linux/drivers/gpu/drm/i915/gt/intel_lrc.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2014 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Ben Widawsky <ben@bwidawsk.net>
  25 *    Michel Thierry <michel.thierry@intel.com>
  26 *    Thomas Daniel <thomas.daniel@intel.com>
  27 *    Oscar Mateo <oscar.mateo@intel.com>
  28 *
  29 */
  30
  31/**
  32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
  33 *
  34 * Motivation:
  35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
  36 * These expanded contexts enable a number of new abilities, especially
  37 * "Execlists" (also implemented in this file).
  38 *
  39 * One of the main differences with the legacy HW contexts is that logical
  40 * ring contexts incorporate many more things to the context's state, like
  41 * PDPs or ringbuffer control registers:
  42 *
  43 * The reason why PDPs are included in the context is straightforward: as
  44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
  45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
  46 * instead, the GPU will do it for you on the context switch.
  47 *
  48 * But, what about the ringbuffer control registers (head, tail, etc..)?
  49 * shouldn't we just need a set of those per engine command streamer? This is
  50 * where the name "Logical Rings" starts to make sense: by virtualizing the
  51 * rings, the engine cs shifts to a new "ring buffer" with every context
  52 * switch. When you want to submit a workload to the GPU you: A) choose your
  53 * context, B) find its appropriate virtualized ring, C) write commands to it
  54 * and then, finally, D) tell the GPU to switch to that context.
  55 *
  56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
  57 * to a contexts is via a context execution list, ergo "Execlists".
  58 *
  59 * LRC implementation:
  60 * Regarding the creation of contexts, we have:
  61 *
  62 * - One global default context.
  63 * - One local default context for each opened fd.
  64 * - One local extra context for each context create ioctl call.
  65 *
  66 * Now that ringbuffers belong per-context (and not per-engine, like before)
  67 * and that contexts are uniquely tied to a given engine (and not reusable,
  68 * like before) we need:
  69 *
  70 * - One ringbuffer per-engine inside each context.
  71 * - One backing object per-engine inside each context.
  72 *
  73 * The global default context starts its life with these new objects fully
  74 * allocated and populated. The local default context for each opened fd is
  75 * more complex, because we don't know at creation time which engine is going
  76 * to use them. To handle this, we have implemented a deferred creation of LR
  77 * contexts:
  78 *
  79 * The local context starts its life as a hollow or blank holder, that only
  80 * gets populated for a given engine once we receive an execbuffer. If later
  81 * on we receive another execbuffer ioctl for the same context but a different
  82 * engine, we allocate/populate a new ringbuffer and context backing object and
  83 * so on.
  84 *
  85 * Finally, regarding local contexts created using the ioctl call: as they are
  86 * only allowed with the render ring, we can allocate & populate them right
  87 * away (no need to defer anything, at least for now).
  88 *
  89 * Execlists implementation:
  90 * Execlists are the new method by which, on gen8+ hardware, workloads are
  91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
  92 * This method works as follows:
  93 *
  94 * When a request is committed, its commands (the BB start and any leading or
  95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
  96 * for the appropriate context. The tail pointer in the hardware context is not
  97 * updated at this time, but instead, kept by the driver in the ringbuffer
  98 * structure. A structure representing this request is added to a request queue
  99 * for the appropriate engine: this structure contains a copy of the context's
 100 * tail after the request was written to the ring buffer and a pointer to the
 101 * context itself.
 102 *
 103 * If the engine's request queue was empty before the request was added, the
 104 * queue is processed immediately. Otherwise the queue will be processed during
 105 * a context switch interrupt. In any case, elements on the queue will get sent
 106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 107 * globally unique 20-bits submission ID.
 108 *
 109 * When execution of a request completes, the GPU updates the context status
 110 * buffer with a context complete event and generates a context switch interrupt.
 111 * During the interrupt handling, the driver examines the events in the buffer:
 112 * for each context complete event, if the announced ID matches that on the head
 113 * of the request queue, then that request is retired and removed from the queue.
 114 *
 115 * After processing, if any requests were retired and the queue is not empty
 116 * then a new execution list can be submitted. The two requests at the front of
 117 * the queue are next to be submitted but since a context may not occur twice in
 118 * an execution list, if subsequent requests have the same ID as the first then
 119 * the two requests must be combined. This is done simply by discarding requests
 120 * at the head of the queue until either only one requests is left (in which case
 121 * we use a NULL second context) or the first two requests have unique IDs.
 122 *
 123 * By always executing the first two requests in the queue the driver ensures
 124 * that the GPU is kept as busy as possible. In the case where a single context
 125 * completes but a second context is still executing, the request for this second
 126 * context will be at the head of the queue when we remove the first one. This
 127 * request will then be resubmitted along with a new request for a different context,
 128 * which will cause the hardware to continue executing the second request and queue
 129 * the new request (the GPU detects the condition of a context getting preempted
 130 * with the same context and optimizes the context switch flow by not doing
 131 * preemption, but just sampling the new tail pointer).
 132 *
 133 */
 134#include <linux/interrupt.h>
 135
 136#include "gem/i915_gem_context.h"
 137
 138#include "i915_drv.h"
 139#include "i915_gem_render_state.h"
 140#include "i915_vgpu.h"
 141#include "intel_engine_pm.h"
 142#include "intel_lrc_reg.h"
 143#include "intel_mocs.h"
 144#include "intel_reset.h"
 145#include "intel_workarounds.h"
 146
 147#define RING_EXECLIST_QFULL             (1 << 0x2)
 148#define RING_EXECLIST1_VALID            (1 << 0x3)
 149#define RING_EXECLIST0_VALID            (1 << 0x4)
 150#define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
 151#define RING_EXECLIST1_ACTIVE           (1 << 0x11)
 152#define RING_EXECLIST0_ACTIVE           (1 << 0x12)
 153
 154#define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
 155#define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
 156#define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
 157#define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
 158#define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
 159#define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
 160
 161#define GEN8_CTX_STATUS_COMPLETED_MASK \
 162         (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
 163
 164/* Typical size of the average request (2 pipecontrols and a MI_BB) */
 165#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
 166#define WA_TAIL_DWORDS 2
 167#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
 168
 169struct virtual_engine {
 170        struct intel_engine_cs base;
 171        struct intel_context context;
 172
 173        /*
 174         * We allow only a single request through the virtual engine at a time
 175         * (each request in the timeline waits for the completion fence of
 176         * the previous before being submitted). By restricting ourselves to
 177         * only submitting a single request, each request is placed on to a
 178         * physical to maximise load spreading (by virtue of the late greedy
 179         * scheduling -- each real engine takes the next available request
 180         * upon idling).
 181         */
 182        struct i915_request *request;
 183
 184        /*
 185         * We keep a rbtree of available virtual engines inside each physical
 186         * engine, sorted by priority. Here we preallocate the nodes we need
 187         * for the virtual engine, indexed by physical_engine->id.
 188         */
 189        struct ve_node {
 190                struct rb_node rb;
 191                int prio;
 192        } nodes[I915_NUM_ENGINES];
 193
 194        /*
 195         * Keep track of bonded pairs -- restrictions upon on our selection
 196         * of physical engines any particular request may be submitted to.
 197         * If we receive a submit-fence from a master engine, we will only
 198         * use one of sibling_mask physical engines.
 199         */
 200        struct ve_bond {
 201                const struct intel_engine_cs *master;
 202                intel_engine_mask_t sibling_mask;
 203        } *bonds;
 204        unsigned int num_bonds;
 205
 206        /* And finally, which physical engines this virtual engine maps onto. */
 207        unsigned int num_siblings;
 208        struct intel_engine_cs *siblings[0];
 209};
 210
 211static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
 212{
 213        GEM_BUG_ON(!intel_engine_is_virtual(engine));
 214        return container_of(engine, struct virtual_engine, base);
 215}
 216
 217static int execlists_context_deferred_alloc(struct intel_context *ce,
 218                                            struct intel_engine_cs *engine);
 219static void execlists_init_reg_state(u32 *reg_state,
 220                                     struct intel_context *ce,
 221                                     struct intel_engine_cs *engine,
 222                                     struct intel_ring *ring);
 223
 224static inline struct i915_priolist *to_priolist(struct rb_node *rb)
 225{
 226        return rb_entry(rb, struct i915_priolist, node);
 227}
 228
 229static inline int rq_prio(const struct i915_request *rq)
 230{
 231        return rq->sched.attr.priority;
 232}
 233
 234static int effective_prio(const struct i915_request *rq)
 235{
 236        int prio = rq_prio(rq);
 237
 238        /*
 239         * On unwinding the active request, we give it a priority bump
 240         * if it has completed waiting on any semaphore. If we know that
 241         * the request has already started, we can prevent an unwanted
 242         * preempt-to-idle cycle by taking that into account now.
 243         */
 244        if (__i915_request_has_started(rq))
 245                prio |= I915_PRIORITY_NOSEMAPHORE;
 246
 247        /* Restrict mere WAIT boosts from triggering preemption */
 248        return prio | __NO_PREEMPTION;
 249}
 250
 251static int queue_prio(const struct intel_engine_execlists *execlists)
 252{
 253        struct i915_priolist *p;
 254        struct rb_node *rb;
 255
 256        rb = rb_first_cached(&execlists->queue);
 257        if (!rb)
 258                return INT_MIN;
 259
 260        /*
 261         * As the priolist[] are inverted, with the highest priority in [0],
 262         * we have to flip the index value to become priority.
 263         */
 264        p = to_priolist(rb);
 265        return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
 266}
 267
 268static inline bool need_preempt(const struct intel_engine_cs *engine,
 269                                const struct i915_request *rq,
 270                                struct rb_node *rb)
 271{
 272        int last_prio;
 273
 274        if (!engine->preempt_context)
 275                return false;
 276
 277        if (i915_request_completed(rq))
 278                return false;
 279
 280        /*
 281         * Check if the current priority hint merits a preemption attempt.
 282         *
 283         * We record the highest value priority we saw during rescheduling
 284         * prior to this dequeue, therefore we know that if it is strictly
 285         * less than the current tail of ESLP[0], we do not need to force
 286         * a preempt-to-idle cycle.
 287         *
 288         * However, the priority hint is a mere hint that we may need to
 289         * preempt. If that hint is stale or we may be trying to preempt
 290         * ourselves, ignore the request.
 291         */
 292        last_prio = effective_prio(rq);
 293        if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint,
 294                                         last_prio))
 295                return false;
 296
 297        /*
 298         * Check against the first request in ELSP[1], it will, thanks to the
 299         * power of PI, be the highest priority of that context.
 300         */
 301        if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
 302            rq_prio(list_next_entry(rq, sched.link)) > last_prio)
 303                return true;
 304
 305        if (rb) {
 306                struct virtual_engine *ve =
 307                        rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
 308                bool preempt = false;
 309
 310                if (engine == ve->siblings[0]) { /* only preempt one sibling */
 311                        struct i915_request *next;
 312
 313                        rcu_read_lock();
 314                        next = READ_ONCE(ve->request);
 315                        if (next)
 316                                preempt = rq_prio(next) > last_prio;
 317                        rcu_read_unlock();
 318                }
 319
 320                if (preempt)
 321                        return preempt;
 322        }
 323
 324        /*
 325         * If the inflight context did not trigger the preemption, then maybe
 326         * it was the set of queued requests? Pick the highest priority in
 327         * the queue (the first active priolist) and see if it deserves to be
 328         * running instead of ELSP[0].
 329         *
 330         * The highest priority request in the queue can not be either
 331         * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
 332         * context, it's priority would not exceed ELSP[0] aka last_prio.
 333         */
 334        return queue_prio(&engine->execlists) > last_prio;
 335}
 336
 337__maybe_unused static inline bool
 338assert_priority_queue(const struct i915_request *prev,
 339                      const struct i915_request *next)
 340{
 341        const struct intel_engine_execlists *execlists =
 342                &prev->engine->execlists;
 343
 344        /*
 345         * Without preemption, the prev may refer to the still active element
 346         * which we refuse to let go.
 347         *
 348         * Even with preemption, there are times when we think it is better not
 349         * to preempt and leave an ostensibly lower priority request in flight.
 350         */
 351        if (port_request(execlists->port) == prev)
 352                return true;
 353
 354        return rq_prio(prev) >= rq_prio(next);
 355}
 356
 357/*
 358 * The context descriptor encodes various attributes of a context,
 359 * including its GTT address and some flags. Because it's fairly
 360 * expensive to calculate, we'll just do it once and cache the result,
 361 * which remains valid until the context is unpinned.
 362 *
 363 * This is what a descriptor looks like, from LSB to MSB::
 364 *
 365 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
 366 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 367 *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
 368 *      bits 53-54:    mbz, reserved for use by hardware
 369 *      bits 55-63:    group ID, currently unused and set to 0
 370 *
 371 * Starting from Gen11, the upper dword of the descriptor has a new format:
 372 *
 373 *      bits 32-36:    reserved
 374 *      bits 37-47:    SW context ID
 375 *      bits 48:53:    engine instance
 376 *      bit 54:        mbz, reserved for use by hardware
 377 *      bits 55-60:    SW counter
 378 *      bits 61-63:    engine class
 379 *
 380 * engine info, SW context ID and SW counter need to form a unique number
 381 * (Context ID) per lrc.
 382 */
 383static u64
 384lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
 385{
 386        struct i915_gem_context *ctx = ce->gem_context;
 387        u64 desc;
 388
 389        BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
 390        BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
 391
 392        desc = ctx->desc_template;                              /* bits  0-11 */
 393        GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
 394
 395        desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
 396                                                                /* bits 12-31 */
 397        GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
 398
 399        /*
 400         * The following 32bits are copied into the OA reports (dword 2).
 401         * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
 402         * anything below.
 403         */
 404        if (INTEL_GEN(engine->i915) >= 11) {
 405                GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
 406                desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
 407                                                                /* bits 37-47 */
 408
 409                desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
 410                                                                /* bits 48-53 */
 411
 412                /* TODO: decide what to do with SW counter (bits 55-60) */
 413
 414                desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
 415                                                                /* bits 61-63 */
 416        } else {
 417                GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
 418                desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;   /* bits 32-52 */
 419        }
 420
 421        return desc;
 422}
 423
 424static void unwind_wa_tail(struct i915_request *rq)
 425{
 426        rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
 427        assert_ring_tail_valid(rq->ring, rq->tail);
 428}
 429
 430static struct i915_request *
 431__unwind_incomplete_requests(struct intel_engine_cs *engine)
 432{
 433        struct i915_request *rq, *rn, *active = NULL;
 434        struct list_head *uninitialized_var(pl);
 435        int prio = I915_PRIORITY_INVALID;
 436
 437        lockdep_assert_held(&engine->active.lock);
 438
 439        list_for_each_entry_safe_reverse(rq, rn,
 440                                         &engine->active.requests,
 441                                         sched.link) {
 442                struct intel_engine_cs *owner;
 443
 444                if (i915_request_completed(rq))
 445                        break;
 446
 447                __i915_request_unsubmit(rq);
 448                unwind_wa_tail(rq);
 449
 450                GEM_BUG_ON(rq->hw_context->inflight);
 451
 452                /*
 453                 * Push the request back into the queue for later resubmission.
 454                 * If this request is not native to this physical engine (i.e.
 455                 * it came from a virtual source), push it back onto the virtual
 456                 * engine so that it can be moved across onto another physical
 457                 * engine as load dictates.
 458                 */
 459                owner = rq->hw_context->engine;
 460                if (likely(owner == engine)) {
 461                        GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
 462                        if (rq_prio(rq) != prio) {
 463                                prio = rq_prio(rq);
 464                                pl = i915_sched_lookup_priolist(engine, prio);
 465                        }
 466                        GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
 467
 468                        list_move(&rq->sched.link, pl);
 469                        active = rq;
 470                } else {
 471                        rq->engine = owner;
 472                        owner->submit_request(rq);
 473                        active = NULL;
 474                }
 475        }
 476
 477        return active;
 478}
 479
 480struct i915_request *
 481execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
 482{
 483        struct intel_engine_cs *engine =
 484                container_of(execlists, typeof(*engine), execlists);
 485
 486        return __unwind_incomplete_requests(engine);
 487}
 488
 489static inline void
 490execlists_context_status_change(struct i915_request *rq, unsigned long status)
 491{
 492        /*
 493         * Only used when GVT-g is enabled now. When GVT-g is disabled,
 494         * The compiler should eliminate this function as dead-code.
 495         */
 496        if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
 497                return;
 498
 499        atomic_notifier_call_chain(&rq->engine->context_status_notifier,
 500                                   status, rq);
 501}
 502
 503inline void
 504execlists_user_begin(struct intel_engine_execlists *execlists,
 505                     const struct execlist_port *port)
 506{
 507        execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
 508}
 509
 510inline void
 511execlists_user_end(struct intel_engine_execlists *execlists)
 512{
 513        execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
 514}
 515
 516static inline void
 517execlists_context_schedule_in(struct i915_request *rq)
 518{
 519        GEM_BUG_ON(rq->hw_context->inflight);
 520
 521        execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
 522        intel_engine_context_in(rq->engine);
 523        rq->hw_context->inflight = rq->engine;
 524}
 525
 526static void kick_siblings(struct i915_request *rq)
 527{
 528        struct virtual_engine *ve = to_virtual_engine(rq->hw_context->engine);
 529        struct i915_request *next = READ_ONCE(ve->request);
 530
 531        if (next && next->execution_mask & ~rq->execution_mask)
 532                tasklet_schedule(&ve->base.execlists.tasklet);
 533}
 534
 535static inline void
 536execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
 537{
 538        rq->hw_context->inflight = NULL;
 539        intel_engine_context_out(rq->engine);
 540        execlists_context_status_change(rq, status);
 541        trace_i915_request_out(rq);
 542
 543        /*
 544         * If this is part of a virtual engine, its next request may have
 545         * been blocked waiting for access to the active context. We have
 546         * to kick all the siblings again in case we need to switch (e.g.
 547         * the next request is not runnable on this engine). Hopefully,
 548         * we will already have submitted the next request before the
 549         * tasklet runs and do not need to rebuild each virtual tree
 550         * and kick everyone again.
 551         */
 552        if (rq->engine != rq->hw_context->engine)
 553                kick_siblings(rq);
 554}
 555
 556static u64 execlists_update_context(struct i915_request *rq)
 557{
 558        struct intel_context *ce = rq->hw_context;
 559
 560        ce->lrc_reg_state[CTX_RING_TAIL + 1] =
 561                intel_ring_set_tail(rq->ring, rq->tail);
 562
 563        /*
 564         * Make sure the context image is complete before we submit it to HW.
 565         *
 566         * Ostensibly, writes (including the WCB) should be flushed prior to
 567         * an uncached write such as our mmio register access, the empirical
 568         * evidence (esp. on Braswell) suggests that the WC write into memory
 569         * may not be visible to the HW prior to the completion of the UC
 570         * register write and that we may begin execution from the context
 571         * before its image is complete leading to invalid PD chasing.
 572         *
 573         * Furthermore, Braswell, at least, wants a full mb to be sure that
 574         * the writes are coherent in memory (visible to the GPU) prior to
 575         * execution, and not just visible to other CPUs (as is the result of
 576         * wmb).
 577         */
 578        mb();
 579        return ce->lrc_desc;
 580}
 581
 582static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
 583{
 584        if (execlists->ctrl_reg) {
 585                writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
 586                writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
 587        } else {
 588                writel(upper_32_bits(desc), execlists->submit_reg);
 589                writel(lower_32_bits(desc), execlists->submit_reg);
 590        }
 591}
 592
 593static void execlists_submit_ports(struct intel_engine_cs *engine)
 594{
 595        struct intel_engine_execlists *execlists = &engine->execlists;
 596        struct execlist_port *port = execlists->port;
 597        unsigned int n;
 598
 599        /*
 600         * We can skip acquiring intel_runtime_pm_get() here as it was taken
 601         * on our behalf by the request (see i915_gem_mark_busy()) and it will
 602         * not be relinquished until the device is idle (see
 603         * i915_gem_idle_work_handler()). As a precaution, we make sure
 604         * that all ELSP are drained i.e. we have processed the CSB,
 605         * before allowing ourselves to idle and calling intel_runtime_pm_put().
 606         */
 607        GEM_BUG_ON(!intel_wakeref_active(&engine->wakeref));
 608
 609        /*
 610         * ELSQ note: the submit queue is not cleared after being submitted
 611         * to the HW so we need to make sure we always clean it up. This is
 612         * currently ensured by the fact that we always write the same number
 613         * of elsq entries, keep this in mind before changing the loop below.
 614         */
 615        for (n = execlists_num_ports(execlists); n--; ) {
 616                struct i915_request *rq;
 617                unsigned int count;
 618                u64 desc;
 619
 620                rq = port_unpack(&port[n], &count);
 621                if (rq) {
 622                        GEM_BUG_ON(count > !n);
 623                        if (!count++)
 624                                execlists_context_schedule_in(rq);
 625                        port_set(&port[n], port_pack(rq, count));
 626                        desc = execlists_update_context(rq);
 627                        GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
 628
 629                        GEM_TRACE("%s in[%d]:  ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
 630                                  engine->name, n,
 631                                  port[n].context_id, count,
 632                                  rq->fence.context, rq->fence.seqno,
 633                                  hwsp_seqno(rq),
 634                                  rq_prio(rq));
 635                } else {
 636                        GEM_BUG_ON(!n);
 637                        desc = 0;
 638                }
 639
 640                write_desc(execlists, desc, n);
 641        }
 642
 643        /* we need to manually load the submit queue */
 644        if (execlists->ctrl_reg)
 645                writel(EL_CTRL_LOAD, execlists->ctrl_reg);
 646
 647        execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
 648}
 649
 650static bool ctx_single_port_submission(const struct intel_context *ce)
 651{
 652        return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
 653                i915_gem_context_force_single_submission(ce->gem_context));
 654}
 655
 656static bool can_merge_ctx(const struct intel_context *prev,
 657                          const struct intel_context *next)
 658{
 659        if (prev != next)
 660                return false;
 661
 662        if (ctx_single_port_submission(prev))
 663                return false;
 664
 665        return true;
 666}
 667
 668static bool can_merge_rq(const struct i915_request *prev,
 669                         const struct i915_request *next)
 670{
 671        GEM_BUG_ON(!assert_priority_queue(prev, next));
 672
 673        if (!can_merge_ctx(prev->hw_context, next->hw_context))
 674                return false;
 675
 676        return true;
 677}
 678
 679static void port_assign(struct execlist_port *port, struct i915_request *rq)
 680{
 681        GEM_BUG_ON(rq == port_request(port));
 682
 683        if (port_isset(port))
 684                i915_request_put(port_request(port));
 685
 686        port_set(port, port_pack(i915_request_get(rq), port_count(port)));
 687}
 688
 689static void inject_preempt_context(struct intel_engine_cs *engine)
 690{
 691        struct intel_engine_execlists *execlists = &engine->execlists;
 692        struct intel_context *ce = engine->preempt_context;
 693        unsigned int n;
 694
 695        GEM_BUG_ON(execlists->preempt_complete_status !=
 696                   upper_32_bits(ce->lrc_desc));
 697
 698        /*
 699         * Switch to our empty preempt context so
 700         * the state of the GPU is known (idle).
 701         */
 702        GEM_TRACE("%s\n", engine->name);
 703        for (n = execlists_num_ports(execlists); --n; )
 704                write_desc(execlists, 0, n);
 705
 706        write_desc(execlists, ce->lrc_desc, n);
 707
 708        /* we need to manually load the submit queue */
 709        if (execlists->ctrl_reg)
 710                writel(EL_CTRL_LOAD, execlists->ctrl_reg);
 711
 712        execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
 713        execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
 714
 715        (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
 716}
 717
 718static void complete_preempt_context(struct intel_engine_execlists *execlists)
 719{
 720        GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
 721
 722        if (inject_preempt_hang(execlists))
 723                return;
 724
 725        execlists_cancel_port_requests(execlists);
 726        __unwind_incomplete_requests(container_of(execlists,
 727                                                  struct intel_engine_cs,
 728                                                  execlists));
 729}
 730
 731static void virtual_update_register_offsets(u32 *regs,
 732                                            struct intel_engine_cs *engine)
 733{
 734        u32 base = engine->mmio_base;
 735
 736        /* Must match execlists_init_reg_state()! */
 737
 738        regs[CTX_CONTEXT_CONTROL] =
 739                i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base));
 740        regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base));
 741        regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base));
 742        regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base));
 743        regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base));
 744
 745        regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base));
 746        regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base));
 747        regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base));
 748        regs[CTX_SECOND_BB_HEAD_U] =
 749                i915_mmio_reg_offset(RING_SBBADDR_UDW(base));
 750        regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base));
 751        regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base));
 752
 753        regs[CTX_CTX_TIMESTAMP] =
 754                i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base));
 755        regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3));
 756        regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3));
 757        regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2));
 758        regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2));
 759        regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1));
 760        regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1));
 761        regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
 762        regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
 763
 764        if (engine->class == RENDER_CLASS) {
 765                regs[CTX_RCS_INDIRECT_CTX] =
 766                        i915_mmio_reg_offset(RING_INDIRECT_CTX(base));
 767                regs[CTX_RCS_INDIRECT_CTX_OFFSET] =
 768                        i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base));
 769                regs[CTX_BB_PER_CTX_PTR] =
 770                        i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base));
 771
 772                regs[CTX_R_PWR_CLK_STATE] =
 773                        i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE);
 774        }
 775}
 776
 777static bool virtual_matches(const struct virtual_engine *ve,
 778                            const struct i915_request *rq,
 779                            const struct intel_engine_cs *engine)
 780{
 781        const struct intel_engine_cs *inflight;
 782
 783        if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
 784                return false;
 785
 786        /*
 787         * We track when the HW has completed saving the context image
 788         * (i.e. when we have seen the final CS event switching out of
 789         * the context) and must not overwrite the context image before
 790         * then. This restricts us to only using the active engine
 791         * while the previous virtualized request is inflight (so
 792         * we reuse the register offsets). This is a very small
 793         * hystersis on the greedy seelction algorithm.
 794         */
 795        inflight = READ_ONCE(ve->context.inflight);
 796        if (inflight && inflight != engine)
 797                return false;
 798
 799        return true;
 800}
 801
 802static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
 803                                     struct intel_engine_cs *engine)
 804{
 805        struct intel_engine_cs *old = ve->siblings[0];
 806
 807        /* All unattached (rq->engine == old) must already be completed */
 808
 809        spin_lock(&old->breadcrumbs.irq_lock);
 810        if (!list_empty(&ve->context.signal_link)) {
 811                list_move_tail(&ve->context.signal_link,
 812                               &engine->breadcrumbs.signalers);
 813                intel_engine_queue_breadcrumbs(engine);
 814        }
 815        spin_unlock(&old->breadcrumbs.irq_lock);
 816}
 817
 818static void execlists_dequeue(struct intel_engine_cs *engine)
 819{
 820        struct intel_engine_execlists * const execlists = &engine->execlists;
 821        struct execlist_port *port = execlists->port;
 822        const struct execlist_port * const last_port =
 823                &execlists->port[execlists->port_mask];
 824        struct i915_request *last = port_request(port);
 825        struct rb_node *rb;
 826        bool submit = false;
 827
 828        /*
 829         * Hardware submission is through 2 ports. Conceptually each port
 830         * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
 831         * static for a context, and unique to each, so we only execute
 832         * requests belonging to a single context from each ring. RING_HEAD
 833         * is maintained by the CS in the context image, it marks the place
 834         * where it got up to last time, and through RING_TAIL we tell the CS
 835         * where we want to execute up to this time.
 836         *
 837         * In this list the requests are in order of execution. Consecutive
 838         * requests from the same context are adjacent in the ringbuffer. We
 839         * can combine these requests into a single RING_TAIL update:
 840         *
 841         *              RING_HEAD...req1...req2
 842         *                                    ^- RING_TAIL
 843         * since to execute req2 the CS must first execute req1.
 844         *
 845         * Our goal then is to point each port to the end of a consecutive
 846         * sequence of requests as being the most optimal (fewest wake ups
 847         * and context switches) submission.
 848         */
 849
 850        for (rb = rb_first_cached(&execlists->virtual); rb; ) {
 851                struct virtual_engine *ve =
 852                        rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
 853                struct i915_request *rq = READ_ONCE(ve->request);
 854
 855                if (!rq) { /* lazily cleanup after another engine handled rq */
 856                        rb_erase_cached(rb, &execlists->virtual);
 857                        RB_CLEAR_NODE(rb);
 858                        rb = rb_first_cached(&execlists->virtual);
 859                        continue;
 860                }
 861
 862                if (!virtual_matches(ve, rq, engine)) {
 863                        rb = rb_next(rb);
 864                        continue;
 865                }
 866
 867                break;
 868        }
 869
 870        if (last) {
 871                /*
 872                 * Don't resubmit or switch until all outstanding
 873                 * preemptions (lite-restore) are seen. Then we
 874                 * know the next preemption status we see corresponds
 875                 * to this ELSP update.
 876                 */
 877                GEM_BUG_ON(!execlists_is_active(execlists,
 878                                                EXECLISTS_ACTIVE_USER));
 879                GEM_BUG_ON(!port_count(&port[0]));
 880
 881                /*
 882                 * If we write to ELSP a second time before the HW has had
 883                 * a chance to respond to the previous write, we can confuse
 884                 * the HW and hit "undefined behaviour". After writing to ELSP,
 885                 * we must then wait until we see a context-switch event from
 886                 * the HW to indicate that it has had a chance to respond.
 887                 */
 888                if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
 889                        return;
 890
 891                if (need_preempt(engine, last, rb)) {
 892                        inject_preempt_context(engine);
 893                        return;
 894                }
 895
 896                /*
 897                 * In theory, we could coalesce more requests onto
 898                 * the second port (the first port is active, with
 899                 * no preemptions pending). However, that means we
 900                 * then have to deal with the possible lite-restore
 901                 * of the second port (as we submit the ELSP, there
 902                 * may be a context-switch) but also we may complete
 903                 * the resubmission before the context-switch. Ergo,
 904                 * coalescing onto the second port will cause a
 905                 * preemption event, but we cannot predict whether
 906                 * that will affect port[0] or port[1].
 907                 *
 908                 * If the second port is already active, we can wait
 909                 * until the next context-switch before contemplating
 910                 * new requests. The GPU will be busy and we should be
 911                 * able to resubmit the new ELSP before it idles,
 912                 * avoiding pipeline bubbles (momentary pauses where
 913                 * the driver is unable to keep up the supply of new
 914                 * work). However, we have to double check that the
 915                 * priorities of the ports haven't been switch.
 916                 */
 917                if (port_count(&port[1]))
 918                        return;
 919
 920                /*
 921                 * WaIdleLiteRestore:bdw,skl
 922                 * Apply the wa NOOPs to prevent
 923                 * ring:HEAD == rq:TAIL as we resubmit the
 924                 * request. See gen8_emit_fini_breadcrumb() for
 925                 * where we prepare the padding after the
 926                 * end of the request.
 927                 */
 928                last->tail = last->wa_tail;
 929        }
 930
 931        while (rb) { /* XXX virtual is always taking precedence */
 932                struct virtual_engine *ve =
 933                        rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
 934                struct i915_request *rq;
 935
 936                spin_lock(&ve->base.active.lock);
 937
 938                rq = ve->request;
 939                if (unlikely(!rq)) { /* lost the race to a sibling */
 940                        spin_unlock(&ve->base.active.lock);
 941                        rb_erase_cached(rb, &execlists->virtual);
 942                        RB_CLEAR_NODE(rb);
 943                        rb = rb_first_cached(&execlists->virtual);
 944                        continue;
 945                }
 946
 947                GEM_BUG_ON(rq != ve->request);
 948                GEM_BUG_ON(rq->engine != &ve->base);
 949                GEM_BUG_ON(rq->hw_context != &ve->context);
 950
 951                if (rq_prio(rq) >= queue_prio(execlists)) {
 952                        if (!virtual_matches(ve, rq, engine)) {
 953                                spin_unlock(&ve->base.active.lock);
 954                                rb = rb_next(rb);
 955                                continue;
 956                        }
 957
 958                        if (last && !can_merge_rq(last, rq)) {
 959                                spin_unlock(&ve->base.active.lock);
 960                                return; /* leave this rq for another engine */
 961                        }
 962
 963                        GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n",
 964                                  engine->name,
 965                                  rq->fence.context,
 966                                  rq->fence.seqno,
 967                                  i915_request_completed(rq) ? "!" :
 968                                  i915_request_started(rq) ? "*" :
 969                                  "",
 970                                  yesno(engine != ve->siblings[0]));
 971
 972                        ve->request = NULL;
 973                        ve->base.execlists.queue_priority_hint = INT_MIN;
 974                        rb_erase_cached(rb, &execlists->virtual);
 975                        RB_CLEAR_NODE(rb);
 976
 977                        GEM_BUG_ON(!(rq->execution_mask & engine->mask));
 978                        rq->engine = engine;
 979
 980                        if (engine != ve->siblings[0]) {
 981                                u32 *regs = ve->context.lrc_reg_state;
 982                                unsigned int n;
 983
 984                                GEM_BUG_ON(READ_ONCE(ve->context.inflight));
 985                                virtual_update_register_offsets(regs, engine);
 986
 987                                if (!list_empty(&ve->context.signals))
 988                                        virtual_xfer_breadcrumbs(ve, engine);
 989
 990                                /*
 991                                 * Move the bound engine to the top of the list
 992                                 * for future execution. We then kick this
 993                                 * tasklet first before checking others, so that
 994                                 * we preferentially reuse this set of bound
 995                                 * registers.
 996                                 */
 997                                for (n = 1; n < ve->num_siblings; n++) {
 998                                        if (ve->siblings[n] == engine) {
 999                                                swap(ve->siblings[n],
1000                                                     ve->siblings[0]);
1001                                                break;
1002                                        }
1003                                }
1004
1005                                GEM_BUG_ON(ve->siblings[0] != engine);
1006                        }
1007
1008                        __i915_request_submit(rq);
1009                        trace_i915_request_in(rq, port_index(port, execlists));
1010                        submit = true;
1011                        last = rq;
1012                }
1013
1014                spin_unlock(&ve->base.active.lock);
1015                break;
1016        }
1017
1018        while ((rb = rb_first_cached(&execlists->queue))) {
1019                struct i915_priolist *p = to_priolist(rb);
1020                struct i915_request *rq, *rn;
1021                int i;
1022
1023                priolist_for_each_request_consume(rq, rn, p, i) {
1024                        /*
1025                         * Can we combine this request with the current port?
1026                         * It has to be the same context/ringbuffer and not
1027                         * have any exceptions (e.g. GVT saying never to
1028                         * combine contexts).
1029                         *
1030                         * If we can combine the requests, we can execute both
1031                         * by updating the RING_TAIL to point to the end of the
1032                         * second request, and so we never need to tell the
1033                         * hardware about the first.
1034                         */
1035                        if (last && !can_merge_rq(last, rq)) {
1036                                /*
1037                                 * If we are on the second port and cannot
1038                                 * combine this request with the last, then we
1039                                 * are done.
1040                                 */
1041                                if (port == last_port)
1042                                        goto done;
1043
1044                                /*
1045                                 * We must not populate both ELSP[] with the
1046                                 * same LRCA, i.e. we must submit 2 different
1047                                 * contexts if we submit 2 ELSP.
1048                                 */
1049                                if (last->hw_context == rq->hw_context)
1050                                        goto done;
1051
1052                                /*
1053                                 * If GVT overrides us we only ever submit
1054                                 * port[0], leaving port[1] empty. Note that we
1055                                 * also have to be careful that we don't queue
1056                                 * the same context (even though a different
1057                                 * request) to the second port.
1058                                 */
1059                                if (ctx_single_port_submission(last->hw_context) ||
1060                                    ctx_single_port_submission(rq->hw_context))
1061                                        goto done;
1062
1063
1064                                if (submit)
1065                                        port_assign(port, last);
1066                                port++;
1067
1068                                GEM_BUG_ON(port_isset(port));
1069                        }
1070
1071                        __i915_request_submit(rq);
1072                        trace_i915_request_in(rq, port_index(port, execlists));
1073
1074                        last = rq;
1075                        submit = true;
1076                }
1077
1078                rb_erase_cached(&p->node, &execlists->queue);
1079                i915_priolist_free(p);
1080        }
1081
1082done:
1083        /*
1084         * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1085         *
1086         * We choose the priority hint such that if we add a request of greater
1087         * priority than this, we kick the submission tasklet to decide on
1088         * the right order of submitting the requests to hardware. We must
1089         * also be prepared to reorder requests as they are in-flight on the
1090         * HW. We derive the priority hint then as the first "hole" in
1091         * the HW submission ports and if there are no available slots,
1092         * the priority of the lowest executing request, i.e. last.
1093         *
1094         * When we do receive a higher priority request ready to run from the
1095         * user, see queue_request(), the priority hint is bumped to that
1096         * request triggering preemption on the next dequeue (or subsequent
1097         * interrupt for secondary ports).
1098         */
1099        execlists->queue_priority_hint = queue_prio(execlists);
1100
1101        if (submit) {
1102                port_assign(port, last);
1103                execlists_submit_ports(engine);
1104        }
1105
1106        /* We must always keep the beast fed if we have work piled up */
1107        GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
1108                   !port_isset(execlists->port));
1109
1110        /* Re-evaluate the executing context setup after each preemptive kick */
1111        if (last)
1112                execlists_user_begin(execlists, execlists->port);
1113
1114        /* If the engine is now idle, so should be the flag; and vice versa. */
1115        GEM_BUG_ON(execlists_is_active(&engine->execlists,
1116                                       EXECLISTS_ACTIVE_USER) ==
1117                   !port_isset(engine->execlists.port));
1118}
1119
1120void
1121execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
1122{
1123        struct execlist_port *port = execlists->port;
1124        unsigned int num_ports = execlists_num_ports(execlists);
1125
1126        while (num_ports-- && port_isset(port)) {
1127                struct i915_request *rq = port_request(port);
1128
1129                GEM_TRACE("%s:port%u fence %llx:%lld, (current %d)\n",
1130                          rq->engine->name,
1131                          (unsigned int)(port - execlists->port),
1132                          rq->fence.context, rq->fence.seqno,
1133                          hwsp_seqno(rq));
1134
1135                GEM_BUG_ON(!execlists->active);
1136                execlists_context_schedule_out(rq,
1137                                               i915_request_completed(rq) ?
1138                                               INTEL_CONTEXT_SCHEDULE_OUT :
1139                                               INTEL_CONTEXT_SCHEDULE_PREEMPTED);
1140
1141                i915_request_put(rq);
1142
1143                memset(port, 0, sizeof(*port));
1144                port++;
1145        }
1146
1147        execlists_clear_all_active(execlists);
1148}
1149
1150static inline void
1151invalidate_csb_entries(const u32 *first, const u32 *last)
1152{
1153        clflush((void *)first);
1154        clflush((void *)last);
1155}
1156
1157static inline bool
1158reset_in_progress(const struct intel_engine_execlists *execlists)
1159{
1160        return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
1161}
1162
1163static void process_csb(struct intel_engine_cs *engine)
1164{
1165        struct intel_engine_execlists * const execlists = &engine->execlists;
1166        struct execlist_port *port = execlists->port;
1167        const u32 * const buf = execlists->csb_status;
1168        const u8 num_entries = execlists->csb_size;
1169        u8 head, tail;
1170
1171        lockdep_assert_held(&engine->active.lock);
1172        GEM_BUG_ON(USES_GUC_SUBMISSION(engine->i915));
1173
1174        /*
1175         * Note that csb_write, csb_status may be either in HWSP or mmio.
1176         * When reading from the csb_write mmio register, we have to be
1177         * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1178         * the low 4bits. As it happens we know the next 4bits are always
1179         * zero and so we can simply masked off the low u8 of the register
1180         * and treat it identically to reading from the HWSP (without having
1181         * to use explicit shifting and masking, and probably bifurcating
1182         * the code to handle the legacy mmio read).
1183         */
1184        head = execlists->csb_head;
1185        tail = READ_ONCE(*execlists->csb_write);
1186        GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
1187        if (unlikely(head == tail))
1188                return;
1189
1190        /*
1191         * Hopefully paired with a wmb() in HW!
1192         *
1193         * We must complete the read of the write pointer before any reads
1194         * from the CSB, so that we do not see stale values. Without an rmb
1195         * (lfence) the HW may speculatively perform the CSB[] reads *before*
1196         * we perform the READ_ONCE(*csb_write).
1197         */
1198        rmb();
1199
1200        do {
1201                struct i915_request *rq;
1202                unsigned int status;
1203                unsigned int count;
1204
1205                if (++head == num_entries)
1206                        head = 0;
1207
1208                /*
1209                 * We are flying near dragons again.
1210                 *
1211                 * We hold a reference to the request in execlist_port[]
1212                 * but no more than that. We are operating in softirq
1213                 * context and so cannot hold any mutex or sleep. That
1214                 * prevents us stopping the requests we are processing
1215                 * in port[] from being retired simultaneously (the
1216                 * breadcrumb will be complete before we see the
1217                 * context-switch). As we only hold the reference to the
1218                 * request, any pointer chasing underneath the request
1219                 * is subject to a potential use-after-free. Thus we
1220                 * store all of the bookkeeping within port[] as
1221                 * required, and avoid using unguarded pointers beneath
1222                 * request itself. The same applies to the atomic
1223                 * status notifier.
1224                 */
1225
1226                GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
1227                          engine->name, head,
1228                          buf[2 * head + 0], buf[2 * head + 1],
1229                          execlists->active);
1230
1231                status = buf[2 * head];
1232                if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
1233                              GEN8_CTX_STATUS_PREEMPTED))
1234                        execlists_set_active(execlists,
1235                                             EXECLISTS_ACTIVE_HWACK);
1236                if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
1237                        execlists_clear_active(execlists,
1238                                               EXECLISTS_ACTIVE_HWACK);
1239
1240                if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
1241                        continue;
1242
1243                /* We should never get a COMPLETED | IDLE_ACTIVE! */
1244                GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
1245
1246                if (status & GEN8_CTX_STATUS_COMPLETE &&
1247                    buf[2*head + 1] == execlists->preempt_complete_status) {
1248                        GEM_TRACE("%s preempt-idle\n", engine->name);
1249                        complete_preempt_context(execlists);
1250                        continue;
1251                }
1252
1253                if (status & GEN8_CTX_STATUS_PREEMPTED &&
1254                    execlists_is_active(execlists,
1255                                        EXECLISTS_ACTIVE_PREEMPT))
1256                        continue;
1257
1258                GEM_BUG_ON(!execlists_is_active(execlists,
1259                                                EXECLISTS_ACTIVE_USER));
1260
1261                rq = port_unpack(port, &count);
1262                GEM_TRACE("%s out[0]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
1263                          engine->name,
1264                          port->context_id, count,
1265                          rq ? rq->fence.context : 0,
1266                          rq ? rq->fence.seqno : 0,
1267                          rq ? hwsp_seqno(rq) : 0,
1268                          rq ? rq_prio(rq) : 0);
1269
1270                /* Check the context/desc id for this event matches */
1271                GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
1272
1273                GEM_BUG_ON(count == 0);
1274                if (--count == 0) {
1275                        /*
1276                         * On the final event corresponding to the
1277                         * submission of this context, we expect either
1278                         * an element-switch event or a completion
1279                         * event (and on completion, the active-idle
1280                         * marker). No more preemptions, lite-restore
1281                         * or otherwise.
1282                         */
1283                        GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1284                        GEM_BUG_ON(port_isset(&port[1]) &&
1285                                   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1286                        GEM_BUG_ON(!port_isset(&port[1]) &&
1287                                   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1288
1289                        /*
1290                         * We rely on the hardware being strongly
1291                         * ordered, that the breadcrumb write is
1292                         * coherent (visible from the CPU) before the
1293                         * user interrupt and CSB is processed.
1294                         */
1295                        GEM_BUG_ON(!i915_request_completed(rq));
1296
1297                        execlists_context_schedule_out(rq,
1298                                                       INTEL_CONTEXT_SCHEDULE_OUT);
1299                        i915_request_put(rq);
1300
1301                        GEM_TRACE("%s completed ctx=%d\n",
1302                                  engine->name, port->context_id);
1303
1304                        port = execlists_port_complete(execlists, port);
1305                        if (port_isset(port))
1306                                execlists_user_begin(execlists, port);
1307                        else
1308                                execlists_user_end(execlists);
1309                } else {
1310                        port_set(port, port_pack(rq, count));
1311                }
1312        } while (head != tail);
1313
1314        execlists->csb_head = head;
1315
1316        /*
1317         * Gen11 has proven to fail wrt global observation point between
1318         * entry and tail update, failing on the ordering and thus
1319         * we see an old entry in the context status buffer.
1320         *
1321         * Forcibly evict out entries for the next gpu csb update,
1322         * to increase the odds that we get a fresh entries with non
1323         * working hardware. The cost for doing so comes out mostly with
1324         * the wash as hardware, working or not, will need to do the
1325         * invalidation before.
1326         */
1327        invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1328}
1329
1330static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1331{
1332        lockdep_assert_held(&engine->active.lock);
1333
1334        process_csb(engine);
1335        if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
1336                execlists_dequeue(engine);
1337}
1338
1339/*
1340 * Check the unread Context Status Buffers and manage the submission of new
1341 * contexts to the ELSP accordingly.
1342 */
1343static void execlists_submission_tasklet(unsigned long data)
1344{
1345        struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1346        unsigned long flags;
1347
1348        GEM_TRACE("%s awake?=%d, active=%x\n",
1349                  engine->name,
1350                  !!intel_wakeref_active(&engine->wakeref),
1351                  engine->execlists.active);
1352
1353        spin_lock_irqsave(&engine->active.lock, flags);
1354        __execlists_submission_tasklet(engine);
1355        spin_unlock_irqrestore(&engine->active.lock, flags);
1356}
1357
1358static void queue_request(struct intel_engine_cs *engine,
1359                          struct i915_sched_node *node,
1360                          int prio)
1361{
1362        GEM_BUG_ON(!list_empty(&node->link));
1363        list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1364}
1365
1366static void __submit_queue_imm(struct intel_engine_cs *engine)
1367{
1368        struct intel_engine_execlists * const execlists = &engine->execlists;
1369
1370        if (reset_in_progress(execlists))
1371                return; /* defer until we restart the engine following reset */
1372
1373        if (execlists->tasklet.func == execlists_submission_tasklet)
1374                __execlists_submission_tasklet(engine);
1375        else
1376                tasklet_hi_schedule(&execlists->tasklet);
1377}
1378
1379static void submit_queue(struct intel_engine_cs *engine, int prio)
1380{
1381        if (prio > engine->execlists.queue_priority_hint) {
1382                engine->execlists.queue_priority_hint = prio;
1383                __submit_queue_imm(engine);
1384        }
1385}
1386
1387static void execlists_submit_request(struct i915_request *request)
1388{
1389        struct intel_engine_cs *engine = request->engine;
1390        unsigned long flags;
1391
1392        /* Will be called from irq-context when using foreign fences. */
1393        spin_lock_irqsave(&engine->active.lock, flags);
1394
1395        queue_request(engine, &request->sched, rq_prio(request));
1396
1397        GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1398        GEM_BUG_ON(list_empty(&request->sched.link));
1399
1400        submit_queue(engine, rq_prio(request));
1401
1402        spin_unlock_irqrestore(&engine->active.lock, flags);
1403}
1404
1405static void __execlists_context_fini(struct intel_context *ce)
1406{
1407        intel_ring_put(ce->ring);
1408
1409        GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1410        i915_gem_object_put(ce->state->obj);
1411}
1412
1413static void execlists_context_destroy(struct kref *kref)
1414{
1415        struct intel_context *ce = container_of(kref, typeof(*ce), ref);
1416
1417        GEM_BUG_ON(!i915_active_is_idle(&ce->active));
1418        GEM_BUG_ON(intel_context_is_pinned(ce));
1419
1420        if (ce->state)
1421                __execlists_context_fini(ce);
1422
1423        intel_context_free(ce);
1424}
1425
1426static void execlists_context_unpin(struct intel_context *ce)
1427{
1428        i915_gem_context_unpin_hw_id(ce->gem_context);
1429        i915_gem_object_unpin_map(ce->state->obj);
1430}
1431
1432static void
1433__execlists_update_reg_state(struct intel_context *ce,
1434                             struct intel_engine_cs *engine)
1435{
1436        struct intel_ring *ring = ce->ring;
1437        u32 *regs = ce->lrc_reg_state;
1438
1439        GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
1440        GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1441
1442        regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
1443        regs[CTX_RING_HEAD + 1] = ring->head;
1444        regs[CTX_RING_TAIL + 1] = ring->tail;
1445
1446        /* RPCS */
1447        if (engine->class == RENDER_CLASS)
1448                regs[CTX_R_PWR_CLK_STATE + 1] =
1449                        intel_sseu_make_rpcs(engine->i915, &ce->sseu);
1450}
1451
1452static int
1453__execlists_context_pin(struct intel_context *ce,
1454                        struct intel_engine_cs *engine)
1455{
1456        void *vaddr;
1457        int ret;
1458
1459        GEM_BUG_ON(!ce->gem_context->vm);
1460
1461        ret = execlists_context_deferred_alloc(ce, engine);
1462        if (ret)
1463                goto err;
1464        GEM_BUG_ON(!ce->state);
1465
1466        ret = intel_context_active_acquire(ce,
1467                                           engine->i915->ggtt.pin_bias |
1468                                           PIN_OFFSET_BIAS |
1469                                           PIN_HIGH);
1470        if (ret)
1471                goto err;
1472
1473        vaddr = i915_gem_object_pin_map(ce->state->obj,
1474                                        i915_coherent_map_type(engine->i915) |
1475                                        I915_MAP_OVERRIDE);
1476        if (IS_ERR(vaddr)) {
1477                ret = PTR_ERR(vaddr);
1478                goto unpin_active;
1479        }
1480
1481        ret = i915_gem_context_pin_hw_id(ce->gem_context);
1482        if (ret)
1483                goto unpin_map;
1484
1485        ce->lrc_desc = lrc_descriptor(ce, engine);
1486        ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1487        __execlists_update_reg_state(ce, engine);
1488
1489        return 0;
1490
1491unpin_map:
1492        i915_gem_object_unpin_map(ce->state->obj);
1493unpin_active:
1494        intel_context_active_release(ce);
1495err:
1496        return ret;
1497}
1498
1499static int execlists_context_pin(struct intel_context *ce)
1500{
1501        return __execlists_context_pin(ce, ce->engine);
1502}
1503
1504static void execlists_context_reset(struct intel_context *ce)
1505{
1506        /*
1507         * Because we emit WA_TAIL_DWORDS there may be a disparity
1508         * between our bookkeeping in ce->ring->head and ce->ring->tail and
1509         * that stored in context. As we only write new commands from
1510         * ce->ring->tail onwards, everything before that is junk. If the GPU
1511         * starts reading from its RING_HEAD from the context, it may try to
1512         * execute that junk and die.
1513         *
1514         * The contexts that are stilled pinned on resume belong to the
1515         * kernel, and are local to each engine. All other contexts will
1516         * have their head/tail sanitized upon pinning before use, so they
1517         * will never see garbage,
1518         *
1519         * So to avoid that we reset the context images upon resume. For
1520         * simplicity, we just zero everything out.
1521         */
1522        intel_ring_reset(ce->ring, 0);
1523        __execlists_update_reg_state(ce, ce->engine);
1524}
1525
1526static const struct intel_context_ops execlists_context_ops = {
1527        .pin = execlists_context_pin,
1528        .unpin = execlists_context_unpin,
1529
1530        .enter = intel_context_enter_engine,
1531        .exit = intel_context_exit_engine,
1532
1533        .reset = execlists_context_reset,
1534        .destroy = execlists_context_destroy,
1535};
1536
1537static int gen8_emit_init_breadcrumb(struct i915_request *rq)
1538{
1539        u32 *cs;
1540
1541        GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);
1542
1543        cs = intel_ring_begin(rq, 6);
1544        if (IS_ERR(cs))
1545                return PTR_ERR(cs);
1546
1547        /*
1548         * Check if we have been preempted before we even get started.
1549         *
1550         * After this point i915_request_started() reports true, even if
1551         * we get preempted and so are no longer running.
1552         */
1553        *cs++ = MI_ARB_CHECK;
1554        *cs++ = MI_NOOP;
1555
1556        *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1557        *cs++ = rq->timeline->hwsp_offset;
1558        *cs++ = 0;
1559        *cs++ = rq->fence.seqno - 1;
1560
1561        intel_ring_advance(rq, cs);
1562
1563        /* Record the updated position of the request's payload */
1564        rq->infix = intel_ring_offset(rq, cs);
1565
1566        return 0;
1567}
1568
1569static int emit_pdps(struct i915_request *rq)
1570{
1571        const struct intel_engine_cs * const engine = rq->engine;
1572        struct i915_ppgtt * const ppgtt =
1573                i915_vm_to_ppgtt(rq->gem_context->vm);
1574        int err, i;
1575        u32 *cs;
1576
1577        GEM_BUG_ON(intel_vgpu_active(rq->i915));
1578
1579        /*
1580         * Beware ye of the dragons, this sequence is magic!
1581         *
1582         * Small changes to this sequence can cause anything from
1583         * GPU hangs to forcewake errors and machine lockups!
1584         */
1585
1586        /* Flush any residual operations from the context load */
1587        err = engine->emit_flush(rq, EMIT_FLUSH);
1588        if (err)
1589                return err;
1590
1591        /* Magic required to prevent forcewake errors! */
1592        err = engine->emit_flush(rq, EMIT_INVALIDATE);
1593        if (err)
1594                return err;
1595
1596        cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
1597        if (IS_ERR(cs))
1598                return PTR_ERR(cs);
1599
1600        /* Ensure the LRI have landed before we invalidate & continue */
1601        *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1602        for (i = GEN8_3LVL_PDPES; i--; ) {
1603                const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1604                u32 base = engine->mmio_base;
1605
1606                *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1607                *cs++ = upper_32_bits(pd_daddr);
1608                *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1609                *cs++ = lower_32_bits(pd_daddr);
1610        }
1611        *cs++ = MI_NOOP;
1612
1613        intel_ring_advance(rq, cs);
1614
1615        /* Be doubly sure the LRI have landed before proceeding */
1616        err = engine->emit_flush(rq, EMIT_FLUSH);
1617        if (err)
1618                return err;
1619
1620        /* Re-invalidate the TLB for luck */
1621        return engine->emit_flush(rq, EMIT_INVALIDATE);
1622}
1623
1624static int execlists_request_alloc(struct i915_request *request)
1625{
1626        int ret;
1627
1628        GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1629
1630        /*
1631         * Flush enough space to reduce the likelihood of waiting after
1632         * we start building the request - in which case we will just
1633         * have to repeat work.
1634         */
1635        request->reserved_space += EXECLISTS_REQUEST_SIZE;
1636
1637        /*
1638         * Note that after this point, we have committed to using
1639         * this request as it is being used to both track the
1640         * state of engine initialisation and liveness of the
1641         * golden renderstate above. Think twice before you try
1642         * to cancel/unwind this request now.
1643         */
1644
1645        /* Unconditionally invalidate GPU caches and TLBs. */
1646        if (i915_vm_is_4lvl(request->gem_context->vm))
1647                ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1648        else
1649                ret = emit_pdps(request);
1650        if (ret)
1651                return ret;
1652
1653        request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1654        return 0;
1655}
1656
1657/*
1658 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1659 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1660 * but there is a slight complication as this is applied in WA batch where the
1661 * values are only initialized once so we cannot take register value at the
1662 * beginning and reuse it further; hence we save its value to memory, upload a
1663 * constant value with bit21 set and then we restore it back with the saved value.
1664 * To simplify the WA, a constant value is formed by using the default value
1665 * of this register. This shouldn't be a problem because we are only modifying
1666 * it for a short period and this batch in non-premptible. We can ofcourse
1667 * use additional instructions that read the actual value of the register
1668 * at that time and set our bit of interest but it makes the WA complicated.
1669 *
1670 * This WA is also required for Gen9 so extracting as a function avoids
1671 * code duplication.
1672 */
1673static u32 *
1674gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1675{
1676        /* NB no one else is allowed to scribble over scratch + 256! */
1677        *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1678        *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1679        *batch++ = i915_scratch_offset(engine->i915) + 256;
1680        *batch++ = 0;
1681
1682        *batch++ = MI_LOAD_REGISTER_IMM(1);
1683        *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1684        *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1685
1686        batch = gen8_emit_pipe_control(batch,
1687                                       PIPE_CONTROL_CS_STALL |
1688                                       PIPE_CONTROL_DC_FLUSH_ENABLE,
1689                                       0);
1690
1691        *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1692        *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1693        *batch++ = i915_scratch_offset(engine->i915) + 256;
1694        *batch++ = 0;
1695
1696        return batch;
1697}
1698
1699/*
1700 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1701 * initialized at the beginning and shared across all contexts but this field
1702 * helps us to have multiple batches at different offsets and select them based
1703 * on a criteria. At the moment this batch always start at the beginning of the page
1704 * and at this point we don't have multiple wa_ctx batch buffers.
1705 *
1706 * The number of WA applied are not known at the beginning; we use this field
1707 * to return the no of DWORDS written.
1708 *
1709 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1710 * so it adds NOOPs as padding to make it cacheline aligned.
1711 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1712 * makes a complete batch buffer.
1713 */
1714static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1715{
1716        /* WaDisableCtxRestoreArbitration:bdw,chv */
1717        *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1718
1719        /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1720        if (IS_BROADWELL(engine->i915))
1721                batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1722
1723        /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1724        /* Actual scratch location is at 128 bytes offset */
1725        batch = gen8_emit_pipe_control(batch,
1726                                       PIPE_CONTROL_FLUSH_L3 |
1727                                       PIPE_CONTROL_GLOBAL_GTT_IVB |
1728                                       PIPE_CONTROL_CS_STALL |
1729                                       PIPE_CONTROL_QW_WRITE,
1730                                       i915_scratch_offset(engine->i915) +
1731                                       2 * CACHELINE_BYTES);
1732
1733        *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1734
1735        /* Pad to end of cacheline */
1736        while ((unsigned long)batch % CACHELINE_BYTES)
1737                *batch++ = MI_NOOP;
1738
1739        /*
1740         * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1741         * execution depends on the length specified in terms of cache lines
1742         * in the register CTX_RCS_INDIRECT_CTX
1743         */
1744
1745        return batch;
1746}
1747
1748struct lri {
1749        i915_reg_t reg;
1750        u32 value;
1751};
1752
1753static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1754{
1755        GEM_BUG_ON(!count || count > 63);
1756
1757        *batch++ = MI_LOAD_REGISTER_IMM(count);
1758        do {
1759                *batch++ = i915_mmio_reg_offset(lri->reg);
1760                *batch++ = lri->value;
1761        } while (lri++, --count);
1762        *batch++ = MI_NOOP;
1763
1764        return batch;
1765}
1766
1767static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1768{
1769        static const struct lri lri[] = {
1770                /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1771                {
1772                        COMMON_SLICE_CHICKEN2,
1773                        __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1774                                       0),
1775                },
1776
1777                /* BSpec: 11391 */
1778                {
1779                        FF_SLICE_CHICKEN,
1780                        __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1781                                       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1782                },
1783
1784                /* BSpec: 11299 */
1785                {
1786                        _3D_CHICKEN3,
1787                        __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1788                                       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1789                }
1790        };
1791
1792        *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1793
1794        /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1795        batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1796
1797        batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1798
1799        /* WaMediaPoolStateCmdInWABB:bxt,glk */
1800        if (HAS_POOLED_EU(engine->i915)) {
1801                /*
1802                 * EU pool configuration is setup along with golden context
1803                 * during context initialization. This value depends on
1804                 * device type (2x6 or 3x6) and needs to be updated based
1805                 * on which subslice is disabled especially for 2x6
1806                 * devices, however it is safe to load default
1807                 * configuration of 3x6 device instead of masking off
1808                 * corresponding bits because HW ignores bits of a disabled
1809                 * subslice and drops down to appropriate config. Please
1810                 * see render_state_setup() in i915_gem_render_state.c for
1811                 * possible configurations, to avoid duplication they are
1812                 * not shown here again.
1813                 */
1814                *batch++ = GEN9_MEDIA_POOL_STATE;
1815                *batch++ = GEN9_MEDIA_POOL_ENABLE;
1816                *batch++ = 0x00777000;
1817                *batch++ = 0;
1818                *batch++ = 0;
1819                *batch++ = 0;
1820        }
1821
1822        *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1823
1824        /* Pad to end of cacheline */
1825        while ((unsigned long)batch % CACHELINE_BYTES)
1826                *batch++ = MI_NOOP;
1827
1828        return batch;
1829}
1830
1831static u32 *
1832gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1833{
1834        int i;
1835
1836        /*
1837         * WaPipeControlBefore3DStateSamplePattern: cnl
1838         *
1839         * Ensure the engine is idle prior to programming a
1840         * 3DSTATE_SAMPLE_PATTERN during a context restore.
1841         */
1842        batch = gen8_emit_pipe_control(batch,
1843                                       PIPE_CONTROL_CS_STALL,
1844                                       0);
1845        /*
1846         * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1847         * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1848         * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1849         * confusing. Since gen8_emit_pipe_control() already advances the
1850         * batch by 6 dwords, we advance the other 10 here, completing a
1851         * cacheline. It's not clear if the workaround requires this padding
1852         * before other commands, or if it's just the regular padding we would
1853         * already have for the workaround bb, so leave it here for now.
1854         */
1855        for (i = 0; i < 10; i++)
1856                *batch++ = MI_NOOP;
1857
1858        /* Pad to end of cacheline */
1859        while ((unsigned long)batch % CACHELINE_BYTES)
1860                *batch++ = MI_NOOP;
1861
1862        return batch;
1863}
1864
1865#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1866
1867static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1868{
1869        struct drm_i915_gem_object *obj;
1870        struct i915_vma *vma;
1871        int err;
1872
1873        obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
1874        if (IS_ERR(obj))
1875                return PTR_ERR(obj);
1876
1877        vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1878        if (IS_ERR(vma)) {
1879                err = PTR_ERR(vma);
1880                goto err;
1881        }
1882
1883        err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1884        if (err)
1885                goto err;
1886
1887        engine->wa_ctx.vma = vma;
1888        return 0;
1889
1890err:
1891        i915_gem_object_put(obj);
1892        return err;
1893}
1894
1895static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1896{
1897        i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1898}
1899
1900typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1901
1902static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1903{
1904        struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1905        struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1906                                            &wa_ctx->per_ctx };
1907        wa_bb_func_t wa_bb_fn[2];
1908        struct page *page;
1909        void *batch, *batch_ptr;
1910        unsigned int i;
1911        int ret;
1912
1913        if (engine->class != RENDER_CLASS)
1914                return 0;
1915
1916        switch (INTEL_GEN(engine->i915)) {
1917        case 11:
1918                return 0;
1919        case 10:
1920                wa_bb_fn[0] = gen10_init_indirectctx_bb;
1921                wa_bb_fn[1] = NULL;
1922                break;
1923        case 9:
1924                wa_bb_fn[0] = gen9_init_indirectctx_bb;
1925                wa_bb_fn[1] = NULL;
1926                break;
1927        case 8:
1928                wa_bb_fn[0] = gen8_init_indirectctx_bb;
1929                wa_bb_fn[1] = NULL;
1930                break;
1931        default:
1932                MISSING_CASE(INTEL_GEN(engine->i915));
1933                return 0;
1934        }
1935
1936        ret = lrc_setup_wa_ctx(engine);
1937        if (ret) {
1938                DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1939                return ret;
1940        }
1941
1942        page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1943        batch = batch_ptr = kmap_atomic(page);
1944
1945        /*
1946         * Emit the two workaround batch buffers, recording the offset from the
1947         * start of the workaround batch buffer object for each and their
1948         * respective sizes.
1949         */
1950        for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1951                wa_bb[i]->offset = batch_ptr - batch;
1952                if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1953                                                  CACHELINE_BYTES))) {
1954                        ret = -EINVAL;
1955                        break;
1956                }
1957                if (wa_bb_fn[i])
1958                        batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1959                wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1960        }
1961
1962        BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1963
1964        kunmap_atomic(batch);
1965        if (ret)
1966                lrc_destroy_wa_ctx(engine);
1967
1968        return ret;
1969}
1970
1971static void enable_execlists(struct intel_engine_cs *engine)
1972{
1973        intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
1974
1975        if (INTEL_GEN(engine->i915) >= 11)
1976                ENGINE_WRITE(engine,
1977                             RING_MODE_GEN7,
1978                             _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1979        else
1980                ENGINE_WRITE(engine,
1981                             RING_MODE_GEN7,
1982                             _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1983
1984        ENGINE_WRITE(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1985
1986        ENGINE_WRITE(engine,
1987                     RING_HWS_PGA,
1988                     i915_ggtt_offset(engine->status_page.vma));
1989        ENGINE_POSTING_READ(engine, RING_HWS_PGA);
1990}
1991
1992static bool unexpected_starting_state(struct intel_engine_cs *engine)
1993{
1994        bool unexpected = false;
1995
1996        if (ENGINE_READ(engine, RING_MI_MODE) & STOP_RING) {
1997                DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
1998                unexpected = true;
1999        }
2000
2001        return unexpected;
2002}
2003
2004static int execlists_resume(struct intel_engine_cs *engine)
2005{
2006        intel_engine_apply_workarounds(engine);
2007        intel_engine_apply_whitelist(engine);
2008
2009        intel_mocs_init_engine(engine);
2010
2011        intel_engine_reset_breadcrumbs(engine);
2012
2013        if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
2014                struct drm_printer p = drm_debug_printer(__func__);
2015
2016                intel_engine_dump(engine, &p, NULL);
2017        }
2018
2019        enable_execlists(engine);
2020
2021        return 0;
2022}
2023
2024static void execlists_reset_prepare(struct intel_engine_cs *engine)
2025{
2026        struct intel_engine_execlists * const execlists = &engine->execlists;
2027        unsigned long flags;
2028
2029        GEM_TRACE("%s: depth<-%d\n", engine->name,
2030                  atomic_read(&execlists->tasklet.count));
2031
2032        /*
2033         * Prevent request submission to the hardware until we have
2034         * completed the reset in i915_gem_reset_finish(). If a request
2035         * is completed by one engine, it may then queue a request
2036         * to a second via its execlists->tasklet *just* as we are
2037         * calling engine->resume() and also writing the ELSP.
2038         * Turning off the execlists->tasklet until the reset is over
2039         * prevents the race.
2040         */
2041        __tasklet_disable_sync_once(&execlists->tasklet);
2042        GEM_BUG_ON(!reset_in_progress(execlists));
2043
2044        intel_engine_stop_cs(engine);
2045
2046        /* And flush any current direct submission. */
2047        spin_lock_irqsave(&engine->active.lock, flags);
2048        spin_unlock_irqrestore(&engine->active.lock, flags);
2049}
2050
2051static bool lrc_regs_ok(const struct i915_request *rq)
2052{
2053        const struct intel_ring *ring = rq->ring;
2054        const u32 *regs = rq->hw_context->lrc_reg_state;
2055
2056        /* Quick spot check for the common signs of context corruption */
2057
2058        if (regs[CTX_RING_BUFFER_CONTROL + 1] !=
2059            (RING_CTL_SIZE(ring->size) | RING_VALID))
2060                return false;
2061
2062        if (regs[CTX_RING_BUFFER_START + 1] != i915_ggtt_offset(ring->vma))
2063                return false;
2064
2065        return true;
2066}
2067
2068static void reset_csb_pointers(struct intel_engine_execlists *execlists)
2069{
2070        const unsigned int reset_value = execlists->csb_size - 1;
2071
2072        /*
2073         * After a reset, the HW starts writing into CSB entry [0]. We
2074         * therefore have to set our HEAD pointer back one entry so that
2075         * the *first* entry we check is entry 0. To complicate this further,
2076         * as we don't wait for the first interrupt after reset, we have to
2077         * fake the HW write to point back to the last entry so that our
2078         * inline comparison of our cached head position against the last HW
2079         * write works even before the first interrupt.
2080         */
2081        execlists->csb_head = reset_value;
2082        WRITE_ONCE(*execlists->csb_write, reset_value);
2083        wmb(); /* Make sure this is visible to HW (paranoia?) */
2084
2085        invalidate_csb_entries(&execlists->csb_status[0],
2086                               &execlists->csb_status[reset_value]);
2087}
2088
2089static struct i915_request *active_request(struct i915_request *rq)
2090{
2091        const struct list_head * const list = &rq->engine->active.requests;
2092        const struct intel_context * const context = rq->hw_context;
2093        struct i915_request *active = NULL;
2094
2095        list_for_each_entry_from_reverse(rq, list, sched.link) {
2096                if (i915_request_completed(rq))
2097                        break;
2098
2099                if (rq->hw_context != context)
2100                        break;
2101
2102                active = rq;
2103        }
2104
2105        return active;
2106}
2107
2108static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
2109{
2110        struct intel_engine_execlists * const execlists = &engine->execlists;
2111        struct intel_context *ce;
2112        struct i915_request *rq;
2113        u32 *regs;
2114
2115        process_csb(engine); /* drain preemption events */
2116
2117        /* Following the reset, we need to reload the CSB read/write pointers */
2118        reset_csb_pointers(&engine->execlists);
2119
2120        /*
2121         * Save the currently executing context, even if we completed
2122         * its request, it was still running at the time of the
2123         * reset and will have been clobbered.
2124         */
2125        if (!port_isset(execlists->port))
2126                goto out_clear;
2127
2128        rq = port_request(execlists->port);
2129        ce = rq->hw_context;
2130
2131        /*
2132         * Catch up with any missed context-switch interrupts.
2133         *
2134         * Ideally we would just read the remaining CSB entries now that we
2135         * know the gpu is idle. However, the CSB registers are sometimes^W
2136         * often trashed across a GPU reset! Instead we have to rely on
2137         * guessing the missed context-switch events by looking at what
2138         * requests were completed.
2139         */
2140        execlists_cancel_port_requests(execlists);
2141
2142        rq = active_request(rq);
2143        if (!rq)
2144                goto out_replay;
2145
2146        /*
2147         * If this request hasn't started yet, e.g. it is waiting on a
2148         * semaphore, we need to avoid skipping the request or else we
2149         * break the signaling chain. However, if the context is corrupt
2150         * the request will not restart and we will be stuck with a wedged
2151         * device. It is quite often the case that if we issue a reset
2152         * while the GPU is loading the context image, that the context
2153         * image becomes corrupt.
2154         *
2155         * Otherwise, if we have not started yet, the request should replay
2156         * perfectly and we do not need to flag the result as being erroneous.
2157         */
2158        if (!i915_request_started(rq) && lrc_regs_ok(rq))
2159                goto out_replay;
2160
2161        /*
2162         * If the request was innocent, we leave the request in the ELSP
2163         * and will try to replay it on restarting. The context image may
2164         * have been corrupted by the reset, in which case we may have
2165         * to service a new GPU hang, but more likely we can continue on
2166         * without impact.
2167         *
2168         * If the request was guilty, we presume the context is corrupt
2169         * and have to at least restore the RING register in the context
2170         * image back to the expected values to skip over the guilty request.
2171         */
2172        i915_reset_request(rq, stalled);
2173        if (!stalled && lrc_regs_ok(rq))
2174                goto out_replay;
2175
2176        /*
2177         * We want a simple context + ring to execute the breadcrumb update.
2178         * We cannot rely on the context being intact across the GPU hang,
2179         * so clear it and rebuild just what we need for the breadcrumb.
2180         * All pending requests for this context will be zapped, and any
2181         * future request will be after userspace has had the opportunity
2182         * to recreate its own state.
2183         */
2184        regs = ce->lrc_reg_state;
2185        if (engine->pinned_default_state) {
2186                memcpy(regs, /* skip restoring the vanilla PPHWSP */
2187                       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
2188                       engine->context_size - PAGE_SIZE);
2189        }
2190        execlists_init_reg_state(regs, ce, engine, ce->ring);
2191
2192out_replay:
2193        /* Rerun the request; its payload has been neutered (if guilty). */
2194        ce->ring->head =
2195                rq ? intel_ring_wrap(ce->ring, rq->head) : ce->ring->tail;
2196        intel_ring_update_space(ce->ring);
2197        __execlists_update_reg_state(ce, engine);
2198
2199        /* Push back any incomplete requests for replay after the reset. */
2200        __unwind_incomplete_requests(engine);
2201
2202out_clear:
2203        execlists_clear_all_active(execlists);
2204}
2205
2206static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
2207{
2208        unsigned long flags;
2209
2210        GEM_TRACE("%s\n", engine->name);
2211
2212        spin_lock_irqsave(&engine->active.lock, flags);
2213
2214        __execlists_reset(engine, stalled);
2215
2216        spin_unlock_irqrestore(&engine->active.lock, flags);
2217}
2218
2219static void nop_submission_tasklet(unsigned long data)
2220{
2221        /* The driver is wedged; don't process any more events. */
2222}
2223
2224static void execlists_cancel_requests(struct intel_engine_cs *engine)
2225{
2226        struct intel_engine_execlists * const execlists = &engine->execlists;
2227        struct i915_request *rq, *rn;
2228        struct rb_node *rb;
2229        unsigned long flags;
2230
2231        GEM_TRACE("%s\n", engine->name);
2232
2233        /*
2234         * Before we call engine->cancel_requests(), we should have exclusive
2235         * access to the submission state. This is arranged for us by the
2236         * caller disabling the interrupt generation, the tasklet and other
2237         * threads that may then access the same state, giving us a free hand
2238         * to reset state. However, we still need to let lockdep be aware that
2239         * we know this state may be accessed in hardirq context, so we
2240         * disable the irq around this manipulation and we want to keep
2241         * the spinlock focused on its duties and not accidentally conflate
2242         * coverage to the submission's irq state. (Similarly, although we
2243         * shouldn't need to disable irq around the manipulation of the
2244         * submission's irq state, we also wish to remind ourselves that
2245         * it is irq state.)
2246         */
2247        spin_lock_irqsave(&engine->active.lock, flags);
2248
2249        __execlists_reset(engine, true);
2250
2251        /* Mark all executing requests as skipped. */
2252        list_for_each_entry(rq, &engine->active.requests, sched.link) {
2253                if (!i915_request_signaled(rq))
2254                        dma_fence_set_error(&rq->fence, -EIO);
2255
2256                i915_request_mark_complete(rq);
2257        }
2258
2259        /* Flush the queued requests to the timeline list (for retiring). */
2260        while ((rb = rb_first_cached(&execlists->queue))) {
2261                struct i915_priolist *p = to_priolist(rb);
2262                int i;
2263
2264                priolist_for_each_request_consume(rq, rn, p, i) {
2265                        list_del_init(&rq->sched.link);
2266                        __i915_request_submit(rq);
2267                        dma_fence_set_error(&rq->fence, -EIO);
2268                        i915_request_mark_complete(rq);
2269                }
2270
2271                rb_erase_cached(&p->node, &execlists->queue);
2272                i915_priolist_free(p);
2273        }
2274
2275        /* Cancel all attached virtual engines */
2276        while ((rb = rb_first_cached(&execlists->virtual))) {
2277                struct virtual_engine *ve =
2278                        rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
2279
2280                rb_erase_cached(rb, &execlists->virtual);
2281                RB_CLEAR_NODE(rb);
2282
2283                spin_lock(&ve->base.active.lock);
2284                if (ve->request) {
2285                        ve->request->engine = engine;
2286                        __i915_request_submit(ve->request);
2287                        dma_fence_set_error(&ve->request->fence, -EIO);
2288                        i915_request_mark_complete(ve->request);
2289                        ve->base.execlists.queue_priority_hint = INT_MIN;
2290                        ve->request = NULL;
2291                }
2292                spin_unlock(&ve->base.active.lock);
2293        }
2294
2295        /* Remaining _unready_ requests will be nop'ed when submitted */
2296
2297        execlists->queue_priority_hint = INT_MIN;
2298        execlists->queue = RB_ROOT_CACHED;
2299        GEM_BUG_ON(port_isset(execlists->port));
2300
2301        GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
2302        execlists->tasklet.func = nop_submission_tasklet;
2303
2304        spin_unlock_irqrestore(&engine->active.lock, flags);
2305}
2306
2307static void execlists_reset_finish(struct intel_engine_cs *engine)
2308{
2309        struct intel_engine_execlists * const execlists = &engine->execlists;
2310
2311        /*
2312         * After a GPU reset, we may have requests to replay. Do so now while
2313         * we still have the forcewake to be sure that the GPU is not allowed
2314         * to sleep before we restart and reload a context.
2315         */
2316        GEM_BUG_ON(!reset_in_progress(execlists));
2317        if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
2318                execlists->tasklet.func(execlists->tasklet.data);
2319
2320        if (__tasklet_enable(&execlists->tasklet))
2321                /* And kick in case we missed a new request submission. */
2322                tasklet_hi_schedule(&execlists->tasklet);
2323        GEM_TRACE("%s: depth->%d\n", engine->name,
2324                  atomic_read(&execlists->tasklet.count));
2325}
2326
2327static int gen8_emit_bb_start(struct i915_request *rq,
2328                              u64 offset, u32 len,
2329                              const unsigned int flags)
2330{
2331        u32 *cs;
2332
2333        cs = intel_ring_begin(rq, 4);
2334        if (IS_ERR(cs))
2335                return PTR_ERR(cs);
2336
2337        /*
2338         * WaDisableCtxRestoreArbitration:bdw,chv
2339         *
2340         * We don't need to perform MI_ARB_ENABLE as often as we do (in
2341         * particular all the gen that do not need the w/a at all!), if we
2342         * took care to make sure that on every switch into this context
2343         * (both ordinary and for preemption) that arbitrartion was enabled
2344         * we would be fine.  However, for gen8 there is another w/a that
2345         * requires us to not preempt inside GPGPU execution, so we keep
2346         * arbitration disabled for gen8 batches. Arbitration will be
2347         * re-enabled before we close the request
2348         * (engine->emit_fini_breadcrumb).
2349         */
2350        *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2351
2352        /* FIXME(BDW+): Address space and security selectors. */
2353        *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2354                (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2355        *cs++ = lower_32_bits(offset);
2356        *cs++ = upper_32_bits(offset);
2357
2358        intel_ring_advance(rq, cs);
2359
2360        return 0;
2361}
2362
2363static int gen9_emit_bb_start(struct i915_request *rq,
2364                              u64 offset, u32 len,
2365                              const unsigned int flags)
2366{
2367        u32 *cs;
2368
2369        cs = intel_ring_begin(rq, 6);
2370        if (IS_ERR(cs))
2371                return PTR_ERR(cs);
2372
2373        *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2374
2375        *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2376                (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2377        *cs++ = lower_32_bits(offset);
2378        *cs++ = upper_32_bits(offset);
2379
2380        *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2381        *cs++ = MI_NOOP;
2382
2383        intel_ring_advance(rq, cs);
2384
2385        return 0;
2386}
2387
2388static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2389{
2390        ENGINE_WRITE(engine, RING_IMR,
2391                     ~(engine->irq_enable_mask | engine->irq_keep_mask));
2392        ENGINE_POSTING_READ(engine, RING_IMR);
2393}
2394
2395static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2396{
2397        ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
2398}
2399
2400static int gen8_emit_flush(struct i915_request *request, u32 mode)
2401{
2402        u32 cmd, *cs;
2403
2404        cs = intel_ring_begin(request, 4);
2405        if (IS_ERR(cs))
2406                return PTR_ERR(cs);
2407
2408        cmd = MI_FLUSH_DW + 1;
2409
2410        /* We always require a command barrier so that subsequent
2411         * commands, such as breadcrumb interrupts, are strictly ordered
2412         * wrt the contents of the write cache being flushed to memory
2413         * (and thus being coherent from the CPU).
2414         */
2415        cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2416
2417        if (mode & EMIT_INVALIDATE) {
2418                cmd |= MI_INVALIDATE_TLB;
2419                if (request->engine->class == VIDEO_DECODE_CLASS)
2420                        cmd |= MI_INVALIDATE_BSD;
2421        }
2422
2423        *cs++ = cmd;
2424        *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2425        *cs++ = 0; /* upper addr */
2426        *cs++ = 0; /* value */
2427        intel_ring_advance(request, cs);
2428
2429        return 0;
2430}
2431
2432static int gen8_emit_flush_render(struct i915_request *request,
2433                                  u32 mode)
2434{
2435        struct intel_engine_cs *engine = request->engine;
2436        u32 scratch_addr =
2437                i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES;
2438        bool vf_flush_wa = false, dc_flush_wa = false;
2439        u32 *cs, flags = 0;
2440        int len;
2441
2442        flags |= PIPE_CONTROL_CS_STALL;
2443
2444        if (mode & EMIT_FLUSH) {
2445                flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2446                flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2447                flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2448                flags |= PIPE_CONTROL_FLUSH_ENABLE;
2449        }
2450
2451        if (mode & EMIT_INVALIDATE) {
2452                flags |= PIPE_CONTROL_TLB_INVALIDATE;
2453                flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2454                flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2455                flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2456                flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2457                flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2458                flags |= PIPE_CONTROL_QW_WRITE;
2459                flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2460
2461                /*
2462                 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2463                 * pipe control.
2464                 */
2465                if (IS_GEN(request->i915, 9))
2466                        vf_flush_wa = true;
2467
2468                /* WaForGAMHang:kbl */
2469                if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2470                        dc_flush_wa = true;
2471        }
2472
2473        len = 6;
2474
2475        if (vf_flush_wa)
2476                len += 6;
2477
2478        if (dc_flush_wa)
2479                len += 12;
2480
2481        cs = intel_ring_begin(request, len);
2482        if (IS_ERR(cs))
2483                return PTR_ERR(cs);
2484
2485        if (vf_flush_wa)
2486                cs = gen8_emit_pipe_control(cs, 0, 0);
2487
2488        if (dc_flush_wa)
2489                cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2490                                            0);
2491
2492        cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2493
2494        if (dc_flush_wa)
2495                cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2496
2497        intel_ring_advance(request, cs);
2498
2499        return 0;
2500}
2501
2502/*
2503 * Reserve space for 2 NOOPs at the end of each request to be
2504 * used as a workaround for not being allowed to do lite
2505 * restore with HEAD==TAIL (WaIdleLiteRestore).
2506 */
2507static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2508{
2509        /* Ensure there's always at least one preemption point per-request. */
2510        *cs++ = MI_ARB_CHECK;
2511        *cs++ = MI_NOOP;
2512        request->wa_tail = intel_ring_offset(request, cs);
2513
2514        return cs;
2515}
2516
2517static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
2518{
2519        cs = gen8_emit_ggtt_write(cs,
2520                                  request->fence.seqno,
2521                                  request->timeline->hwsp_offset,
2522                                  0);
2523
2524        *cs++ = MI_USER_INTERRUPT;
2525        *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2526
2527        request->tail = intel_ring_offset(request, cs);
2528        assert_ring_tail_valid(request->ring, request->tail);
2529
2530        return gen8_emit_wa_tail(request, cs);
2531}
2532
2533static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2534{
2535        /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
2536        cs = gen8_emit_ggtt_write_rcs(cs,
2537                                      request->fence.seqno,
2538                                      request->timeline->hwsp_offset,
2539                                      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
2540                                      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2541                                      PIPE_CONTROL_DC_FLUSH_ENABLE);
2542        cs = gen8_emit_pipe_control(cs,
2543                                    PIPE_CONTROL_FLUSH_ENABLE |
2544                                    PIPE_CONTROL_CS_STALL,
2545                                    0);
2546
2547        *cs++ = MI_USER_INTERRUPT;
2548        *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2549
2550        request->tail = intel_ring_offset(request, cs);
2551        assert_ring_tail_valid(request->ring, request->tail);
2552
2553        return gen8_emit_wa_tail(request, cs);
2554}
2555
2556static int gen8_init_rcs_context(struct i915_request *rq)
2557{
2558        int ret;
2559
2560        ret = intel_engine_emit_ctx_wa(rq);
2561        if (ret)
2562                return ret;
2563
2564        ret = intel_rcs_context_init_mocs(rq);
2565        /*
2566         * Failing to program the MOCS is non-fatal.The system will not
2567         * run at peak performance. So generate an error and carry on.
2568         */
2569        if (ret)
2570                DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2571
2572        return i915_gem_render_state_emit(rq);
2573}
2574
2575static void execlists_park(struct intel_engine_cs *engine)
2576{
2577        intel_engine_park(engine);
2578}
2579
2580void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2581{
2582        engine->submit_request = execlists_submit_request;
2583        engine->cancel_requests = execlists_cancel_requests;
2584        engine->schedule = i915_schedule;
2585        engine->execlists.tasklet.func = execlists_submission_tasklet;
2586
2587        engine->reset.prepare = execlists_reset_prepare;
2588        engine->reset.reset = execlists_reset;
2589        engine->reset.finish = execlists_reset_finish;
2590
2591        engine->park = execlists_park;
2592        engine->unpark = NULL;
2593
2594        engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2595        if (!intel_vgpu_active(engine->i915))
2596                engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
2597        if (engine->preempt_context &&
2598            HAS_LOGICAL_RING_PREEMPTION(engine->i915))
2599                engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2600}
2601
2602static void execlists_destroy(struct intel_engine_cs *engine)
2603{
2604        intel_engine_cleanup_common(engine);
2605        lrc_destroy_wa_ctx(engine);
2606        kfree(engine);
2607}
2608
2609static void
2610logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2611{
2612        /* Default vfuncs which can be overriden by each engine. */
2613
2614        engine->destroy = execlists_destroy;
2615        engine->resume = execlists_resume;
2616
2617        engine->reset.prepare = execlists_reset_prepare;
2618        engine->reset.reset = execlists_reset;
2619        engine->reset.finish = execlists_reset_finish;
2620
2621        engine->cops = &execlists_context_ops;
2622        engine->request_alloc = execlists_request_alloc;
2623
2624        engine->emit_flush = gen8_emit_flush;
2625        engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
2626        engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
2627
2628        engine->set_default_submission = intel_execlists_set_default_submission;
2629
2630        if (INTEL_GEN(engine->i915) < 11) {
2631                engine->irq_enable = gen8_logical_ring_enable_irq;
2632                engine->irq_disable = gen8_logical_ring_disable_irq;
2633        } else {
2634                /*
2635                 * TODO: On Gen11 interrupt masks need to be clear
2636                 * to allow C6 entry. Keep interrupts enabled at
2637                 * and take the hit of generating extra interrupts
2638                 * until a more refined solution exists.
2639                 */
2640        }
2641        if (IS_GEN(engine->i915, 8))
2642                engine->emit_bb_start = gen8_emit_bb_start;
2643        else
2644                engine->emit_bb_start = gen9_emit_bb_start;
2645}
2646
2647static inline void
2648logical_ring_default_irqs(struct intel_engine_cs *engine)
2649{
2650        unsigned int shift = 0;
2651
2652        if (INTEL_GEN(engine->i915) < 11) {
2653                const u8 irq_shifts[] = {
2654                        [RCS0]  = GEN8_RCS_IRQ_SHIFT,
2655                        [BCS0]  = GEN8_BCS_IRQ_SHIFT,
2656                        [VCS0]  = GEN8_VCS0_IRQ_SHIFT,
2657                        [VCS1]  = GEN8_VCS1_IRQ_SHIFT,
2658                        [VECS0] = GEN8_VECS_IRQ_SHIFT,
2659                };
2660
2661                shift = irq_shifts[engine->id];
2662        }
2663
2664        engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2665        engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2666}
2667
2668int intel_execlists_submission_setup(struct intel_engine_cs *engine)
2669{
2670        /* Intentionally left blank. */
2671        engine->buffer = NULL;
2672
2673        tasklet_init(&engine->execlists.tasklet,
2674                     execlists_submission_tasklet, (unsigned long)engine);
2675
2676        logical_ring_default_vfuncs(engine);
2677        logical_ring_default_irqs(engine);
2678
2679        if (engine->class == RENDER_CLASS) {
2680                engine->init_context = gen8_init_rcs_context;
2681                engine->emit_flush = gen8_emit_flush_render;
2682                engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
2683        }
2684
2685        return 0;
2686}
2687
2688int intel_execlists_submission_init(struct intel_engine_cs *engine)
2689{
2690        struct intel_engine_execlists * const execlists = &engine->execlists;
2691        struct drm_i915_private *i915 = engine->i915;
2692        struct intel_uncore *uncore = engine->uncore;
2693        u32 base = engine->mmio_base;
2694        int ret;
2695
2696        ret = intel_engine_init_common(engine);
2697        if (ret)
2698                return ret;
2699
2700        intel_engine_init_workarounds(engine);
2701        intel_engine_init_whitelist(engine);
2702
2703        if (intel_init_workaround_bb(engine))
2704                /*
2705                 * We continue even if we fail to initialize WA batch
2706                 * because we only expect rare glitches but nothing
2707                 * critical to prevent us from using GPU
2708                 */
2709                DRM_ERROR("WA batch buffer initialization failed\n");
2710
2711        if (HAS_LOGICAL_RING_ELSQ(i915)) {
2712                execlists->submit_reg = uncore->regs +
2713                        i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
2714                execlists->ctrl_reg = uncore->regs +
2715                        i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
2716        } else {
2717                execlists->submit_reg = uncore->regs +
2718                        i915_mmio_reg_offset(RING_ELSP(base));
2719        }
2720
2721        execlists->preempt_complete_status = ~0u;
2722        if (engine->preempt_context)
2723                execlists->preempt_complete_status =
2724                        upper_32_bits(engine->preempt_context->lrc_desc);
2725
2726        execlists->csb_status =
2727                &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2728
2729        execlists->csb_write =
2730                &engine->status_page.addr[intel_hws_csb_write_index(i915)];
2731
2732        if (INTEL_GEN(i915) < 11)
2733                execlists->csb_size = GEN8_CSB_ENTRIES;
2734        else
2735                execlists->csb_size = GEN11_CSB_ENTRIES;
2736
2737        reset_csb_pointers(execlists);
2738
2739        return 0;
2740}
2741
2742static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2743{
2744        u32 indirect_ctx_offset;
2745
2746        switch (INTEL_GEN(engine->i915)) {
2747        default:
2748                MISSING_CASE(INTEL_GEN(engine->i915));
2749                /* fall through */
2750        case 11:
2751                indirect_ctx_offset =
2752                        GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2753                break;
2754        case 10:
2755                indirect_ctx_offset =
2756                        GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2757                break;
2758        case 9:
2759                indirect_ctx_offset =
2760                        GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2761                break;
2762        case 8:
2763                indirect_ctx_offset =
2764                        GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2765                break;
2766        }
2767
2768        return indirect_ctx_offset;
2769}
2770
2771static void execlists_init_reg_state(u32 *regs,
2772                                     struct intel_context *ce,
2773                                     struct intel_engine_cs *engine,
2774                                     struct intel_ring *ring)
2775{
2776        struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->gem_context->vm);
2777        bool rcs = engine->class == RENDER_CLASS;
2778        u32 base = engine->mmio_base;
2779
2780        /*
2781         * A context is actually a big batch buffer with several
2782         * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2783         * values we are setting here are only for the first context restore:
2784         * on a subsequent save, the GPU will recreate this batchbuffer with new
2785         * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2786         * we are not initializing here).
2787         *
2788         * Must keep consistent with virtual_update_register_offsets().
2789         */
2790        regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2791                                 MI_LRI_FORCE_POSTED;
2792
2793        CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
2794                _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2795                _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2796        if (INTEL_GEN(engine->i915) < 11) {
2797                regs[CTX_CONTEXT_CONTROL + 1] |=
2798                        _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
2799                                            CTX_CTRL_RS_CTX_ENABLE);
2800        }
2801        CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2802        CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2803        CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2804        CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2805                RING_CTL_SIZE(ring->size) | RING_VALID);
2806        CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2807        CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2808        CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2809        CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2810        CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2811        CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2812        if (rcs) {
2813                struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2814
2815                CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2816                CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2817                        RING_INDIRECT_CTX_OFFSET(base), 0);
2818                if (wa_ctx->indirect_ctx.size) {
2819                        u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2820
2821                        regs[CTX_RCS_INDIRECT_CTX + 1] =
2822                                (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2823                                (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2824
2825                        regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2826                                intel_lr_indirect_ctx_offset(engine) << 6;
2827                }
2828
2829                CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2830                if (wa_ctx->per_ctx.size) {
2831                        u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2832
2833                        regs[CTX_BB_PER_CTX_PTR + 1] =
2834                                (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2835                }
2836        }
2837
2838        regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2839
2840        CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2841        /* PDP values well be assigned later if needed */
2842        CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
2843        CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
2844        CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
2845        CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
2846        CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
2847        CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
2848        CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
2849        CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
2850
2851        if (i915_vm_is_4lvl(&ppgtt->vm)) {
2852                /* 64b PPGTT (48bit canonical)
2853                 * PDP0_DESCRIPTOR contains the base address to PML4 and
2854                 * other PDP Descriptors are ignored.
2855                 */
2856                ASSIGN_CTX_PML4(ppgtt, regs);
2857        } else {
2858                ASSIGN_CTX_PDP(ppgtt, regs, 3);
2859                ASSIGN_CTX_PDP(ppgtt, regs, 2);
2860                ASSIGN_CTX_PDP(ppgtt, regs, 1);
2861                ASSIGN_CTX_PDP(ppgtt, regs, 0);
2862        }
2863
2864        if (rcs) {
2865                regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2866                CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
2867
2868                i915_oa_init_reg_state(engine, ce, regs);
2869        }
2870
2871        regs[CTX_END] = MI_BATCH_BUFFER_END;
2872        if (INTEL_GEN(engine->i915) >= 10)
2873                regs[CTX_END] |= BIT(0);
2874}
2875
2876static int
2877populate_lr_context(struct intel_context *ce,
2878                    struct drm_i915_gem_object *ctx_obj,
2879                    struct intel_engine_cs *engine,
2880                    struct intel_ring *ring)
2881{
2882        void *vaddr;
2883        u32 *regs;
2884        int ret;
2885
2886        vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2887        if (IS_ERR(vaddr)) {
2888                ret = PTR_ERR(vaddr);
2889                DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2890                return ret;
2891        }
2892
2893        if (engine->default_state) {
2894                /*
2895                 * We only want to copy over the template context state;
2896                 * skipping over the headers reserved for GuC communication,
2897                 * leaving those as zero.
2898                 */
2899                const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2900                void *defaults;
2901
2902                defaults = i915_gem_object_pin_map(engine->default_state,
2903                                                   I915_MAP_WB);
2904                if (IS_ERR(defaults)) {
2905                        ret = PTR_ERR(defaults);
2906                        goto err_unpin_ctx;
2907                }
2908
2909                memcpy(vaddr + start, defaults + start, engine->context_size);
2910                i915_gem_object_unpin_map(engine->default_state);
2911        }
2912
2913        /* The second page of the context object contains some fields which must
2914         * be set up prior to the first execution. */
2915        regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2916        execlists_init_reg_state(regs, ce, engine, ring);
2917        if (!engine->default_state)
2918                regs[CTX_CONTEXT_CONTROL + 1] |=
2919                        _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2920        if (ce->gem_context == engine->i915->preempt_context &&
2921            INTEL_GEN(engine->i915) < 11)
2922                regs[CTX_CONTEXT_CONTROL + 1] |=
2923                        _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2924                                           CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2925
2926        ret = 0;
2927err_unpin_ctx:
2928        __i915_gem_object_flush_map(ctx_obj,
2929                                    LRC_HEADER_PAGES * PAGE_SIZE,
2930                                    engine->context_size);
2931        i915_gem_object_unpin_map(ctx_obj);
2932        return ret;
2933}
2934
2935static struct i915_timeline *get_timeline(struct i915_gem_context *ctx)
2936{
2937        if (ctx->timeline)
2938                return i915_timeline_get(ctx->timeline);
2939        else
2940                return i915_timeline_create(ctx->i915, NULL);
2941}
2942
2943static int execlists_context_deferred_alloc(struct intel_context *ce,
2944                                            struct intel_engine_cs *engine)
2945{
2946        struct drm_i915_gem_object *ctx_obj;
2947        struct i915_vma *vma;
2948        u32 context_size;
2949        struct intel_ring *ring;
2950        struct i915_timeline *timeline;
2951        int ret;
2952
2953        if (ce->state)
2954                return 0;
2955
2956        context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2957
2958        /*
2959         * Before the actual start of the context image, we insert a few pages
2960         * for our own use and for sharing with the GuC.
2961         */
2962        context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2963
2964        ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
2965        if (IS_ERR(ctx_obj))
2966                return PTR_ERR(ctx_obj);
2967
2968        vma = i915_vma_instance(ctx_obj, &engine->i915->ggtt.vm, NULL);
2969        if (IS_ERR(vma)) {
2970                ret = PTR_ERR(vma);
2971                goto error_deref_obj;
2972        }
2973
2974        timeline = get_timeline(ce->gem_context);
2975        if (IS_ERR(timeline)) {
2976                ret = PTR_ERR(timeline);
2977                goto error_deref_obj;
2978        }
2979
2980        ring = intel_engine_create_ring(engine,
2981                                        timeline,
2982                                        ce->gem_context->ring_size);
2983        i915_timeline_put(timeline);
2984        if (IS_ERR(ring)) {
2985                ret = PTR_ERR(ring);
2986                goto error_deref_obj;
2987        }
2988
2989        ret = populate_lr_context(ce, ctx_obj, engine, ring);
2990        if (ret) {
2991                DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2992                goto error_ring_free;
2993        }
2994
2995        ce->ring = ring;
2996        ce->state = vma;
2997
2998        return 0;
2999
3000error_ring_free:
3001        intel_ring_put(ring);
3002error_deref_obj:
3003        i915_gem_object_put(ctx_obj);
3004        return ret;
3005}
3006
3007static struct list_head *virtual_queue(struct virtual_engine *ve)
3008{
3009        return &ve->base.execlists.default_priolist.requests[0];
3010}
3011
3012static void virtual_context_destroy(struct kref *kref)
3013{
3014        struct virtual_engine *ve =
3015                container_of(kref, typeof(*ve), context.ref);
3016        unsigned int n;
3017
3018        GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3019        GEM_BUG_ON(ve->request);
3020        GEM_BUG_ON(ve->context.inflight);
3021
3022        for (n = 0; n < ve->num_siblings; n++) {
3023                struct intel_engine_cs *sibling = ve->siblings[n];
3024                struct rb_node *node = &ve->nodes[sibling->id].rb;
3025
3026                if (RB_EMPTY_NODE(node))
3027                        continue;
3028
3029                spin_lock_irq(&sibling->active.lock);
3030
3031                /* Detachment is lazily performed in the execlists tasklet */
3032                if (!RB_EMPTY_NODE(node))
3033                        rb_erase_cached(node, &sibling->execlists.virtual);
3034
3035                spin_unlock_irq(&sibling->active.lock);
3036        }
3037        GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
3038
3039        if (ve->context.state)
3040                __execlists_context_fini(&ve->context);
3041
3042        kfree(ve->bonds);
3043        kfree(ve);
3044}
3045
3046static void virtual_engine_initial_hint(struct virtual_engine *ve)
3047{
3048        int swp;
3049
3050        /*
3051         * Pick a random sibling on starting to help spread the load around.
3052         *
3053         * New contexts are typically created with exactly the same order
3054         * of siblings, and often started in batches. Due to the way we iterate
3055         * the array of sibling when submitting requests, sibling[0] is
3056         * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3057         * randomised across the system, we also help spread the load by the
3058         * first engine we inspect being different each time.
3059         *
3060         * NB This does not force us to execute on this engine, it will just
3061         * typically be the first we inspect for submission.
3062         */
3063        swp = prandom_u32_max(ve->num_siblings);
3064        if (!swp)
3065                return;
3066
3067        swap(ve->siblings[swp], ve->siblings[0]);
3068        virtual_update_register_offsets(ve->context.lrc_reg_state,
3069                                        ve->siblings[0]);
3070}
3071
3072static int virtual_context_pin(struct intel_context *ce)
3073{
3074        struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3075        int err;
3076
3077        /* Note: we must use a real engine class for setting up reg state */
3078        err = __execlists_context_pin(ce, ve->siblings[0]);
3079        if (err)
3080                return err;
3081
3082        virtual_engine_initial_hint(ve);
3083        return 0;
3084}
3085
3086static void virtual_context_enter(struct intel_context *ce)
3087{
3088        struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3089        unsigned int n;
3090
3091        for (n = 0; n < ve->num_siblings; n++)
3092                intel_engine_pm_get(ve->siblings[n]);
3093}
3094
3095static void virtual_context_exit(struct intel_context *ce)
3096{
3097        struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3098        unsigned int n;
3099
3100        for (n = 0; n < ve->num_siblings; n++)
3101                intel_engine_pm_put(ve->siblings[n]);
3102}
3103
3104static const struct intel_context_ops virtual_context_ops = {
3105        .pin = virtual_context_pin,
3106        .unpin = execlists_context_unpin,
3107
3108        .enter = virtual_context_enter,
3109        .exit = virtual_context_exit,
3110
3111        .destroy = virtual_context_destroy,
3112};
3113
3114static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3115{
3116        struct i915_request *rq;
3117        intel_engine_mask_t mask;
3118
3119        rq = READ_ONCE(ve->request);
3120        if (!rq)
3121                return 0;
3122
3123        /* The rq is ready for submission; rq->execution_mask is now stable. */
3124        mask = rq->execution_mask;
3125        if (unlikely(!mask)) {
3126                /* Invalid selection, submit to a random engine in error */
3127                i915_request_skip(rq, -ENODEV);
3128                mask = ve->siblings[0]->mask;
3129        }
3130
3131        GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n",
3132                  ve->base.name,
3133                  rq->fence.context, rq->fence.seqno,
3134                  mask, ve->base.execlists.queue_priority_hint);
3135
3136        return mask;
3137}
3138
3139static void virtual_submission_tasklet(unsigned long data)
3140{
3141        struct virtual_engine * const ve = (struct virtual_engine *)data;
3142        const int prio = ve->base.execlists.queue_priority_hint;
3143        intel_engine_mask_t mask;
3144        unsigned int n;
3145
3146        rcu_read_lock();
3147        mask = virtual_submission_mask(ve);
3148        rcu_read_unlock();
3149        if (unlikely(!mask))
3150                return;
3151
3152        local_irq_disable();
3153        for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
3154                struct intel_engine_cs *sibling = ve->siblings[n];
3155                struct ve_node * const node = &ve->nodes[sibling->id];
3156                struct rb_node **parent, *rb;
3157                bool first;
3158
3159                if (unlikely(!(mask & sibling->mask))) {
3160                        if (!RB_EMPTY_NODE(&node->rb)) {
3161                                spin_lock(&sibling->active.lock);
3162                                rb_erase_cached(&node->rb,
3163                                                &sibling->execlists.virtual);
3164                                RB_CLEAR_NODE(&node->rb);
3165                                spin_unlock(&sibling->active.lock);
3166                        }
3167                        continue;
3168                }
3169
3170                spin_lock(&sibling->active.lock);
3171
3172                if (!RB_EMPTY_NODE(&node->rb)) {
3173                        /*
3174                         * Cheat and avoid rebalancing the tree if we can
3175                         * reuse this node in situ.
3176                         */
3177                        first = rb_first_cached(&sibling->execlists.virtual) ==
3178                                &node->rb;
3179                        if (prio == node->prio || (prio > node->prio && first))
3180                                goto submit_engine;
3181
3182                        rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3183                }
3184
3185                rb = NULL;
3186                first = true;
3187                parent = &sibling->execlists.virtual.rb_root.rb_node;
3188                while (*parent) {
3189                        struct ve_node *other;
3190
3191                        rb = *parent;
3192                        other = rb_entry(rb, typeof(*other), rb);
3193                        if (prio > other->prio) {
3194                                parent = &rb->rb_left;
3195                        } else {
3196                                parent = &rb->rb_right;
3197                                first = false;
3198                        }
3199                }
3200
3201                rb_link_node(&node->rb, rb, parent);
3202                rb_insert_color_cached(&node->rb,
3203                                       &sibling->execlists.virtual,
3204                                       first);
3205
3206submit_engine:
3207                GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3208                node->prio = prio;
3209                if (first && prio > sibling->execlists.queue_priority_hint) {
3210                        sibling->execlists.queue_priority_hint = prio;
3211                        tasklet_hi_schedule(&sibling->execlists.tasklet);
3212                }
3213
3214                spin_unlock(&sibling->active.lock);
3215        }
3216        local_irq_enable();
3217}
3218
3219static void virtual_submit_request(struct i915_request *rq)
3220{
3221        struct virtual_engine *ve = to_virtual_engine(rq->engine);
3222
3223        GEM_TRACE("%s: rq=%llx:%lld\n",
3224                  ve->base.name,
3225                  rq->fence.context,
3226                  rq->fence.seqno);
3227
3228        GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3229
3230        GEM_BUG_ON(ve->request);
3231        GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3232
3233        ve->base.execlists.queue_priority_hint = rq_prio(rq);
3234        WRITE_ONCE(ve->request, rq);
3235
3236        list_move_tail(&rq->sched.link, virtual_queue(ve));
3237
3238        tasklet_schedule(&ve->base.execlists.tasklet);
3239}
3240
3241static struct ve_bond *
3242virtual_find_bond(struct virtual_engine *ve,
3243                  const struct intel_engine_cs *master)
3244{
3245        int i;
3246
3247        for (i = 0; i < ve->num_bonds; i++) {
3248                if (ve->bonds[i].master == master)
3249                        return &ve->bonds[i];
3250        }
3251
3252        return NULL;
3253}
3254
3255static void
3256virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
3257{
3258        struct virtual_engine *ve = to_virtual_engine(rq->engine);
3259        struct ve_bond *bond;
3260
3261        bond = virtual_find_bond(ve, to_request(signal)->engine);
3262        if (bond) {
3263                intel_engine_mask_t old, new, cmp;
3264
3265                cmp = READ_ONCE(rq->execution_mask);
3266                do {
3267                        old = cmp;
3268                        new = cmp & bond->sibling_mask;
3269                } while ((cmp = cmpxchg(&rq->execution_mask, old, new)) != old);
3270        }
3271}
3272
3273struct intel_context *
3274intel_execlists_create_virtual(struct i915_gem_context *ctx,
3275                               struct intel_engine_cs **siblings,
3276                               unsigned int count)
3277{
3278        struct virtual_engine *ve;
3279        unsigned int n;
3280        int err;
3281
3282        if (count == 0)
3283                return ERR_PTR(-EINVAL);
3284
3285        if (count == 1)
3286                return intel_context_create(ctx, siblings[0]);
3287
3288        ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3289        if (!ve)
3290                return ERR_PTR(-ENOMEM);
3291
3292        ve->base.i915 = ctx->i915;
3293        ve->base.id = -1;
3294        ve->base.class = OTHER_CLASS;
3295        ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3296        ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3297        ve->base.flags = I915_ENGINE_IS_VIRTUAL;
3298
3299        /*
3300         * The decision on whether to submit a request using semaphores
3301         * depends on the saturated state of the engine. We only compute
3302         * this during HW submission of the request, and we need for this
3303         * state to be globally applied to all requests being submitted
3304         * to this engine. Virtual engines encompass more than one physical
3305         * engine and so we cannot accurately tell in advance if one of those
3306         * engines is already saturated and so cannot afford to use a semaphore
3307         * and be pessimized in priority for doing so -- if we are the only
3308         * context using semaphores after all other clients have stopped, we
3309         * will be starved on the saturated system. Such a global switch for
3310         * semaphores is less than ideal, but alas is the current compromise.
3311         */
3312        ve->base.saturated = ALL_ENGINES;
3313
3314        snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3315
3316        intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
3317
3318        intel_engine_init_execlists(&ve->base);
3319
3320        ve->base.cops = &virtual_context_ops;
3321        ve->base.request_alloc = execlists_request_alloc;
3322
3323        ve->base.schedule = i915_schedule;
3324        ve->base.submit_request = virtual_submit_request;
3325        ve->base.bond_execute = virtual_bond_execute;
3326
3327        INIT_LIST_HEAD(virtual_queue(ve));
3328        ve->base.execlists.queue_priority_hint = INT_MIN;
3329        tasklet_init(&ve->base.execlists.tasklet,
3330                     virtual_submission_tasklet,
3331                     (unsigned long)ve);
3332
3333        intel_context_init(&ve->context, ctx, &ve->base);
3334
3335        for (n = 0; n < count; n++) {
3336                struct intel_engine_cs *sibling = siblings[n];
3337
3338                GEM_BUG_ON(!is_power_of_2(sibling->mask));
3339                if (sibling->mask & ve->base.mask) {
3340                        DRM_DEBUG("duplicate %s entry in load balancer\n",
3341                                  sibling->name);
3342                        err = -EINVAL;
3343                        goto err_put;
3344                }
3345
3346                /*
3347                 * The virtual engine implementation is tightly coupled to
3348                 * the execlists backend -- we push out request directly
3349                 * into a tree inside each physical engine. We could support
3350                 * layering if we handle cloning of the requests and
3351                 * submitting a copy into each backend.
3352                 */
3353                if (sibling->execlists.tasklet.func !=
3354                    execlists_submission_tasklet) {
3355                        err = -ENODEV;
3356                        goto err_put;
3357                }
3358
3359                GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3360                RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3361
3362                ve->siblings[ve->num_siblings++] = sibling;
3363                ve->base.mask |= sibling->mask;
3364
3365                /*
3366                 * All physical engines must be compatible for their emission
3367                 * functions (as we build the instructions during request
3368                 * construction and do not alter them before submission
3369                 * on the physical engine). We use the engine class as a guide
3370                 * here, although that could be refined.
3371                 */
3372                if (ve->base.class != OTHER_CLASS) {
3373                        if (ve->base.class != sibling->class) {
3374                                DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3375                                          sibling->class, ve->base.class);
3376                                err = -EINVAL;
3377                                goto err_put;
3378                        }
3379                        continue;
3380                }
3381
3382                ve->base.class = sibling->class;
3383                ve->base.uabi_class = sibling->uabi_class;
3384                snprintf(ve->base.name, sizeof(ve->base.name),
3385                         "v%dx%d", ve->base.class, count);
3386                ve->base.context_size = sibling->context_size;
3387
3388                ve->base.emit_bb_start = sibling->emit_bb_start;
3389                ve->base.emit_flush = sibling->emit_flush;
3390                ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3391                ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3392                ve->base.emit_fini_breadcrumb_dw =
3393                        sibling->emit_fini_breadcrumb_dw;
3394        }
3395
3396        return &ve->context;
3397
3398err_put:
3399        intel_context_put(&ve->context);
3400        return ERR_PTR(err);
3401}
3402
3403struct intel_context *
3404intel_execlists_clone_virtual(struct i915_gem_context *ctx,
3405                              struct intel_engine_cs *src)
3406{
3407        struct virtual_engine *se = to_virtual_engine(src);
3408        struct intel_context *dst;
3409
3410        dst = intel_execlists_create_virtual(ctx,
3411                                             se->siblings,
3412                                             se->num_siblings);
3413        if (IS_ERR(dst))
3414                return dst;
3415
3416        if (se->num_bonds) {
3417                struct virtual_engine *de = to_virtual_engine(dst->engine);
3418
3419                de->bonds = kmemdup(se->bonds,
3420                                    sizeof(*se->bonds) * se->num_bonds,
3421                                    GFP_KERNEL);
3422                if (!de->bonds) {
3423                        intel_context_put(dst);
3424                        return ERR_PTR(-ENOMEM);
3425                }
3426
3427                de->num_bonds = se->num_bonds;
3428        }
3429
3430        return dst;
3431}
3432
3433int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
3434                                     const struct intel_engine_cs *master,
3435                                     const struct intel_engine_cs *sibling)
3436{
3437        struct virtual_engine *ve = to_virtual_engine(engine);
3438        struct ve_bond *bond;
3439        int n;
3440
3441        /* Sanity check the sibling is part of the virtual engine */
3442        for (n = 0; n < ve->num_siblings; n++)
3443                if (sibling == ve->siblings[n])
3444                        break;
3445        if (n == ve->num_siblings)
3446                return -EINVAL;
3447
3448        bond = virtual_find_bond(ve, master);
3449        if (bond) {
3450                bond->sibling_mask |= sibling->mask;
3451                return 0;
3452        }
3453
3454        bond = krealloc(ve->bonds,
3455                        sizeof(*bond) * (ve->num_bonds + 1),
3456                        GFP_KERNEL);
3457        if (!bond)
3458                return -ENOMEM;
3459
3460        bond[ve->num_bonds].master = master;
3461        bond[ve->num_bonds].sibling_mask = sibling->mask;
3462
3463        ve->bonds = bond;
3464        ve->num_bonds++;
3465
3466        return 0;
3467}
3468
3469void intel_execlists_show_requests(struct intel_engine_cs *engine,
3470                                   struct drm_printer *m,
3471                                   void (*show_request)(struct drm_printer *m,
3472                                                        struct i915_request *rq,
3473                                                        const char *prefix),
3474                                   unsigned int max)
3475{
3476        const struct intel_engine_execlists *execlists = &engine->execlists;
3477        struct i915_request *rq, *last;
3478        unsigned long flags;
3479        unsigned int count;
3480        struct rb_node *rb;
3481
3482        spin_lock_irqsave(&engine->active.lock, flags);
3483
3484        last = NULL;
3485        count = 0;
3486        list_for_each_entry(rq, &engine->active.requests, sched.link) {
3487                if (count++ < max - 1)
3488                        show_request(m, rq, "\t\tE ");
3489                else
3490                        last = rq;
3491        }
3492        if (last) {
3493                if (count > max) {
3494                        drm_printf(m,
3495                                   "\t\t...skipping %d executing requests...\n",
3496                                   count - max);
3497                }
3498                show_request(m, last, "\t\tE ");
3499        }
3500
3501        last = NULL;
3502        count = 0;
3503        if (execlists->queue_priority_hint != INT_MIN)
3504                drm_printf(m, "\t\tQueue priority hint: %d\n",
3505                           execlists->queue_priority_hint);
3506        for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
3507                struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
3508                int i;
3509
3510                priolist_for_each_request(rq, p, i) {
3511                        if (count++ < max - 1)
3512                                show_request(m, rq, "\t\tQ ");
3513                        else
3514                                last = rq;
3515                }
3516        }
3517        if (last) {
3518                if (count > max) {
3519                        drm_printf(m,
3520                                   "\t\t...skipping %d queued requests...\n",
3521                                   count - max);
3522                }
3523                show_request(m, last, "\t\tQ ");
3524        }
3525
3526        last = NULL;
3527        count = 0;
3528        for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
3529                struct virtual_engine *ve =
3530                        rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3531                struct i915_request *rq = READ_ONCE(ve->request);
3532
3533                if (rq) {
3534                        if (count++ < max - 1)
3535                                show_request(m, rq, "\t\tV ");
3536                        else
3537                                last = rq;
3538                }
3539        }
3540        if (last) {
3541                if (count > max) {
3542                        drm_printf(m,
3543                                   "\t\t...skipping %d virtual requests...\n",
3544                                   count - max);
3545                }
3546                show_request(m, last, "\t\tV ");
3547        }
3548
3549        spin_unlock_irqrestore(&engine->active.lock, flags);
3550}
3551
3552void intel_lr_context_reset(struct intel_engine_cs *engine,
3553                            struct intel_context *ce,
3554                            u32 head,
3555                            bool scrub)
3556{
3557        /*
3558         * We want a simple context + ring to execute the breadcrumb update.
3559         * We cannot rely on the context being intact across the GPU hang,
3560         * so clear it and rebuild just what we need for the breadcrumb.
3561         * All pending requests for this context will be zapped, and any
3562         * future request will be after userspace has had the opportunity
3563         * to recreate its own state.
3564         */
3565        if (scrub) {
3566                u32 *regs = ce->lrc_reg_state;
3567
3568                if (engine->pinned_default_state) {
3569                        memcpy(regs, /* skip restoring the vanilla PPHWSP */
3570                               engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
3571                               engine->context_size - PAGE_SIZE);
3572                }
3573                execlists_init_reg_state(regs, ce, engine, ce->ring);
3574        }
3575
3576        /* Rerun the request; its payload has been neutered (if guilty). */
3577        ce->ring->head = head;
3578        intel_ring_update_space(ce->ring);
3579
3580        __execlists_update_reg_state(ce, engine);
3581}
3582
3583#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3584#include "selftest_lrc.c"
3585#endif
3586