(drm_mm_takedown);
 944
 945static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
 946{
 947        u64 start, size;
 948
 949        size = entry->hole_size;
 950        if (size) {
 951                start = drm_mm_hole_node_start(entry);
 952                drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
 953                           start, start + size, size);
 954        }
 955
 956        return size;
 957}
 958/**
 959 * drm_mm_print - print allocator state
 960 * @mm: drm_mm allocator to print
 961 * @p: DRM printer to use
 962 */
 963void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
 964{
 965        const struct drm_mm_node *entry;
 966        u64 total_used = 0, total_free = 0, total = 0;
 967
 968        total_free += drm_mm_dump_hole(p, &mm->head_node);
 969
 970        drm_mm_for_each_node(entry, mm) {
 971                drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
 972                           entry->start + entry->size, entry->size);
 973                total_used += entry->size;
 974                total_free += drm_mm_dump_hole(p, entry);
 975        }
 976        total = total_free + total_used;
 977
 978        drm_printf(p, "total: %llu, used %llu free %llu\n", total,
 979                   total_used, total_free);
 980}
 981EXPORT_SYMBOL(drm_mm_print);
 982